mural

A Formal Development Support System

C. B. Jones
K. D. Jones

P. A. Lindsay
R. Moore

With contributions from J. Bicarregui, M. Elvang-Ggransson, R. E. Fields, R. Kneuper,
B. Ritchie, A. C. Wills

printed: December 10, 2004
(© 1990 Springer-Verlag

Contents

Foreword
Preface

General introduction

1.1 Formal methods

1.2 VDM development

1.3 ThelPSE 2.5 project

1.4 Proof assistant requirements

Introduction to mural

2.1 General introduction

2.2 The proof assistant

2.3 The VDM support tool

2.4 Reasoning about developments

Instantiation

3.1 Symbolic logic inmural

3.2 Classical first order predicate calculus
3.3 Some common data types

3.4 More complicated formulations

3.5 The theory of VDM

3.6 Some other logics

Foundation

4.1 Preamble

4.2 Syntax

4.3 Natural Deduction rules

4.4 Rule schemas and instantiation
4.5 Themural store

4.6 Syntactic contexts and well-formedness

4.7 Proofs

4.8 Morphisms

4.9 Pattern matching

4.10 Reading the full specification
4.11 Limitations of thenural approach

13
13
14
25
27

33
33
42
57
63
70
95

107
107
108
119
125
130
134
137
150
155
163
166

Vi

10

11

The tactic language

5.1 Mechanising proof imural

5.2 Thelanguage

5.3 The implementation of tactics
5.4 Examples

Implementing the mural proof assistant

6.1 The process of implementation

6.2 The implementation

6.3 Lessons learnt and advice to the young
6.4 The future

6.5 The final word

Supporting formal software development

7.1 Abstract specification

7.2 Relating specifications

7.3 Support for reasoning about formal developments

The mural VDM Support Tool

8.1 Specifying VDM developments in VDM
8.2 Theories from specifications

8.3 Scope for growth

Foundations of specification animation

9.1 Approaches to animation

9.2 Denotational semantics of symbolic execution
9.3 Operational semantics of symbolic execution
9.4 Theories to support symbolic execution

9.5 Conclusions

Case Studies

10.1 Specifications in VDM

10.2 Transformation of VDM intenural -theories
10.3 A watchdog for a reactor system

10.4 An algorithm for topological sorting

10.5 Theories for VDM inmural

Conclusions

11.1 Experimental use ofiural
11.2 Detailed observations
11.3 Further developments
11.4 Summary

Contents

171
171
172
188
193

199
201
202
205
208
209

215
215
218

219

221
221
230
238

241
241
245
249
257
261

263
264
264
267
281
297

301
301
302
305
307

Contents

APPENDICES
A Summary of VDM Notation
B Glossary of terms

C The Specification of the Proof Assistant
C.1 The Raw Syntax
C.2 Subterm Access and Editing
C.3 Sequents and Rules
C.4 Instantiation and Pattern-matching
C.5 Signatures
C.6 Theories
C.7 Morphisms and Theory Morphisms
C.8 Proofs
C.9 The Store

D The specification of the animation tool
D.1 Data structure and some auxiliary functions
D.2 Operations

E The Theorem Prover’s House

Bibliography

vii

308

309

313

319
319
327
338
344
349
357
359
368
395

399
399
404

413

415

viii Contents

Foreword

Programs and software constitute the most formal products known today since they must
be processed by actual automata. Yet this software should solve problems in many areas,
not all of which are supported by adequate scientific descriptions, let alone formalized
ones. This major challenge of software design and engineering is often taken up in two
phases which are logically distinct but can be carried out in parallel: in the first one,

a clear and truthful formalization, viz. the ‘requirements specification’, of the problem

at hand is built up; in the second one, a correct and efficient software system for the
solution is designed on the basis of that formal specification. The first phase may well
require the elaboration of adequate scientific models or theories, as close as possible to
the semantic universe of the problems considered: bias towards specific solutions is thus
usually minimized.

The present book focusses on the second phase, including the issue of correctness. The
viewpoint it adopts is that the final programs are derived from the initial specifications
through a design process which is decomposed systematically into manageable design
steps. Each such step yields (on the basis of the previous version) a new intermediate
formal version of the system under construction; the correctness of each new version is
ensured by its correct derivation from, or by a verification against, the previous one. The
composition of the records of the design steps serves as a record of the entire design
process; the latter is correct providing each step and the overall composition are correct.

This viewpoint clearly restricts the scope of software design: the problem of building
up an adequate problem description is played down; the design process is assumed to be
decomposable into well-defined steps, each of which can be validated completely and on
its own. These restrictive assumptions actually characterize ‘software design by formal
methods’ which may use property-based formalisms, such as specific logics or abstract
data types, or model-based formalisms such as function algebras, VDM, or Z. Significant
industrial applications have been developed using such precise approaches.

Each formal method supplies specific notations, from algebraic ones to graphical ones,
and specific correctness criteria, from mathematical proofs to plausibility arguments.
Since the final system version is intended for computer processing, at least that version
must be recorded on computer. The previous versions, starting with the specifications,
can be recorded mentally, on paper, or in a computer. It is of course tempting to edit
these intermediate documents with computer aid, as for very much the same reasons, was
the present foreword: adaptability and communicability can be enhanced significantly.
But then the computer aid should hinder as little as possible the suppleness and expres-
siveness provided by the use of the dear pencil and paper; it should rather improve on
these, e.g. by organized handling of substantial bodies of formal texts or by fast display of
beautiful texts. Similarly, the correctness of the design steps can also be ensured by mind-
and-paper or by mind-and-computer. Ensuring a new version is correctly designed with

X Foreword

respect to a previous one is akin to proving a proposed conclusion can be derived from
given assumptions; hence, the correctness of design steps may need the proof of theorems.
Hand proofs of machine-generated texts risk becoming inhuman, or being boiled down
to proofs by trust; it is thus tempting also to support precise design steps by computer.
In fact, once computer aid enters the design process somewhere, it tends to propagate
everywhere.

The problem is to ensure this computer ‘aid’ really aids: computers must serve minds,
not conversely. Effective aid depends on the ease of using the notations associated with
a given method, on the help provided in elaborating derivations and proofs, and on the
speed. As a matter of fact, not many useful computer support systems are currently avail-
able. Moreover, most assist designers in editing rather than in reasoning, and each gener-
ally supports only one variant of one method; intellectual communication between related
methods is thus handicapped.

The work reported in the present book aims at building and using a system which
supports not only the strict verification of design steps, but also a reasonable range of for-
mal methods. Indeed, design choices and correctness arguments are often similar across
different methods. A generic system could in principle support complementary methods
in different parts, for different levels, or at different times of the same design project;
remember the mindpower required by industrial projects may exceed tens of mind/years.
This aim of genericity is shared by related projects on ‘logical frameworks’ which es-
sentially focus on theorem proving; little research on generic support systems is carried
out for precise and scalable software design. The present book guides us in an unchar-
tered ocean where navigation could become active and attractive. A much needed chart
should indicate reasonable boundaries for the domains of human ideas and for the areas
of mechanizable arguments.

The results reported herein must be seen as careful observations from a scientific ex-
periment rather than as definitive, indisputable answers. They certainly provide valuable
contributions in areas as varied as logical foundations, syntactical context-sensitivity, exe-
cution of specifications as prototypes, interactive proof generation, organized composition
of formal texts, efficient recording and accessing of such texts, pleasant mind-computer
interface, support of specific methods and of specific system designs. Each of these issues
deserves a book or a project of its own; many alternatives can be imagined at various lev-
els. The originality and importance of the present work is in presenting an entire system
approach which integrates all these aspects consistently and which already proves usable,
albeit with some initial sweating.

A number of related systems are under experiment, for instance the generic logical
frameworks for theorem proving. All experiments on such systems must benefit from one
another, so that a gradual consensus emerges on the basis of the best technical character-
istics. It is an essential merit of the present book to be indeed a remarkably substantial
step in this crucial direction of scientific cooperation.

Michel Sintzoff

Preface

Formal methods bring mathematical precision to the development of computer systems.
This book describes the outcome of a project which designed and built a support tool for
formal methods such as VDM. The tool is knownmsral and is so named because it was
developed jointly by (the Computer Science department at) Manchester University and
(the Software Engineering Division at SERC’s) Rutherford Appleton Laboratories. The
major component afural is an interactive proof assistant; another component helps with
the creation of formal specifications and designs. Work on the animation of specifications
is also reported.

The so-called software crisis has been recognised for many years. Software develop-
ment is claimed to be unpredictable and often results in products which are ‘bug ridden’.
In fact there is no reason to confine the criticism to software: the task of developing any
major digital system often appears to be beyond the methods employed by its developers.
‘Formal methods’ are seen as one way of bringing order and precision into the devel-
opment of systems where errors cannot be accepted lightly. The importance of formal
methods is becoming widely recognised. Brian Oakley, who was Director of the UK
Alvey Programme, is quoted as saying:

...the main achievement of the Alvey Software Engineering Programme
is the success with which ‘Formal Methods’ from the academic world have
been pulled through to industrial use. The implications of this achievement
are difficult to overestimate, for these Formal Methods are the route to much
better software writing, and the economic consequences will be considerable
—on a par with those of the revolution in civil engineering in the last century.

The industrial relevance of one particular formal method, VDM, can be gauged from the
series of CEC-funded international symposia [BJMN87, BIJM88, BHL90].

The term ‘formal methods’ embraces the use of precise notation in specifications, and
verification in design, of computer systems. Such precise specifications employ mathe-
matical notation extended to make it easier to present specifications of computer-related
concepts like programs. These extensions are given a precise semantics in terms of more
basic mathematical concepts. Examples of such specification languages are ‘Meta-1V’
(the specification language of VDM) [BJ78, Jon80], ‘Z’ [Hay87, WL88, Spi89, MN89],
‘Larch’ [?], COLD-K [Jon88], VVSL [Mid90] and RSL (the specification language of the
RAISE project) [HH90]. Having a formally-based specification language makes it possi-
ble to convert the claim that an implementation (or even a design) satisfies a specification
into the statement of a mathematical theorem. Proof of such a theorem establishes satis-
faction for all cases. Examples of formal development methods with documented proof
obligations include VDM [BJ82, Jon80, Jon90c] and RAISE [BG90].

There are, however, many real obstacles in the way of an organisation which wishes
to apply formal methods. The greatest obstacle is certainly changing the approach of both

Xii Preface

managers and engineers because — in an industry as young as computing — few have been
exposed to a systematic engineering approach to the design of computer systems. A major
commitment to education is the only way to overcome this obstacle. The lack of standards
is also a brake on the adoption of formal methods although work is now underway within
both BSI and ISO towards a standard for VDM.

One of the consequences of the lack of standards has been the limited availability of
support for formal methods. Of all of the supposed inhibitors to the wider use of formal
methods, this is the most over-estimated! Although this book is about the provision of
such support tools, it is worthwhile trying to identify the real needs if only to avoid the trap
of assuming that the appearance of tools will, of itself, result in the widespread adoption
of the methods which they support. Large specifications, such, de[d87] have been
handled with nothing more powerful than a text processing system. This historical fact
is not to be seen as an argumént under-provision. In fact, relatively simple parsers
and type checkers (e.g. ‘SpecBox’ [BFM89] for VDM or ‘fuzz’ for Z) certainly detect
many simple errors in specifications. Furthermore, they help minimize the dangers of
what is undoubtedly the most difficult task with formal specifications: errors are far more
likely to creep in during changes to a specification than during its initial creation. A
system to support formal methods must therefore provide tools to enter and type check
specifications.

Millennia of mathematics, and even a century of formal logic, show that proofs can
be constructed with pencil and paper. Given today’s technology, it is not difficult to
become more productive at a full-screen editor, if only because of the ability to insert
lines in proofs. This is especially true of so-called ‘natural deduction’ proofs because
of the way they grow from the outside boxes to fill in the internal lines. Providing it
is done conscientiously, th@ocessof constructing even an outline proof should detect
most errors in the statement of a supposed theorem because of the way it cross-checks
the original claim (an obvious example is the way that, in proving that the body of a loop
preserves an invariant, the invariant provides a sideways look at the purpose of the loop;
such an alternative point of view is likely to uncover any error in coding the body).

But the formal development of computer systems can involve large specifications and
many proofs of considerable size. In business environments, requirements are likely
to change part way through development (cf. [Leh89]). Appropriate support tools can
greatly improve the productivity of engineers who are employing formal methods. The
project which is reported in this book addressed the provision of such tools.

This book has been produced by revising a collection of the papers which were written
during the project. They have been edited to make a more coherent text and material has
also been specifically written for this book. In some places, this gives rise to repetition;
this has been left in the hope that the reader can read separate chapters independently of
one another. A good overview of the work can be obtained by reading Chapters 1-3, 6,
7 and 11. Chapters 1 and 2 are introductory. The main component afitia system
is a proof assistant — this is described in detail Chapters 3 to 6 of this book; Chapters 7
and 8 describe the work on a VDM support tool (VST); and Chapter 9 describes a novel
approach to the animation of specifications. Chapters 10 and 11 are again relevant to all
components ofnural : the former describes some applications and the latter draws some
conclusions and sets out further research goals.

A glossary of VDM notation is given in Appendix A and one of terms is included in
Appendix B; Appendices C and D contain VDM specifications. Appendix E looks far
beyond the current project to a vision of a possible future.

Preface Xili

The mural system is available for both research and commercial use; it is written
in Smalltalk’'80 and requires a large workstation to run. Details of how to obtairal
are available from Dr. Richard Moore, PEVE Group, Department of Computer Science,
Manchester University, M13 9PL, U.K. In addition to this book, an introductory video
and a ‘User Guide’ are available.

The specific contributions to this book are given in the following table. In addition,
the four main authors took responsibility for editing the whole work and all authors read
other parts of the book in various drafts.

Preface C. B. Jones

Chapter 1 C. B. Jones

Chapter 2 R. Moore

Chapter 3 P. A. Lindsay

Chapter 4 P. A. Lindsay

Chapter 5 R. E. Fields

Chapter 6 K. D. Jones

Chapter 7 J. Bicarregui and B. Ritchie
Chapter 8 J. Bicarregui and B. Ritchie
Chapter 9 R. Kneuper

Chapter 10 M. Elvang and R. E. Fields
Chapter 11 C. B. Jones

Appendix A C. B. Jones

Appendix B omnes

Appendix C P. A. Lindsay and R. Moore
Appendix D R. Kneuper

Appendix E A. C. Wills

Acknowledgements

We should like to express our gratitude to John Fitzgerald, who contributed to the instan-
tiation of themural proof assistant and who also provided many valuable comments on
the various drafts of this book. Thanks are also due to Lockwood Morris, a senior visiting
fellow involved with the project for one year, who contributed to the development of the
proof model (‘boxes-and-lines’) for an early prototypemadral, and to Michel Sintzoff,

who provided invaluable external criticism of our evolving ideas.

We are grateful to SERC and the Alvey Directorate for providing funding for the
IPSE 2.5 project. In addition, CBJ would like to thank SERC for support under the Se-
nior Fellowship Grant and the Wolfson Foundation for its grant, and MEG acknowledges
partial support of a grant from the Danish Technical Research Council (STVF).

The authors also wish to acknowledge the support and encouragement of the staff
at Springer-Verlag’s London office and the valuable feedback from the reviewers of an
earlier draft of this material.

Chapter 1

General introduction

This chapter describes the context in which the scientific work reported in later chapters

was undertaken. After a general description of formal methods, VDM is used as an ex-

ample to make the sort of tasks involved in formal development more precise. Section 1.3
outlines the overall project in which the work on formal methods was undertaken. The last

section in this chapter deduces a number of requirements for the support of the theorem
proving process. Chapter 2 offers an introduction tortiweal system itself.

1.1 Formal methods

Before focusing on formal methods for the development of computer systems, it is worth
looking at what the adjective ‘formal’ indicates when applied to notations and proofs.
To be called formal, a notation must have some understood meaning or semantics. For
example, in the logic of propositions, the expressibn (B v (') depends in a precise

way on what the identifiergl etc. denote. Exactly how such meaning can be defined
need not be discussed here. The important fact is that a claim that the expresgions
(BV C)andA A BV A A C have the same meaning is, in any given logic, either true

or false! Unlike in what computer scientists call ‘natural languages’, expressions in a
formal language have a formal semantics which can settle disputes about their intended
interpretation.

One might then expect that a formal specification language for computer systems
should be such that the precise meaning of any particular specification can only be dis-
puted through ignorance. This expectation can be fulfilled. But, without the additional
bonus of being able to reason about such specifications, the cost of their construction
might be hard to justify. Fortunately, formal specification languages, at least for sequen-
tial computer systems, are also tractable in the same way as logic notation: proofs can be
constructed.

The essence of what makes a proof formal is that its steps rely only on symbol ma-
nipulation. Consider the claim made above about the two propositional expressions. One
half of what needs to be proved is that the second expression can be deduced from the
first. This can be written as a sequehin (BV C) - AA B VvV AA C. One rule of
deduction abou is that from a conjunction either of its conjuncts can be deduced. Thus
bothAA(BV C)F AandAA (B vV C) = BV C are valid steps in a proof. An entire

1Of course, in classical logic it is true; as it is in VDM'’s LPF — see below; but the symbols\lit@uld
be used for totally different purposes in other languages.

2 1 General introduction

proof of the required result can be built from such simple steps. More remarkably, any
true statement in propositional logic can be proved using a small repertoire of basic rules.

Rather than imbed proofs in text, it is possible to make them more readable by dis-
playing them. In the style known as ‘natural deduction’ the required proof is

from AN (BV ()

1 A N-E(h)

2 BvC(C A-E(h)

3 from B

3.1 ANB A-1(1,h3)
infer ANBV ANC V-1(3.1)

4 from C

4.1 ANC A-1(1,h4)
infer ANBV AANC Vv-1(4.1)

infer ANBV AN C V-E(2,3,4)

Proof that and distributes over or (one
direction)

In this proof, steps 1 and 2 are shown as being justified by a rule known as ‘and elimina-
tion’ (A-FE). It can be expressed by a deduction rule

AL
Such rules are really schema for an infinite set of possible deductions. If known (proven)
expressions can be found to match the hypotheses above the line, then a conclusion which
matches what is written below the line is valid. The matching process in this instance
links E; with A and F»> with B v C. Thus line 2 of the proof is justified by eliminating
the left conjunct from the overall hypothesis of the proof.

A more interesting rule is that which facilitates the elimination of disjunctions. This
can be thought of as providing a way of reasoning by cases. The rule is

@El\/EQ, El;E’ EQ'_E

The final conclusion of the boxed proof above uses this rule witbubstituted by, E,

by C,andE by AN B vV AA C. Notice here that, as well as an expressibr C which

is needed as a hypothesis, two subsidiary proofs are required. To apply the or-elimination
rule, the factstha - AANBV AANCandC - AA BV AN C arerequired. In the
given proof, these are shown by the inner boxes 3 and 4. The required proofs for these
two boxes are easy to complete. Step 3.1 follows from the hypothesis of box 3 and the
already proven line 1 by the and-introduction rute).

Ey; By

I
M RN,

The conclusion of box 3 follows from the rule of or-introduction

1.1 Formal methods 3

The key point about the proof is that each step is mediated by a rule whose application
can be completely checked by symbol manipulation. There is no room for debate about
whether a formal proof does or does not follow the rules.

In passing, it is also worth mentioning that the steps of such a proof can be understood
either forwards from the hypotheses to the conclusion or backwards from the goal to sub-
goals. In fact, it is frequently useful to attempt both directions when trying to discover
a proof. It is explained below that the freedom to work in any order was a major design
goal of themural proof assistant.

Having established a benchmark of ‘formality’, the topic of formal methods can be
explored more carefully. It is claimed above — and the claim is illustrated in the next sec-
tion — that specification languages exist which deserve the adjective ‘formal’. Is it then
possible to prove that a program satisfies a specification? Under certain assumptions the
answer is yes. The programming language itself can be regarded as a formal language be-
cause it has a precise semantics. In an ideal world, this semantics is given by something
like the definition of ALGOL 60 in [BJ82]; at the other extreme it can be given by the
code of the compiler. In practice, neither of these texts would be usable in a proof and
what is needed is a series of proof rules for program constructs which are designed in the
same spirit as those for logics. The strongest assumption then — under which programs are
proven to satisfy a specification — is that the implementation (comgilest machine) re-
flect the proof rules used in such proofs. There is also an assumption of practicability: the
size of programs for whichost factoproof is practical is severely limited. Methods like
VDM respond to this observation by offering ways of decomposing a design into stages
which can be separately justified. This has the additional advantage that errors made early
in design are detected long before running code is created. In traditional software devel-
opment, such errors might well be detected only when the code is available for testing.
Since ‘scrap and rework’ is a major cause of lost time in software development, carefully
applied formal methods such as VDM can actually improve the productivity of the devel-
opment process. One further caveat about proving facts about programs is in order: what
is (theoretically) possible is to show that one formal text — the program — satisfies another
— the specification; this can neyaiovethat the specification describes the system desired
by some user.

There are, within the formal approach to system development, three more-or-less
distinct paradigms; implementations can be developed by:

e iterative specification, design, and verification;
e program transformation; or

e constructive mathematics.

VDM [Jon90c] is taken as the principal example of the first paradigm in this book.
The early Floyd/King style of verification condition generation leads to proof obliga-
tions called ‘verification conditions’. These are, however, open to the criticism [Cra85] —
when appliedost-facto- that it is often hard to relate the verification conditions to the

2The unavoidable reliance on a compiler is the reason that so much of the early work on formalization
focussed on defining programming languages — see [McC66, JL71, Jon79b].

30f course these paradigms overlap, and it could be argued that the first and the third are different
aspects of the same paradigm, but such arguments do not concern us here — the point is that they all involve
formal reasoning. Proof obligations arise in each of these paradigms.

4 1 General introduction

program. Methods of ‘data reification’ and ‘operation decomposition’ in VDM provide
many instances of proof obligations which are made intelligible to the user by having the
steps of development convey the structure of the correctness argument.

The ‘program transformation’ approach is typified by CIP [CIP858B]. The basic
idea is to transform inefficient — but clearly correct — ‘implementations’ into runnable
programs. A transition from recursive functions to iterative procedures is an example of
such transformations. But many transformations have associated applicability conditions
which give rise to proof obligations when used.

The most direct use of formal reasoning is in the ‘constructive mathematics’ paradigm.
Specifications are recast as statements that an implementation exists; and a ‘program’ is
extracted directly from a constructive proof of the claim. NuPRL 6] is an example
of a system supporting this paradigm.

1.2 VDM development

In order to provide more specific examples of the sort of proofs which are required in
the formal development of software, an outline of parts of VDM is given. Appendix A
provides a glossary to VDM notation. For a fuller, and more pedagogic description of
VDM the reader is referred to [Jon90c].

1.2.1 Specification

A VDM specification describes the behaviour of a system in terms of the operations which
can be performed by the system. The meaning of these operations is specified by pre- and
post-conditions. Pre-conditions describe under what circumstances the system is required
to perform and post-conditions describe what function is to be performed. In very simple
systems, it is sometimes possible to describe the behaviour by considering only inputs
and outputs; most interesting systems also have a state which reflects the effect of ear-
lier operations. In VDM, pre-conditions define which input and initial state combinations
must be handled by an operation while post-conditions relate inputs and initial states to
outputs and final states. In general, post-conditions are shorter than constructive algo-
rithms to achieve the desired result. Moreover, the use of abstract objects makes even
more dramatic abbreviation possible by allowing a specification to be written in terms of
objects which match the application rather than the intricacies of the final implementation
machine.

The notion ofstateis then central to a specification in VDM. If one were to be de-
scribing a systemwhich handled a collection of signal$ig is the name of the set of
these objects), one might define the (abstract) sthie)(@s

Abs . poss . Sig-set
curr . Sig-set
inv (mk-Abs(p,c))2cCp

Here the sets of possibledss) and current ¢urr) signals are stored as fields of the
composite objectdbs; furthermore, the data type invariant constrains any valid object
mk-Abs(p, ¢) € Abs to have itsc set contained in itg set.

4This system is a simplified view of the reactor protection example which is studied in Chapter 10.

1.2 VDM development 5

As has been claimed, VDM offers a formal language (sometimes known — in order
to distinguish it from the method — as ‘Meta-1V’): its expressions can be expanded into
standard mathematical ones. It is convenient here to present a partial expansion since this
IS necessary to present specifications todheal system. The statdbs can then be
defined viaAbs0 as follows

AbsO :: poss . Sig-set
curr . Sig-set

Abs = {a € AbsO | inv-Abs(a)}

inv-Abs : AbsO — B
inv-Abs(a) 2 curr(a) C poss(a)

For most systems that are specified in VDM, there are many operations affecting the
same state. These operations represent the external interface of the system. They are
gathered together with the state into a module. The state itself is considered to be hid-
den within the module and can only be manipulated by the operations. Here, only one
operation is given. Furthermore, in order to minimize the discussion of VDM’s module
construct, its specification is given in a way which ignores some of the sophistication of
VDM.? An operation @ DD) which adds a new signal to the fieldrr within the state
could be specified

ADD (new: Sig)
ext wr a : Abs
pre new € poss(a)

post curr(a) = curr(‘@) U {new} A poss(a) = poss(‘a)

The post-condition relates the fields of the initial stafeto those of the final state; the
pre-condition invites the developer to ignore cases wheredhesignal is not in theyoss
field of the initial state ¢ here).

Paradoxically, one test of a specification language is whether it can be used to write
nonsense! VDM’s pre- and post-conditions can be used to specify operations which can-
not be built. But one can make mathematically precise the claim that this has not hap-
pened. An operation isatisfiableif for any possible starting condition (as given by the
pre-condition) there is a possible state and result which satisfies the post-condition. For
the current example, this can be written in the predicate calculus as

Vnew € Sig, @ € Abs -
pre-ADD (new, 7) = da € Abs - post-ADD(new, ‘@, a)

This is the first example of proof obligationfrom VDM. Its proof is straightforward
and is not pursued here but it is worth noticing the way in which the data type invariant

5The ADD operation could be specified as follows

ADD (new: Sig)
ext rd poss: Sig-set,

wr curr: Sig-set
pre new € poss

A
post curr = curr U {new}

6 1 General introduction

(inv-Abs) expands for the differing quantifiers

Vnew € Sig, @ € Abs0 -
inv-Abs(‘@) A pre-ADD(new, @) =
Ja € AbsO - inv-Abs(a) A post-ADD(new, @ , a)

Satisfiability proof obligations are a check on the internal consistency of a specification.
For complex systems, a user might use tingral proof assistant to provide proofs for
those proof obligations which are automatically generated by the VST. Another sort of
proof which might be undertaken before the process of design begins is to prove properties
about combinations of operations. This can, to some extent, ameliorate doubts as to
whether the formal specification does describe a system whose behaviour will be accepted
by users. Chapter 9 of this book describes an alternative approach to the animation of
specifications.

1.2.2 Reification

Development in VDM proceeds by data reification (making more concrete) and/or opera-
tion decomposition. In order to illustrate the sort of proof obligation which arises during
developments, a simple step of reification of this state is considered. Thess set is
represented by a sequence (without duplicates); the curr set is represented by a list
curl, of the same length assl, which contains Boolean values -traue value in curl
indicates that the corresponding elemenpafl is considered to be in the skt

Rep0 . posl . Sig*
curl : B*

Rep = {r € RepO0 | inv-Rep(r)}

imv-Rep : Rep0) — B

inv-Rep(r) £ len posl(r) = len curl(r) A is-uniquel (posi(r))
1s-uniquel : X* — B

is-uniquel(l) & Vi,j €indsl-i#j = (i) # 1(5)

In VDM, the precise relationship betweefbs and Rep is normally documented by a
‘retrieve function’ which maps elements of the latter to elements of the former. For the
simple example in hand this is

retr-Abs : Rep — Abs

retr-Abs(r) 2
mk-AbsO(elems posl(r),{posl(r)(i) | i € inds posl(r) A curl(r)(i)})

6Again VDM offers the more compact notation
Rep . posl: Sig*
curl: B
inv (mk-Rep(pl, cl)) & len pl = len ¢l A is-uniquel (pl)

“Chapter 9 of [Jon90c] does, however, describe the use of the more general rules presented in [Nip86,
Nip87]

1.2 VDM development 7

The direction of this function is important. As can be seen in this case, there can be
more than one representation for each element of the set of abstract states. This is typical
of steps of reification where representations become more intricate and redundant as the
constraints of the target machine and goals of efficiency are considered.

There is a need to check that the retrieve function is defined over all elements of its
domain. Showing the totality (ovetep) of retr- Abs is not difficult but the reader should
note the way in which the definedness of the expres§iori(r)(i) | ¢ € inds posi(r) A
curl(r)(i)} depends on the invariantv- Rep.

Experience in large scale applications of VDM has shown thatatleguacyproof
obligation is a cost-effective check on design steps of reification. It is observed above that
there can be more than one elemenfRep for each element oflbs; adequacy requires
that there must be — at least — one! Formally, for the step of reification considered here

Va € Abs - 3r € Rep - a = retr-Abs(r)
Here again, expansion showing the invariants explicitly is revealing
Va € AbsO - inv-Abs(a) = 3Ir € Rep0 - inv-Rep(r) A\ a = retr-Abs(r)

Only because (e Abs0) is restricted byinv-Abs can representations be found (consider
mk-AbsO({a},{a, b})). Whereasnv-Abs being the antecedent of an implication makes
the task easierjnu-Rep is conjoined to the consequent and therefore checks that the
designer has not inadvertently ruled out needed representations. The adequacy proof
obligation corresponds to one’s intuition; experience shows that in non-trivial steps of
reification it identifies mistakes early in the design process; it is inexpensive in the sense
that only one proof is required for a complete reification step.

Once this overall check on a design step has been performed, it is time to consider
each of the operations. In this illustrative example there is only one operatib®)
shown on the abstract state and an operation which should exhibit the same behaviour on
Rep can be specified.

ADDR (new: Sig)
ext wr r © Rep
pre 3i € inds posi(r) - posl(r)(i) = new
post 3¢ € inds posl(r) -
posl(r)(i) = newAposl(r) = posl(‘T)Acurl(r) = modl(curl(T), i, true)

modl (1:B*,1: Ny, v: B) r: B
pre i <lenl
postlenr =lenl Ar(i) =vAVYji:Ny-j<lenlAj#i = r(j)=1()

For each such pair of abstract/representation operations thesteraggnandresultproof
obligations. The former checks that the pre-condition of the reified operation does not
rule out any states which were required to be handled on the abstract level; formally

Vnew € Sig,r € Rep - pre-ADD(new, retr-Abs(r)) = pre-ADDR(new, r)

At a level of detail which would be used in [Jon90c], the proof might be written

8 1 General introduction

from new € Sig,r € Rep
1 from pre-ADD(new, retr-Abs(r))

1.1 new € poss(retr-Abs(r)) hlpre-ADD
1.2 new € elems (posi(r)) 1.1 etr-Abs
1.3 3i € inds (posl(r)) - posl(r)(i) = new LIST,1.2

infer pre-ADDR(new,) 1.3,pre-ADD
2 O(pre-ADD(new, retr-Abs(r)) pre-ADD

infer pre-ADD (new, retr-Abs(r)) = pre-ADDR(new, r) =--1(1,2)

Domain proof obligation fod DDR

In this proof there is only one step which is justified by an inference rule of logic: the
final step uses
By b By 0(By)

=1 B = B

In classical logic, the ‘Deduction Theorem’ only needs the first hypothesis. VDM uses
a ‘logic of partial functions’ (LPF) — see [BCJ84, CJ91]. This variant of classical logic
was developed because of the preponderance of partial terms in proofs about computer
systems. For example, the terair-Abs(r) in the consequent of the expanded adequacy
condition could be undefined when the antecedent is false. The rule for implication-
introduction in LPF requires that the antecedent be proved to be defined. Most of the other
steps rely on the folding or unfolding of definitions. Step 1.3 uses a lemma which would
be proved in thel IST theory. This proof actually hides some of the detail of the proof
and should be regarded as ‘rigorous’ rather than completely formal. niingl proof
assistant can be used to create fully formal proofs — such a proof of this result is about the
right size to squeeze screen dumpsmifal onto the pages of this book (cf. Chapter 2).
Although it is not pursued below, the result proof obligation fdvDR is

Vnew € Sig, 7,7 € Rep -
pre-ADD (new, retr-Abs('T)) A post-ADDR(new, 7 ,7) =
post-ADD (new, retr-Abs(‘r), retr-Abs(r))

1.3 ThelPSE 2.5 project

The work described in this book was part of tlRSE 2.5 project which was funded by
the UK Alvey directorate. The project ran from October 1985 to March 1990. The overall
list of collaborators in the project was STC, ICL, Dowty, Plessey, British Gas, Manchester
University and SERC (RAL). Of these, Manchester University and Rutherford Appleton
Laboratory were the ‘academic partners’ responsible for the work described in this book.
The people involved included Juan Bicarregui, Jen Cheng, lan Cottam, David Duce, Neil
Dyer, Bob Fields, John Fitzgerald, Julie Haworth, Jane Gray, CIliff Jones, Kevin Jones,
Ralf Kneuper, Peter Lindsay, Richard Moore, Lockwood Morris, Tobias Nipkow, Brian
Ritchie, Michel Sintzoff, Mark van Harmelen, Chris Wadsworth, and Alan Wills.

The overallIPSE 2.5 project set out very ambitious objectives (see [DBJ] for the
project proposal) to integrate formal methods support with tools which covered famil-
iar industrial objectives for a project support environment like version control and project

1.4 Proof assistant requirements 9

management. The project stalled on this level of ambition and it was decided to split it into
a series of ‘themes’ two of which were to support formal reasoning. The academic part-
ners in the project concentrated on the formal reasoning support. The industrial partners
worked on providing support for the processes involved in the commercial development
of software systems. The principle means underlying such provision was the development
of an approach described as ‘process modelling’. An overview of this aspect of the project
is given in [Sno89, War90].

The main effort of the academic partners has been on the construction of a generic
proof assistant. It became clear during the project that the industrial partners were not
going to provide a formal methods environment which would exercise the proof assis-
tant and it was decided that the academic partners had to create an example specification
support tool which would make it possible to input specifications and generate proof obli-
gations. Since the main purpose was to create useful (software engineering) tasks for
the proof assistant, it was considered acceptable to generate a tool which was specific in
a number of ways. For example, an obvious decision was to support only VDM. The
specification support tool is therefore known as the VDM Support Tool (VST): it is far
less generic than the proof assistant. In fact, because the whodé project has been
built on Smalltalk’80, much of the VST code would be re-used if another specification
language were to be supported.

1.4 Proof assistant requirements

Based on the original project proposal [DIBb], a series of ‘concept papers’ were written
which set out the requirements for different aspects of B$& 2.5 project. The concept
paper for formal reasoning [JLW86] contains a detailed rationale for the research which
led to mural; a published overview of this material with an intermediate project report
is given in [JL88]; this section provides only a sketch of the main requirements. It must
be realized that, because of various pressures, not all of the project objectives were met
(cf. Chapter 11).

The VDM proof obligations in Section 1.2 are specific to the development in hand. It
is also desirable to develop ‘theories’ (see below) which can be re-used across many devel-
opments. Such theorems are more general than those for a specific program. Furthermore
there is sometimes a need for even more general results such as justifying (against a de-
notational semantics) the rules which generate proof obligations. If a very high degree of
confidence is required in the correctness of proofs they ought to be checked by a computer
program. As is obvious from the discussion of formality in Section 1.1, it is not difficult
to write a program which checks that all steps of a formal proof are justified by stated in-
ference rules. The snag is that completely formal proofs are at such an excruciating level
of detail that they take enormous effort to prepare. The natural question to ask is whether
a computer can be programmed to assist the processnstructingsuch proofs. There
have been attempts to build automatic theorem provers. In general, automatic discovery
of proofs is theoretically impossible; in practice, systems like that described] imaje
proved very difficult to steer. The obvious compromise is to find a balance where human
intuition guides an interactive program which performs mechanical tasks smoothly. To
maximise this synergy, the system must offer a more inviting environment than pencil
and paper. One might think that this was not difficult, but a survey at the beginning of

10 1 General introduction

the project showed that users viewed most systems as something to wrestle with once a
proof had been planned by hand. Even recently, the authors of [RvH89] describe their use
of EHDM thus

One of us broke the published proof of Lamport and Melliar-Smith down
into elementary steps, while the other encoded these in EHDM and persuaded
the theorem prover to accept the proofs. ... All this work was done by hand,
and only cast into EHDM and mechanically verified towards the end.

A large part of the problem results from the fact that, in existing systems, the machine
usually dictates (to greater or lesser extent) how the proof proceeds, and when — as often
occurs — it leads down an obscure path, the user is left to work out what is happening and
how to get back on the right track.

It is currently the case that very few proofs are written completely formally. There
are a number of reasons for this. It must be clear that a comparison between proofs in
mathematics — where what is provided is no more than a plan for a proof — and comput-
ing can be confusing. Many proofs required in program development are basically long
and somewhat tedious. Rather than recording a brilliant insight, the proof is intended to
cross-check that no details have been overlooked in a design. The sheer amount of detail
involved renders machine support and formal verification essential.

Given this view of the sort of proof to be createdyral has to genuinely help with
proof construction. A synergy of man and machine is required in which each performs
the tasks to which it is best suited. The human guides the proof (based on insight into the
reasons for belief in its truth); the machine makes faultless mechanical steps together with
(constrained) searches. A proof assistant has to be designed so that the human, rather than
the program, is in control of the proof creation. The key requirement is that the formal
reasoning tools ofPSE 2.5 facilitate proof ‘at the workstation’ rather than the machine
being a challenge one faces after having planned a proof.

If proving that programs satisfy specifications is hark work, one is naturally prompted
to see if the work can be re-used. An obvious example of the reuse of work is to employ
the same module in more than one system. An overall project support environment can
facilitate such reuse and there is here a clear need for formal methods because of the
central role of specifications in such re-use. There are, however, severe limitations to the
impact of the reuse of modules in standard programming languages: most modules are so
specific that they are of use a mostone system.

A requirement which we considered crucial was to support the gathering of results into
‘theories’. As seen in [Dah77, Jon79a, Hay8p,the development of ‘theories’ presents
one of the major hopes for getting formal reasoning more widely used. Such theories
become one way of establishing ‘levels’ in proofs: a detailed proof at one level becomes
a simple inference rule at another. The use of such derived rules was seen as one of the
essential ways of obtaining higher-level proofsinral .

The need for generic formal reasoning tools has been alluded to above. A key area
where the need for genericity was recognised from the beginning was that of logics. The

80ne of the first steps taken towards writing a set of requirements for the proof assistant was to experi-
ment with theorem proving systems developed by others. To a large extent, we were able to obtain copies of
such systems and import them to run on our own machines (e.g. work with lota is reported in [AlI86]). The
overall conclusions of the survey were published as [Lin88]. (See also [Kem86] — which has only recently
become available to us — in which two of the key goals for ‘next generation verification systems’ are the use
of graphics interfaces and the development of reusable theories.) The impression gained was that machines
were not being used well in the support of formal reasoning.

1.4 Proof assistant requirements 11

framework provided enables users to instantiateal for a wide range of logics. The
process of going from generator to generated system should be one of parameter instan-
tiation, in contrast to writing (procedural) programs. There is, however, a further re-
quirement: the generated systems should not be significantly more difficult to use than
hand-constructed ones.

We decided to stop short of the sort of searching implied in automatic theorem prov-
ing. We did not believe, in any case, that automatic theorem proving is what was needed
in IPSE 2.5. In particular, it seemed clear that the paradigm ‘write code plus assertions
then do verification condition generation’ is unworkable even for quite small programs —
see [Cra85]. At the same time, conducting proofs interactively very soon becomes impos-
sibly tedious without some automated aids. There is a need to capture and import relevant
automated tools. Some data types have decision procedures which, although often very
costly (exponential), are worth implementing. Certainly, it has proved worthwhile to have
a simple checker for propositional calculus; other examples might include finite lists and,
possibly, Presburger arithmetic.

The aim to create a system in which the insight of the user as to why a result holds is
used to steer proof construction puts the emphasis on interaction. It is important to realize
that an incomplete proof is an object of interest. In fact, a proof is of interest while it is
incomplete; once proved, only the statement of the theorem is needed for most purposes.
The user might pursue different avenues until a proof is found. Keeping track of these
threads and facilitating movement between them is essential. When the proof is finally
completed there is the problem of ‘garbage collecting’ in a sophisticated way. Many
interaction styles were considered (see [CINW83, BB CJIN 86, IM88]Y before that
implemented inmural was finally chosen.

In a useful instantiation ofnural, there are likely to be very many applicable infer-
ence rules and tactics. Derived rules for the logic and underlying data types will also be
present and, along with tactics and basic inference rules, will often be specific to certain
theories. This leads to the problem of displaying such rules and tactics, since users cannot
be expected to hold them all in their minds. Another (major) challenge is how help can
be provided which displays only the applicable rules at the current (sub-)goal.

It should be clear from the above that Ul considerations (of generated systems) are
crucial to the success of the formal reasoning. A distinction can be made between surface
and deep Ul issues. The Ul is designed so that the (generated) system is more like a helper
than a master. It must, on request, show what needs to be done rather than try to dictate
the order in which the user must work. There must also be alternative ways for a user (or
different users) to view the status of an ongoing proof. Multiple views of different parts
of proofs must be possible consistently and naturally across the whole of the UI.

It is essential that it be possible to project different — orthogonal — views of formal
objects. The Veritas proof trees [Han83] are a nice test case for what should be possible.
In general, it must be possible to view objects at different levels of detalil.

It is clear that the user of any complex system will make mistakes. The effect of
erroneous input and the control of its removal required serious study. A related need is
the ability to invoke any system subroutines from the Ul (e.g. substitution). We should
even accept that it might be worth simplifying a formula with some (test-case) values
before trying to prove that it holds.

YEven at the stage of the Muffin prototype [JIM88] has a formal specification of the system — cf. Chap-
ter 6.

12 1 General introduction

The requirements fanural reflect the training of the people who are likely to be using
the formal reasoning tools. Such users are likely to be expert programmers who have
received training in formal methods: users cannot be assumed to be mathematicians by
training. The toolsnural provides are intended to expedite the proof process and, together
with more education in formal reasoning, will help introduce these harder concepts to

‘typical’ users.

Chapter 2

Introduction to mural

This chapter attempts to give a general overview of the whole ohtinal system by
working through the development described in Chapter 1. It should be noted, however,
that, whilst most of what'’s contained herein is the truth (and where it's not the appropriate
confession appears), it is by no means the whole truth — not only has much detail been
omitted but the example development has been specifically chosen to make it possible to
skip over, or even ignore completely, some of the more esoteric features of the system.
These are largely covered in the more detailed descriptions of the separate components of
mural to be found in Chapters 3 to 8.

2.1 General introduction

The mural system consists of two parts, a VDM support tool and a proof assistant. Both
components were themselves specified in VDM (see Appendix C for the specification of
the proof assistant) and together they provide support for the construction and refinement
of VDM specifications and for the proof of the associated proof obligations. In addition,
some research work was done on the symbolic execution of specifications, seen as a means
of increasing the specification writer's confidence in the initial formal specification by
providing a way of ‘animating’ that specification, and on the basis of this a prototype
system was built (see Chapter 9). This prototype was never developed sufficiently for
integration with the other componentsmafiral, however.

The mural interface is based around a seriegails Each tool occupies a separate
window and provides a means of creating, inspecting and interacting with the different
types of object within the system. Use of a tool generally proceeds via a series of opera-
tions like selecting an item from a list of possible items, selecting an action from a menu
of possible actions, pressing a “button” to indicate a choice between two alternatives, etc.
etc. Most of the interaction is performed with the mouse, though some facilities (e.g.
naming of identifiers, use of parsers) clearly require keyboard inpthe system tries
to be as free as possible both by placing no restriction on the number of tools that can
be active at any time and by allowing a task started in one tool to be set aside while still
incomplete and the focus of attention to be switched to another task in a different tool.
The basic philosophy of the system is that it enforces consistency constraints but permits
and records incompletenesses. Thus, for example, it is possible to prove a given result

LFurther details of the design of the Ul can be found in Chapter 6.

14 2 Introduction to mural

using some lemma without first being forced to prove the lemma, and the result is then
proven modulo the lemma being eventually proven.

The top-level access to both the proof assistant and the VDM support tool is provided
by thestore tool(Figure 2.1). Access to the proof assistant is via the right-hand side of
this tool, whilst its left-hand side provides access to the VDM support tool.

Figure 2.1: The Store Tool

2.2 The proof assistant

The proof assistant essentially provides a way of creating and storing mathertragical
ories hierarchically such that information stored in one theory can be inherited by other
theories. A list of (the names of) all the theories currently stored is displayed in the store
tool, and new theories can be added or existing ones displayed, renamed or removed from
there.

A theory is built or edited with the help of thbeory tool This lists the components
of the theory around the edge and provides a central area for displaying and editing these

2.2 The proof assistant 15

components. Figure 2.2 shows the theory tool for propositionaF kiffich will be used
for illustration throughout the beginning of this chapter.

Figure 2.2: The Theory Tool for Propositional LPF

A theory has three main componentssignature a set ofaxiomsand a set ofules
The signature records the declarations of the symbols which can be used to construct
valid formulae in the theory, whilst the axioms record the ‘primitive’ properties of these
symbols, that is those properties which are accepted as being true without proof. Addi-
tional properties of the symbols which do require proof are represented by the theory’s
rules. Rules having a complete proof can be thought afegizvedrules, those having an
incomplete proof asonjectures

Symbols can be declared as ‘primitive’, in which case their declaration simply records
their arity (the number of arguments they expect), or they can be defined in terms of

2Logic of Partial Functions. See [BCJ84].

16 2 Introduction to mural

other symbols by giving the formula representing that definition. Thus, for example,
the constants- (not) andV (or) are primitive constants in propositional LPF, having
declarationg1,0)* and(2,0) respectively. The constant (and), on the other hand, is
defined in terms of: andV via:

A = (= [el] V = [e2])

Theexpression placeholdde:], : = 1, 2 represents théh (expression) argument of the
defined symboh (you can think of the definition asA b 2 — (- a V = b) if you prefer —
the placeholders simply represent arbitrary valuesafdb). The symboln thus expects
two (expression) arguments according to this definition.

Axioms and rules represent valid logical deductionsimal . In general they consist
of a set ofhypotheseand aconclusionand are to be interpreted as a statement that their
conclusion is a direct logical consequence of their hypotheses, alternatively that if all their
hypotheses are, or can be proved to be, true then their conclusion is, or can be proved to
be, true also.

In mural axioms and rules are written with their hypotheses and conclusion respec-
tively above and below a horizontal line. Thus, for example, the axiemright (‘or
introduction on the right’) of propositional LPF is written as:

V-I-right A

and effectively states that v B is true if A is true.

Axioms and rules can also hagequentss well as expressiohemongst their hy-
potheses. A sequent consists of a sqtrefniseseach of which is an expression, and an
upshot which is also an expression, and is generally written

premises = upshot

The axiomVv-FE (‘or elimination’) in propositional LPF contains sequent hypotheses:
AV B, A-C, B C

V-E O

Here the interpretation is that the conclusions true if A v B is true and ifC' can be

shown to be true by assuming first thais true and second thét is true. The premises

of each sequent thus represent additional local hypotheses which can be assumed to be
true when attempting to show that the sequent’s upshot is true.

Actually, axioms and rules are considerably more powerful than the above might have
implied as the symbolsgl, B and C' appearing in the examples don’t stand $épecific
objects but instead represeanty object, that is they can themselves be complex expres-
sions. Inmural -speak they’ranetavariablesand the axioms/-I-right andV-E in fact
represent valid deductions for any expressidn® and C'.

Generally axioms are only needed to express the primitive properties of primitive
symbols — all properties of defined symbols are usually provable and thus appear as rules.

3The 1 represents the numberefpressiormrguments, the 0 the numbertgpearguments. More about
expressions and types later, but for the moment just ignore types.

4For a full description of how to construct expressionsainral see Section 4.2 or the full formal
specification in Appendix C.

5There are alstype metavariablesvhich stand for any type, but we'll ignore those for now. They!ll
crop up soon enough anyway in Chapters 3 and 4.

2.2 The proof assistant 17

Thus, for example, the standard introduction and elimination properties for the symbol
appear as (derived) rules inural whenA is defined in terms of: andV as above:

:

I -
I

o> t!>
s

A-E-right

A, B

-A/\B

These are proved from the definition ofand the axioms for the primitive constants
andv. As an example, the proof of the rute! is shown in Figure 2.3.

Figure 2.3: The Proof of-/

18 2 Introduction to mural

The proof assistant is extensible in that a user can at any stage add new theories to the
store using the store tool or new symbol declarations, axioms and rules to an existing the-
ory using the appropriate theory tool. This latter is particularly important as it means that
the reasoning power of the system can be increased by adding (and hopefully proving!)
more and more powerful rules. These can then be used in attempting to prove yet more
powerful rules, and so on.

One rule that might be added to the theory of propositional LPF ig\thelist rule
we've already met in Chapter 1:

: AN(BV ()
|@(A/\B)\/(A/\O)

This can be added to the theory either by structure editing a template rule or by simply
typing the required expressions into the template and invoking the parser. Its proof can
then be attempted with the help of theof tool

A proof consists of a set dfypothesgswvhich can include both sequents and expres-
sions, a list ofinesandboxes and aconclusionwhich is also a line. A line consists of
an expression andjastificationof that expression in terms of some deduction applied to
preceding lines, boxes and hypotheses. A box has the same components as a proof except
that its hypotheses must all be expressions. The hypotheses and conclusion of a proof
should be the same as those of the rule it purports to prove, and the proof is said to be
complete if and only if its conclusion has been shown to be a direct logical consequence
of its hypotheses.

The proof tool supports five different kinds of justification, though justification by the
application of a rule is by far the most commonly used. It also supports three distinct
modes of reasoning, namefgrward, backwardand mixedreasoning. These are best
illustrated by returning to the example and showing how the proaf\ofdist might be
constructed innural .

When theAV-dist rule is added to the theory of propositional LPF a template proof is
automatically attached to it. This is shown in Figure 2.4. The hypotheses and conclusion
of this proof are the same as those of the rule, and it has no lines or boxes.

The bold-face (null!) justificationJustif¢, indicates that the justification of the con-
clusion line is incomplete Bold-face line numbers, on the other hand, indidatewns
of the proof, that is lines which have been shown to be direct logical consequences of the
proof’s hypotheses. Currently the only known is the hypothesigself!

The first step in the construction of the proof might be to apply/th8-left rule to
the hypothesig 1. This can be done using thestification too] a sub-tool of the proof
tool which essentially supports the construction of a single justification at a time.

The justification tool allows the user to designate some subset of the lines, boxes and
hypotheses of the proof &scal assumptionand some line of the proof asacal goaland
to attempt to justify the local goal by some valid deduction applied to a set of lines, boxes
and hypotheses including all the local assumptions. Additional lines and boxes which
don’t appear amongst the local assumptions but which are needed as assumptions in order
to make the deduction valid will be calledhcillary assumptionsCases where a local goal
is designated but where the set of local assumptions is empty are instances of backward
reasoning and correspond to the reduction of the local goal to subgoals. Cases in which no
local goal is given and in which no ancillary assumptions are necessary constitute forward
reasoning. All other cases are instances of mixed reasoning.

A bold-face justification might also indicate that the validity of the justification has not been checked.

2.2 The proof assistant 19

Figure 2.4: The Template Proof forv-dist

Justifications built using the justification tool are only actually incorporated into the
proof when the user presses an ‘update proof’ button within it. The justification tool thus
provides a means of exploring the consequences of different sequences of actions before
the actions are actually performed. In this way, the user might investigate the effect of
changing the local assumptions, the local goal, the rule being applied, or indeed try to use
a different type of justification altogether before selecting which seems to be the ‘best’
combination. In each case the tool will show both any necessary ancillary assumptions
and, in cases where no local goal is designatevaconclusionWhen the user chooses
to update the proof, the ancillary assumptions will be added to the proof as new unjustified
lines and boxes. In addition, either the local goal will be justified by the justification just
constructed or the new conclusion will be added to the proof justified by that justification,
whichever is appropriate.

In our simple example the user will select the hypothédisas the single local as-

20 2 Introduction to mural

sumption and no local goal will be designated. Selecting\thié-left rule from the list

of available rules will then cause the justification tool to display the expregsionC

as a new conclusion. This will be added to the proof as line 1, justified by applying
the A-E-left rule to the hypothesis1, when the proof is updated (see Figure 2.5). Note
that the line has a bold-face line number, indicating that it is a known of the proof.

Figure 2.5: The Proof fonV-dist after first step

This sort of procedure is fine in simple cases where we already know which rule
we want to try to apply, but if we have no idea then trying all possibilities could be
somewhat time-consuming. To help with this case, the justification tool has a built-in
pattern-matching facility which the user can invoke. This causes the tool to search a user-
controlled subset of all potentially applicable rules to find ones which have hypotheses
matching each of the local assumptions and whose conclusion similarly matches the local
goal, if any. Selecting the new line 1 as the single local assumption and the conclusion

2.2 The proof assistant 21

of the proof, linec, as the local goal and invoking this facility shows that there is only
one rule which could possibly be used to try to justify the conclusion line from a set of
assumptions including line 1, namely theF rule’.

Figure 2.6: The Proof fonV-dist after second step

Selecting this causes the justification tool to display two ancillary assumptions, in fact
the two sequents

BF(AAB)V (AAC)

CH(AAB)V (AN C)

7Assuming that the theory of propositional LPF only contains its axioms and the introduction and elim-
ination rules fora, that is!

22 2 Introduction to mural

These appear as boxes when the proof is updated, the premises of the sequent forming
the hypotheses of the box and the upshot of the sequent the conclusion of the box. The
proof after this step is shown in Figure 2.6. Note that the conclusion line does not have
a bold-face line number as its justification depends on unproven assumptions, namely the
two boxes 2 and 3 just added

A series of similar manipulations results in the complete proof shown in Figure 2.7.

Figure 2.7: The Complete Proof forv-dist

8 A box is known when its conclusion is known.

2.2 The proof assistant 23

2.2.1 Advanced topics

So far we've only considered building a simple proof by a series of applications of rules.
In fact the proof assistant is much more powerful than this in many ways.

Other kinds of justification
The proof assistant supports four other types of justification in addition to justifica-
tion by the application of a rule:

justification by application of a sequent hypothesis
Sequent hypotheses can be used in justifications in a similar way to rules ex-
cept that no substitution for their metavariables is allowed. Thus, for example,
the sequent hypothesisk B may be used as a valid justification of the liRe
from the lineA as in

n A
n+1 B by seq hypd - B onn

but would not be a valid justification in any other case.

justification by unfolding a definition
When a line in a proof contains an expression in which defined symbols occur,
the definitions of those symbols may be expanded. The line with the expanded
definition is justified by unfolding the definition on the other line, as in the ex-
pansion of the definition of in

n AN(BV ()
n+1 ~(mAvVv~—=(BV(0)) by unfolding fromn

justification by folding a definition
The reverse of the above, that is the replacement of an expanded definition by
its contracted form. Note that the system helps with the construction of both
this and the previous kind of justification by highlighting the subterms of the
expression which are foldable or unfoldable, whichever is appropriate.

justification by oracle
An oracle is essentially a piece of raw Smalltalk code which is attached to
a theory and which can decide whether or not a particular deduction is valid
in that theory. Oracles are based on the axioms of the theory but don’t make
use of them in any real sense, so care has to be taken to ensure that oracles
remain in step with changes to the axidm&here’s actually not much we
can do to enforce this automatically, just as there’s no way of enforcing that
you don’t build a theory with an inconsistent set of axioms, unfortunately.
However, there’s currently no interface to allow general users to add oracles
to the system so you have to make do with the one that’s there. By an amazing
coincidence, this is one for propositional LPF! Using this, all the hard work
expended on that wretched proof/oY/ -dist could have been avoided and the
proof could have been done in a single step! (see Figure 2.8).

9In principle there would be nothing to stop one writing an oracle which simply returned ‘true’ for
all possible inputs. This would, of course, make all proofs fairly straightforward, but could be said to
compromise the soundness of the system somewhat!

24 2 Introduction to mural

Figure 2.8: The Proof fonV-dist using the Oracle

Multiple proof attempts
If you get stuck whilst trying to do a proof you might like to set it aside and try a
different approach. The proof tool supports this by allowing multiple attempts at a
proof to coexist. One attempt is designatedrtien attempand this is the one with
which the proof tool interacts. However, you can at any stage make new attempts,
either as copies of existing attempts or as new template proofs, and you can switch
the designation of the main attempt at will.

In-line lemma creation
If you're in the middle of a proof and feel that some inference would be best sep-
arated off as a lemma you can do this in-line by simply designating which lines,
boxes and hypotheses are to form the hypotheses of your new lemma and which
line its conclusion. You can then use the newly-created lemma immediately to
build the justification you want in your current proof without having to go off and

2.3 The VDM support tool 25

prove the lemma first. The proof assistant thus supports a notiogarbus, as
opposed to fully formal, proof — rules are only fully formally proved if none of the
justifications in the proof appeal to unproven lemtfias

Naturally, the proof tool also provides a facility whereby all unproven lemmas on
which a proof depends can be found. It also keeps track of the dependency rela-
tionship between rules induced by this facility and doesn’t allow circularities in this
dependency relationship to develop.

Tactics
So far we've only considered the process of building a single justification at a time.
However,mural also provides &ctic languagewhich allows users to writectics
and attach them to theories, anthatic tool another sub-tool of the proof tool, for
running them.

Tactics effectively provide a means of encoding and parametrizing commonly used
proof strategies; for instance, a tactic might be written which steps through a list of
rules and attempts to apply each rule in turn somewhere in the proof. In this way it
is possible for a tactic to perform many steps of a proof. However, it is also possible
to make a complete mess of a proof with tactics, for instance by asking a tactic to
apply a rule that is always applicable as often as it taor this reason the tactic

tool copies the current main proof attempt before it runs the tactic and then works
on the copy. It also displays some information as the tactic executes. If things do
go awry you can always stop the execution and throw the copied attempt away.

Removal of garbage
When (the main attempt of) a proof is complete, the proof tool offegardage
collectionfacility which goes through the proof and throws out any redundant lines
and boxes, that is lines and boxes which are not crucial to the logical completeness
of the proof. It also throws out all other proof attempts.

2.3 The VDM support tool

The VDM support tool provides facilities for creating and storing specifications and reifi-
cations between specifications in VDM Related® specifications and their associated
reifications are grouped together desvelopmeniswhich are added, accessed, renamed
and removed via the store tool (see Figure 2.1). The left-hand column of the store tool
displays a list of (the names of) all the developments currently stored in the system.

A development is built using théevelopment toplwhich lists the specifications and
reifications making up a particular development and allows new ones to be added and old
ones to be displayed, renamed or removed. Figure 2.9 shows the development tool for the
development described in Section 1.2, which will be taken as the example development
throughout the remainder of this chapter.

A general VDM specification consists of a setyjbe definitionsa set ofconstant def-
initions, a set offunction definitionsa state definitionoptional), and a set aiperations

10Note that this appeal might be direct or indirect, e.g. all lemmas used in the justifcations in the proof
itself might have complete proofs but these proofs might appeal to unproven lemmas, etc.

1] once created a line in a proof with 4's in it by applying the- —-T rule in exactly this way!

12Actually a subset of BSI standard VDM.

131f only in the mind of the user!

26 2 Introduction to mural

Figure 2.9: The Development Tool

These are built or edited with the help of tepec tool(see Figure 2.10). The various
components of the specification are listed down the left-hand side of the tool under the
appropriate headings, whilst the right-hand side of the tool provides an area for displaying
and editing them. The various components are constructed by structure editing a template
object of the appropriate kind.

The abstract specification in our example development contains‘thyge defini-
tions (4bs0, Abs and Sig) and one operationADD). These are shown displayed in the
spec tool in Figure 2.10. Note that there is no need for a separate function definition
describing the invariantnv-Abs on Abs as this is included as part of the definition of
Abs. If the form of the other declarations contains the least element of surprise, however,
you are advised to go back and read Section 1.2 before continuing. On the basis of this,
you should be able to work out for yourself what the components of the corresponding
concrete specification look lik&

Having built the two specifications, you have to return to the development tool to
designate the concrete specification as a refinement of the abstract specification. This
is done by selecting the two specifications in the left and right portions of the tool as
appropriate and adding a reification. You can then usedlig¢ool and theop model
tool to build the retrieve functiol§ and to designate the operatidD DR in the concrete
specification as the concrete form of the abstract specification’s operatidh

“Note that an alternative formulation would have been to mékethe state and not a type definition.
151f not you might as well give up now!
16 Again, depressingly similar to that given in Section 1.2.

2.4 Reasoning about developments 27

Figure 2.10: The Spec Tool

2.4 Reasoning about developments

It is, of course, perfectly feasible to reason informally about a development as it stands
simply by using your knowledge of what its various components ‘mean’. Indeed, you
probably do so, even though you might not think of it in those terms, when you're writing
each specification and reification, at least to the extent of trying to convince yourself
that the whole thing hangs together properly. On the other hand, it is very difficult to
reason formally about it in its current form as we have no formal language in which to
do so. We thus have to somehow extract the ‘meaning’ we use in our informal reasoning
in a form which does admit formal reasoning. This facility is providednimal in the
form of a mechanism whereby a specification or a reification in the VDM support tool
can be ‘translated’ automatically into a theory supporting reasoning about it in the proof
assistarif’.

One thing we have to consider here is that the components of a particular development

17But a reification can only be translated if the specifications it reifies have already been translated.

28 2 Introduction to mural

are built up not only out of user-defined type, constant and function definitions but also
out of the ‘primitive’ constructors of the specification language itself. Thus, for example,

in order to be able to reason about a VDM development we need to be able to reason about
things like sets, sequences, integers, etc. which are part of the VDM language. Of course,
these objects are common to all VDM developments and can thus be factored out. This is
done inmural by making use of the proof assistant’s inheritance hierarchy on theories and
introducing the notion of amstantiationof the proof assistant to a particular specification
language: theories describing the properties of the primitive data types of the specification
are built and one theory, which will inherit from all these, is designated as the theory of
the specification language. Theories generated by translation from a specification support
tool'® are then placed in the theory hierarchy so that they inherit from the theory of the
appropriate specification language. Theories of specifications are currently placed so that
they inherit directly from this theory, theories of reifications so that they inherit directly
from the theories of the specifications they reify.

Returning to our example, translation of the abstract specification gives rise to a the-
ory calledabs theory in (a VDM instantiation of) the proof assistant. This is shown in
Figure 2.11. Its signature contains declarations of symbols representing the types and
invariants defined in the specificatioA{s0, Abs, Sig andinv-Abs) and of symbols rep-
resenting auxiliary functions implicitly associated with the composite W), that is a
symbolmk-AbsO representing thenk-function and symbols-poss and s-curr'® repre-
senting the selector functions for its fields. With the exceptioAmsfandinv-Abs, which
are translated to a defined type constant and a defined constant respectively (see Fig-
ure 2.11), all these symbols are translated to primitive symbols in the signature.SThus,
and Abs0 both have arity (0,0)s-poss ands-curr both have arity (1,0), anchk- Abs0O has
arity (2,0).

The translation process also generates axioms describing the properties of these sym-
bols. There are two axioms for each of the selector functien® s ands-curr) of Abs0,
aformationaxiom and aefinitionaxiom. The former states the typing information asso-
ciated with the particular selector function, whilst the latter defines which component of
the composite object it selects. For theoss selector function their explicit forms are:

a: AbsO
s(a): Sig-set

’poss-formation } 5-pos

_ mk-AbsO(p, ¢): AbsO
’ poss-definition ‘
I s-poss(mk-AbsO(p, c)) = p

Note that the colon *:’ represents type assignment — the expressibbs0 is thus to be
read ‘a is of type Abs0’ or “ a is an Abs0’. In words, the formation axiom states thataif
is an Abs0 thens-poss applied toa is a set 0fSigs, whilst the definition axiom states that
s-poss selects the first component of any composite object of type) (in this axiom
mk-AbsO(p, ¢) simply represents the most general form of an object of). The

18 Although the current version afiural only supports developments in VDM, the proof assistant is suffi-
ciently generic that it could be used in conjunction with tools supporting a wide range of other specification
languages in exactly the same way.

19Since the BSI standard for VDM hadn't been fixed as we neared the end of the project, we were forced
to adopt what seemed to be the most stable part of what passed for it around the end of 1989 when building
our VDM support tool. Inevitably, this turned out to be not as stable as we had hoped, and this notation has
now been changed. When the standard finally settles down it's fairly easy to change these names, but until
then it seems a bit futile. In the meantime, our apologies for the anachronism.

2.4 Reasoning about developments 29

Figure 2.11: The Theory Tool for the Abstract Specification

axioms describing-curr are unremarkably similar.

The properties of the composite typés0 are similarly described by two axioms, a
formationaxiom and arintroductionaxiom. This time, the formation axiom states that
you can build an object of typabs0 by applying themk-function to component objects
of the appropriate type (i.e. two sets.®¥s):

| p: Sig-set, c: Sig-set
I mk-AbsO(p, c): AbsO

whilst the introduction axiom states that the selector functions and:ffx&unction are
inverse, in the sense that if we smash an object of /€ to pieces using the selector
functions then combine the pieces using thve-function we get back the original object:

a: AbsO
mk-Abs0(s-poss(a), s-curr(a)) = a

’ AbsO-formation

’ mk-Abs0-introduction }

30 2 Introduction to mural

There are no axioms describingps and inv-Abs since these are translated to defined
symbolg’.

Other components of the theory arise from translating the operatio. This
process adds defined symbele-ADD andpost-ADD to the signaturé and addition-
ally generates thsatisfiability proof obligatio® associated with the operation (see Sec-
tion 1.2) as aule®. This rule has the form:

new: Sig, @ : Abs0, pre-ADD (new, 7)
Ja: Abs - post-ADD (new, ‘@, a)

The proof assistant can then be used to attempt to prove this rule via a series of steps like
those outlined in Section 2.2.

By a similar process we can generate the theory corresponding to the concrete specifi-
cation and discharge the proof obligation stating the satisfiability of the operafidn?.

Having constructed the theories of our two specifications we are now in a position
to try to prove that our reification is valid. The relevant theory can again be constructed
automatically and is placed in the theory hierarchy so that it inherits directly from the the-
ories of the two specifications that we've just created. This theory has a signature which
contains only one symbol, the defined symbelr--Abs corresponding to the retrieve
function in the reification, and it has no axiothsIt does contain three rules, however,
namely those stating the proof obligations associated with the reification (that is the ade-
guacy, domain and result obligations. See Section 1.2). Again, the proofs of these can be
attempted using the proof assistant. As an example, the rule stating the domain obligation
has the form

’ ADD-satisfiability i

]ADDR domain-obl | new: Sig, r: Rep, pre-ADD (new, retr-Abs(r))
-aomain-o | pTG-ADDR(new, 7“)

Its proof is shown in Figure 2.12. Note that this proof is somewhat longer than the ‘text-
book style’ version given in Section 1.2. This is because it shedivbie formal manipu-
lations performed — some ‘obvious’ steps are elided in Section 1.2.

20Actually, at the time of writing this is a liedbs is indeed translated to a defined symbol but axioms
are generated to describe the propertiegof Abs. Work on the translation process is still being carried
out, however, and it is expected thaw-Abs will be translated to a defined symbol by the time you read
this. We’'ll assume so here anyway, if only because it makes the proof appearing at the end of the chapter
shorter! (Translating to a defined symbol means that the definition can be expanded or contracted in a single
step using the justifications by folding and unfolding definitions — with the axiomatic approach currently
adopted each of these processes requires two steps.)

21Again a lie! But the same applies here as to the invariant (see above).

22 Aka theimplementability proof obligationd DD-implementability!

23We are (deliberately!) ignoring the generation of ‘well-formedness rules’ stating that preconditions,
etc. are correctly typed here. See Section 8.2 for a discussion of these.

24More lies! But again the same applies to the retrieve function as to the invariant (see above).

2.4 Reasoning about developments

Figure 2.12: The Proof of thda DDR Domain Obligation

31

32

2 Introduction to mural

Chapter 3

Instantiation

The mural proof assistant is generic in that it can be instantiated with many different
logics and theories. The user is provided witlogical framewhich can be configured

to support reasoning in any number of different logics. The purpose of this chapter is to
illustrate how to instantiatewural for some common logics. It can be used to gain famil-
iarity with the proof assistant or as a kind of cookbook for people intending to configure
mural for formalisms of their own interest.

3.1 Symbolic logic inmural

The two main logics illustrated are classical predicate calculus and a logic of partial func-
tions (LPF). For both logics, many different theories are axiomatized, including the the-
ories of commonly used mathematical constructs such as sets and lists, and along the
way many subtle points and potential pitfalls are noted. The theory of VDM is given
in some detail, providing an interesting case study of what can realistically be achieved
usingmural . Later sections are devoted to other powerful logics.

The chapter is addressed to alliral users, but for convenience we shall distinguish
two different kinds of user:

1. ‘the instantiator’, who configures the system so that it can be used for reasoning in
a particular formalism — by axiomatizing the basic concepts and instantiating the
underlying logic, etc.

2. ‘'the verifier’, who wants assistance reasoning in a particular problem domain — say,
to validate a particular VDM specification, or to derive new properties of an abstract
data type.

The main difference between these two kinds of user is that the first is concerned with
setting up the right axiom system, perhaps from scratch, while the second is more inter-
ested in proving theorems. (In fact, the two activities cannot be separated quite so easily:
the instantiator chooses axioms at least partly on the basis of their ease of use, and the
verifier has to understand the theories provided by the instantiator.) This chapter will be
of interest to both kinds of user, but many remarks will be addressed to one over the other.
For any particular theory there are often many different possible formulations, de-
pending for example on which concepts are taken as primitive and which derived, or even
on the order in which concepts are introduced. Such distinctions may be important, espe-
cially on a philosophical or methodological level, or simply for pedagogical reasons. In

34 3 Instantiation

what follows, however, the primary motivation is to illustrate properties ofitheal log-
ical frame; concepts are often introduced simply to make a point, to illustrate a subtlety
or to show alternative approaches to formalization.

This chapter is not supposed to be an introduction to symbolic logic: the reader is
assumed to have at least a passing familiarity with the notions being formalized. Intuitions
about the correctness of axioms can only be gained by careful study of the semantics of
the mathematical objects involved, and understanding the problem domain well is the
only way to achieve simple, manageable proofs. The other vital consideration is choice
of formalism, but this chapter can offer only general words of advice and illustration by
example.

3.1.1 Terminology and notation

Only a brief informal introduction to the terminology and notation used in this chapter
will be given here. Formal details of theural logical frame are presented in the ‘Foun-
dations’ chapter, Chapter 4 below.

Theories

A theoryis a grouping of results that have something in commomufal theory consists
of:

e asignature indicating which symbols are available;

e a set ofinference rulessome of which ar@xioms(self evident truths or assump-
tions), some of which arderivedfrom axioms using proofs, and some of which are
merelyconjecturesvhich the user may or may not prove at some later date;

e a set oftactics which are strategies for building proofs in this theory;
e a set oforacles which are hand-coded decision procedures.

A logic is just a theory of special significance: logics and theories are not distinguished
in mural .

mural theories are stored in an inheritance hierarchy. Theories have a (possibly
empty) set of ‘parent’ theories from which they inherit symbols, rules, tactics and ora-
cles. Thus for example, a theory of lists might inherit results from the theory of natural
numbers which would be used when it comes to reasoning about the length function on
lists, say. Turning it around the other way, we sometimes say the child tb&tagdsts
parents. Theories inherit from their parents, their parents’ parents, and so on. Thus in fact
a theory inherits from all of its ‘ancestor’ theories.

Signatures
Four different kinds of symbolomg can be declared in a signature:
e constants, such asrtie’, ‘' N', ‘€', ' =’

e binders, such as/', ‘3", ‘ \'

e type constructors, such a¥”, * x’, ‘ -set’

3.1 Symbolic logic in mural 35

¢ type binders, such as dependent products

By ‘constant’ we mean functions, operators, predicates, relations, metavariables and so
on. Similarly, ‘type constructors’ covers type constants, type functions, type metavari-
ables, etc. The syntax is considerably simplified by grouping things in these ways.

As well as declaring symbols, signatures perform several other roles. Information
about how the symbol is to be displayed on the screen is stored therarifyjhef con-
stants and type constructors (how many arguments they expect) is also declared there.
(Note that arities are fixed imural.) And signatures can store definitions, such as

PAQ & —~(=PV-Q)
which defines\ in terms ofv and—, and
Jz:A- Plz] & =Vz:A-- Plx]
which definesd in terms ofv and—.

Formulae

Symbols from signatures and variables are put together totiemms the abstract syntax
of which can be defined in Extended BNF (Backus-Naur Form) roughly as follows:

Term = Exp | Type
Exp = VSymb

| CESymb{Exp}{Type}

| DESymb VSymb‘:’Type‘-’Exp
Type = CTSymb {Exp}{Type}

| DTSymb VSymb‘:’Type‘-’Type
| “<’VSymb‘:’Type‘-’Exp‘>’

where{} means zero or more occurrences and symbols in inverted commas are concrete
syntax, introduced to enhance legibility.

In more detail, there are two different kinds of terexpressiongExps) andTypes
(Types). All mathematical formulae afexps in mural syntax. Expressions are built up
from variables {Symbs) using two kinds of combinators:

e compoundor ordinary) expressionswhereby a constantCESymb) is ‘applied’ to
(possibly empty) lists of expressions and types, called its operaratgaments

e binder expressionsvhereby a bindeDESymb) is supplied with a dummy variable
(the variable it binds), a type (the universe of the bound variable) and an expression
(the body of the binder expression).

Types are built up using three kinds of combinator:

e compoundor ordinary) types whereby a type constructo€TSymb) is applied to
expression and type argument lists;

'What mathematicians would normally call constants are compound expressions with empty argument
lists, in this syntax.

36 3 Instantiation

e dependent typesvhereby a dependent-type symbbdrgymb) is supplied with a
dummy variable and two types (the universe of the bound variable and the body of
the dependent type, respectively);

e subtypeof given types, specified by giving a dummy variable, the universe over
which it ranges (&ype) and a defining predicate (&xp).

Collectively, constants and type constructors will be catledstructors Binder expres-
sions, dependent types and subtypes will be calthble binding constructsince they
bind occurrences of their dummy variables in their bodies.

The arity of a constructor is a pair of natural numbers, the first indicating how many
Exp arguments it expects and the second indicating the numbeypef arguments. So
for example A is aCESymb of arity (2, 0) and-set is aCTSymb of arity (0, 1).

The full syntax also allows indexeplaceholdergcalled expression holeandtype
hole9 which act as formal parameters in definitions, instantiations, and so on. Thus for
example, the definition of above must actually be given toural in the form

= (= fel] v =[e2])

where[ei] stands for théth Exp placeholder.

That finishes our brief summary of theural syntax for expressions and types: for
formal details see Section 4.2. Note that althowghral provides a syntax for writing
types, it does not impose a type discipline: that is the instantiator’s job.

Some examples
Here are some examples from VDM to illustrate theral approach:

e P A @ andcons(a,l) are compound expressions, withSymbs A andcons respec-
tively;

o V2:Z -0 < z2and)\y:R - y? + 1 are binder expressions, WitlESymbs V and \;
and

e N-set andA ™ B are compound types, wittTSymbs set andmap.

Note that the name and the display form of a symbol are not necessarily the same thing.

In VDM, subtypes are defined by specifying an invariant on a constructed or pre-
existing type. VDM subtypes must be given names, but our syntax provides for direct
construction, such as

EvenNumbers 2 < n:N-n mod 2=0 >

VDM doesn’'t have dependent types, but most readers will have come across dependent
products such as
H <m:N-n2<m>
'/lZN
consisting of functiong: N — N such that:? < f(n) for all n: N, and dependent sums
such as
Z < s:A*-lens =n?>
n:N1

consisting of pairgn, s) from N; x A* such thaten s = n?.

3.1 Symbolic logic in mural 37

Rules

Inference rules are the primary unit of reasoningmnral, covering axioms, theorems,
lemmas, conjectures and so on. An inference rule consists of:

1. a set of zero or morerdinary hypotheses
2. a set of zero or morgequent hypotheses

3. aconclusion

In Extended BNF this can be defined roughly as:

Rule = {Ohyp}{SHyp}Concl

OHyp = Concl = Exp

SHyp = {VSymb}{Premise}Upshot
Premise = Upshot = Exp

For example, the law of induction over natural numbers can be expressed as
PI0],
{n:N, P[n]}t, P[n+1]
Vm:N - P[m]

This has a single hypothesis of each kind. The ordinary hypothesi®jswhich corre-
sponds to the base case of the induction. The sequent hypothesis is

{n:N, P[n]|} F, P[n +1]

corresponding to the induction step. (Since subscripting is not available imihd
screen format, such a sequent is displayed on the screen as

[n){n:N, P[n]} + Pln +1]

Sequents are explained in detail in Section 4.3. In brief: a sequent consists of a set of
premises and an upshot, and a sequent can ‘bind’ variablesy éngthe above case.)
Finally, the conclusion of the rule is written below the horizontal line. The notation

P
Q

stands for the pair of ruleg and%.

Metavariables

As the induction example above showsyral rules can in fact represent whole schemas
of inference rules. For exampl&,z] might be instantiated by

Plz] — VYyN-z+y=y+z
to give a rule instance with conclusion
Vm:N-Vy:N-m+y=y+m

new base casey:N -0+ y = y + 0, and so on.P is called ametavariableand it is a
parameter to the rule. (In fact, it is the only parameter to the rule above.) Ordinary free
variables are not allowed in rules.

38 3 Instantiation

Simple proofs

New inference rules are derived from old inference rules by buildipgpaf. Essentially,
a proof is simply a chaining together of instances of rules. For example,

ANB
BANA

can be derived by putting together appropriate instances of the rules

PANQ PAQ P, Q

P Q PAQ
in the following way:
ANB ANB
B A
BANA

For larger derivations it is more convenient to express the proof in the flattened form

from AN B

1 A rule 1 (h1)
2 B rule 2 (h1)
infer BA A rule 3 (2,1)

which is roughly how it is displayed imural .
Let’s look a little more closely at the components of the above proof. It consists of:

e asingle hypothesisA A B — implicitly labelled h1),
e asequence of lines (labelled 1, 2), and
e aconclusion B A A).

Non-hypothesis lines angistified by rule instances: e.g. line 1 follows from hl by an
appropriate instance of the first rule. The justification — on the right-hand side of each
non-hypothesis line — notes which rule is used and on which lines the justification depends
(its antecedends The actual instantiation used is not displayed in the proof, but is stored
by mural to speed correctness checking.

Other forms of justification are possible, such as by unfolding a definition, or by
making appeal to an oracle: see Section 4.7.5 for more details. Antecedents are always
noted, by listing them in parentheses at the end of the line. There are restrictions on which
lines can be used to justify other lines, mainly to do with precluding circular reasoning:
see Section 4.7.4 for details. Roughly, justifications should only appeal to lines appearing
earlier in the proof.

Proofs with subproofs

Things are a bit more complicated when justifications involve sequents. Consider a proof
by induction for example: the induction step involves making some temporary, ‘local’
assumptions (the so-called induction hypotheses) — so we must allow for subproofs which

3.1 Symbolic logic in mural 39

have their own additional hypotheses. Such subproofs are dabezsin mural. A box

consists of a set of hypotheses, a sequence of lines and boxes, and a conclusion. Boxes can

be nested within boxes to any degree. Boxes may also introduce their own local variables,

corresponding to variables bound in sequents. In fact, a sequent is just a ‘squashed’ box.
These ideas are illustrated in the following simple proof, involving induction over

natural numbers:

from

1 0+0=0 + axiom 1 ()

2Qn from n:N, O+n =n

2.1 0+(n+1)=(0+n)+1 +axiom2(2.hl)
infer 0+ (n+1)=n+1 substitution (2.h2,2.1)

infer Vm:N-0+m =m N induction (1,2)

The box structure of the proof is indicated by indenting and usiog andinfer key-
words. At the outermost level, this proof has zero hypotheses, a single line (1) and a
single box (2). Box 2 is the subproof corresponding to the induction step: it introduces a
new variablen — shown here as a subscript on the box’s label — suchrthsita natural
number (hypothesis 2.h1) and- n = n (hypothesis 2.h2). No other assumptions can be
made about:, and its scope is restricted to box 2 and its subboxes, if it had any; in other
words,n cannot be used elsewhere in the proof outside box 2. (Similarly, lines outside the
box cannot make appeal to lines within the box.) Finally, as a notational convention, all
lines within the box are labelled with prefix ‘2., including hypothesis lines and subboxes,
if any.

The rule extracted from the above proof is

Vm:N-0+m=m
Note that the main proof itself is a box, but it is not allowed to introduce variables since
rules cannot have free variables.
Figure 3.1 shows a proof of the — not very deep — fact that sets can be represented by
non-repeating lists; in symbols:
s: Set
dl: List - elems [= s

Tactics

The interactive approach to verification can call for a considerable amount of work on the
user’s part. LCF [GMW?79] and its descendants 86, Gor85, Pau86] showed how that
burden can be lessened by providing the user with a simple imperative language for ex-
pressing certain commonly-used proof strategies, c#dletics In technical terms, LCF
tactics are functions which reduce ‘goals’ to lists of ‘subgoals’, together with a validation
function which is supposed to build an ‘achievement’ of the goal from achievements of
the subgoals. Tactics imural, on the other hand, operate directly on proofs, extending
them non-destructively. Thewural tactic language gives the same access to basial
operations as is available from the user interface, in addition to imperative constructs such
as sequencing, branching and backtracking. Tactics can be parameterized, can call other
tactics — including themselves — and can even poll the user for additional information at
runtime.

40 3 Instantiation

from s: Set

1 elems[]={} elems axiom1 ()
2 []: List []-formation ()
3 3Jl: List -elems! = {} J-introduction (1,2)

4Qq,from a ¢ w, 3l: List - elems | = w
4.1Q], from ly: List, elemsly = w

4.1.1 a ¢ elems [y substitution (4.1.h2,4.h1)

4.1.2 cons(a, ly): List cons-formation (4.1.h1,4.1.1)
4.1.3 elemscons(a,) = elemsy U {a} elems axiom2 ()

414 elemscons(a, l)) = wU {a} substitution (4.1.h2,4.1.3)

infer 3(: List - elems | = w U {a} J-introduction (4.1.4,4.1.2)

infer 3: List - elems | = w U {a} 3-elimination (4.h2,4.1)

S5 Vu:Set-dl: List -elems| = u set induction (3,4)
infer Al: List - elems [= s V-elimination (h1,5)

Figure 3.1: An example proof.

Oracles

It would be impossibly tedious to perform all reasoning at the level of inference rules,
even with the aid of tactics. There are large classes of problems for which fully automated
solutions are feasible: decision procedures exist for classical propositional calculus (via
truth-tables), simple arithmetic, linear algebra, naive set theory, and many other theories.
Such decision procedures can be incorporatedrinteal asoracles

Basically, an oracle is a procedure which, when invoked on a proof line, checks the
validity of that line in terms of its antecedents. Oracles must be hand-coded and so require
some knowledge of the internal workings of tlwaral software. Oracles are axiomatic,
in as much as their truth is never questioned. Their validity is entirely the responsibility of
the person instantiating the logic, and it is obviously important they be logically consistent
with the axioms of the theory in which they are placed. Instantiators are thus advised to
use this facility with great care.

Morphisms

Theory morphisms were proposed asiingal solution to inheritance with renaming and
after-the-fact inheritance (cf. Section 3.4.4) but are not currently implementedriti.

3.1.2 Chapter outline

For the most part, the present chapter is concerned with theories, inference rules and
proofs; tactics (see Chapter 5) and oracles are only briefly touched upon.

First order predicate calculus

As its name indicates, Section 3.2 develops predicate calculus — the logic of propositions,
properties, variables and quantifiers — from a ‘classical’ point of view. ‘First order’ means
guantifiers range over sets of values and functions have fixed arities. As is well known,

3.1 Symbolic logic in mural 41

first order predicate calculus is sufficiently expressive to formalize all of mathematics.
The reader needn’t know much symbolic logic to commence reading this section, although
obviously some familiarity with the underlying concepts would help. The development
consists of a series of smaller theories introducing equality, propositional connectives,
guantifiers and conditionals (if-then-else) step by step.

Data types

Section 3.3 explores the formalization of some commonly used data types: lists, finite
sets, subtypes, cartesian products, records, etc. This is all pretty straightforward and
should be easily accessible to anyone who has completed a first course in discrete mathe-
matics. Section 3.4 is an optional section which can easily be skipped on first reading. It
looks at some slightly less straightforward techniques, such as

e extending a theory dfnite sets with a notatiofz: A - P[z]} for set comprehension
e defining maps (finite partial functions) as sets of pairs
¢ defining lists as maps whose domains are initial segments of the natural numbers

e forming a theory of ‘abstract collections’ which generalizes the notions of sets, lists,
bags, etc.

The topics are chosen fairly much at random, and are intended to broaden the reader’s
strengths in formal reasoning.
VDM

An axiomatization of the formal software development method knowvl2ls! [Jon86]

is outlined in Section 3.5. Since VDM uses a non-classical logic (LPF), the beginner will
get a first taste for the genericity (logic independencehafal . We go on to discuss how

the ‘data model’ of a VDM specification gives rise to a theory in which proof obligations
must be discharged. To illustrate the ideas involved, a couple of little ‘scenarios’ are
given, namely:

e a small reification
e a validation of part of thenural specification itself

The abstractnural specification is introduced in Chapter 4, but enough of the details are
summarized here that the example should easily be understandable.

Other logics

Section 3.6 deals with some other kinds of logics, including:

e Lambda Calculus
or more precisely, the dependently typed lambda calculus

e Higher Order Logic
e Modal Logic S4)

42 3 Instantiation

e Hoare Logic

It also discusses the propositions-as-types analogy which underlies certain other logical
frames.

3.2 Classical first order predicate calculus

In this section we build a few simple theories (‘calculi’) about different forms of reason-
ing, and then put them together to form First Order Predicate Calculus (FOPC) — a theory
in which all of mathematics can be formulated. This is not to say that FOPC is always
the most elegant or practical way of formulatiath mathematical reasoning, but it has
certainly proven to be the simplest and most versatile. Almost any good book on mathe-
matical logic will explain FOPC and its semantics (model theory). Here we are primarily
interested in having a useful set of axioms from which we can easily build the kinds of
inference rules we’ll need for later applications.

3.2.1 Equality

As a first, very simple, example we develop a theory of equality. The essential properties
we wish to capture are the symmetry, reflexivity and transitivity -6f, ‘together with

its properties as a congruence relation (viz. that equal values can be substituted for each
other in any expression without changing that expression’s meaning). To define the theory
of equality — which we shall simply call ‘Equality’ — we shall first describe its signature
and its axioms, and then give some example derived rules; the same pattern is followed
throughout the chapter.

Signature

Because it is such a basic theory, ‘Equality’ requires no parents. Its signature can consist
simply of the primitive constant®’ of arity (2,0). The symbol will be displayed infixed
between its arguments, which can be achieved simply by declaring it to have display form

[el] = [e2]

In mural, [ei] stands for theth expression placeholdgethus if the arguments te area
andb then the whole will be displayed as= b.

Axioms

The properties of equality as a congruence relation can be deduced from two axioms:

1. The axiom of ‘reflexivity’

a=a
which says that any value is equal to itself (equality is reflexive). This rule has no
hypotheses.

2e.g. [Bar77, End72, GG83, Kle52].

3.2 Classical first order predicate calculus 43

2. The axiom of ‘substitution’
a="b, Plal
Pb]

which says that itz = b thenb can be substituted farin P.

Herea and b are metavariables of arit{), 0) and P is a metavariable of arityl, 0). In
future we won'’t explicitly note metavariables and arities, since they are usually clear from
context.

A brief note about thenural substitution mechanism s in order here (see Section 4.2.2
for more discussion)P can be instantiated in ways which will result brbeing substi-
tuted for zero, one, or more occurrences @ an expression. For example, four different
conclusions can be deduced frotn= 0 + 0’ and ‘0 = 1 = 0’ by using different instanti-
ations of the Substitution rule: namely,

(0+0)%x1=0+0, (0+0)x1=0, 0x1=0-+0, 0x1=0

The instantiations in question sendo 0, bto 0 + 0 andP[z]toz 1 = z, z x 1 = 0,
0x1 =z and0 1 = 0 respectively. (In fact, there are even more possibilities if we don’t
assume: = b is matched against‘'= 0+ 0'.)

Example derivations

Here are a couple of simple derivations. As you can probably imagine, there aren’t many
mind-blowingly deep rules about’ on its own.

(1) The symmetry rule
a=1"
b=a
can be derived from the axioms as follows:

from a = 1>
1 a=ua reflexivity ()
infer b = a substitution (h1,1)

The proof has a single box comprising two ordinary lines (the ‘intermediate’lliaed
the main conclusion) and a single hypothesis lihg)(Line 1 has no antecedents since
‘reflexivity’ has no hypotheses.

As usual, instantiations are suppressed from display, but can be inferred by pattern-
matching: e.g. the instantiation for ‘substitution’ in the above proof is

{a+— a, b— b, Plz]—z=a}

and the rule instance in question is

Themural justification tool can find this instantiation for you by pattern matching.

(2) As a second example, the transitivity rule
a=b, b=c

a==c

44 3 Instantiation
can be derived as follows:

froma=10, b=c

infer a = ¢ substitution (h2,h1)

The reader is invited to uncover the relevant instantiation.

3.2.2 Classical propositional calculus

Let’s turn to a more expressive theory — the so-caReabositional CalculusThis is the
theory in which basic logical reasoning is formalized in terms of the so-called proposi-
tional connectives: ‘and’, ‘or’, ‘not’, ‘implies’, etc. Propositional Calculus is often given
as the first example of a simple algebra, since all propositional statements (‘formulae’)
are built up from

e ‘true’ and ‘false’ and

e primitive propositions (‘sentence symbols’)
using

e unary connective-’ and

e binary connectivest’, ‘ V', © =, etc.
The algebraic properties of these connectives were originally studied by Boole in the
mid-nineteenth century.

Various interpretations

The reader is probably aware that Boole’s interpretation of the ‘laws’ of propositional con-
nectives is not the only possible one. In fact, for some applications other interpretations
are sometimes more appropriate. For example:

¢ If the ‘constructive content’ of a proof or theorem is importantjranitionistic (or
‘constructive’) logic [Pra65, €86] should be employed — one in which the law of
excluded middle, for example, is not valid. (See Section 3.6.3 for more discussion.)

e When reasoning about partial functions or non-terminating computations, on the
other hand, it becomes important to know how to deal with ‘non-denoting’ terms,
and athree-valuedogic such as LPF [BCJ84, Jon86, CJ91] might be more appro-
priate. LPF is explored in Section 3.5.1.

In this section we’ll stick to Boole’s original formulation — the so-calt#dssicalpropo-
sitional calculus — since it is the most straightforward and probably the most familiar of
them all.

3.2 Classical first order predicate calculus 45

Signature
Let ‘Propositional Calculus’ be the base theory (i.e., without parents) with the following
primitive constants in its signature:

e ‘true’ for truth

e ‘=’ for negation (‘not’)

e 'V’ for disjunction (‘or’)
Their display forms are

true, — [Jel], [el] V [e2]

respectively. The following definitions will also be added to the signature:

|>

false —true
PAQ & —(=PV-Q)
P=Q & -PVQ
Ps@Q 2 (P = QA(Q = P)
They stand for falsehood, conjunction (‘and’), implication (‘implies’), and logical equiv-
alence ('iff’), respectively. The usual operator precedences will be used: i.e. from highest
to lowest:
- ANV > &

Henceforth precedence priorities will not be given explicitly. (They will be clear enough
from context.)
Axioms

The following rules will be taken as the axioms of classical propositional calculus:
1. truth introduction:

true
2. Vintroduction (right):
P
PV Q
3. Vintroduction (left):
Q
PV Q
4. v elimination:
PvQ, {P}FR, {Q}FR
R
5. excluded middle:
PVvV-—-P
6. contradiction:
P, —P
Q

The reader should consider himself/herself privileged, since the writer has graciously
provided names for the rules. Don't get used to it — it won't last; there’s not enough space
for such a luxury. (And to tell the truth, it's very time consuming coming up with good
names — as you'll find when you start to useral yourself.)

46 3 Instantiation

Example derivations

From the axioms and definitions we can build up a large collection of useful derived rules.
In what follows we shall derive the following rules from the axioms above:

false PVvQ@ P, P = @ {-P}false
Q QVP Q P

The reader may care to try to prove each of these before looking at the solutions given
below.

(1) The rule we'll call false elimination’

false
Q
can be derived as follows:
from false
1 —true unfolding (h1)
2 true truth introduction ()
infer @ contradiction (1,2)

It's our first example of a proof involving unfolding a definition —in this cafa&sé’. We'll

denote the appropriate justification tyfolding, with the line containing the term to be
unfolded given as antecedent. ihural the index of the term being unfolded must also

be given as part of the justification; it has been ‘suppressed from display’ here (just as
instantiations are suppressed from display throughout these examples).

(2) The rule vV commutes’

PV Q
QVP
can be derived as follows:
from PV @)
1 fromP
infer Q V P V introduction (left) (1.h1)
2 from @
infer Q vV P V introduction (right) (2.h1)
infer @ vV P Vv elimination (h1,1,2)

The proof has two subboxes
from P infer Q vV P, from @ infer Q vV P

which are used to justify the sequent hypotheses of the relevant instantiatiore -

nation’:
PVvQ, {P}FQVP, {Q}FQVP
QVvVP

3.2 Classical first order predicate calculus 47

(3) The rule modus ponens

P, P = @
Q
can be derived as follows:

from P, P = @
1 -PVA(Q unfolding (h2)
2 from =P

infer @ contradiction (h1,2.h1)
infer @ V elimination (1,2)

Line 1 follows from the second hypothesis by unfoldidy = . Box 2 (or rather,

its conclusion@) follows from the first hypothesis and the box’s local assumption by
contradiction. As for the main conclusion, note that the second sequent of the relevant
instance of / elimination’

{Q}F @

holds trivially and so has no corresponding antecedent in the proof.

(4) The next example involves a new kind of justificatiqumstification by sequent hypoth-

esis The rule to be derived is
{— P} F false

P

For future reference we’ll call the rule ‘otherwise contradictory’. It's our first example of
a derived rule having a sequent hypothesis. Here’s its proof:

from {— P} I false

1 PV~-P excluded middle ()

2 from-P

2.1 false sequent hyp 1 (2.h1)
infer P false elimination (2.1)

infer P V elimination (1,2)

The sequent hypothesis is used to justify line 2.1 in the following way: when all the
premises of the sequent have been established then its upshot can be detimtiéd.
justifications by rules, metavariables must be used unchangedcémeptbe instanti-

ated. Note also that the sequent hypothesis is not formally a line in the proof. Finally, on
a different point, note that one of the sequent hypotheses of (the relevant instantiation of)
‘V elimination’ holds trivially.

3As an informal explanation of justification by sequent hypotheses, think about how ‘otherwise contra-
dictory’ will be used in other proofs: The proof will have a bdxsay, which establishes the upshot from
the premises. We could replace the use of ‘otherwise contradictory’ by a copy of the above proof, with the
contents oft interpolated into box 2 before line 2.1 (so line 2.1 corresponds to the conclusignaotl
with the sequent hypothesis deleted. Full details of this procedure are beyond the scope of this chapter.

48 3 Instantiation

Other derivable rules

The reader might care to try deriving the following rules:

P
~—P

{rirqQ {-rrraQ
Q
P, @ {P}r@Q {P}}false
PAQ P = @ - P
P, P& @ P=@Q Q=R
Q P = R
Many more examples can be found in the sections below.

Remarks:

(1) Note that by the time we get to ‘otherwise contradictory’ we're actually starting to use
some of our derived rules — in this caselse elimination’.

(2) (This is a slightly esoteric remark.) One of the limitations of tlneal system is that
only ‘directly derivable’ rules can be derived: viz. rules which are built by fitting other
rules togethet.For an example of aimdirectly derivable rule, consider

P < @
R[P] < R[Q]

which asserts the substitutivity of equivalents. If we were working in a ‘closed system’
— one in which no further extensions could be made to the signature of the theory —
the rule could be derived by induction over the structure of possible instantiations of
R[z].5 Of course, such a proof only remains valid as long as there are no new ways of
forming propositions; each time a new predicate is introduced (with its own axioms) the
proof must be redone. But it is implicit in the requirements thatal is to be an ‘open’
system (cf. [JL88]), whereby users can add new theories without invalidating any of the
proofs that went before; hence the restriction to directly derivable rules. In practice, the

“Kleene calls these ‘[derived] rules of the direct type’: cf. p.94 of [Kle52].

SFor possible instantiands d@i[z] it's enough to consider expressions formed from primitives and the
formal parameter:.. (The definitions in this theory are non-recursive and hence reducible to primitives.)
The base cases of the induction would thus be

R[z] — true, R[z]— =z
and the induction steps would correspond to
R[z] — = R'[z], R[z]— R'[z] v R"[z]
The proof follows easily from the following (directly derivable) lemmas:

P < Q P& Q R<& S
true & true —-P & =@ PVR & QVS

3.2 Classical first order predicate calculus 49

restriction to directly derivable rules does not seem to be much of a hindrance: the odd
exception only proves the rule, if you’ll excuse the dreadful pun (and mangled reasoning).
Rules which cannot be derived directly must be added as axioms.

(3) As it happens, the rule
P < @

R[P] < R[]
would not be a good axiom to add, since it allows complete nonsense to be deduced in

descendant theories. For example, there is nothing to stop us instaniatingy ‘2 + 2’
to derive

242 & 242

from a trivially true equivalence such asue < true’.t
A much better formulation of the rule would be

P & @, R[P]
R[Q]

since it ‘conserves sense’. That is, the conclusitid)] could only be nonsense (ill-
formed) if R[P] is already nonsense — assuming of course, that= (@) is not non-
sense. Toinfer2+2 < 2+ 2’ from ‘true < true’ we would already have to know
242 & 2420

Note that, with the exception of ‘contradiction’, the axioms given above all conserve
sense. It follows that any rules derived from them similarly conserve sense. (‘Contra-
diction’ only gets used in arguments by contradiction, at which times it is sometimes
necessary to introduce nonsenyd-or people using this logic, this is a very reassuring
property of our formulation, since no-one wants to derive nonsense. But of course it
goes further than this: it also means that when we come to formulate new conjectures we
should be careful that they in turn conserve sense, since otherwise there will be no way of
proving them.

(4) The rule in the previous remark is a relatively innocuous example of an ill-advised
axiom. In Section 3.5.2 we give an example where a careless formulation of an axiom
leads to outright inconsistency.

(5) Readers familiar with other logical frames — such as ELF [AHM87] — might wonder

6In some textbooks (e.g. [End72]) such problems are circumvented by defining an appropriate notion of
‘well-formed formula’ fvff) and only allowing rule instances whose components are wffs. Thu®e\d)
is a wff but 2 + 2" isn't. See Section 4.3.2 for a brief discussion of the decision not to follow such an
approach.

"e.g. in the following proof the law of contradiction is used to infer the nonsensical expréssidnn
whenn = 0:

from — (0 = n? + 2n)
1 n=0Vn#0

2 fromn =0
2.1 0=n?+2n .
infer 0 < 1/n contradiction (2.1,h1)
3 fromn#0
infer 0 < 1/n

infer 0 < 1/n Vv elimination (1,2,3)

50 3 Instantiation

why we didn't introduce a typé&rop and write e.g.
V: Prop x Prop — Prop

This would require first formulating a type system, to give some meaning to such a ‘decla-

ration’. (See Section 3.6.2 for a way of doing this.) But as we've seen, there is no need for
a typing mechanism in order to build up such a basic theory of reasoning as Propositional
Calculus. Our reasoning capabilities are being developed independently of any particular
assumptions about typing, and will be reused in many different situations.

3.2.3 Conditionals

This section introduces a small theory which combines the theories of propositional cal-
culus and equality. Such a theory is the appropriate place to define inequg)itfof
example, and to introduce the notion of ttenditional constructo(if then else) for def-

inition by cases.

Signature

‘Conditionals’ will be the theory with ‘Propositional Calculus’ and ‘Equality’ as parents,
and with signature — or ‘extension signature’, to give its full name — consisting of

e primitive constant I'TE’ with display form

if [el] then [e2] else [e3]

e the definition
a#b 2 —(a=0)
Axioms
The axioms of the theory are:

P - P
(if P then a else b) =a (if P then a else b) = b

Derived rules

The reader is invited to derive the following rules:

—“(a#b) & a=0b

a#a = @Q

(if (P = Q) then a else b) = (if P then (if () then a else b) else a)
(Hint: do case analysis oA and().)

8A closely related — but rather more esoteric — objection is that we want a ‘predicative’ system: this is
discussed further in Section 3.2.4.

3.2 Classical first order predicate calculus 51

Remarks:

In some ways, adding the definition gfactually causes more work than it saves, at least
initially. The mural pattern-matcher does not unfold definitions, so it becomes necessary
to ‘double up’ on many rules: e.g. we'll need a new form of the contradiction rule

a=b, a#b
Q

In fact, for almost every rule of propositional calculus involving negation, a corresponding
rule would need to be written in terms of inequality. Although such rules can be easily
deduced, it's annoying to have to spend time putting themiiinieal (thinking of good
names for them, which theory to put them into, etc.). If a definition is used often this is a
small price to pay, but it's worth bearing in mind when considering less frequently used
definitions.

3.2.4 Classical predicate calculus

Before we look at the theories of various data types it will be useful to build up some
machinery for reasoning about types and quantifiers. In this section we axiomaiige
sorted classical predicate calculus

Signature

The theory ‘Predicate Calculus’ will have ‘Propositional Calculus’ as parent, and its sig-
nature will contain

e a primitive binder ¥’ for universal quantification (‘for all’)
e a primitive constant:' for typing assertions, with display forth[e1]: [¢1]
¢ a defined binder3’ for existential quantification (‘there exists’), with definition
Jz: A Plz] & =Vz: A= Plz]
Intuitively,
e a: A means that is a value of type4,
e Vz: A - P[z] means thaP holds forall elements of4, and

e Jdz: A - P[z] means thaf holds forsomeelement ofA.

Scoping of binders
In mural , quantifier scopes are ‘as long as possible’, so that for example
Vi:A-P = @

should be parsed as
Ve:A- (P = Q)

9In mural , [ti] is used as a placeholder for tith Type argument (cf. the use d#i] in Section 3.2.1).
Note also that th€ESymb ‘.’ should not be confused with the colon used as separator in the display form
of binder terms such agz: 4 - ... (although the similarity is obviously intended).

52 3 Instantiation

Axioms

The following two rules can be taken as the axioms of classical predicate calculus (as an
extension of propositional calculus):

1. 'V introduction’
{z: A} b, P|z]
Vz: A- Plz]
which says that, if?[z] holds for an arbitrary term of type A, then it holds for alll
terms of that type.

2. 'Y elimination’
a:A, Vz:A- Plz]

Pla]
which says that, if? holds for all elements of typd, then it holds for any particular
term a which can be shown to be of typée

The usual ‘variable occurrence side-condition’ dnntroduction’ — viz. thatz does not
occur free in any assumption on whiéhz] depends, other tham: A — is handled by
the treatment of variable bindings inural. (See Section 4.3.3 for details.) Roughly, if
we suppose the sequent hypothesis is established by & imoa proof, thenz must be
introduced by box and no other box; anchural ensures the conclusion of baéxcan
depend only on lines from or enclosing boxes.

Example derivations

(1) The rule 9 introduction’

a: A, Pla]
dz: A - Plz]
can be derived as follows:
from a: A, P[a]
1 from = 3z: A Plz]
1.1 -~ =Vz: A= Plz] unfolding (1.h1)
1.2 Vo: A= Plz] — - elimination (1.1)
1.3 — Pla] v elimination (h1,1.2)
infer false contradiction (h1,1.3)
infer 3z: A - P|z] otherwise contradictory (1)

(2) Perhaps of more interest is the proof of the rdelfimination’

dz:A- Plz], {y:A, Plyl}FH, @
Q

which can be derived as follows:

3.2 Classical first order predicate calculus 53

from 3z: A - Plz], {y: A, Ply]}+, @

1 —Va:A - Plz] unfolding (hl)
2 from—-Q
2.1Qz from z: A
2.1.1 from P[z]
2.1.1.1 Q sequent hyp 1(2.1.h1,2.1.1.h1)
infer false contradiction (2.1.1.1,2.h1)
infer — P[z] otherwise contradictory (2.1.1)
2.2 Vr: A= Plz V introduction (2.1)
infer false contradiction (2.2,1)
infer @ otherwise contradictory (2)

Line 2.1.1.1 is justified by a sequent hypothesis which binds a variable 16 such
justifications the variable can be renamed (in this case)tsee Section 4.7.5 for full
details.

Variants of rules

A useful variant of ¥/ elimination’ is the following:

a: A, {z: A}, Plx]
Pla]

In classical logic this can be proven as follows:

from a: A, {z: A} F, Plz]
1 Va:A- Plz] V introduction geq hyp 1)
infer P[a] v elimination (h1,1)

In essenceyz: A - P and{z: A} I, P are different ways of saying the same thing, at
least in classical logic. (In fact, the same derivation works equally well for appropriate
formulations of many other logics: e.g. intuitionistic logic and LPF.)

To see why the variant of/elimination’ given in example 3 above can be useful, imagine
the following scenario:

When trying to establish go&@! suppose you recognise that it would be easier to prove
a more general statemerdt, say. More often than not;’ will be the result of replacing
(one or more occurrences of) a subternm G by a variable,x say. There’s no need to
prove a separate rule, however; we can use the variant as follows:

e write down — or find a line which gives — the typeofsayt: T

¢ use the justification tool to generate the relevant instance of the above rule
(by matchinga: A againstt: T and Pla| againstG)

e apply the rule.

This will have the effect of opening a new subproof

54 3 Instantiation

from z: T
infer G’

(with box variablezr) which will be used to establist¥.
Since this kind of procedure is fairly common, it could be streamlined by writing it as
a tactic. By using the facility for user input, the tactic could be designed to

e ask the user which subterm is to replaced, then

e ask which particular occurrences of the subterm are to replaced (using the ‘select
subterm’ facility), and

e if it can’t find a line in the proof which already asserts the subterm’s type, ask the
user for the type

and then do all the rest itself.

Other derivable rules

The reader is invited to derive the following rules:

(Hint: try justifying the conclusion by3 elimination’.)

Va: A- (Plz] A Qlz])
(Vy: A- Ply]) A (Vz: A - Q[2])

Vz:A- (R = Plz))
R = Vax:A- P[]
Vz:A-(Plz] = R)
(Jz: A- Plz]) = R
Note that there is no need for a side-condition saying:thtddes not occur free iR since
it is enforced by thenural frame.

Remarks:

(1) Note that these axioms say nothing about whether types can be empty or not. This
guestion must however be resolved (say by adding an aXiom - z = xz) before rules
such as

(Jz: A-Plz]) = R

Vz:A-(Plz] = R)

can be derived.
(2) The syntax does not allow for multiple simultaneous bindings such as

Vae:A,y: B - P(z,y)

3.2 Classical first order predicate calculus 55

In most cases such bindings can be expressed by equivalent sequential single bindings:
viz.
Ve: A-Vy:B - P(zx,y)

An alternative is to use pairing: viz.

Vz: A x B - P(fst z,snd 2)

(3) Although multiple simultaneous bindings do not present a serious problem from the
theoretical point of view, it is rather awkward to have to write e.g.

Vo, y,z:A-...

in the verbose form
Vo:A-Vy: A-Vz: A- ...

Unfortunately thenural concrete syntax mechanism does not help with this problem.

(4) Note that we now have two new primitives =-and v’ — for forming propositions.

We hinted that the meaning ‘for all element®f A ...’ can be assigned téz: A - .. .,
polymorphic in A. Continuing one of the remarks from Section 3.2.2, here is another
reason for not introducing a typrop for propositions: ifA is instantiated byProp the
meaning assignment becomes circutar; Prop- means ‘for all propositions’ — includ-

ing this one There are foundational difficulties with such ‘impredicative’ definitions and,
since it is difficult to give them a semantics while avoiding self-reference, they are felt by
logicians to be rather unpalatable. (See Hazen’s chapter on Predicative Logics in [GG83]
for a good discussion.)

For software engineers the upshot is, you can introduce ‘Booleans’ as a type — al-
though if you're careful you often won't need to — but try to keep the distinction between
Boolean valuest{ue andfalse, or 0 and1 if you prefer) and propositions in mind. Some-
times it's OK to mix the two with care (cf. Sections 3.5.2 and 3.6.5).

3.2.5 First order predicate calculus

‘FOPC'’ is formed by combining the theories of ‘Equality’ and ‘Predicate Calculus’. In
fact, we’ll go slightly further than this and also include the theory ‘Conditionals’ and the
following new binder symbols:

1. The quantifier ‘there exists a unique’ can be defined by

Nz A-Plz] & Fz:A-Plz] A (Vy: A- Ply] = y=n2)

2. The ‘unique choice’ operator'‘(iota) is a primitive binder with defining axioms

dlz: A- Plz] dlz: A- Plx]
Plex:A-Plz]] (vz:A-Plz]): A

3. The Hilbert choice operatar (for arbitrary choice) can be defined similarly, but
with 3 replacingd!:
Jdz: A - Plz] Jdz: A - Plz]
Plex: A- Plz]] (ex:A-Plz]): A

56 3 Instantiation

(Many standard logic textbooks have explanations of these concepts.) The resulting the-
ory would be an appropriate place to store derived results such as

(Jz:A-z=aAN Plz]) & a: AN Pl

This finishes our formulation of FOPC. As explained in for example [Kle52], FOPC
is a sufficiently rich theory to formulate all of mathematics.

3.2.6 Rigorous proofs

In Section 3.3 a number of mathematical theories are formulated as extensions to FOPC.
We finish the current section by making a temporary diversion to explore a minor liberal-
ization of the definition of proof.

Fully formal proofs give absolute assurance that derived rules are logical consequences
of the axioms from which they are derived. In practice however, it is often not feasible to
fully derive everyinference rule one would like to use. For example, in following through
the consequences of a design decision in the development of a piece of software, one
would like to leave the more ‘obvious’ truths unproven and concentrate instead on the
‘dubious’ or ‘convoluted’ (purported) truths. Candidates for ‘obvious’ truths would in-
clude arithmetic resultsf+2 = 4’), simple algebraic identitie¢+1)% = z2+2*z+1),
simple properties of basic data typegins (s1 ~ s2) = elems s1 U elems s2), and so on.

Several mechanisms for dealing with such truths are provided:al. Oracles can
be written to handle large classes of problems such as the above, and tactics can automate
common patterns of inference. (Of course, both these approaches still lead to fully formal
proofs.) Here we shall present a simple but effective way of breaking out of the shackles
of fully formal proof.

The solution is simply to add an ‘and-then-a-miracle-occurred’ rule of the form

Q

where(is a metavariable which can be instantiatedaby expression. Now, it would be
pretty stupid to suggest adding this rule as an axiom — obviously it would make a mockery
of theorem proving altogether! Butig useful to add it as a defined rule. (With any luck)
it should never be derivablé. Obviously the ‘miracle rule’ should be used with some
caution, and only in places where you're very confident it is valid — that is to say, at places
where you believe you could supply a complete proof but don'’t feel it is worth your effort.
The exact circumstances are a matter for the user to decide.

Rules proven using instances of the above rule will be said to be prayaously.
You can find out which proofs are rigorous — as opposed to being fully formal — by asking
mural for the list of unproven rules on which this rule depends (cf. Section 4.5.2). If
the ‘miracle rule’ appears in the list you'll know your rule is (at best) only rigorously
established. Finally, by declaring the ‘miracle rule’ to be ‘assumed’ pitheal facility
for reporting the status of a rule — as proposed in Section 4.5.2 — can be used to full
advantage.

101t's certainly not derivable in FOPC, since the latter is provably consistent. (You might ask what logic
is used to prove FOPC is consistent, but this is not the place to go into all that — see instead any good book
on mathematical logic, such as [End72].)

3.3 Some common data types 57

Remark:

In fact, it would be better to introduce a whole set of different ‘miraculous’ rules, each
with a different number of hypotheses: viz.

H1, H2,..., Hn
Q

The user would choose the rule with the number of hypotheses corresponding to the
number of lines in the proof on which the desired conclusion depends (its so-called
antecedents). Hypotheses would get bound to antecedents one-to-one. In this way an-
tecedent information is maintained lyural, and any changes to the lines on which the
conclusion depends would cause the ‘miraculous’ line to be flagged as no longer being
justified, not even ‘rigorously’.

3.3 Some common data types

This section explores the theories of some commonly used (generic) data types, such as
lists, finite sets, subtypes, cartesian products and records. All the theories will build upon
‘FOPC’ as defined in the previous section: so, unless otherwise stated, it can be assumed
they have ‘FOPC’ among their parents.

3.3.1 Listtheory

The generic ‘list’ data type consists of finite sequences of elements from a given type.
Thus we want a theory which is equally good for lists of natural numbers as for lists of
trees, or booleans, or whatever. On the other hand, let’'s suppose we don’t want to allow
lists with mixed types of elements. (This will show how naturally polymorphism can be
handled inmural .)
Signature
The signature of ‘List Theory’ will consist of

e a primitive type constructor ‘list of’ with display forrf¢1]*

e a primitive constant[]’ for the empty list

e a primitive constant for adding an element onto the front of a list, with display form
cons([el], [e2])

e primitive constants for list destructors ‘head’ and ‘tail’, with display formge1]
andtl [el] respectively

and definitions

[a] 2 cons(a,[])
ains L a=hdsVaintls
st 4 if s=]] then t else cons(hd s, (tls) " t)

for singleton lists, list membership and concatenation of lists, respectively. (The last two
are examples of recursive definitionsnmural .)

58 3 Instantiation

from s: A*, s #[]

1 []#]] = hd[]:4 =reflex lemma ()

2Qh,from h: A

2.1 hd cons(h, t) = hd -axiom ()

2.2 hd cons(h, t): A substitution (2.1,2.h1)
infer cons(h, t) # [] = hdcons(h,t): A conseq true (2.2)

3 VwA*w#][] = hdw: A list induction (1,2)

4 s#[] = hds: A V-elimination (h1,3)

infer hd s: A modus ponens (h2,4)

Figure 3.2: A proof of the formation rule for the ‘head of a list’ function.

Axioms
We shall take the following as axioms for ‘List Theory’:

a: A, s:A*
[]: A cons(a, s): A*

cons(a, s) #]
hd cons(a, s) = a tlcons(a,s) = s

P[],
{h: A, t: A*, Plt|} Fp+ Plcons(h,t)]
Vs: A* - Pls]

Of course, the last one is the induction rule for lists.

Derived rules

A proof for the ‘formation rule’ for head

54 s £]
hd s: A

is given in Figure 3.2. Note that the pattern of using induction, thefimination and
modus ponens a very common one, and is a good candidate for a tactic. Likewise, use
of the induction rule itself could be usefully semi-automated, by writing a tactic ‘SetU-
pListinduction’ which polls the user for the subternand for the particular occurrences
of ¢ in the conclusion, and then sets Bgrom this information. This is a good illustration
of the usefulness of an interactive tactic language, and how it can be used to customize
the user interface ahural.

Other example derivable rules are

st A% s #]
s = cons(hd s, tl s)

st A%, t: A*
st Ax

3.3 Some common data types 59

a: A, s:A*, t: A*
ains t < ainsVaint
SllA*, SQIA*, 83114*

/-\82)

VR

(81 S3 = 81 /_\(82 /_\83)

Remarks:

(1) Note how the typing hypotheses of the formation rule fon$’ ensure that only ele-
ments of the correct type are appended to lists. cbihe function needs no type argument

— unlike its counterpart in strongly typed logical frames such as ELF — and thus is truly
polymorphic. Of course, there is a cost associated with such flexibitityal does not
automatically type-check expressions. There are (at least) two good reasons for this:

e One of the goals ofnural (cf. [JL88]) is to support different type structures for
different applications.

e For some applications type-checking is not even decidable.

Generally speaking, thaural approach to automated type-checking is to write a domain-
specific tactic to do as much as possible. Early experience suggests that this is quite
effective, although it adds considerably to the length of proofs. A viable alternative might
be to use an oracle.

(2) The role of typing assertions in the above formulation of list theory is roughly to
‘filter out nonsense’. An unstated principle is at work in the above axiomatization: a term
is typable if and only if it is meaningful. For example, there is nothing to stop someone
writing ‘hd []’ in mural , but it's not possible to deduce a type for it using the rules above.

In fact, because of the way the axioms are formulated, the only ‘facts’ that can be deduced
about hd []" are essentially trivial, such agd [] = hd []". (In Section 3.5.1 we look at a

logic in which not even this equation can be deduced.)

(3) Note that, as formulated aboveé] ™ ¢ = t' holds for any expressiort, not just for

lists. If instead the theory called for a stronger typing onthe symbol should instead

be introduced as a primitive constant with its properties defined axiomatically — with due
care to add the relevant typing hypotheses: viz.

t: A* a: A, s:A*, t: A*
[7t=t cons(a,s) t=cons(a,s t)

(4) An alternative form of the induction rule is

t: A*,
Pl

{a: A, s: A*, P[s]} a5 Plcons(a, s)]
Pli]

Formally, the two rules are equivalent (at least, in the presence of FOPC) but there are
certain practical reasons for preferring the original version.

To see this, note that”[t]" matchesany expression and does so in many different
ways (cf. the examples in Section 3.2.1). Thus tingal justification tool will return

60 3 Instantiation

many different matches for the conclusion of the rule above. On the other hand, the
conclusion
Vs: A* - P[s]

is much more constrained in the matching it allows, and if the user is prepared to first
state the appropriate generalization of the assertion — going fremrev z) = z’ to

‘Vx: A* - rev(rev x) = 2’ for example — the justification tool would find a unique match
against the conclusion of the original rule, and in a much shorter time. With practice, such
‘tricks’ become almost second nature.

(5) As a final point in this section, note that the above formulation essentially treats lists
as an algebra, with generatof$ ‘and ‘cons’. But lists can also be viewed, for example,

as a special kind of map (finite partial function) with domain an initial segment of the
natural numbers. Such an approach can be reconciled with the above: see Section 3.4.2
for further discussion.

3.3.2 Basic set theory

The basic generic ‘set’ data type — consistingfinfte sets over a given type — can be
formalized in a similar fashion to ‘List Theory’ above. We’'ll go through an axiomatization
here (even though it contains few surprises) since there are deeper questions about finite
sets to be explored later.

Signature
As usual, ‘Basic Set Theory’ will have ‘FOPC’ as a parent. Its signature will consist of

a primitive type constructor ‘set of’, with display fornit1]-set’

a primitive constant{ }’ for the empty set

a primitive constant for the function which adds an element to a set, with display
form ‘[el] U {[e2] }’

a primitive constanté¢’ for the set membership relation (infixed)

a defined constant defining the singleton set as the addition of an element to the
empty set{a} £ { }U{a} — note that the right-hand side of this definition is simply

the concrete syntax for the function which adds an element to a set and has nothing
to do with the normal union operator which will be discussed in Section 3.4.1)

¢ a defined constant for the anti-membership function, defined in the obvious way
(a¢ st —(acs))
Axioms
The axioms of this theory are:

a: A, s:A-set
{}: A-set sU{a}: A-set

ag¢{} aecsU{b} © aesVa=>

3.3 Some common data types 61

s: A-set, t: A-set,
VeiA-(z€s & z€t)
s=1

PI{}],

{z: A, s:A-set, v & s, Pls|} by P[sU{z}]
Vs: A-set - P|s]

Example derived rules

(1) Consider the following proof of the fact that € s U {a}"

from

1 aesU{a} © a€esVa=a e-axiom2 ()
2 a€sVa=a < acsU{a} < symmetry (1)
3 a=ua =-reflexivity ()
4 a€esVa=a V introduction (left) (3)
infer a € s U {a} & -elimination (2,4)

This is an example of how even quite simple reasoning can be awkward at times. Note
that the reasoning here is almost purely propositional, having almost nothing in particular
to do with sets. The desired conclusion could thus be simply justified using lines 1 and 3
and an oracle for propositional logic.

(2) The fact thats U {a} # { }’ can be derived as follows:

from

1 fromsU{a}={}

1.1 a€sU{a} lemma ()

1.2 aecd{} substitution (1.h1,1.1)

1.3 aé¢{} e-axioml ()
infer false € contradiction (1.2,1.3)

infer sU{a} #{} otherwise contradictory (1)

(3) The reader is invited to derive the following rules:

a:A, b:A, s:A-set
(sU{a})u{b} =(su{b})U{a}

(Hint: use extensionality and the associativity\gffor example.)

a€s, s:A-set
a: A

(Hint: first proveVi: A-set- (a € t = a: A) by induction.)

3.3.3 Subtypes

Recall that themural syntax makes provision for a ‘subtype’ constructor, displayed as
‘< x:A- P >". The following pair of axioms capture the notion that z: A - P[z]| >’

62 3 Instantiation

represents those elementsf A that satisfyP|[a]:

a: A A Plal
a:<z:A- Plz] >

The subtyping syntax was ‘hard-wired’ intaural because of its peculiar form (a type
binder with an expression body). That is not to say that subtyping is mandatory; rather that
it is the choice of the person configuringiral whether or not the above axioms should be
included. In fact, there are times when it definitely shaubtibe used (cf. Section 3.6.1).

Remarks:

Subtyping (or ‘inclusion polymorphism’) is a very powerful technique, and giuesl

a distinct advantage over logical frames based on strong typing in which any term has at
most one type. For example, ‘2’ is both an even number and a prime number, which can
be represented as the following two statements:

2: <n:N-(nmod2=0)>

2: <m:N-Vm:NT-(nmodm=0 = m=1Vm=n)>

In many formalisms based on set theory (e.g. VDM, Z) it is important to be able to regard
types as sets, and consequently to allow types to overlap. In particular, subtyping is vital
for a natural axiomatization of VDM’s data type invariants — coercion functions are far
too awkward; cf. Section 3.5.3. Strong typing systems just don’t allow such flexibility.

3.3.4 Other common type constructors

In this section we look at a number of other common ways of constructing types, including
intervals of numbers, enumerated types, type unions, and type products.

Signature

Let's assume we're working in a theory which has ‘Basic Set Theory’ and an appropriate
theory of integer arithmetic as parents. We’ll add the following primitives:

e a type constructorlnterval’ — with display form {[el]..[e2]]’ — for constructing
intervals of natural numbers

e atype constructorEnum Type’ for coercing finite sets into ‘enumerated types’; in
what follows we’ll often write §' as the display form of Enum Type(s)’ although
mural doesn't actually allow superscripts

e type constructors
infixed)

*and ‘x’ for type union and type product, respectively (both

e constant, for pairing (infixed)

e constantsfst’ and ‘snd’ for projection functions

3.4 More complicated formulations 63

Axioms

The axioms of the theory are:

m<JgAjJ<n ac€s a:AV a:B
g:[m..n] a:§ a:A| B

a:A, b:B p:Ax B p:AxB
(a,0):Ax B fstp:A snd p: B
p:AX B
fst (a,b) =a snd (a,b)=b (fst p,snd p) =1p

3.3.5 Record types

Another useful way of constructing types is ttezord type(or ‘tagged tuple’). Unfor-
tunately there seems to be no simple way of axiomatizing this concept all in one go in
mural , although individual examples are easy enough.

For example, consider the VDM-like record type

Record . sell : Fieldl
sel2 : Field2
sel3 : Field3

whereFieldl, Field2 and Field3 are assumed to have been defined in some ancestor
theory of the theory in which the particular record type is needed. We simply extend the
signature by new primitive constants/1, sel2, sel3 andmk- Record and new primitive
type constructoRzecord, and add the following axioms:

al: Fieldl, a2: Field2, a3: Field3
mk-Record(al, a2, a3): Record

r: Record r: Record r: Record
sell(r): Fieldl — sel2(r): Field2 sel3(r): Field3

sell(mk-Record(al, a2, a3)) = al

sel2(mk-Record(al, a2, a3)) = a2

sel3(mk-Record(al, a2, a3)) = a3
r: Record
mk-Record(sell(r), sel2(r), sel3(r)) =r

3.4 More complicated formulations

This section discusses a number of more advanced techniques, including
e extending a theory dinite sets with a set constructofz: A - P[z]}’
¢ defining maps (finite partial functions) as sets of pairs

e defining lists as maps whose domains are initial segments of the natural numbers

64 3 Instantiation

¢ forming a theory of ‘abstract collections’ which generalizes the notions of sets, lists,
bags, etc.

This section can easily be skipped on first reading.

3.4.1 Set comprehension

Defining a theory of set comprehension (formation of sets according to a defining predi-
cate, as in{z: A- P}’) is complicated if we only want to allow finite sets. If we're to use
the basic set theory we built up in Section 3.3.2 above, we can’t suddenly say that we’ll
allow infinite sets: the induction axiom commits us to finite sets. So how do we reBtrict
so that only finitely many elements df satisfy it?

If A is countably infinite, one solution would be to assert the existence of a natural
numbern and a one-to-one functiohmappingA to N such that

Vz: A- (Plz] = f(z) <n)

Sincef is 1-1, less tham elements ofd must satisfyP. But this is far too complicated!

For a start, it would require us to formulate higher order logic (to express the existence
of f) and that'’s a lot of work: cf. Section 3.6.1 and [Gor85]. Fortunately, a much simpler
solution is possible, based on the well-known Zermelo-Frarie) @pproach [Bar77].

Signature

First of all, it's easy enough to add a set comprehension constructor to the theory. ‘Set
Comprehension’ will be the theory which extends ‘Basic Set Theory’ by a primitive
binder ‘those’, with display form

{[el] - [e2}

Axioms

There will be three axioms in our formulation. The fundamental axiom of set comprehen-
sion is

a €{z:A-Plz]} & a:ANA Pld]
This is very similar to the formulation of subtyping in Section 3.3.3 above, except that
subtypes are types whereas subsets are values, which makes them different kinds of term
as far asnural is concerned.
The other two axioms are ‘formation rules’ for sets: rules which tell us how to form
new sets from existing sets. KF there are two basic methods:

1. The firstis called ‘Separation’ and simply forms subsets of existing sets:

s: A-set,
Ve:A-(Plx] = z € s)
{z: A P[z]}: A-set

Since only subsets of existing sets can be created this way, only finite sets result.

3.4 More complicated formulations 65

2. The second method is called ‘Replacement’ and forms images of existing sets under
a given mapping:

s: A-set,
Ve:A-(z €s = Flz]:B)
{y:B-Fz:A-(x € sNy = Flz])}: B-set

Again, the resulting set has at most as many elementsaasl so must be finite,
assumings is.

If A has a constanty, say, which is known to satisfy’ then the first form becomes a
special case of the second upon instantiating

{Bw+ A, Flz]~ if P[z] then z else a}

Remarks:

(1) To keep thenural syntax simple, onlyTypes were allowed as the universes of bind-
ings. As a consequence we must write

{z:A-z € s\ R[z]}

instead of
{z € s- R[]},

although the awkwardness can be circumvented to some extent by making use of enumer-
ated types (cf. Section 3.3.4) to write

{z:5- R[z]}.

(2) Given a fixed typeX, we can define the intersection and difference operations on sets
of X by

sNt & (X -ze€sAzet}

s—t L& {n:X-ze€shz gt}
and derive rules such as

s: X-set, t: X-set
sNt:X-set

Alternatively, we could define them polymorphically by making use of enumerated types:

e.g.

sNt & {z:8-z €t}

It is left as an exercise for the reader to show that, given the definition
sUt A {z:X-resVazet}

one can derive
s: X-set, t: X-set

sU t: X-set
(Hint: use induction ors and the Separation axiom.) There would seem to be no way,
however, of definingly’ polymorphically with the machinery developed up to this point.
By analogy withZF, a full formulation of set theory would need to introduce the union,

66 3 Instantiation

powerset and distributed union operators and the subset relation as primitives, with their
properties defined axiomatically. (Left as an exercise for the reader.)

(3) The set
{y:B-3w:A-(zesAhy=f(z))}

resulting from replacement is more usually written in the form
{f(z) -z € s}

but our simple syntax does not support such expressions. As a compromise, we could
introduce a new binderéplace’ with display form

{[e2] - [e1]}
and write{f(z) - =: §}. More generally, we would like to be able to define
{Flz] - 2: A} & {y:B-3z:A-y= F[z]}

but, because of restrictions on the use of formal parameters in definiffomsist have a
fixed value. Thus, the new binder must instead be added as a primitive, with its properties
formalized axiomatically: viz!

{z: A}, Flx]:B
{Flz] - z: A} ={y:B-3x: A-y = Flz|}

3.4.2 Map theory

In this section we show how the theory of maps (finite partial functions) can be defined
in terms of set theory. For illustrative purposes, we develop the theory of the data type
‘X ™ Y, consisting of maps fronX to Y, for fixed(but arbitrary) typesy and Y.

Signature

The theory will have as parents ‘Common Type Constructors’ (see Section 3.3.4) and the
extension of ‘Set Comprehension’ by an appropriate formulation of the set-union function
‘U’. Maps will be represented as sets of pairs of elements fkoand Y. This leads to

the the following definitions:

is-maplike(s) 2L Ve;:§-Vey§-(fst eg =fst ey = e = e)
XY & <s:(X xY)set-is-maplike(s) >
domm £ {z:X-Jy:Y-(z,y) € m}
rmgm & {y:Y-F: X (z,y) € m}
{z=yt & {(z.9)}
matzx £ 1y:Y - (z,y)€m
mitmy 2 {eXxY-e€mAfsteddommy}Umy
sam L {eeXxY-eecmAfsted s}

1 The sequent hypothesis might be thought of as assertingfthapresents a function from to B.
More generally however; [z] can be any expression involving e.g.
{z:N} F, 22 +1:N
{z2+1-2:N}={y:N-Jz:N-y =22 + 1}

is a legitimate instantiation of this rule.

3.4 More complicated formulations 67

and so on. (is the unique choice operator introduced in Section 3.2.5 ant the
enumerated type introduced in Section 3.3.4.)

Derived rules

The usual axioms for maps can be deduced from the rules for set theory: e.g.

m:X %Y v X, yY
domm:X-set {z—y}: X Y

mX-2Y, zedomm mp:X 5V, memX =Y
(matz):Y mtmy: X 25 Y
(Hints: for the first use ‘Replacement’ and for the last use ‘Separation’.)

The rule ‘map induction’
P,
{m: X 5 Y, 2: X, y: Y, z &domm, Plm|}p.y, Plmi{z— y}]
Vm: X = Y - P[m]

can be derived from set induction.

Remarks:
(1) Here’s a hint of how to prove ‘map induction’. First prove
Vs: (X x Y)-set - is-maplike(s) = P[s]

by induction over sets. The sequent hypothesis of ‘map induction’ is used in the induction
step. Unfortunately it cannot be used directly and instead must be converted into an
equivalent formula: viz.

Vm: X 5 Y -Vo: X -Vy: Y - ((x € domm A P[m]) = Plm7{z— y}])
The following lemma is also useful

is-maplike(m U{e}), e& m
fst e ¢domm AmU{e} =mi{fst e snd e}

in the induction step.

(2) Note that the definitions given in the signature are specific to the type™ Y for

the given (fixed) types and Y. A generic theory is possible, of course, but most of the
constants would have to be introduced instead as primitives, with their properties defined
axiomatically (cf. the comments anin Section 3.4.1 above).

3.4.3 Lists as maps

In Section 3.3.1 above we remarked that an alternative way of formulating list theory
would be to regard lists ok as a special case of maps from natural number¥ tdn
mural there are (at least) two different ways this observation can be exploited:

(1) The first way is to construct a theory morphism from ‘List Theory’ to (a polymorphic
formulation of) ‘Map Theory’, where the latter has been extended by arithmetic concepts,

68 3 Instantiation

including a notion of cardinality. (See Section 4.8 for an explanation of morphisms.) The
following signature morphism is one candidate

A* = N A
= {}
cons(a,s) +— s U{cards’ — a'}
hds — s"at (cards’ —1)
tls — (cards’' —1)gs

whereA’ is the appropriate translation df etc. The effect of this morphism is to translate
cons(zy, cons(y, . .. cons(z,, nil) .. .))

to
{0— 2, 1l—2q,...,n— 1+ 1y}

This gives a way of viewing lists as maps and lets us translate results about lists into
results about the corresponding maps. Unfortunately, it doesn’t help us translate results
about maps back to results about lists, even though the morphism is ‘almost’ an isomor-
phism. (It's not an isomorphism because it translates the unprovable equéatiba-‘ nil’
to a provable statement.) It seems that the reverse ‘morphism’ is well beyond the expres-
sive capabilities of the simple ‘syntactic’ (homo-) morphisms described in Section 4.8. It
would be an interesting research topic to see whether there is a suitable generalization of
morphisms which will handle cases like this while still being easy to apply.

(2) A second — more profitable — way to bring the two different formulations of lists
together is to define a new subtheory of ‘List Theory’ and ‘Map Theory’ in which one
representation is ‘coerced’ into another via an inference rule. For example, assuming the
subtheory also inherits a theory of arithmetic and the definition

is-initial(ns) 2 In:N-ns = {m:N-m < n}
then the following axiom pair

s A*
(s:N = A) A is-initial (dom s)

lets us move freely back and forth between the two different views of lists.

3.4.4 Abstract collections

Next we illustrate how morphisms can be used for ‘after-the-fact abstraction’ by consider-
ing a theory which extracts the properties common to various forms of finite collections.

Let the ‘Theory of Abstract Collections’ be the theory which extends the FOPC with
the following primitives:

e atype constructorcoll of’
e constants

— (O (for the empty collection)

3.4 More complicated formulations 69

— x (for adding an element to a collection)
— € (for the membership predicate) and
— @ (for combining two collections)

and the following axioms:

a: A a,b: A, c:coll of A
O:collof A = (ae(Q) a€(bkxc) & a=bVacc

c:coll of A a: A, c,c:coll of A
O@®c=c (axcd)Pc=a*x(d®c)

PO,
{a: A, c:coll of A, Plc]} tq.c Plaxc]
Ve: coll of A+ Plc]

In this theory one can show, for example, thats associative, thap) is a right identity
for @, and thatx never yieldsO). In addition a group of rewrite rules can be identified
which will reduce terms to ‘normal form’, and these could be used as input to a general
simplification tactic.

There are morphisms from the above theory into theories of various different kinds of
collection: e.g.

e sets, with

coll of A — A’-set
-O={}
—a*xc— ' U{d}
—ac€c—a e
— B c—guUd

e lists, with

coll of A — A™

- O]

— a*c— cons(a,)

— a € c+— a €elemsc

~~
—qBe—dg o

bags, and so on. (In the abow#,stands for the translation ef under the morphism, and
soon.)

Remarks:

(1) One of the advantages of morphisms is that they allow symbols to be renamed:
e.g. from {0’ to ‘{}’. To a certain degree the same effect could be achieved (much

70 3 Instantiation

more simply) by adding renaming to the inheritance mechanism. More generally how-
ever, morphisms can rename symbols to expressions: e.g. fram’to ‘' _ € elems .
How much of an advantage over simple renaming this represents remains to be seen.

(2) Perhaps the singular advantage of morphisms is that they allow ‘after-the-fact abstrac-
tion’, in as much as generalizations such as ‘Abstract Collections’ can be made without
disturbing the existing theory hierarchy and without the risk that the generalization actu-
ally changes the target theory. Thus, in terms of the above example, before the morphism
can be used — say to deduce that list concatenation is associative — it must be shown that
all the axioms of abstract collections (appropriately translated) hold in List Theory. But

if the Theory of Abstract Collections were merely to be added to the parents of List The-
ory there would be no such guarantee that it is not fundamentally changing what can be
deduced about lists.

3.5 The theory of VDM

In this section we outline how the formal development method VDM can be axiomatized,
based on the presentation given in [Jon86].

e We start by describing in Section 3.5.1 the underlying logic LPF [BCJ84], a three-
valued logic which differs from the classical logic of Section 3.2 in subtle ways.

e Section 3.5.2 discusses the theory of VDM primitives: sets, lists, maps, Booleans,
‘let’ clauses, etc.

e Section 3.5.3 describes how a theory can be extracted from the ‘data model’ of a
VDM specification module (roughly, its data types and auxiliary functions). This
theory then serves as the context in which reasoning about the specification takes
place.

e Section 3.5.5 deals with the ‘reification’ of one specification module by another,
and what is involved in proving it correct. A (very simple) reification — sets imple-
mented as nonrepeating lists — is used to illustrate the main points.

e Finally, in Section 3.5.6 we illustrate the ideas on a more substantial example, by
validating part of the abstract specificationmfiral itself.

Many of the techniques and issues discussed are not restricted to VDM, but are relevant
to all model-oriented specification methods and (to a lesser extent) to algebraic methods.

3.5.1 LPF

This section describes the predicate calculus underlying VDM. A three-valuedl&iic,

(for ‘Logic of Partial Functions’) was chosen as the basis for VDM since it is well suited
to reasoning about partial functions. LPF is broadly similar to the classical predicate
calculus developed in Section 3.2 above, the main differences being in the propositional
part and in the treatment of equality. Here we formulatesay-sorted/ersion of LPF by
modifying the single-sorted version presented in [BCJ84].

12The axiomatization given here is largely the same as that given on-line in the standard releasg of
although the exact set of axioms and the names given to rules differ at some points.

3.5 The theory of VDM 71

Propositional part

LPF has all the propositional connectives (primitive and defined) from Section 3.2.2
above, but a different set of axioms. The new axioms are:

true
p Q
PVQ PVQ
PV aQ,
{P}FR, {Q}FR
R
P, Q PAQ PAQ
PAQ P Q
P -—-P P, =P

These are paraphrased from [BCJ84].

Note that LPF is in some sense a subset of classical logic, in that all the above axioms
are valid classically and thus so too are any rules that can be derived from them. The
converse is definitelyot true however. For example, as explained in [BCJ84], the law
of excluded middle does not hold in LPF sind@ v — P’ might be undefined (e.qg. if
computation of P’ does not terminate}:

Although not all of the rules of classical logic are valid in LPF, they can often be mod-
ified — by adding ‘definedness’ hypotheses — to do so. For example, the LPF counterpart
of * = -introduction’ is

0P, {P}F Q
P = Q

wheresP & P Vv - P.Inessence, the assertiai™ says thatP denotes a meaningful
proposition (omwell-formed formula Of coursey is not needed in classical logic, since
‘6 P’ simply evaluates totrue’.

The reader is referred to [BCJ84] for more discussion.

A many-sorted version of LPF

When formulating a typed version of LPF we are faced with two choices:
e assign types to all terms, including non-denoting terms suchdds’;
¢ type only denoting terms.

The first approach is explored in [Mon87], where it is used for what is sometimes called
‘static analysis’ (or ‘syntactic type-checking’) of VDM specifications. Invariants are ig-
nored and pre-conditions of functions are not checked, in a kind of rough first pass through

13The undefined (‘bottom’) elementdef’ and corresponding axioms (such %%if) have been omit-
ted since they never seem to be used in practice. They were included in [BCJ84] as part of the basis of a
semantic explanation (model theory) and the corresponding completeness theorem.

14| PF also differs from intuitionistic logic (cf. Section 3.6.3) in that it admits the rute ef-elimination.

72 3 Instantiation

the specification looking for type clashes. Such reasoning will detect certain forms of er-
ror at an early stage in a specification’s life and can be fully automated, which makes it a
very useful tool. But it is too coarse-grained for general verification purposes.

Here we shall follow the second alternative, arranging things so that the typing predi-
cate bears a direct relationship to typing in the data model — sodthdat means the value
of expressionu is an element of typel and satisfies any invariants associated withAs
a consequence, the typing relation is only semi-decidable, since arbitrarily complicated
predicates can be used as invariants in VDM.

Implicit in our decision is the intention to only assign types to expressions which
denote actual values. Thus for example we shall be canetuib assign a type tchd []'.
The axiom defininghd’ (for the head of a list) will be stated as

a:A, s:A*
hd cons(a, s) = a

From this can be derived rules such as

st A*, s #]
hds: A

but no type can be deduced for the head of an empty list. Apart from having good theo-
retical reasons for making such restrictions there are strong practical reasons: many LPF
rules become much simpler to state.
For reasons which will become apparent below, we shall also restrict type assignment

to first orderterms?® In particular, functions cannot be typed. As it happens, this is not a
terribly inconvenient restriction: it’s just a matter of getting used to using formation rules
such as

X, s X*

cons(z, s): X*

instead of declarations such as

cons: X x X* — X*

Equality
In LPF, equality isstrict: that is, it is defined only on denoting terms. Thus for example
‘hd[] = hd[]" is undefined. In particular, equality does not satisfy the usual law of
reflexivity

a=a

when a is nondenoting. As a consequence, the axioms for equality are a little more
complicated than the classical laws given in Section 3.2.1. The solution takes advantage
of our typing restrictions, making use of the fact that A’ only if « denotes an actual

(first order) value. In particular, the rule of reflexivity for equality will be stated as

a: A

a=a

15This is also the reason we haven't introduced the ‘function space’ constructoefore now. See
Section 3.6.1 for the treatment of higher order concepts sueh.as

3.5 The theory of VDM 73

So this is the reason for restricting to first order terms: weak equality is not defined on
higher order terms (such as functions).

We shall take the following as the main axioms of equality in LPF:

a:A, B a=b, Pla] a=0b
d(a=10) P[b] b=a

The first says equality is a total predicate across all types; note the use of typing hypothe-
ses to ensure that and b are denoting terms. The second axiom says that equal terms
can be substituted for each other. The third axiom says that equality is symmetric. From

these we can deduce
a=b a=1b

a=a b=25b
and the transitivity of equality, but not its reflexivity.
For completeness, the following three axioms also seem to be required:

a#tb a#b a#a

a=a b=2b false

however they rarely seem to get used in practice — at least, beyond establishing early,
basic properties of equality (such as reflexivity).

Remarks:

It is important that user-supplied axioms respect the principle that equality is defined only
on denoting terms. In practice this means that whenever an axiom is introduced which
has =’ or *#’ in its conclusion, enough hypotheses should be included to ensure that
subterms are semantically well-formed. Thus for example the typing hypotheses in

a: A, s:A*
hd cons(a, s) = a

ensure that the conclusiohd cons(a, s) = «’ is defined.

By using typing hypotheses systematically it is easy to adhere to the above princi-
ple (although rules now need more hypotheses than their presentation in [Jon86] might
suggest). If all axioms respect the principle then any rules derived from them will auto-
matically also respect the principle; this is of course good news from a consistency point
of view, but the flipside of the observation is that users should remember the principle
when formulating conjectures to be proven.

Quantifiers

The quantifiersv’ and ‘3’ from Section 3.2.4 above will be used again here, with the same
axioms for Y-introduction’ and Y-elimination’!® Unlike the classical case however,

16 Apart from a few small terminological differences, the formulation of quantifiers given here is almost
the same as that in [BCJ84]. The main difference is that here we use the typing assertion to distinguish
denoting terms, whereas the treatment given in [BCJ84] is based around the use of equality. Thus e.g. the
rule for 3-introduction in [BCJ84]

s=s, P[s]
Jz - Plx]

74 3 Instantiation

these two axioms are not enough on their own: the rulesFantroduction’ and 3-
elimination’ must also be given as axioms. (Classical proofs of these rules essentially
depend on the law of excluded middle.)

Since it will sometimes be necessary to say when a quantified expression is semanti-
cally well-formed, we also add

{2: A} F, 6P2]
d(Vx: A - Plz])

as an axiom: i.e.Vz: A- P[z|' denotes a truth value provided{z]' denotes a truth value
for each element of A. (The corresponding rule fat can be deduced from this.)
It will also be useful to add a definition which says that a type is non-empty:

A is-nonempty £ Jz: A - true

Conditionals
The axioms for conditionals are:

a: A, P b:A, - P
(if P then a else b) =a (if P then a else b) = b

Note that, if ‘P’ is true then the value off P then a else b’is‘ a’ irrespective of whether
or not ‘b’ denotes a value: the conditional constructor is said toadxestrict Similarly,
if = P’ is true, then it doesn’t matter if” is undefined, providedi’ is denoting.

3.5.2 The theory of VDM primitives

The next step in our axiomatization of VDM is to treat the VDM primitives — its primitive
data types, type constructors, predicates and destructors, and so on. We'll define a ‘Theory
of VDM Primitives’ which pulls together all the facts about predicate calculus, equality,
set theory, and so on, which might be used in any VDM specification. This would be done
by extending the predicate calculus by

¢ atheory of arithmetic,
e theories of data type primitives (sets, sequences, maps, etc.),
e theories of type constructors (unions, products, enumerated types, etc.),

and so on. It should be clear by now how this could be done, at least for most VDM
primitives. Some things — such as record types (cf. Section 3.3.5) and case statements —
are better introduced on an as-required basis, since it is awkward to give schema which
cover the general case.

In the rest of this section we will discuss some of the subtleties involved. The reader
with no particular interest in the finer details of VDM can easily skip this section.

has as its counterpart
a: A, Pla]
Jz: A - P[z]

in the current formulation.

3.5 The theory of VDM 75

The Boolean type

In VDM, propositions and Boolean-valued terms are used interchangeably. Let us thus
introduce a primitive typeB’ to stand for Boolean values. To relate the two views we can
add the axiom pair

b:B

db

to our formulation.

Rules such as
P:B, {P} - Q@:B

(PANQ):B
can be easily derived. Paraphrased, this rule says that®)’ is a well-formed formula

(wif) if

e ‘P'is awff, and

e ' ()’ is a wif under the assumption th&tis true.

This explains why it is alright to write something like % 0 A z/z = 1" in VDM.
For many purposes< can be used as equality on Booleans. For completeness

however we should add the axiom
P & @Q

P=qQ
From this we can derive rules such as
b:B
b = true V b = false

which says that there are only two possible Boolean values. It also now becomes possible
to give a direct derivation of the rule for substitutivity of equivalents (cf. Section 3.2.2):

P & Q, R[P]
R[Q]

Remarks:

Note that the axioms given above ‘conserve sense’ (in the sense of Section 3.2.2). It
would be fatal to the consistency of the theory to use an axiom of the form

(b:B) < b

since for example from the (perfectly reasonable) assertion that the nuinisrabt a
Boolean we could derive a contradiction as follows:

from — (0: B)
— 60 & -substitution
- (0v—=0) unfolding
0N =20 de Morgan’s law
=0 A-elimination (left)
—=0 A-elimination (right)

infer false contradiction

76 3 Instantiation
Our formulation avoids this fate because it is not possible to irfé" from ‘ — (0: B)". 17

Disjoint types

Elementary types (such &andN) are non-overlapping and are disjoint from composite
types (such as ‘set’ types, record types, etc). For most applications it's not necessary to
make such assumptions explicit: it's usually simply enough to note that such overlaps
cannot be derived (provided the specification is type-consistent, of course). Every now
and then, however, such assumptions must be made explicit, and the easiest way to do this
is probably by adding an axiom of the form

a:A, b:B
a#b

for the relevant typesdl and B.

Definitions

When making definitions care should be taken that non-denoting cases are not inadver-
tently overlooked. For example, the definition of the list membership predicate used in
Section 3.3.1 above

ains & a=hdsVaintls

shouldnotbe used here, since it leavesin []’ undefined (non-denoting). The solution
would be to use
ains & s#[]A(a=hdsV aintls)

instead.

Note that it is not necessary for tdefiniendungrhs) of a definition to denote a value,
since the definition symbolY) is interpreted as strong equality (cf. [CJ91]): in other
words,a 2 b does not implya = b.

Predicates

In the VDM view, predicates are functions which return Boolean values. Thus for each
user-supplied predicate symb@l— with domainA say — an axiom of the form

a: A
0Q(a)

should be added. Suchrules are cafledles For example, thé-rule for set membership
is

a: A, s:A-set
d(a € s)
In the discussion of equality in Section 3.5.1 above we remarked that user-supplied ax-
ioms should ensure that equality is defined only on denoting terms, but similar care should

1"For example the law of contraposition

0P, - Q, {P}FQ
- P

would require us to first establish the — perfectly unreasonable — definedness hypaéttesis *

3.5 The theory of VDM 77

be taken with axioms for (other) predicates. For example, the expreqsion * P[z]}’

may not denote a finite set (e.qg. if there are infinitely many valuestbit satisfyP[z]),

so ‘a € {z: A- P[z]}' may be undefined in LPF. The classical law of set comprehension
(cf. Section 3.4.1)

a €{z:A-Plz]} & a:AN Pla]
is thus not valid in LPF, and must be replaced by

{z: A- P[z]}: A-set
a €{z:A-Plz]} & a:AA Pld

‘Let’ clauses
VDM has two forms of ‘let’ clause:
e one for introducing named expressions
¢ the other for selecting an arbitrary element of a type

Although they appear very similar, they are in fact quite different kinds of operator, and
they both cause problems: the first because it is a binder whose natural ‘universe’ is an
Exp rather than alype; the second because it is non-deterministic, and LPF does not
handle non-determinism. We’ll look at the two cases separately:

(1) An example use of named expressions is
let z =(a+b)int=a’+2+1

which is a shorthand fort‘= (a + b)* + (a + b) + 1". The ‘let’ clause is used to break

up long expressions by factoring out recurring subterms, thereby making the expression
easier to read. It was intended that the definition facilityrimral would give similar
benefits but the mechanism was only implemented at the levEhedrys and not at the

level of individual expressions. Thus it becomes necessary to describe how ‘let’ clauses
might be simulated in the ‘Theory of VDM Primitives’.

A particularly bombastic solution would be to simply ‘expand out’ all uses of named
expressions when translating a VDM specification to a theory. This would be counter-
productive in the extreme — quite out of step witliral’s stated goal of providingseful
support for reasoning about specifications.

Instead, we’ll meet the problem head-on by introducing a new (primitive) binder with
display form let [el] in [e2]’. In the above example is the bound variable and the
‘universe’ of the binding consists of the single valuet b’. Since binder universes must
be Types in mural , it's necessary to introduce a mock type constructor for coercing an
FEzp into a Type. By declaring its display form to be= [e1]’, the above expression
would be displayed as

let ;:=(a+b)int =0 +2+1

which is almost identical to the original.
The properties of the new binder are defined by the axiom pair:

Ell]
let z:= ¢ in E[z]

78 3 Instantiation

Note that this deals with abbreviations at the level of assertions only — that is, the body
‘E[z]’ must be an assertion (such as= z? + r + 1) rather than simply a term (such
asz? + 1). While this is a significant improvement in granularity froftheory level, it

is still not as fine-grained as is needed in VDM use. The problem can be overcome by
adding new (more complicated) axioms. (Left as an exercise for the reader.)

(2) The other form of the VDM ‘let’ clause is thehoice operatorused for selecting an
arbitrary element from a type, similar to Hilbertsoperator (cf. Section 3.2.5). The main
difficulty is that it must be interpreted deterministically if we are to reason about it in
LPF. (In fact, this restriction will apply only to uses of the operator indatga modebf
a specification, and not to specifications of operations: see the discussion in Section 3.5.3
below.)

To illustrate the problems involved, let us consider the following definition of a func-
tion for converting a set into a list:

convert : X-set — X*
convert(s) 2 ifs={}
then []
else let z € s in cons(z, convert(s — {z}))

Suppose we took this to mean thatwert is non-deterministic, so that e.gonvert{z, y}’
might be {z, y]' at some times and{,]’ at others. But this would mean that

convert{x,y} = convert{x,y}

is not valid (at least, not when # y), violating one of the basic tenets of LPF — that
equality is reflexive on denoting terms.

To keep our formulation consistent we must insist that uses of the choice operator
be considered not to be non-deterministic, but rathreter-determinedin other words,
given the same input, the operator always makes the same choice. Any choice from the
set will do — the smallest element, the largest, or whatever — just as long as it is always
the same. If the choice operator is used in a specification, part of the subsequent design
process should be concerned with replacing it by something more determined.

When it makes sense (i.e., whdris non-empty), the only thing we can say about the
term

let z: A in F[z]

is that it has property?, providedF'[x] satisfiesP for any possible choice of from A.
The appropriate axiom is thus

A is-nonempty,
{a: A} by PIF[2]]
Pl (let z: Ain Flz])]

The second hypothesis ensures that no inadvertent bias is associated with the choice of
from A. Using the above axiom it is possible to prove e.g.
[: N*
(let 2:N in cons(z,1)) : N*

3.5 The theory of VDM 79

Remarks:

(1) Note that the treatment of the first form of ‘let’ clause actually reduces to a special
case of the second form. In particular, its axioms can be derived from those for the choice
operator.

(2) Expressions of the form
let z: A be such that P[z] in Q|z]

should be translated to
let z: < z: A- Plz] > in Q[z]

(3) Recursive ‘let’ clauses (‘letrec’) are more of a problem, sineeal does not allow
multiple simultaneous bindings (cf. Section 4.11).

3.5.3 Translating specifications into theories

In this section we outline how to construct a theory in which to reason about a given
VDM specification module. The theory will be extracted from the ‘data model’ of the
specification (roughly, its data types and auxiliary functions). A more precise definition
of the data model will be given below; for the moment it's enough to know that it defines
the abstract data types on which the ‘operations’ of the specification take place.

For reasons of economy of space, the operational side of VDM will not be treated in
any detail here. A full treatment would cover

e properties othainsof operations
e operation decomposition and other refinement techniques
e techniques for verifying that programs correctly implement operations

and more, and a full formalization of these topics would require a complete book in itself.
The reader is referred instead to other sections of this book where such topics are treated:

e.g.
e Chapter 9 for symbolic execution of (chains of) operations
e Chapter 7 for operation decomposition
e Section 3.6.5 for Hoare’s logic of program correctness

The only ‘operational’ reasoning covered here is the ‘implementability proof obligation’
for showing that operations can be implemeniegbrinciple. Such obligations can be
stated in terms of the pre- and post-conditions on the operations, without actually mak-
ing reference to the operations themselves. In Section 3.5.5 we also consider the proof
obligations arising when a specification is ‘reified’ by another: these include obligations
corresponding to the operations of the specifications, but once again they can be stated in
terms of pre- and post-conditions.

The theory extracted from the data model establishes the ‘context’ in which to reason
about a specification. It can be used to validate the data model, by showing that (formally

80 3 Instantiation

stated) requirements are logical consequences of the model. In particular, internal consis-
tency checks (such as the claims scattered through the abstract specification in Chapter 4)
can be shown to hold. These ideas are illustrated in Section 3.5.6 by validating part of the
abstract specification afural itself.

After defining what is meant by the data model of a VDM specification module, much
of the rest of this section is devoted to describing a ‘cookbook’ approach to building the
theory corresponding to a given VDM data model. First, so as to inherit all the basic facts
about VDM, the theory will have the ‘Theory of VDM Primitives’ as parent. Next we
translate the specification module component by component. (No attempt will be made to
capture VDM naming conventions, etc.) The translation process — and how to automate
it — is discussed further in Chapter 7. The main obstacle to making the process fully
automatic would seem to be the difficulty of producing induction axioms for recursive
domain equations (especially those defined by mutual recursion).

Some terminology

In Section 3.5.2 we saw that LPF does not handle non-deterministic operators. It should
also be clear that operators with ‘side effects’ cannot be allowed. This leads us to divide
each VDM specification module into two parts:

1. a data model, in which all functions are ‘applicative’ (side-effect free) and deter-
ministic (although possibly undetermined);

2. an operational part, containing operations on a global state and non-deterministic
operators.

The VDM syntax does not distinguish between the different kinds of function/operation
so we need to introduce some new terminology.

Definition: In this chapter, the notioreuxiliary functionandoperationwill be used with
the following meanings:

¢ VDM definitions which have recourse to a global state (‘external variables’) will be
called operations.

¢ Definitions which are intended to be non-deterministic — in that they may return
different values on the same arguments — will also be called operations.

e Explicit defined functions — in which the definition is given directly and does not
involve external variables, post-conditions, or uses of the choice operator — will be
called auxiliary functions.

o Implicitly defined functions — given in terms of post-conditions, or using the choice
operator, but not involving external variables — will be called auxiliary functions,
providedthe choice operator is interpreted deterministically. Such functions are
regarded as being underspecified, and part of the subsequent design task will be to
specify them more fully.

Definition: Thedata modebf a VDM specification module consists of:

e elementary types, including type parameters and primitive types

3.5 The theory of VDM 81

— e.g.N andB, but also types such dsSymb in Section 4.2
e type definitions and record type declarations, possibly with invariants
e elementary (or ‘atomic’) values
— e.g. AXIOM in Section 4.5
e primitive (or ‘black box’) functions, representing e.g.
— user input
— system-wide functions which are more naturally specified at a different level
(e.q. ‘has-manag-priv’ and ‘is-logged-in’ on pp.71-2 of [CHJ86])
e auxiliary functions (defined explicitly or implicitly)
On the other hand, theperational partof a VDM specification module consists of:
e operations (as defined above)

e initial state declarations

Of coursewe are implicitly assuming that the VDM module can be neatly separated into
these two componentso that the data model can be defined completely independently of
the operational part. (The converse is certainly not true: the operational part is defined in
terms of the data model.) This assumption underlies the use of VDM as a model-oriented
specification language.

Data types

In Section 3.5.2 we saw how the data types for VDM primitives can be axiomatized on top
of LPF. In this section we describe how user-defined data types are axiomatized. There
are basically three ways a specification writer can form new data types:

1. as primitive types
2. via type definitions
3. asrecord types (‘tagged definitions’)

Defined types can also have associated ‘data type invariants’; we’ll return to these be-
low. Finally, note that definitions by mutual recursion are possible. These are the main
problems we must address.

Translation proceeds as follows:

1. For each primitive type in the specification we add a corresponding primitive type
to the theory.

2. For each type definition we simply add a corresponding defined type. In most
cases this just involves a straightforward translation from VDM syntamdeal
syntax, as the examples below will show. For simple (non-recursive) definitions no
additional axioms are required.

82 3 Instantiation

3. The axioms for simple (invariant-free) record types are almost exactly as presented
in Section 3.3.5 above, except that those defining selectors require typing hypothe-
ses: e.g.

mk-REC (al, a2, a3): Rec
sell(mk-Rec(al, a2, a3)) = al

(cf. the remarks on equality and denoting terms in Section 3.5.1).

To reason about recursive type definitions we’ll also neddction axiomsFor example,
given the definition
Tree & (Tree x N x Tree) | N

the relevant induction axiom is

{n:N} F, P[n],
{tll TT’@@, m: N, tgl TT@@, P[tl], P[tg]} |_t1,m7t2 P[(tl, m,t2>]
Vt: Tree - P[t]

In general such axioms must be added oma@inocbasis. For simple shapes of definition
it should be possible to generate induction axioms mechanically from the specification,
but the question won't be treated here.

Data type invariants

When an invariant is associated with a defined data type, subtyping should be employed:
e.g.

Longlist = X*

where

inv-Longlist(s) £ lens > 2

becomes
Longlist & < s:X*-(lens > 2) >

In fact, to aid legibility it is often better to introduce the invariant as a separate definition.
When a record type is defined with an invariant, e.g.

Record’ @2 s1 : T1,
s2 1 T2

where
inv-Record'(mk-Record' (z,y)) £ invar(z,y)
there are two possible approaches:

1. the direct approach, where the invariant is directly incorporated into the axioms:

e.g.
z:T1, y: T2, invar(z,y) r: Record’

mk-Record'(z, y): Record’ invar(s1(r), s2(r))

3.5 The theory of VDM 83

2. the indirect approach, whereby an intermediate type -Fsasp Record’ — is intro-
duced andRecord’ is defined via subtyping:

ProtoRecord’ . s1 . T1,
s2 . T2

Record’ & < r: ProtoRecord’ - invar(s1(r), s2(r)) >

In small examples the direct approach is usually more convenient, but in larger examples
— particularly whereRecord’ is recursively defined or where there are many associated
auxiliary functions — the indirect approach is better (cf. the usé&mefoTerm in Sec-

tion 4.2).

Remarks:

(1) This is a good place to point out one of the advantages ofitlral approach over
strongly typed logical frames such as ELF: viz. ones in which every value has at most
one type. In the lattefLonglist would be introduced as a primitive type, with coercion

functions
coercs : Longlist — X*

coercg : X* — Longlist

say, Wherecoerc,; is a partial function. Now consider how functions oVemglist must
be defined: e.g. the function for concatenating waglists would be

concat(l,) 2 coercgy(coerci(l) " coercy(ly))

Contrast this with the ‘inclusion polymorphism’ available in a type system with sub-
typing: the ordinary list concatenation function™ can be used directly to concatenate
Longlists without having to define a new function. Clearly inclusion polymorphism is
vastly preferable!

As a matter of fact, it would be extremely awkward to have to axiomatize VDM speci-
fications in a strongly typed system, since data type invariants are used so frequently. The
same could be said for any specification method based on set theory.

(2) Note how the typing principle — that only denoting terms can be typed — extends to
data types with invariants: a term is denoting only if it satisfies the invariant. Thus for

example I: Longlist’ asserts not only thatdenotes a list oX'’s, but also that the list has

at least two elements. The typing relation thus captures the ‘meaning’ behind invariants,
which gives many benefits. For a start, it makes VDM proof obligations much easier to
state.

Elementary values and auxiliary functions

For each elementary value used in the specification a corresponding primitive constant
should be added to the theory. Similarly, each primitive function should have a corre-
sponding primitive constant of the appropriate arity; if available, typing information can
be added as axioms (emaznum: N). Defined constants we can treat simply as defined

84 3 Instantiation
functions without arguments. That leaves only defined functions, which we treat as two
subcases:

(1) For eaclexplicitly definedunction we add a corresponding function definition to the
theory: e.g. the body of

last : X* — X
last(s) & iftls =]
then hd s

else last(tl s)

pre s # []

can be used as a function definition more-or-less as it stands. The information in the
signature can then be stated as a rule
s: X*, s #|]
last(s): X
and derived by induction over sequences. Note that the pre-condition is not included in
the definition, but should be included in any rule involving the function.

(2) For eachimplicitly definedfunction a new primitive constant should be introduced,
together with an axiom stating the function’s defining property. Thus for example, given
the specification

sort (s:N*) s’: N*

post is-increasing(s’) A elems s’ = elems s
we would add a new constanirt to the theory, with axiom

s:N*
is-increasing(sort(s)) A elems s = elems sort(s)

Since type information cannot generally be inferred from an implicit definition, it must
also be added axiomatically; in this case:

s:N*
sort(s): N*

Finally, recall that although an implicit definition may have several different solutions, it
is assumed that the function defined is deterministic (cf. the discussion in Section 3.5.2
above on ‘let’ clauses).

Operations’ pre- and post-conditions

We said that operations will not have direct counterparts in the theory of the data model
of a specification. It is useful however to add definitions of their pre- and post-conditions,
so that we can at least state implementability proof obligations. Thus for example, given
an operation

ADD (n: Name)
ext wr s : Name*
pre n ¢ elemss

post elems s = elems s U {n}

3.5 The theory of VDM 85

we shall add defined constants

pre-ADD(n, s)
post-ADD(n, 5, s)

LA n¢elemss
&

elems s = elems 5 U {n}
The implementability proof obligation for this operation can simply be stated as

n: Name, s: Name*, pre-ADD(n,s)
3s": Name* - post-ADD(n, s, s')

(See Section 3.5.5 for more details.)

3.5.4 Validating the specification

As already mentioned, the theory extracted from the data model can be used to validate
the model by showing that (formally stated) requirements are logical consequences of the
model. There is also an obligation to show that the data model is internally consistent in
some sense; in particular, it should be shown that:

e initial state declarations are of the appropriate types

e pre-conditions and data type invariants are well-formed formulae (denote Boolean
values)

e post-conditions are well-formed formulae, under the assumption that their corre-
sponding pre-conditions hold

¢ function definitions agree with their signatures

as well as the usual context conditions and ‘syntactic correctness’ criteria (such as absence
of free variables, and so on). Many of these checks can — and should — be performed fully
automatically, possibly by external tools.

Implementability

Another important way of validating a specification is to show that its operations are im-
plementable in principle. Actual implementation concerns — such as efficiency, target
language, and so on — are questions for the design phase; here we ‘merely’ want to estab-
lish whether an operation can be realized at all. Thus, given an operation specification

OP (arg: ArgType) res: ResType
ext rd r : Typel,
wr w @ Type2
pre pre-OP(arg, r, w)
post post-OP(arg, T, W, w, res)

the implementability proof obligation is

arg : ArgType, r: Typel, “w : Type2,
pre-OP(arg, r, w)

Jw: Type2 - Ares: ResType - post-OP (arg, r, W, w, res)

86 3 Instantiation

Note that this form of the proof obligation subsumes the need to check state invariants,
since they have been incorporated into the definitioriB@t1 and Type2. In other words,

in addition to showing that there exigtandres such that post-OP (arg, r, W, w, res)’

holds, the demonstration must show thaand res satisfy the appropriate invariants on
Typel and Type2, respectively.

Note also that, having proven implementability in principle, there is absolutely no
obligation to actually implement the operation in any way related to the methods used in
the proof. The only requirement on the implementor is that the operation satisfy its post-
condition whenever it is invoked in a situation where its pre-condition is true. (When the
pre-condition is false the operation is totally unconstrained.) The importance of separating
analysis and implementation phases of the software development cycle cannot be over-
emphasized.

For implicit function definitions there is also an implementability proof obligation.
Thus for example given a function definition

ImplicitFn (arg: ArgType) res: ResType
pre pre-ImplicitFn(arg)
post post-ImplicitFn(arg, res)

the associated proof obligation is

arg : ArgType, pre-ImplicitFn(arg)

Jres: ResType - post-ImplicitFn(arg, res)

In fact, this result must be proven in an impoverished theory, namely one in which
‘ImplicitFn’ has not been introduced, since otherwise the obligation is trivially true upon
settingres equal tolmplicitFn(arg).

Layered data models

If two or more functions are implicitly defined, the situation becomes even more com-
plicated: they should be put in some order, with the first shown to be implementable
only in terms of primitive and explicitly defined functions, and the rest shown to be im-
plementable in terms of primitive functions, explicitly defined functions and preceding
implicitly defined functions. To formalize all this we would need to define a sequence of
theories, one built on top of another, corresponding to the sequence of implicitly defined
functions. This in turn would require that a VDM specification be defined in layers, to
indicate the sequence of implicitly defined functions.

But all this is moving well beyond the realmsmafiral and into questions about VDM
itself. Let's leave the problem there and move on.

3.5.5 Data type reifications

In the standard text on VDM [Jon86],raificationis defined to consist of two specifica-

tions — let’s call them an abstract and a concrete specification — plus a ‘retrieve function’,
which maps elements of the concrete state to elements of the abstract state. (Where the
state is distributed between several data types there will of course be a retrieve function
corresponding to each state.) In this section we start by defining the theory associated
with a reification, and then illustrate the ideas on a small example.

3.5 The theory of VDM 87

The theory given by a reification

The theory corresponding to a reification — the context in which reasoning about the reifi-
cation takes place — is formed simply by combining the theories of the individual specifi-
cations, together with a definition of the retrieve function. If name clashes occur, where
the same name has been used to mean different things in the two specifications, one or
both the names must be changed. (This is where a renaming mechanism is sadly lacking
from themural theory structure.) Of course, sometimes the two names are meant to rep-
resent the same thing (e.g. the primitive tyjjas common to both specifications in the
example given below) in which case no change is required.

To verify that the reification is correct, certain proof obligations must be discharged. To
illustrate, let's suppose we have an abstract sbatge,, a concrete stat8tate; and a
retrieve functionretr. There are four different kinds of proof obligation:

1. The first obligation is to show that the retrieve function is of the correct type: viz.
s: State;
retr(s): Stateg
2. Next, it must be shown that there are sufficiently many concrete states to represent
all the abstract states (the ‘adequacy obligation’):

0o: Statey

doy: Statey - retr(oq1) = oy

3. If the abstract specification defines an initial valug, for the state, the concrete
specification should likewise define an initial statét;, and the retrieve function
should map the concrete value to the abstract value:

retr(init) = inity

There are also obligations to show that the initial values have the required types.

4. Corresponding to each pair of operatians,(z: X) and OP;(z: X) — where the
latter is the ‘concrete’ version of the former — there are two proof obligations:

(a) The pre-condition of the concrete operation is weaker than that of the abstract
operation (the ‘domain obligation’):
x: X, o:Statey,
pre-OPy(z, retr(o))
pre-OPy(x, o)

(b) The post-condition of the concrete operation is stronger than that of the ab-
stract operation, at least when the latter’'s pre-condition is true (the ‘result
obligation’):

:X, ‘o:State, o: Stater,
pre-OPy(z, retr(‘a)),
post-OP; (z, T, o)
post-OP,(z, retr(‘a), retr(c))

Note that auxiliary functions of the concrete specification might have nothing to do with
the auxiliary functions of the abstract specification, although in practice the retrieve func-
tion will involve a mixture of both.

88 3 Instantiation

An example abstract specification

Consider the following (almost trivial) VDM specification of an operation which takes an
element and, as a side-effect, adds it to the state, where the latter is modelled as a set of
elements.

Statey = X-set
ADDy (z: X)
ext wr s . Stategy

pre x & s
post s = s U{z}

The operation has as a pre-condition that the element added is not already in the state. This
is the kind of primitive operation that might arise after some more complicated operations
have been decomposed, for example.

Now let's consider the corresponding theory. The only new constructors it needs are
a new primitive typeX and defined type

Statey & X-set

for the state. In this (very simple) case no additional axioms are required — all the relevant
axioms are inherited from the ‘Theory of VDM Primitives’.

A reification of the example

Now let’s consider a reification of the previous specification in which sets are represented
as non-repeating lists:

State; = X*
where

inv-State, (1) 2 is-non-repeating(l)

1s-non-repeating : X* — B
is-non-repeating(l) £ Vi,j €doml-i#j = (i) # 1(j)

ADD; (z: X)
ext wr [. State;
pre x ¢ elems

L

post [= cons(z, [)

Note that the reification is itself another specification. It is very similar to the first, but
with a couple of extra design decisions: viz.

e sets are represented as non-repeating lists

e the ADD operation puts its argument onto thent of the list

The corresponding theory has primitive tyfie defined type

State, & < I: X* - is-non-repeating(l) >

3.5 The theory of VDM 89

and defined constant
is-non-repeating(l) 2 Vi: dom [- Vj:do/rﬁl i#£j] = lati#lat]

(The awkwardness of writingzlgrﬁ I’ could be overcome by introducing a new type con-
structor which works directly on lists.) The implementability proof obligation is

x: X, [:State,
z ¢ elems [

3l: State, - | = cons(z, 7)

It would be useful to build up a collection of derived rules about the new specification
— as validation exercises for example, or as lemmas to aid in later proofs. Promising
candidates might include the following:

x: X, [: State, s: X*,
T ¢ elems| cardelemss = len s
[]: State cons(z, [): State; s: State

The proof obligations for our example

To show that the second specification is a valid reification of the first we must provide
aretrieve functiortaking elements of the concrete representation to their counterparts in
the abstract representation. In this case the choice is obvious; we simply map lists to the
set having the same elements:

retr : State; — Stateg
retr(o) £ elemso

To build a theory corresponding to the reification we simply take the theories correspond-
ing to the abstract and concrete specifications as parents and add a defined constant for
the retrieve function: viz.

retr(o) £ elemso

No additional axioms are required. The definition should be validated by ‘deriving its

signature’: viz. showing that
o: State;

retr(o): Statey
The ‘adequacy’ proof obligation is

ap- Stateo

Jdoy: State; - retr(oy) = oy

The ‘domain’ and ‘result’ obligations are

cey

T ¢ elems|
z ¢ elems|

90 3 Instantiation

and
r ¢ elems|,
[=cons(z, 1)
elems/ =elems [U{z}
respectively.

An example proof

Here’s a sketch proof of the adequacy proof obligation for this reification:

from oy: State

1 elems[]={} elems axiom1 ()
2 []: State lemmao ()
3 do: Statey - elemso = { } J-introduction (1,2)

4Qz, from z: X, s: X-set, x ¢ s, Jo: State; - elemso = s
4.1Q] from [: State;, elems] = s

41.1 T ¢ elems! substitution (4.1.h2,4.h3)
4.1.2 cons(z, 1): State; lemmal (4.h1,4.1.h1,4.1.1)
4.1.3 elemscons(z, () = elems{ U {z} elems axiom2 ()
414 elemscons(z,l) = s U {z} substitution (4.1.h2,4.1.3)
infer Jo: State; - elemso = s U {z} J-introduction (4.1.4,4.1.2)
infer Jo: State; - elemso = s U {z} J-elimination (4.h4,4.1)
S5 Vs: X-set-do: State, - elemso = s set induction (3,4)
infer Jo: State; - retr(o1) = o0y V-elimination (h1,5)

The other two proof obligations are left as exercises for the reader.

3.5.6 An example validation

To illustrate the ideas on a more substantial example, let's see what would be involved
in translating part of the abstract specificationnairal itself; we can even try proving

one of the assertions made about it. We'll look at the abstract symaxd(7Terms, etc.)
defined in Section 4.2.3 and prove that the variables which occur among the subterms of
a ProtoTerm, z say, form a subset afl[Vars(z).

The specification
First let’s pull out the definition of the abstract syntax from Section 4.2.3:

ProtoTerm = ProtoExp | ProtoType

ProtoEzp = VSymb | ProtoCompFEzp | ProtoBindEzp
ProtoType = ProtoComp Type | ProtoSubType | ProtoDep Type
ProtoCompFExp . symb . CESymb

eArgs . ProtoFExp*
tArgs . ProtoType*

3.5 The theory of VDM 91

ProtoBindFExp . symb . DESymb
var . VSymb
univ . ProtoType
body : ProtoEzp

etc. ..

Subterms : ProtoTerm — ProtoTerm-set
Subterms(z) &
cases z of
VSymb — {z}
mk-ProtoCompFEzp(c, el, tl) — {z} UU{Subterms(z) | z € elems el U elems tl}
mk-ProtoBindExp(q, v, t,e) — {z} U Subterms(t) U Subterms(e)

end

etc...
The assertion we shall try to prove is

Vz: ProtoTerm - {v: VSymb | v € Subterms(z)} C allVars(z)

The corresponding theory

Rather than trying to axiomatize the whole specification in one go, let’s just give axioms
for the functions involved in the statement of the conjecture, then jump straight into a
proof attempt and see what additional axioms will be needed as we go along.

Let’s first consider theSubterms function. To defineSubterms directly we would
need to formulate case statements, but as we've said before this is too much like hard
work. Instead, it's much simpler to defirfbterms axiomatically by cases: viz.

z: VSymb
Subterms(z) = {z}

z: ProtoCompEzxp
Subterms(z) = {z} UU{Subterms(z) | = € elems eArgs(z) U elems tArgs(z)}
z: ProtoBindFExp
Subterms(z) = {z} U Subterms(univ(z)) U Subterms(body(z))

Remembering the difficulties with set comprehension (cf. Section 3.4.1), however, it
would seem to be better to introduce a type abbreviation

ArgsOf (2) & EnumType(elems eArgs(z) U elems tArgs(z))

and to rewrite the second of the axioms above as

z: ProtoCompFExp
Subterms(z) = {z} U {Subterms(z) | z: ArgsOf (2)}

The axiom forProtoComp Type would be treated similarly. We claim that such axioms
can be extracted mechanically from the specification, thereby reducing the possibility of
‘transcription errors’.

92 3 Instantiation

Axioms for the function$nd Vars andfree Vars would be given similarly, andilVars
would be defined as

allVars(z) 2 freeVars(z) U bndVars(z)

An induction rule

The other main axiom we’ll need at this stage is an induction rule”foto Terms. The
axiom will have as it conclusion

Vz: ProtoTerm - P|[z]
The base case — wherns a VSymb — is given by the sequent hypothesis
{v: VSymb} -, P[v]
There will be five induction cases, corresponding to the other five kinds@ab Term:

ProtoCompFEzp, ProtoBindExp, etc.

As a first attempt to state therotoCompEzp case we might write

{c: CESymb, el: ProtoExp*, tl: ProtoType*, Yz € elemsel Uelemstl - Plz|}
Feeru Plmk-ProtoCompExp(c, el, tl)]

but upon reflection

{z: ProtoCompFEzp, Vx: ArgsOf (z) - Plz|} -, P|z]
is much better. The second induction case could be stated as

{z: ProtoBindEzxp, Pluniv(z)|, Plbody(2)|} F, P|z]

The other cases are analogous to these two.

With regard to automatic extraction of axioms from specifications, although the above
example is quite straightforward, it's harder to accept that there might be an algorithm
that finds the most useful form of an induction axiom in every case. More research is

needed here.

The proof

Recall that our aim is to show that

Vz: ProtoTerm - {v: VSymb - v € Subterms(z)} C allVars(z)

To make the proof easier to understand let’s introduce the following abbreviation for the

variablesoccurringin z:

occVars(z) & {v: VSymb - v € Subterms(z)}

Before going any further with the formalization it would be well worth deriving a few

typing rules, to check what's been given so far: e.g.

z: ProtoTerm z: ProtoTerm
occVars(z): VSymb-set allVars(z): VSymb-set

3.5 The theory of VDM 93

Details are left to the reader. (Hint: a good place to start would be to prove

z: ProtoTerm

Subterms(z): ProtoTerm-set
by induction onz. A useful lemma from Set Theory is

s: A-set
{z:B -z € s}: B-set

After that, it's pretty straightforward.)
Now we're ready to embark on a proof by induction that

Vz: ProtoTerm - occVars(z) C allVars(z)

The base case:

For the base case we're required to prove Vars(v) C allVars(v) for “ v: VSymb'. A
couple of useful lemmas immediately spring to mind:
v: VSymb v: VSymb
allVars(v) = {v} occVars(v) = {v}

The first of these follows easily from the definition@f Vars and the relevant axioms for
freeVars andbnd Vars. The second follows upon unfolding the definitioncset Vars and
using the relevant axiom f&fubterms, plus a lemma from set theory:

s: A-set
{z:A-z €5} =35

(Note that the local hypothesis:‘ VSymb’ is needed in order to establish the result that
“{v}: VSymb-set’.) The base case follows from these lemmas and elementary properties

of sets, such as
s: A-set

sCs
In the time-honoured tradition, details are left to the reader.

The induction step for ProtoCompFEuxp:
Assuming %: ProtoCompFEzp’ and
Vz: ArgsOf (z) - occVars(z) C allVars(z)
we're require to provedcec Vars(z) C allVars(z)'. A useful first lemma would be

z: ProtoCompFExp
allVars(z) = U{allVars(z) - x: ArgsOf (z) }

which follows by unfolding definitions and using a lemma of the form

U{f(z)Ug(z)- -z: A} = U{f(fl?) c: AYUU{g(z) - 2 A}

from Set Theory (with appropriate hypotheses to ensure the sets involved are finite).

94 3 Instantiation

For the other part, upon unfolding the definition and using the defining property of
Subterms(z) we arrive at

occVars(z) = {v: VSymb - v € {z} U J{Subterms(z) - z: ArgsOf (2)}}

To eliminate the possibility that € {z} we’ll need an axiom to say thatSymb and
ProtoCompFExp are disjoint types: e.g.

v: VSymb, z: ProtoCompExp
vF#E 2

Some more set theoretic manipulations will then simplify the equation to

occVars(z) = {v: VSymb - v € | J{Subterms(z) - x: ArgsOf (z)}}

At this stage it might be tempting to search through Set Theory for a rule with conclu-
sion of the form

{e:A-zeJss} =J{{z: A -z € s} s €ss}

but remembering the awkwardness of set comprehension (cf. Section 3.4.1) there’s un-
likely to be a rule in precisely this form. Let’s suppose instead that a search for rules with
conclusion matching

{v: VSymb - v € | J{Subterms(z) - z: A}} C allVars(z)
yields a rule of the form

{s€ss}bs {z:A-z€s}Ct
{z:A-zeUss} Ct

This seems promising, since it will generate a new subprBof) with box variables
and local hypothesis
s € {Subterms(z) - x: ArgsOf (2) }

from which we are required to show
{v: VSymb - v € s} C allVars(z)
Now s must equalSubterms(z) for somez: ArgsOf (z), and
{v: VSymb - v € Subterms(z)} = occVars(z) C allVars(z) C allVars(z)

so let’s try this rule. Later on we’ll review this decision to see if we couldn’t do better.
Following the sketch above, to start off the subproof we would use the lemma

be {f(x), T: A}
Jz:A- b= f(x)

and F-elimination’ to generate a new subproof with box variabléocal hypotheses

z: ArgsOf (z), s = Subterms(x)

3.6 Some other logics 95
and goal {v: VSymb - v € s} C allVars(z)’. Now we can apply V-elimination’ to the
induction hypothesis to get

occVars(z) C allVars(x)

All that’s required to finish off the subproof would be some manipulations using the
lemma onallVars(z) above plus a lemma

ss: (A-set)-set, s € ss
s CUss

This finishes this particular induction step.
It's interesting to go back and review the step where we gave up the simplification of
occVars(z). If we had been able to get

occVars(z) = | J{occVars(z) - z: ArgsOf (z)}
then we could have used a lemma such as
Va: A - f(z) C g(x)
U{f(z) - 2: A} CU{g(z) - z: A}

to finish the proof more directl{? A little reflection shows that the appropriate simplifi-
cation lemma would have conclusion of the form

{uAd-uwelJ{f(v)-v:B}} = J{{u: 4 -u e f(v)} v:B}

The appropriate typing hypotheses are left as an exercise for the reader.

The other induction cases

. are similar. In fact, they are so similar that the person verifying the original assertion,
having completed the case férrotoBindFExp, can have a fair degree of faith that the
conjecture is true. If necessary, tactics could be extracted from the first two induction
cases and applied to the other three.

3.6 Some other logics

In this section we turn briefly to some logics which try to overcome some of the perceived

limitations of First Order Predicate Calculus. We start by formulating the dependently-

typed Lambda Calculus, which is then extended to full higher order logic (including quan-

tification over functions). There is a brief digression into the fascinating correspondence
between propositions in Intuitionistic logic and types, whereby proofs are thought of as
values of the propositions they establish. The section finishes with discussions of Modal
Logic and Hoare Logic.

8In fact, the typing hypotheses of such a lemma are quite horrendous. A simpler — but slightly less direct

— formulation would be
s: B-set, Vx:A-f(z)Cs

U{f () z: A} Cs

with s instantiated byll Vars(z).

96 3 Instantiation

3.6.1 Lambda calculus

To show that higher order concepts can be formalizechimal we present an axiom-
atization of thedependently-typed lambda calculu$his is an extension of Church’s
Simply Typed Lambda Calculus [Chu40] by the notion of dependent products, which are

a richer way of expressing types of functions than the usual function space constructor *

19

Signature

Let ‘Lambda Calculus’ be the theory with ‘Equality’ (cf. Section 3.2.1) as parent, and
signature consisting of the following primitives:

e constant? for the typing relation (infixed)

e dependent type symbolr’ for dependent products
e constant !’ for function application (infixed?

e binder ‘\’ for lambda abstraction

and definition
A— B & IIx:A-B

for the function space constructor.

Informally:
e ‘'f.a’ represents the result of applying functigno valuea
e ‘\z: A F[z] stands for the function which maps elementsf A to F[z]
e ‘[Iz: A- Blz] consists of all (total) functions fromd to B|z]
e ‘A — B’ consists of all (total) functions froml to B

Dependent products are more expressive than the usual function space constrictor °
since the type of the range may dependrothus for example

IIn:N- <m:N-(m >n) >

consists of functiong such thatf (n) > n for all n: N.

9Dependent products are sometimes known as general (Cartesian) products or dependent function
spaces. Confusingly enough, in NUPRL'85] they are called dependent function spaces, while dependent
product means something quite different (dependent sum).

20The more usual concrete syntax declaration for function application woulfeb[e2]): i.e., ‘f.a’
would usually be displayed ag(e)’. The dot notation is used here to make it more obvious when a function
is being applied to a value; in particular it avoids any ambiguity about the arjty Bfee use will be made
of currying.

3.6 Some other logics 97

Axioms

The axioms of the dependently-typgetalculus can be stated as follows:

1. abstraction formation:

{z: A}, Flz]: Bz]
(Au: A - Flu]): (IIv: A- B[v])

2. application formation:
a: A,
f:(Hz: A- Blz])
f.a: Blal

3. extensionality:
{z: A} b, Flz] = Glz]

(Au: A+ Flu]) = (A\v: A - GJv])

4. (3-conversion:
a: A

(Az: A - Flz]).a = Fla]

5. n-conversion:
f:(Ilz: A - Blz])

Ne:A-fx)=f

There are usually side-conditions on the last two rules, but they are handled by the treat-
ment of variable binding immural. Thus for example: in the rule fg#-conversion, the
requirement that variables free #fhdo not get captured byz is automatically ensured by

the instantiation mechanism (since the dummy variabal get renamed appropriately).

The rule forp-conversion usually has two side-conditions: namely, thai function and

x does not occur free ifi. The first of these is ensured by the hypothesis; the second is
similar to the case fog-conversion.

We won'’t go into examples of the use of the lambda calculus as there are plenty of good
textbooks around (e.g. [Jon87c]). When this theory is extended by appropriate primitives
for arithmetic, say, we can derive typings such as

(Az:N-2*+2+1): N— N

Remarks:

Great care must be taken if extending the dependently-typed lambda calculus with subtyp-
ing, as there are many traps for the unwary. For exampléjsfa subtype o’ andf: C'

— B then at first sight it might seem reasonable that — B. This would however be
inconsistent withy-conversion and the axioms of equality, since one could infer e.g.

idg = (A A-idgx) = Az A-ide.z) = ide

yetid, cannot be applied wherevéf- can and hence cannot be said to be truly equal to
it.

98 3 Instantiation

3.6.2 Higher order logic

Higher order logic differs from first order logic in that it allows quantification over func-
tions, functions of functions, and so on. As a logic it is problematic however, since itis not
even recursively axiomatizable. (See the chapter by van Benthem and Doets in [GG83]
for a summary of most of what is known about higher order logic and its problems.)

We can nevertheless give a useful partial formulation by adding a primitiveRyqge
(of ‘propositions’) and appropriate logical constants to the lambda calculus. Then e.g.
andV¥ can be constants with types

A: Prop — (Prop — Prop)

V: (A — Prop) — Prop

where V(Az: A - P)’ stands for Vz: A - P’. (Note thatV is a primitive constant, not a
primitive binder, in this formulation.)

A suitable axiomatization of these ‘constants’ would allow us to state and prove
‘higher order’ results such as

VN —=N-Jn:N-f(n+1) > f(n)
VfiA—B-(Vo,yA-x#y = f(z)#f(y)) = F9g:B—A-gof=idy
This is the approach taken in HOL [Gor85]. (Sg&4 of [Bar77] for a similar approach.)

3.6.3 Propositions as types

Church introduced the Lambda Calculus to describe function applicajiand function
abstraction X). Types were added to avoid problems associated with self-application,
so that f.a’ is well-formed (typable) only iff is an expression of typd — B and

a is an expression of typd (for some A and B); thus e.g. F.E’ is not well-formed.
Finally, dependent products were introduced when the ‘propositions-as-types’ analogy
was discovered (by Curry and others), as will be explained below.

Under the propositions-as-types analogy, proofs are thought of as values of the propo-
sitions they establish. (Here we are talking about proofs abstractly, not@as$ Proof
objects.) When appropriately extended with pairing, type union, etc, the dependently-
typed lambda calculus provides a formalizationragitionistic (‘constructive’) predicate
calculus. The interested reader is referred to [Mar75] 61id€] for more details: only the
main ideas will be sketched here.

To start with an easy example, suppose fhais a proof of ‘P1’ and p2 is a proof of
‘ P2"; then taken togethep1 andp2 constitute a proof ofP1 A P2’, and we can write

pl: P1, p2: P2
(pl,p2): P1 A P2

But this is looks just like the law for pairing (cf. Section 3.3.4) KT A P2’ is thought of
as ‘P1 x P2'. Similarly, we can identify P1 v P2’ with the type union P1 | P2’. From
here it takes only a small conceptual leap to identiy ‘= P2’ with* P1 — P2’. That
is, a proof of P1 = P2'is a function taking a (hypothetical) proof of1’ to a proof of
‘P2’; or in other words, it's a way of showing thaP?2’ holds, given the assumption that
‘P1" holds. The Deduction Theorem

{rira

P = qQ

3.6 Some other logics 99

corresponds exactly to the rule for simple function abstraction:

{p: P} q:Q
(Ap:P-q): P — @
To get the rest of the propositional connectives we can iderftifie’ (contradiction) with
the empty type (since after alfalse’ has no proofs) and define

- P A& P = false

(since under the intuitionistic interpretation of negation,”’ amounts to saying thatP’
leads to a contradiction).

The analogy gives a very natural interpretation of intuitionistic propositional calculus.
The obvious next question is whether it can be extended to the predicate calculus. What
would be the analogue of'’: A- P’ for example? Now, provingvz: A- P[z] amounts to
showing thatP[z] can be proven for alt in A. To the intuitionists this means supplying
a function which, givern: A, yields a proof ofP|[z].

Dependent products are just the solution required! We simply identify the proposition
‘Vz: A - Plz]|" with the type ‘Iiz: A - P[z]|'. (Note that ordinary function spaces aren't
good enough since they don't capture the fact that the fjpé depends orx.) Under
this analogy, the axioms fof

{z: A} k-, P|x] a: A, Vx:A- Plz]
Vz: A- Plx] Pla]
become exactly the laws for function abstraction and function application given above.

Dependent types and the propositions-as-types analogy were used to implement intu-
itionistic logic in the AUTOMATH system [dB80]. The analogy has been studied inten-
sively by Per Martin-Ibf and his followers, and has been extended to alfillitionistic
Type TheoryMar75, Mar85, NPS90]. Related type theories serve as the basis of NUPRL
and ELF.

In a programming context, a further extension of the analogy is possible, whereby pro-
gram specifications are identified with types (or propositions) and programs are identified
with values. In this way, Intuitionistic Type Theory can be regarded as a full programming
language (withs-reduction corresponding to evaluation). This allows e.g. programs to be
extracted directly from proofs that their specifications are implementable. The interested
reader is referred to [@86] for more details.

3.6.4 Modal logic

Let’'s now turn to a Natural Deduction formulation of a logic in which the modalities
‘necessarily’ and ‘possibly’ are formalized. Following the usual convention, we shall
write ‘Op’ for ‘ p is necessary’ and®p’ for * p is possible’.

As an example of the use of such modalities, given an expressidpropositional
calculus, e’ might be interpreted as sayingis a tautology (¢ is necessarily true’).
Thus e.g.p = p V ¢ is necessarily true, in that it holds for all values pfand ¢,
whereasp =- ¢’ is only contingently true, since there are cases when it is true and
others when it is false.

Another example use of modalities is to interpret them in a temporal senselyiz.
means thap is true atall times in the future, aned>p means thap is true atsometime
in the future. Modal logics are also useful for reasoning about knowledge and actions:
cf. [Ram88].

100 3 Instantiation

The axiomatization

In [Pra65] Prawitz gives two different formulations of modal logic. In this section we’ll
study the simpler of the two (S4), although the other can be treated very similarly. We
first extend Propositional Calculus by primitive constantand defined constant

A formula of the form O¢’ will be called amodal formulathese are in some sense the
necessary truths.

The axioms definingd are:

1. ‘O introduction’ »

Dp
wherethe assumptions on whighdepends are modal formulde
2. ‘0O elimination’ O
p
p
Note the side condition orit introduction’: clearly some kind of condition is required,
since otherwise from the truth of any specificcould be derived the necessity that
always holds — which is patently not the intended interpretatiom.ofRoughly, if p
follows from necessary truths only, then there is nothing contingent ah@utdCp can
legitimately be inferred. Of course, other interpretations of modal logic are possible and
lead to different side conditioris.
In mural, side-conditions could be written as extra pieces of code to be evaluated
by the proof checker. In terms of Section 4.7.5 this would mean adding a clause to the
Is-properly-justified predicate on the relevaliuleJustifs. Formally, the condition

Vimla € Assumptions(l, pf) - fmla: CompExpy A symb(fmla) = [O]

would be added to the te&t-properly-justified (1, pf) for each linel in proof pf which is
justified by an instance oft introduction’, where z | is theCESymb speltz.

Example derivations

(1) Here’s an example proof:

from Op, Og

1 O elimination (h1)
2 g O elimination (h2)
3 pAg A introduction (1,2)
infer O(p A q) O introduction (3)

21The assumptions on which a line depends are all those undischarged hypotheses and unjustified lines
in the transitive closure of the antecedent relation: see Section 4.7.7 for full details.

22g.g. in the other formulation (S5) of modal logic in [Pra65], the side condition is relaxed to allow also
negations of modal formulae. [AHM87] contains an alternative formalization of S4 — which translates easily
into themural setting — in which the side-condition is formulated directly in the theory, rather than being
coded into the proof checker. The main advantage of such an approach is that is does not require extra code
to be written for the proof-checker, which lessens the risk of corruption of the latter; the main disadvantage
is that proofs are much longer and far less intuitive.

3.6 Some other logics 101

The use of 0 introduction’ is valid since the assumptions on which the conclusion ulti-
mately depends — namelyp andOq — are modal formulae.

As an aside, it’s interesting to note the ‘shape’ of the proof, consisting of applications
of elimination rules followed by applications of introduction rules. This basic shape arises
surprisingly often and so is a prime candidate for turning into a tactic. The interested
reader is referred to [Pra65] for an explanation of this phenomenon, plus general ‘normal
form’ results for proof shapes.

(2) A more interesting proof is that of* elimination’:

from O(p = q), <p

1 p=gq O elimination (h1)
2 —0O-p unfolding (h2)
3 from O— q
3.1 -q O elimination (3.h1)
3.2 -p contraposition (1,3.1)
3.3 O-p O introduction (3.2)
infer false contradiction (3.3,2)
4 —0O-g otherwise contradictory (3)
infer &g folding (4)

Note that line3.3 is valid since the assumptions on which it depends — namgly=- ¢)
andd- ¢ — are modal formulae. Lin&.3 does not depend on hypothesix

(3) The reader might like to try to derive the following rules:

Op O(p A Oq)

O0p O(q A Op)
p BV, Op=14q OpVOg
Op Ogq S(p Vo)

(Hint for the last one: first provel(p = p V q).)

3.6.5 Hoare logic

This section briefly outlines how a ‘Hoare logic’ of program triples could be formulated
in mural. We form a new theory by extending Predicate Calculus and appropriate data
type theories by primitive constants as follows:

o ‘{_}_{_} for Hoare triples

‘skip’ for the trivial program (do nothing)

‘_; " for sequential composition of programs

‘if _then _ else’ for ‘if-statements’

‘while _ do _’ for ‘while-statements’

‘_.= _for assignment of values to program variables

102 3 Instantiation

Intuitively, ‘{p} S {¢}" means that, if ' holds before progrand is executed, thery’
holds afterwards.
The Hoare axioms for skip, composition and weakening are:

{p} skip {p}
{p} Si{d}, {q} S {r}
{p} S1; 9 {r}
P =p {p}S{d, ¢=¢

'} S{q'}

If- and while-statements

The axioms for if- and while-statements are:

{pAgt Si{ah, {pA-g}S{d}
{p} if g then S else Sy {q}

{p g} S{p}
{p} while g do S {p A —g}
Of course, only partial correctness can be guaranteed by the latter rule: i.e., the rule does
not guarantee that the program loeghile ¢ do S’ terminates in a finite number of steps.
If instead the reasoning is to be about total correctness, appropriate well-founded relations
should be added to the triples: cf. [Gri81, Jon86].

Of course, guards in if- and while-statements should be ‘executable’, and so should
not involve quantifiers, for example. One way of precluding nonsensical instantiations
of ¢ in the above rules would be to introduce a new primitive tyB€ {(standing for
executable boolean expressions) and to add axioms

p: B¢ p:B® ¢:B® a:A, b:A m:N, n:N
true:B® (=p):B® (pVvq):B° (a=0):B° (m<n)B°

and so on — one for each primitive constant representing an executable predicate. Corre-
sponding rules for defined logical connectives &, etc) and defined predicates,(etc)
can be deduced from the above. The axioms for if- and while-statements then become:

9:B%, {pAg} Si{a}, {pA—-g} S {q}
{p} if g then S else Sy {q}

9:B% {pAng} S{p}
{p} while g do S {p A =g}

For brevity of proof, however, the unrestricted forms of these rules will be employed in
the example below.

Program variables and the assignment statement

But how shall program variables be represented?

It's not appropriate to use logical variables, since for example program variables do
not a-convert. In this simple formulation we shall only consider global (program) vari-
ables, so it is generally safe to represent them as logaatants Certainly their values

3.6 Some other logics 103

change during execution of a program, but Hoare reasoning deals with ‘snapshots’ of a
program’s execution, and in each such snapshot the value of a program variable is fixed.
The example below should convince the reader that this is a reasonably natural solution.
For reasons which will become apparent below, however, program variables should never
be used in definitions.

The axiom for assignment to program variables

{Ple]} z:= e {Pla]}

wherez does not occur irfthe instantiand ofP.
For example,

{e—0, Ply]—az#y}
is not a valid instantiation for this rule: it would lead to the patently false conclusion

{z #0} z:=0{z # z}

As usual, the proof-checker must be modified to meet this side-condition. In terms of
Section 4.7.5 the clause

[x] ¢ Subterms(elnst(instn(justif (1)))([P1]))

should be added to the definition B properly-justified(l, pf) for any linel in proof pf
which is justified by the above rule. Note that this formulation assumes that program vari-
ables are always used explicitly and never implicitly (such as in a definition) — otherwise
the restriction could be circumvented by defining s&y) £ 2z # y and instantiating
Ply] by c(y).*

The assignment axiom extends easily to multiple assignments: e.g.

{Ple.f]} z,y:=e,f {P[z,y]}

wherez andy do not occur inP.?* A separate axiom must be introduced for each pair
(z,y) of distinct program variables. An alternative approach would be to introduce a
predicate for recognizing program variables, and to condense all the various axioms into
a single scheme
Is-prog-var(a), Is-prog-var(b), a # b
{P[@,f]} a,b:= 67f {P[av b]}

(wherea and b are metavariables) with an appropriately redefined side-condition. Of
course, it is then necessary to introduce axioms to the effeci¢habg-var(z), x # v,
etc. If only a handful of program variables will be needed it doesn’t seem worth going to
this much bother.

Finally, if program variables have declared types, the assignment axioms can be mod-
ified appropriately: e.g. it: N then

e:N
{Ple]} z:= e {P[z]}

23 An alternative approach is to formulate the side condition directly in the theory by introducing a pred-
icate which confirms that a given program variable is not used in a given term: cf. [AHM87].

24The comma;’ is being used in two ways in this rule: as the (object level) pairing operation in the
assignment statement (twice); and as the (metalevel) separator for the arguments to the met&ariable
Hopefully no confusion will result.

104 3 Instantiation

Some derived rules

We’ll make use of the following derived rules in the example below

p=q
{p} skip {q}
{p} S{a}, ¢=171, {p} 5 {d}
{p} 8;8" {¢'}
p=7p, {p}S{g
{r} S {q}

where they are called ‘lemmal’, lemma2’ and ‘lemma3’ respectively.

An example program
As an example, consider the following progratn

m,j:= a(1),1;

while j # N do (j: =7+ 1; if m < a(j) then m:= a(j) else skip)
We show below thaP finds the largest element in an arrapf natural numbers, indexed
from 1 to NV; formally:

0<N
{true} P {m = maxi:[1..N] - a(7)}

We first form a theory of this program. Arrayis represented as a primitive constant
taking a single argument. The constahiand program variables:, j are similarly rep-
resented as primitive constants (without arguments). All we need to know about these
‘constants’ is given in the following axioms:

1<i, i<N
a(i):N N:N m:N j:N

We’ll define a bindemax to represent the maximum value generated by expression
f[i] asi ranges over a typd; formally:

maxi: A-f[i] & ta:N-(3i: A -z = f[i] AVj: A flj] <)

wherev is the ‘unique choice’ operator introduced in Section 3.2.5. As used bédlovil)
be a finite type and[:] will be an expression which yields a natural number for eich
A, somax denotes a finite value.

Finally, to make the proof go through we’ll need a loop invariant:

I(z,y) 2 1<y < NAz=maxi:[l.y]- a(i)
It's also convenient to have an abbreviation for the loop body:
S(z,y) & y:=y+1; if z < a(y) then z: = a(y) else skip
Note thatz andy are formal parameters in these definitions.

Figure 3.3 is a (rigorous) proof that, for< N, programP finds the largest element in
arraya and assigns it tan.

3.6 Some other logics 105

from0 < N
1 true = I(a(1),1) obvious (hl)
2 {I(a(1), 1)}
m,j:= a(l),1
{1(m.5)} assignment,, ()
3 I(mj)Nj#N=I(m(G+1)—1)Aj<N obvious ()
4 {Im,G+1)—1)Aj+1< N}
ji=7+1
{I(m,j—1)ANj <N} assignment()
5 {I(mj)rj#N}
Jji=73+1
{I(m,j—1)ANj <N} lemma3 (3,4)
6 I(mj—1Aj<NAm<a(y) = I(a(y),)) obvious ()
7 {I(a(4),5)} m:= a(g) {I(m,j)} assignment ()
8 {I(mj—1Aj<NAm<a(j)}
m: = a(j)
{I(m,j)} lemma3 (6,7)
9 I(mj—1)ANj<NA-(m<a(y) = I(m,]) obvious ()
10 {I(m,j—1)Aj < NA~(m < a(3)}
skip
{I(m,7)} lemmal (9)

11 {I(m,j—1)Aj < N}
if m < a(j) then m:= a(j) else skip

{I(m,7)} if-rule (8,10)
12 {I(m,j)Nj# N} S(m,j) {I(m,j)} sequential composition (4,11)
13 {I(m,j)}
while j # N do S(m,)
{I(m,j)N=(j # N)} while-rule (12)
14 —-(j#N) & j=N - #-rule ()
15 {I(m,j)}
while j # N do S(m,)
{I(m,j)Nj =N} substit of equivs (14,13)
16 {I(a(1),1)} P{I(m,j)Nj=N} sequential composition (2,15)
17 I(m,j)ANj=N = m=maxi:[1.N]- a(i) obvious ()
infer {true} P {m = maxi:[1..N]|-a(i)} weakening (1,16,17)

Figure 3.3: Verification of prograrn®

106 3 Instantiation

Remarks:

1. To be honest, throughout the proof liberal use has been made of folding of defini-
tions without stating the justification.

2. Itis vital to the validity of lines 3 and 6 thatandm do not occur in the definition
of I.

3. Lines 6 and 9 would be a good ones to check in more detail.

Chapter 4

Foundation

This chapter presents the formal foundations ofrtheal proof assistant, in the form of

a ‘walk’ into the mural specification (Appendix C). To understand the need for a sep-
arate chapter, a little of the history of the developmeninatal should be explained.

As would be expected, our concept mfiral evolved as the project progressed and as
we experimented with different styles of user interface and different logical frames. The
VDM specification was used as the repository for our ideas, and as the vehicle for any
major changes to the functionality of the system; at any time we had clearly stated objec-
tives for what we wanted to build. But as a result, the full specification is large, poorly
structured and virtually impossible for a newcomer to come to grips with easily. This
chapter (hereafter callee Wall attempts to redress the problem. The chapter ‘Instanti-
ation’ (Chapter 3) was written as an accompanying paper, containing plenty of examples
illustrating various points raised during the Walk.

4.1 Preamble

The Walk is an attempt to write an informal development ofitheal specification from

a very abstract level, through a number of steps introducing essentially orthogonal con-
cepts, down to the level of version 2.2 of the full specification (Appendix C). It was
done as a way of explaining the formal underpinnings of the system, by having some-
thing reasonably formal on which to hang the explanation. It's not supposed to be a
formal development, nor is it an historical development. It does however include many
internal consistency checks — in the form of facts which should be deducible from the
information provided — to clarify the specification-writers’ intentions; some of these facts
are especially useful in later sections. And of course, it's written in VDM. The need to
simplify and unify concepts has meant that this chapter differs from the full specification
in certain details, and in its levels of abstraction, although the spirit has been zealously
guarded. Differences between the Walk and the full specification are summarized briefly
in Section 4.10.

The reader is expected to be familiar with VDM. The Walk differs from many other
VDM specifications in that it is not a single monolithic whole with clearly distinguished
levels of abstraction. No attempt is made to refine data representations, nor to decom-
pose operations. As more concepts are introduced the further we walk into the specifi-
cation, some data types need to be extended. In particular, record types will sometimes
be extended by extra fields and invariants. Auxiliary functions on such types have been

108 4 Foundation

carefully defined in terms of destructors (field selectors), so that they carry through un-
changed. To keep track of where new concepts are introduced, types will sometimes be
given numeric subscripts. When no subscript is present, the ‘latest’ definition is the rele-
vant one — so the definition changes the further one walks into the specification. (These
ratherad hocextensions to the language seemed to be the easiest way to modularize the
specification, in the absence of any more appropriate modularization mechanism in VDM
— or most other specification languages for that matter.)

In fact, most extensions amdnservativein the sense that nothing essentially new
can be deduced about the extended type — other than properties which explicitly involve
the new fields, of course. Such extensions do not change the ‘semantics’ of anything that
came before; in this sense we are trying to capture something far more structured than
Z schemas, for example. In its way, the result is a kind of formal development, with
‘forgetful’ retrieve functions.

Sections 4.2 to 4.4 describe thmeural syntax up to and including inference rule
schemas and instantiation. Section 4.5 describes how the collection of rules is organized
into a theory hierarchy, how rules can have different status (from ‘conjecture’, through
‘rigorously established’, to ‘established from first principles’), and how rules depend on
one another. Section 4.6 introduces theory signatures and defines the well-formed terms
over a syntactic context. The next section explainsitheal proof model and shows that
it correctly captures the notion of Natural Deduction proof. Section 4.8 treats an advanced
topic (theory morphisms) and can easily be skipped on first reading.

Section 4.9 specifies and develops a pattern-matching operation fauthE syntax;
an (informal) verification shows that the development is correct and that the resulting
algorithm is in some sense complete. Section 4.10 explains briefly how the Walk differs
from the full specification in Appendix C, both in terminology and content. Finally, the
last section explores the limitations of thairal approach and suggests where further
work could profitably be done.

The author would like to thank the rest of theiral team for the many useful discus-
sions and comments which helped shape this document. Special thanks are due to Richard
Moore for co-writing the full specification on which this is based. Michel Sintzoff, Lock-
wood Morris and Tim Clement also made significant contributions (by way of questions
and comments) for which the author is very grateful.

4.2 Syntax

4.2.1 Informal treatment
The mural abstract syntax was explained informally in Chapter 3, but it is summarized
here for convenience.
Atomic symbols
The atomic symbols in our syntax are taken from the following classes:
e VSymb — for variables

e CESymb — for constants, functions, operators, predicates, relations and metavari-
ables, all at ‘expression’ level; we’ll call theexpression constructorsr more
simply constants

4.2 Syntax 109

e DESymb — for quantifiers and other symbols (at expression level) that bind vari-
ables; we’ll call thendependent expression symboisnore simplybinders

e CTSymb — for constants, functions, operators and metavariables at ‘type’ level,
we’ll simply call themtype constructors

e DTSymb — for symbols (at type level) that bind variables; we’ll simply call them
dependent type symbols

Abstract syntax

In Extended BNF (Backus-Naur Form), the syntax is roughly:

Term = Exp | Type
Exp = VSymb

| CESymb{Exp}{Type}

| DESymb VSymb‘:’Type‘-’Exp
Type = CTSymb{Exp}{Type}

| DTSymb VSymb‘:’Type‘-’Type
| “<’VSymb‘:’Type‘-’Exp‘>’

In other wordsgexpressionare built up from variables using two kinds of combinators:

e compound expressionwhereby a constant is ‘applied’ to (possibly empty) lists of
expressions and types (called its operands, or ‘arguments’);

e binder expressionsvhereby a binder is supplied with a dummy variable (the ‘vari-
able it binds’), a type (the ‘universe’ of the bound variable) and an expression (the
‘body’ of the binder expression).

Typesare built up using three kinds of combinator:

e compound typesvhereby a type constructor is applied to expression and type ar-
gument lists;

e dependent typesvhereby a dependent-type symbol is supplied with a dummy vari-
able and two types (the ‘universe’ of the bound variable, and the ‘body’ of the
dependent type, respectively);

e subtypesf given types, specified by giving a dummy variable, the ‘universe’ over
which it ranges (dlype), and a predicate (afzp).

(Certain context conditions will be imposed on the syntax at later stages.) No distinction
is drawn between formulae and termsniiral .

L!Compound expressions are callébzps in themural system. Different names were used here to
avoid potential confusion with the full specification: see Section 4.10 for more details.

110 4 Foundation

Concrete syntax

In mural, the user can specify the display form of symbols by supplying a simple ‘tem-
plate’. For example, it's easy to tell the system that an expression which would be written
asITE P a bin our abstract syntax, should be displayed as

if P then a else b

This makes it possible to closely approximate the concrete syntax used by many for-
malisms, which in turn makes formulae much easier to read. At the same time, formulae
are structured objects for which an (abstract-) syntax-directed editor is provided. We
shall make no attempt here to specify the concrete syntax facility, although all the exam-
ples given below make use of it (for legibility). Likewise, no attempt is made to formalize
precedence, associativity, etc.

4.2.2 Substitution

The ability to substitute one term for another is an important feature of most logical cal-
culi, and is thus a facility a logical frame must provide. It is also whereal differs
from most other logical frames, so some words of explanation are necessary.

In logic textbooks, substitution is traditionally handled by having an explicit substitu-
tion operatof./.]. But substitution problems generally fall into one of two fundamentally
distinct categories, as illustrated by the following two laws of inference:

e substitutivity of equals, whereb§ is deduced fromu = b and P, where(is the
result of replacing one or more occurrences @f P by b;

e specialization, whereby) is deduced fromu: A andVz: A - P, where @ results
from P by replacing all free occurrences oby a.

The first ‘law’ is actually too vague to be formalized directly — it hides information
(namely, exactly which occurrences are to be replaced) which the user would typically
have to supply in a ‘rule-driven’ proof editor as envisageddoral. The second law
does not suffer the same ambiguity, however, and is often expressed simply by writing
(something like)P[a/z] for Q.

The main disadvantage with having an explicit substitution operator is that it obscures
syntactic equivalence. For example, for any expressipn (P[z/y]) is exactly the same
as (- P)[z/y] (where the parentheses are used simply to show order of ‘application’).
Similarly, P[z/y][y/z] is syntactically equivalent t&, providedz does not occur free in
P. As aresult, it is very difficult to specify — let alone implement — pattern-matching and
other algorithms which work on expressions when the latter can contain uggs.of

The approach adopted by AUTOMATH [dB80] and several modern proof assistants
(e.g. HOL [Gor85], ELF [HHP87], Isabelle [Pau86]) is to base the syntax on (variants
of) A-calculus and to treat substitution as function application. In such an approach, the
above rules would be expressed as

a=10b, P(a) a:A, Vr:A- P(x)
P(b) P(a)

whereP can be instantiated by a ‘boolean-valued’ function. For example, when instanti-
ated by

{a—17,3,4], A N*, P+ Xz:N* - rev(rev(z2)) = 2}

4.2 Syntax 111

the second law becomes

[7,3,4]:N*, Va:N* - rev(rev(z)) =z
rev(rev([7,3,4])) = [7, 3, 4]

upong-reducing. (Syntactic equivalence is thusn-equivalence.) This makes for a very
elegant solution, and even allows binders to be treated as (higher order) functions: e.g.

V: (A — Proposition) — Proposition

whereV(Az: A - P) stands folvz: A - P.

The \-calculus approach is an excellent way of formalizing substitution, and is good
for formalizing mathematical syntax generally, hence its use for Logical Frarfesm
mural’s point of view, however, this approach has a major drawback: pattern-matching
and unification are difficult, if not impossible. (Higher order unification is undecidable in
general. Indeed, most general unifiers are not even guaranteed to exist, even when unifi-
cation is possible; in some cases infinitely many essentially-different unifiers result. The
decidability of h.o. matching seems to still be an open question.) Despite these problems,
Larry Paulson has implemented a theorem prover — Isabelle [Pau86] — based around a
lazy version of Huet'’s h.o. unification algorithm.

The designers ofmural were well aware of the\-calculus approach from an early
stage in the project. Upon inspecting the formulation of the target [bgics-calculus,
we soon recognised that only very limited use is made of the full h.o. capabilities on
offer. Upon further investigation it became apparent that an intermediate solution was
feasible — essentially one that uses the principle of substitution as function application,
but which restricts how (meta-level) functions can be formed. Complete pattern-matching
then became possible, and even a (limited form of) unification could be given.

The mural approach to substitution uses the fact that, in our syntax, metavariables
can take arguments. Full details are deferred until the discussion of instantiation in Sec-
tion 4.4, but to illustrate briefly: the law of specialization would be written

a: A, Vz:A- Plx]
Pla]

and the relevant instantiation would be expressed as
{a—17,3,4], A— N*, P[z] — rev(rev(z)) = z}

The instantiation mechanism is specified in such a way as to preclude capture of free
variables. It's important to note that it is still possible to express (and reason about) higher
order logics inmural (cf. Section 3.6.1). The main difference is thiatand»n-conversion

are not done automatically imnural , although it would be feasible to write a tactic to do
such things.

2See [AHM87] for a large collection of logics that have been formalized in ELF using this approach.
The report [Lin87c] compares various logical frames and notes some other limitations Jofcdieulus
approach, such as the need for strong typing and a fixed type structure.

3The class of logics targeted fanural support is described in [Lin87c]. These include first order
predicate calculi (classical, constructive and LPF), many sorted equational logic and Hoare logics.

4A complete matching algorithm is specified, developed and proven correct in Section 4.9. At the time
of writing we haven't yet explored whether provision of a full algorithm is possible for our syntax.

112 4 Foundation

It soon becomes obvious to the user that pattern-matching is an extremely important
component of thenural modus operandiAt any stage in a proof the user can typically
ask to see a completénite set of rule instances from which to choose. In this author’s
opinion, this is one of the factors which makesral very much easier to understand and
use than other existing logical frames.

4.2.3 Formal treatment

Now for a more formal definition of the syntax.

Primitive types

In this specificationVSymb, CESymb, DESymb, CTSymb and DTSymb are taken to be
primitive types: viz. mutually disjoint infinite sets of structureless tokens. (In the full
specification some of these are further split up: e.g. withiitSymb, metavariables are
distinguished from ordinary constants.)

The proto-syntax

As already indicated, we intend to impose certain context conditions on the abstract syn-
tax. In the meantime we can translate the ‘proto-syntax’ directly into VDM as follows:

ProtoTerm = ProtoEzp | ProtoType
ProtoEzp = VSymb | ProtoCompFEzp | ProtoBindEzp
ProtoType = ProtoComp Type | ProtoSubType | ProtoDep Type

ProtoCompFExp :: symb : CESymb
eArgs . ProtoExrp*
tArgs : ProtoType*

ProtoBindEzp . symb : DESymb
var : VSymb
univ . ProtoType
body . ProtoExp

ProtoCompType :: symb . CESymb
eArgs . ProtoFEzp*
tArgs . ProtoType*

ProtoDepType .. symb . DTSymb

var . VSymb
univ . ProtoType
body : ProtoType

ProtoSubType :: var . VSymb
univ . ProtoType
body : ProtoEzp

4.2 Syntax 113

Auxiliary functions

Next we define some useful auxiliary functions for accessing various components of
terms. The subterms of a given term — including the term itself — are given by:

Subterms : ProtoTerm — ProtoTerm-set

Subterms(z) 2
cases z of
VSymb — {z}
mk-ProtoCompEzxp(c, el, tl) — {z} UU{Subterms(z) | x € elems el U elems ¢/}
mk-ProtoBindExp(q,v,t,e) — {z} U Subterms(t) U Subterms(e)
mk-ProtoComp Type(ct, el, tl) — {z} U U{Subterms(z) | x € elems el U elems ¢/}
mk-ProtoDep Type(dt, v, u, b) — {z} U Subterms(u) U Subterms(b)
mk-ProtoSubType(v, t, e) — {2} U Subterms(t) U Subterms(e)
end

Henceforth, we won'’t bother to state definitions when the compound type (dependent
type and subtype) case is exactly analogous to the compound expression (resp. binder
expression) case.

The bound variableof a term are those which are bound by a variable binding con-
struct in some subterm:

bndVars : ProtoTerm — VSymb-set

bndVars(z) £
cases z of
VSymb —{}
mk-ProtoCompEzp(c, el, tl) — U{bndVars(y)

| y € elems el U elems ¢/}
mk-ProtoBindEzp(q, v, t,e) — {v} U bndVars(t)

U bndVars(e)
end

Thefree variablesof a term are those which occur in the term without getting bound:

freeVars : ProtoTerm — VSymb-set
freeVars(z) 2
cases z of
VSymb — {z}
mk-ProtoCompEzp(c, el, tl) — U{freeVars(y) | y € elems el U elems #l}
mk-ProtoBindExp(q, v, t, e) — freeVars(t) U (freeVars(e) — {v})

end

A term with no free variables is said to bosed

allVars : ProtoTerm — VSymb-set
allVars(z) & freeVars(z) U bndVars(z)

Claim: For any prototerne, allVars(z) includes all those variables which occur as
subterms ok:
{v: VSymb | v € Subterms(z)} C allVars(z)

114 4 Foundation

The inclusion is proper when vacuous bindings are present: e.g. wisefx: A - true.

4.2.4 Context conditions

As given so far, the syntax is a lddo flexible. What would it mean for a variable being
bound to occur free in the universe over which it is being bound, for example? What does
it mean if nested bindings refer to the same dummy variable? There are many different
solutions to these problems, but most are intended for parsing by humans and so can be
considered primarily to be addressing concrete syntax issues. Although often ingenious
and elegant, such solutions are usually quite long and involved when formalized (i.e., in
the present case, when written in VDM).

We decided instead to adopt a strong convention whereby

Convention:
Logically different variables will be represented by differérymbs.

For example, expressions like
Ve:A-3Jz:B- P, Ae:Alz]- P, (NVe:A-P)AN(Nz:B-Q), Vae:Aly]-3y:B-P

will be considered to be ill-formed. Initially it was intended that this restriction would
apply only to the abstract syntax at the specification level, and that the final concrete
syntax would be more liberal. As it turns out, at least some of the spirit of the restriction
has carried over, fortunate or unfortunate as this may be.

The main reason for introducing the restriction is that it makes later functions much
easier to specify. In particular, we won’t continually be dogged by the problems of vari-
able renaming to avoid capture which arise in most attempts to specify syntaxes having
variable binding constructs and substitutiofhis in turn does away with most of the
variable occurrence side-conditions on inference rules.

We define a subclas$ermg of ProtoTerm consisting of just those terms which re-
spect the above principle:

Termo = Ezpy | Typeo
Expy = VSymb | CompEzp, | BindExp,
Typey = CompTypey | SubTypey | Dep Typey

To respect our principle, the arguments of a compound expression should use different
bound variables, and variables free in one argument should not be bound in another ar-
gument. Arguments may however share free variables. The restriction can be captured
succinctly by saying that thellVars of one argument must not overlap thed Vars of

any other. Formally:

CompFExpy @ symb : CESymb
eArgs : Exp}
tArgs @ Type;

SAn alternative approach would have been to do away with the names of bound variables altogether and
use de Bruijn indices instead (cf. [dB80]). We felt that, while such an approach is perhaps more concise, it
would make the specification far less intuitive and too difficult to read.

4.2 Syntax 115

where

inv-CompExpy(e) 2 Is-valid-arglist(eArgs(e) ~ tArgs(e))

Is-valid-arglist : Termi — B
Is-valid-arglist(zl) &
Vi,j€indsal-i#j = allVars(zl(i)) N bndVars(xl(j)) = {}

Again, to respect our principle, the dummy variable of a variable binding construct must
not already be bound in the body of the construct, and it must not occur at all in the

universe. Also, variables bound in the universe should not occur in the body, and vice-
versa. Formally:

BindFExpy : symb . DESymb

var . VSymb
uniw : Typey
body : Fxp

where

inv-BindBxpy(mk-BindExpy(q, v, t,e)) £ Is-valid-binding(v, t, e)

Is-valid-binding : VSymb x Typey x Termg — B
Is-valid-binding(v, t,e) 2 v ¢ allVars(t) U bndVars(e)
A allVars(t) N bndVars(e) = { } = allVars(e) N bndVars(t)

The other definitions are very similar:

Comp Typey == symb . CESymb
eArgs : Exp§
tArgs : Typej

where

inv-Comp Typeo(t) 2 Is-valid-arglist(eArgs(e) ~ tArgs(e))

DepTypey :: symb : DTSymb

var : VSymb
univ . Typeg
body : Typey

where

inv-Dep Typeo(mk-Dep Typey(dt, v, u, b)) £ Is-valid-binding(v, u, b)

SubTypey 2 var . VSymb
univ . Typeg
body : Fxp,

where

inv-Sub Typey(mk-SubTypey(v, t,e)) 2 Is-valid-binding(v, t, e)

116 4 Foundation

Henceforth, when we say term, expression, type, etc. we mean an elenfentqf£zp,
Type or whatever.

Claim: No variable occurs both free and bound in the same term: i.e.
Va: Termg - freeVars(z) N bndVars(z) = { }
(Of course, this is not generally true Bfoto Terms.)

Claim: If a prototerm satisfies the context conditions then so do all its subterms: viz.

Subterms : Termg — Termg-set

4.2.5 Equivalence

The informal treatment above referred to ‘dummy’ variables. The idea is that the name
of the variable is not really important — the term would have just the same ‘meaning’ if
a different name were used throughout (provided no ambiguities arose of course). This
idea is captured by defining an equivalence relation on terms.

First we’ll need a function which renames variables according to a given mapping.
Variables not in the domain of the mapping will be left unchanged.

RenameVars : ProtoTerm x (VSymb -~ VSymb) — ProtoTerm
RenameVars(z,vm) 2
cases z of
VSymb — if 2 € dom vm then vm(z) else z
mk-ProtoCompEzp(c, el, tl) — let el’ = [RenameVars(el(i),vm) | i € inds el],
tl" = [RenameVars(tl(j),vm) | j € indstl] in
mk-ProtoCompEzp(c, el’, tl')
mk-ProtoBindExp(q, v, t,e) — let v' = RenameVars(v, vm),
= RenameVars(t, vm),
e’ = Rename Vars(e, m) in
mk-ProtoBindExp(q,v', t', e')

end

Note that this form of renaming is extremely simplistic and certainly does not preserve
invariants such agw-CompExpy. In particular, it is manifestiyot true that

RenameVars: Termg x (VSymb — VSymb) — Termq

Definition: Two termsz andy are (-)equivalentwritten z = y) if one can be obtained
from the other simply by renaming bound variables, provided the logical distinction be-
tween different variables is preservéd:

= : ProtoTerm x ProtoTerm — B

z=y & 3f: VSymb <= VSymb -
dom f = allVars(z)
AYv € freeVars(z) - f(v) = v
A RenameVars(z,f) =y

6ln VDM, D < R stands for the collection of 1-1 maps (finite functions) fréno R.

4.2 Syntax 117

Thus for example, the teriviz: A - © = y IS a-equivalent tovz: A - z = y but not to
Vy:A-y=uy.

The definition of= makes essential use of our principle regarding bound variables.
Together, the principle and the 1-1-nesg @nsure that logical distinctions between vari-
ables are preserved. (This is a good example of how the principle makes some functions
much easier to define.)

Here are some useful corollaries of the above definition:

freeVars(Rename(x, f)) = rng(freeVars(z) < f)
bndVars(Rename(z,f)) = rng(bndVars(z) < f)
Rename(Rename(z, f),f™!) = =«

whenf is 1-1 andallVars(z) C dom f. Using these facts we can prove the following:
Claim: z =y = freeVars(z) = freeVars(y)
Claim: = is an equivalence relation dferm.
Claim: = respects syntactic classes: e.g.
x =y Az CompFExpy, = y: CompEzrpy

In particular,z = y A x: Termg = y: Termy.

4.2.6 Some useful auxiliary functions

Now that the notion of equivalence has been introduced, it is possible to define functions
which will allow us to forget about the complicated invariants almost entirely. For exam-
ple, consider the following specification of a function for building compound expressions
from constant symbols and lists of expressions and types:

build-CompExpy (c: CESymb, el: Expg, tl: Type) ce: CompExp,
post let mk-CompEzxpy(c’, el’, tl') = ce in

c=c

Nlenel =lenel’ AVi € indsel - el(i) = el(i)

Nlentl =lentl’ ANVi € indstl - tl(i) = tI'(7)

At first sight this function might appear innocent enough and easy to implement, but
remember there is an an invariant associated Witmp Ezp, which says that logically
distinct variables must be named apart. Thus it might well be necessary to rename bound
variables inel and/ortl in order to preserve the invariant. Just exactly which variables get
renamed, and to what, is left up to the implementor’s discretion (the function is said to be
underspecified).

A ‘ build-function’ for binder expressions can be defined similarly:

build-BindExpy (q¢: DESymb, v: VSymb, t: Typey, e: Expy) be: BindExpg
post let mk-BindExpy(q',v', t', ¢’) = be in
¢ = qAt' =t RenameFreeVars(e',{v' — v}) =e

“Note however that for given arguments, all possible results are equivalent. Thus (at an abstract level)
the underspecification is almost illusory. In fact, if VDM had a quotient-type construct we could consider
equivalent terms to be equal, and the specificatiohudfi- Comp Exp, above would be a fully well-defined
function specification.

118 4 Foundation

Note thatv indicates which variable ia to bind. If v € freeVars(t) then a new symbol
must be used ak&’s dummy variable (in order to satisfy the invariant), hence the use of
v"in the above.

RenameFreeVars is a function which renames free variables in a given terac-
cording to a given mappingn. Only that part ofrn which acts on free variables from
will be relevant. Free variables may get ‘collapsed’ togetherhby but they should not
be captured by binders (etc.) in Of course this may mean that variables bound in
must be renamed, to respect our principle about variable names. The easiest way to define
this formally is to use an intermediate terrhin which z’'s dummy variables have been
renamed so that binders (etc.) ahcannot possibly capture free variables, even if they
get renamed. Formally:

RenameFreeVars (z: Termg, vm: VSymb - VSymb) y: Termq
post let vm' = freeVars(z) < vm in
dz’: Termy -
z =z’ A bndVars(z') Nmgom’ = {} A y = RenameVars(z', vm’)
Note that
bndVars(z") Ndomvm’ C bndVars(z') N free Vars(z

= bndVars(z') N freeVars(z')
={}

thusondVars(y) = bndVars(z'). The restriction that
bndVars(z") N rngom’ = { }

ensures that renamed free variables don’t get captured by binder®mthe other hand,
free variables which aren’t renamed under also won't get captured since, from above,

bndVars(y) N freeVars(xz) = bndVars(z') N freeVars(z) = { }

Note also that the ‘function’ is well-defined in the same sense ith@t- CompExp, is
well-defined (viz. all possible results are equivalent).

4.2.7 Definitions

The mural proof assistant provides the ability to make abbreviations and definitions, in-
cluding recursive definitions. Constants and functions, binders, types and type construc-
tors can all be defined. (We anticipated little or no use for defined dependent types, so
they were omitted to keep the specification simpler.)

For constants and functions, a definition consists of two expressiatefimmensand
adefiniendumor more simply put, a left hand sideHS) and a right hand sidd&RHS. A
simple example is

P&es@Q 2 (P=QAQ=P

which defines bi-implication &) in terms of ordinary implication £) and conjunction
(A). The LHS is aComp Expy, whosesymb is the symbol being defined; its arguments are
formal parameters (with no repetitions). The RHS isHam, which is well-formed in
the ‘context’ in which the definition is being made (cf. Section 4.6.3Fvery formal

8As described in Appendix C, the definition facility is only available at the level of theory signatures. In
such a case the well-formedness criterion is that the RHS is closed (no free variables) and uses only symbols
available in the theory’s signature. More generally it would be much better to be able to make abbreviations
at various different levels: theories, proofs, even expressions themselves (cf. VDM’s ‘let’ clause).

4.3 Natural Deduction rules 119

parameter introduced on the LHS should be used at least once on the RHS, so that no
extra information will ever be required for the folding (RHSLHS) or unfolding (LHS
— RHS) operations.

Recursive definitions — in which the symbol being defined appears on the RHS — can
also be made. For example, the factorial function can be defined recursively by

fact(n) & if n=0then 1 else n * fact(n — 1)

Definitions by mutual recursion are also possible. It is the user’s responsibility to ensure
that such definitions make sense. Because termination cannot be guaranteed in the pres-
ence of arbitrary recursive definitionaural does not provide an operation for ‘unfolding

to ground terms’.

The definition facility for types and type constructors is exactly analogous to that for
constants and functions (wittiomp Typey and Type, replacingComp Expy and Ezp,, re-
spectively). Binder definitions are slightly different however. In the above, formal param-
eters were essentially ESymbs andC'T'Symbs with arity (0, 0), and were unrestricted in
number. We shall insist however that defined binders use at most two formal parameters:
a C'TSymb of arity (0, 0) for the universe and &ESymb of arity (1,0) for the body’ For
example, in classical logic existential quantificatial ¢an be defined in terms dfand
- by

Jz:A-Plz] & =Vy:A-—= Ply

A and P are parameters to this definition. Instances of this definition are obtained by
instantiatingA and P (cf. Section 4.4).

Precise details of the definition facility and the corresponding folding and unfolding
operations can be found in the full specification (Appendix C). The details are straight-
forward but lengthy, and weren't felt to be sufficiently interesting for a high level specifi-
cation.

4.2.8 Concluding remarks

In many ways, the syntax could have been more elegant as a single level syntax of the
form:

Term = VSymb | CSymb {Term} | DSymb VSymb ‘:’Term‘-’ Term

If nothing else, the specification would have been a lot shorter and not so many auxiliary
functions would be necessary. Some of the awkwardness (cf. Section 4.11) of the present
syntax would also have been avoided. We felt however that having two distinct levels
(values and types) reflected more closely the way the syntax would be used in the target
logics, and that as a result the support we offered the user would be that little bit higher.
Only time will tell if this was the right decision.

4.3 Natural Deduction rules

The mural proof assistant supporiatural Deductiorproofs. This section explains the
reasons for this choice and describes ftheal syntax forinference rulesor more pre-
cisely, for inference rulschemasSection 4.4 describes how schemas get instantiated to

9The universe parameter should perhaps not be compulsory.

120 4 Foundation

form instancesof inference rules and Section 4.7 describes how proofs are constructed
from instances of inference rules.

4.3.1 Proof systems

The literature contains many different formulations of the notion of ‘proof’. The particu-
lar proof formalism used imural is based on Gentzen’s Natural Deduction Sysin
Alternative formalisms include Hilbert Style, Sequent Calculus and Semantic TaBfeaux.

The different approaches offer different advantages, but this is not the place to go into
a lengthy comparison. Basically:

o Hilbert Style is the simplest possible, and is the best suited to metareasoning: i.e.,
for proving resultsabout particular theories (such as consistency). Because it is
such a simple system, however, it is not very well suited to deriving new rules of
inferencewithin a theory.

e The Sequent Calculus is good for exploring patterns of reasoning and for proving
results about patterns of reasoning (e.g. the existence of ‘normal forms’ for proofs).
It is more general than the other systems, in that the other systems can be expressed
very naturally in Sequent Calculus.

e Semantic Tableaux are based around the notion of proof by contradiction, which
can be a good way for novices to explore proofs and is good for constructing coun-
terexamples. On the other hand, proof by contradiction is considered ‘poor style’
by many practitioners and it can be confusing to work with the negation of the re-
sult you are trying to prove. For such reasons semantic tableaux have not caught on
very well in software engineering.

¢ ND has a great advantage over other deduction systems in that it bears a very close
resemblance to intuitive, informal proofs of the kind found in mathematics and (for-
mal) software engineering textbooks (cf. [Gri81, Jon86]). In particular, the main
structure of informal arguments can often be preserved when the reasoning is for-
malized withinND. There is also evidence [Dyb82] theD proofs closely reflect
spoken proofs.

It is widely recognised that the cost fafily formal proof outweighs many of the benefits

of mathematical reasoning; so it seemed to us wisest to aim to sugmydusreasoning,

with the potential to go fully formal by simply supplying enough details: hence the choice
of ND.1

10The best exposition of Natural Deduction is in [Pra65], but sadly this is long out of print. See also
Sundholm’s chapter on Systems Of Deduction in [GG83]. Ramsay gives a good, though brief, introduction
to the three alternative systemssihof [Ram88]. (Sundholmb.cit. also treats Hilbert Style and Sequent
Calculus.) Note that Gentzen invented biiih and the Sequent Calculus, and that in much of the literature
the distinction between the two is blurred or glossed over; confusingly, the latter is often called natural
deduction — even in [Ram88]. Although the two systems are very similaratteaifferent representations,
and such differences are vital when it comes to designing a proof assistant. Another point to note is that
there is a school of thought which says thatdhlogic is one for which every propositional function has an
‘introduction’ and an ‘elimination’ rule, and that the two should be related in a particular way (cf. [Pra65]).
Perhaps there is some deeper truth in such a belief, but we certainly do not intend to impose such restrictions
here.

10ne of the main negative consequences of the decision to sugpoig that non-monotonic logics

4.3 Natural Deduction rules 121

4.3.2 Rule statements

The laws of reasoning are capturednference ruleshere are three typical examples:

P res, sNt={} a:A, I A
(if P then a else b) = a T &t cons(a,l): A*

The formulae above the line are callegbotheseand the one below the line tle®nclu-
sion The conclusion is said to follow from the hypotheses according to the given rule of
inference.

Perhaps the most distinguishing featureNd is that hypotheses can have ‘local as-
sumptions’ which can be used — in addition to any other assumptions in force — when
establishing the hypothesis. For example, the classical law for introducing the symbol

= is
{P}FQ
P = Q

which means that in order to infdt = (@ it is sufficient to show that) follows from
assumptionP. (The ‘turnstile’t is a special symbol dfiD.)

Hypotheses with such local assumptions are caégientsWe’ll look more closely
at sequents below; for the moment we can say thasthiemenof a rule (as opposed to
its proof, etc.) consists of ordinary hypotheses, sequent hypotheses and a conclusion:

RuleStmt :: ordHyps . Fxpg-set
seqHyps . Sequent-set
concl . Expg

Remarks:

In many textbooks (e.g. [End72] p.73) there is a clear separation between the class of
‘(ordinary) terms’ (calledEzp here) and the class of ‘well-formed formula&/f{s), and

only the latter can appear as the hypotheses or conclusions of rules. But such a separa-
tion seems to us to sacrifice more than it gains. For example, it makes it hard to identify
Boolean-valued terms with propositions; yet this is a quite common practice (cf. Sec-
tion 3.5.2). It also limits the freedom to use the systemtasresformation systene.g. for
rewriting numerical expressions

m + succ(n) {a} b, Pla]
succ(m + n) P[b]

Thus it was felt to make the system more flexible if any term Kop,, rather) could
appear in a rule. There are of course certain disadvantages to such an approach: cf. the
discussion in Section 3.2.2.

4.3.3 Sequents

A sequentonsists of a set gfremisesand anupshot Sequents can also bind variables,
which we’ll call sequent variableand show as subscripts on the turnstile. For example,

cannot be directly supported: cf. the discussion in the section on the limitations mifuith& approach in
Section 4.11. All of the target logics (cf. the glossary in the appendix) can however be exprel&ed in

122 4 Foundation

the law of induction over natural numbers can be expressed as
PI0],
{n:N, P[nl]}F, P[n+1]
Vm:N - P[m]

This has two hypotheses: an ordinary hypothé¥i§ (for the base case), and a sequent
hypothesis{n: N, P[n|} F, P[n + 1] (for the induction step). In the induction step, a
new parameter, say, is introduced and it is assumed (for the purposes of the subproof
only) thatn: N and P[n] hold; one is then obliged to show th&fn + 1] holds. Once both

the base case and the induction step are established, we cavinfi|r- P[m].

Note that because it lacks a subscript facility, sequent variables are displayed at the
start of a sequent imural instead of being subscripts on the turnstile.

By paying special attention to the way sequents bind variables (and here we are in-
debted to the ELF work [HHP87] on expressing logics), some of the nasty ‘side condi-
tions’ on inference rules can be avoided. For example, the Wsimfoduction rule says
thatVz: A - P follows from P providedz does not occur free in any assumption on which
P depends, other than A. This rule would be expressed as

{z: A} b, P|z]
Vz: A- Plz]

in mural. (The fact thatr may appear inP is implicit in the informal statement of the
rule, but must be stated explicitly mural .)

This leads to the following definition:

Sequent . seqVars . VSymb-set
premises . Frpy-set
upshot : Expg

where
inv-Sequent(s) £ Ve € Constituents(s) - bndVars(e) N seqVars(s) = { }
where

Constituents : Sequent — Fxpy-set
Constituents(s) 2 premises(s) U {upshot(s)}

The invariant ensures there is no ambiguity between sequent variables and variables bound
within the constituents of the sequent. In practice, sequent variables will usually occur
free in at least one constituent of the sequent, but not all variables free in constituents
need be sequent variables.

Note that we haven't carried our principle about variable naming through to sequents.
To do so would mean tightening the invarianiv-Sequent so that different constituents
use different bound variables (cfs-valid-arglist). At this stage the usefulness of our
principle has just about run its course, and it's becoming a liability instead.

To return to the specification, variables which appear unbound in a sequent will be
said to bdreein that sequent:

freeVars : Sequent — VSymb-set
freeVars(s) £ U{freeVars(e) | e € Constituents(s)} — seqVars(s)

4.3 Natural Deduction rules 123

A sequent igsyntactically) equivalertb another if its sequent variables can be renamed
—in a 1-1 fashion — to give an equivalent set of premises and an equivalent upshot. More
formally,

=: Sequent X Sequent — B
s=s" 2 Jum: VSymb <= VSymb -
dom vm = seqVars(s) A rngvm = seqVars(s')
A RenameFree Vars(upshot(s), vm) = upshot(s’)
A Jem: Bxpy « > Expg -
dom em = premises(s) A rng em = premises(s’)
A Ve € dom em - RenameFreeVars(e,vm) = em(e)

As its name suggests; is an equivalence relation dfequents.

Remarks:

A couple of remarks of a technical nature can be made concerning the above definition:

1. Although the variables idom vm are not bound inpshot(s),
RenameVars(upshot(s), vm)

might result in the capture of variables frong vm; thus RenameFree Vars cannot
be replaced byRenameVars in the third subconjunct of the definition.

2. The restriction thatm be 1-1 was made for the convenience of the definition, but
could be replaced by a weaker condition to the effect that the two sets of premises
are equivalent under the renaming: €gz: A - true, Vy: A - true} is equivalent to
{Vz: A - true}.

4.3.4 Establishing sequents

But what is a sequent? Intuitively,

means that — for arbitrary variables . . ., z,, — from prems one can infemup.

A sequent igrivially true if its upshot is equivalent to one of its premises:

Is-trivially-true : Sequent — B
Is-trivially-true(s) £ e € premises(s) - e = upshot(s)

In fact, we can get even more mileage (kilometrage?) out of our interpretation of
sequents, independent of any particular logic. For examplec#n be inferred fronf;
— with no ‘arbitrary variables’ — then clearlycan be inferred from any set extendifg,
or more generally from any set containing expressions syntactically equivalent to those in
H,. Thus, if4; + » and
VQEHl'E]@,EHQ'eEd

thenH; - u. We sayH; - u establishedi; - .

124 4 Foundation

The presence of sequent variables complicates the situation a little. For example,
{} F z = nil doesnot establish{z: A*} I, = = nil because: in the first sequent has a
fixed interpretation (determined by context) and is by no means arbitrary. The difference
between the two sequents becomes even clearer when the second sequent is replaced by
its syntactic equivalenty: A*} +, y = nil.

Leaving such ambiguities aside for the moment — as they’re easily dealt with by ju-
dicious renaming of variables — it's clear that a sequent which ‘resolves more variables’
than another, but otherwise looks much the same, is somehow stronger: e.g.

{z:N,y:N}F, 2 +y=y+z

is stronger than
{zN}F, 24+ 2=2+2

Putting all this together we arrive at the following definition:

Establishes : Sequent x Sequent — B
Establishes(s,s') £ 3" =s"-
seqVars(s") N freeVars(s) = { } A
Jom: VSymb " VSymb -
dom vm = seqVars(s) A rngum C seqVars(s”) A
RenameFree Vars(upshot(s), vm) = upshot(s”) A
Ve € premises(s)-de’ € premises(s”)- RenameFreeVars(e,vm) = ¢’

(It might be necessary to rename sequent variables$ ia avoid confusing them with
variables actually free in — hence the introduction of an equivalent sequént

Claim: Establishes is transitive and reflexive on sequents, and refines syntactic equiva-
lence.

Remarks:

(1) In many logics the interpretation of sequents can be further liberalized to allow re-
placement of sequent variables teymsrather than simply variables. Thus for example
it might be considered valid to deduce

{0+ LN, 2N}F (0+1)+2=2+(0+1)
from the sequent
{z:N,y:N}F,yz+y=y+z

In mural we resisted this interpretation for two reasons:

1. It was felt to be moving too far away from the ‘pure’ Natural Deduction interpre-
tation: viz. that thez;’s are arbitraryvariablesin +,, ., . We take the approach
that it is the instantiator’s responsibility to induce the extended interpretation, for
example by adding axioms like

a: A, {z: A} b+, Plx]
Pla]

4.4 Rule schemas and instantiation 125

2. Pattern matching and other operations on sequents are much harder to specify and
implement under the broader interpretation.

Perhaps this will be shown to be an overly cautious approach (cf. ELF [HHP87] where
the extended interpretation is used).

(2) An even richer proof system th&D can be obtained by allowing ‘nested sequents’ —
sequents with sequents as premises, and so on. This is explored further in [Sch84]. Again,
we stuck with the simpler formulation, which is quite adequate for the target logics.

4.3.5 Side conditions and oracles

A reader with any familiarity with formal proof systems will know that many rules are
stated withside conditions- conditions which must be met for an instance of a rule to

be valid. By far the most common kind are those which refer to substitution instances
(e.g. froma = b and P deduceq), where(is the result of replacing one or more occur-
rences ofa by b in P); we saw how such rules are expressedhiral in Section 4.2.1
above. The next most common are those which place restrictions on what free variables
can occur in assumptions on which an assertion depends, and we saw in Section 4.3.3
how sequents handle these.

In [AHM87] it is shown how many other kinds of side condition can be handled by ex-
pressing restrictions as additional hypotheses on rules. Most of the techniques used there
easily translate to thewral setting. There may however be side conditions which cannot
be handled within the logical frame, or for which a fully formal treatment is inappropriate
or ‘expensive’ in terms of user effort. (For example, the formulations of Modal Logic and
Hoare Logic in [AHM87] make for much longer, less intelligible proofs than those given
in Sections 3.6.4 and 3.6.5.) Theural solution is to allow appeal to ‘oracles’ — tests
written in the implementation language of the proof assistant (in our Saselltalk-8)
which are run when justifications are checked for correctness.

Oracles are in fact a general mechanism for allowing appeal to external agents, be
they side-conditions, decision procedures, or even other theorem provers. This can be a
particularly effective way of combining tools for specific problem domains in a generic
environment. Thus for example, the user might wish to use the Boyer-Moore theorem
prover to do inductive proofs about Lisp-like data structures, but still be free to guide the
proof assistant in the cases where Boyer-Moore fails.

Because they are potentially so powerful (and because they call for some intimate
knowledge ofmural’s implementation), the general user will not be allowed to write his
or her own oracles.

4.4 Rule schemas and instantiation

In this section we explain how rule instances are formed from rule schemas.

4.4.1 Metavariables

A rule statement such as P

(if P then a else b) = a

126 4 Foundation

actually represents a whatehemaof rule instancesP, « andb aremetavariablesvhich
get instantiated when the rule is used. For example,
z=0
(if z =0then L else 1/z)= 1

and
{a, b} C s

(if {a,b} C s then s — {a} else sU{b}) =5 —{a}
are both instances of the above rule.

In mural, metavariables are represented @¥Symbs andCTSymbs. In particular,
they can take arguments: e.g. the law of substitutivity of equals can be expressed as

In what follows, a compound expressiofidmp Exp,) whoseCESymb is a metavariable
will be written asP]. .] instead ofP(...) to make it easier to recognize metavariables.
(Similarly for CTSymbs.)

Instantiations are then expressed using the appropriate number of formal parameters:
e.g. the instantiation

{a—=n? b 16, Plz] — 2 (n+1) < f(z)}
if applied to the above rule would yield the following rule instance:

n? =16, n’>x*(n+1) < f(n?
16+ (n+ 1) < f(16)

The operation of instantiation renames bound variables (if necessary) to avoid capture:
e.g. ifapplied tovn: N- P[n+ b] the above instantiation would yield (something equivalent
to)

Vm:N-(m+16) % (n+ 1) < f(m + 16)

These issues are discussed further below.
Because the syntax is essentially untyped Alag/ Type distinction is the only restric-
tion on what can instantiate metavariables. Thus for example,

1+{}
(if 1 + { } then cons(3,2) else []) = cons(3,2)

is a legal instance of the above rule. Of course, in any reasonable logic it won’t be possible
to establishl + { }, so this rule instance will never be used. The lesson to be learnt here
is that it is necessary to take care when postulating rules and axioms: this is discussed in
Section 3.2.2 above.

4.4.2 Extending the syntax by formal parameters

Before we can formalize the notion of an instantiation we’ll need some kind of notation for
formal parameters. In fact, formal parameters are used in several other places below and in
the full specification — namely for expressing various kinds of definitions and morphisms.

4.4 Rule schemas and instantiation 127

Placeholders

The simplest way to bring formal parameters into the syntax is to introduce two new
classes consisting @laceholders- one for expressions and one for types. Placeholders
will be numbered by an ‘index’; theth placeholder stands for theh formal parameter

(of the appropriate kind).

OPH :. index . Ny
TPH :: index : Ny

We'll write [el] for mk-OPH (1) and[¢1] for mk-TPH (1), etc. Intuitively, an instantia-
tion which would be written informally as

Plzl—xzx(n+1) < f(x)

will be written as
P Jel] x(n+1) < f([el])

in our abstract syntax. The former is to be preferred for legibility, but the latter is much
easier to manipulate in the formal specification.
The extended syntax

The extended syntax is defined by

Termy = Ezpy | Typey
Exp, = VSymb | CompEzp, | BindExp, | OPH
Type; = Comp Typey | SubTypey | Dep Type; | TPH

CompEzp, :: symb . CESymb
eArgs @ Exp;
tArgs : Type;

where
inv-CompEzp,(e) £ Is-valid-arglist(eArgs(e) ~ tArgs(e))

and so on, as beformutatis mutandishroughout Section 4.2. Auxiliary functions are
defined in the obvious way: e.qg.

Subterms([el]) = {[el]}
freeVars([el]) = bndVars([el]) = { }

The results from Section 4.2 carry through.

Note: Section 4.3 doesot change: in particular, placeholders arat allowed in rule
statements.

128 4 Foundation

The arity of a term

It will be useful to have a function which counts the number of parameters (of each kind)
ina Term,:

Arity : Termy — N x N
Arity(z) &
let m =max{i|i=0V mk-OPH (i) € Subterms(z)},
n=max{i|i=0V mk-TPH(i) € Subterms(z)} in
(m,n)

In particular, a term with no placeholders has afity0). Henceforth we shall identify
Termg with the subtype

< x: Termy | Arity(z) = (0,0) >

since the two are clearly isomorphic.

4.4.3 Instantiation
An instantiationis a mapping from metavariables to our extended syntax. Formally:

Instantiation . elnst . CESymb = Exp;
tinst : CTSymb - Type,

Elements ofng elnst andrng tInst are callednstantiands

To instantiatea term by an instantiation, we replace the term’s metavariables by their
instantiands, with placeholders *filled in” appropriately. (As noted above, bound variables
may need to be renamed to avoid capture, but all other symbols are left unaffected.) For
example, the result of instantiatim®jcons(h, t)] by the instantiation

{h— 3,t+—[7,5], P — rev(rev([el])) = [el] }

is rev(rev(cons(3,[7,5]))) = cons(3, [7, 5]).

We can now sketch the definition of the operation for applying an instantiation to a
term. There is a precondition: namely that each occurrence of a metavariable in the term
has enough arguments to fill the placeholders in its instantiand. As usual, we only give
the definition in a few cases since the other cases are exactly analogous (and the reader is
referred to the full specification for details).

4.4 Rule schemas and instantiation 129

Instantiate : Termy; x Instantiation — Termy
Instantiate(z, inst) -2
let mk-Instantiation(om, tm) = inst in
cases z of
VSymb —x
mk-CompFEzp,(c, el, tl) — let el’ = [Instantiate(el(n), inst) | n € inds el],
tl" = [Instantiate(tl(n), inst) | n € indstl] in
if ¢ € domom
then FillPHs(om(c), el’, ")
else build-CompExp;(c, el’, tI')
mk-BindEzp,(q, v, t, e) — let t' = Instantiate(t, inst),
¢’ = Instantiate(e, inst) in
build-BindExp,(q, v, t', €')
OPH —

end
pre ...(see above)
where

FillPHs : Termy x Exp} x Type; — Termy
FillPHs(z, el tl) &
cases z of
VSymb —
mk-CompEzp(c, el’, tl") — let el’ = [FillPHs(el'(n), el, tl) | n € inds el'],
tl' = [FillPHs(tl'(n), el, tl) | n € indstl’] in
build-CompExp; (¢, el’, tl')

mk-OPH (n) — el(n)
mk-TPH (n) — tl(n)
end

pre Arity(z) < (lenel,len tl)

and
(4,7) < (k1) D i <kAj<I

In other words FillPHs(z, el, tl) simply fills placeholders in by the appropriate element

of el or ¢/, renaming bound variables — if necessary — to preserve invariants and to avoid
capture.FillPHs may need to rename dummy variables in variable binding constructs so
that variables free in instantiands do not get captured.

We'll need similar functions for instantiating sequents and rule statements:

Instantiate : Sequent X Instantiation — Sequent
Instantiate(s,inst) 2
pre Ve € Constituents(s) - pre-Instantiate(e, inst)

Instantiate : RuleStmt x Instantiation — RuleStmt
Instantiate(rs, inst) 2

pre ...

130 4 Foundation

These functions may need to rename sequent variables so that variables free in instan-
tiands do not get captured. Again, the reader is referred to the full specification (Ap-
pendix C) for detalils.

In Section 4.9 an algorithm for pattern-matching (‘anti-instantiation’) is specified and
developed.

4.5 Themural store

At a very abstract level, the ‘state’ of a proof assistant consists of a set of inference rules,
together with their proofs, if any. Proofs in turn are built from rules, which gives rise to
the notion that rules may depend on other rules. We want to exclude circular arguments.
We also want to distinguish between ‘rigorous’ and ‘fully formal’ proofs, which gives rise

to a notion of the status of a rule. Finally, we want to group rules into theories. These are
the considerations explored in this section.

4.5.1 Rules, axioms and dependencies

For simplicity, in this specification we won't distinguish between inference rules, theo-
rems, propositions, lemmas, corollaries, conjectures and so on. The only distinction we
draw is between rules which asxiomatic(self-evident) and those which require proof.
Thus, at least to a first approximation, a rule consists of its statement and a proof (if
appropriate). Formally:

Ruley 0 stmt . RuleStmt
proof : Proof | {AXIOM}

whereProof is defined in Section 4.7. Let us assum®@of comes with a function (again,
to be specified later) which says which rules were used to establish the proof:

Rules-used: Proof — Rule-set
This is enough to define@ependency relatioan rules as follows:

< : Rule x Rule — B
r <1y & let p = proof(ry), S = Rules-used(p) in
p: Proof AN(rmeSvareS-r<r')

Clearly < is transitive. We define
a=b2l a=bVa<b
Later we’ll overload the symbaok but we mean this definition to carry through.

At this level of abstraction, theaural store is simply a non-circular set of rules downwards
closed under the dependency relation:

Storey = Ruley-set
where

inv-Storeg(S) 2 VreS-rArAVr':Rule-r <r = r'e S

4.5 The mural store 131

Hence= is a partial ordering on the store.

45.2 The status of a rule

In many applications it is hard to justify the effort of providing fully formal proofs: e.g. a
proof from first principles tha? + 2 = 4 might take many lines. One of the goals of
mural is to support forms ofigorousreasoning — as opposed to fully formal reasoning —
in the belief that many users will want to use the proof assistant to help with difficult or
convoluted arguments, but will be content to leave gaps in the reasoning when assertions
are ‘obviously true’. Thusnural provides ways of simply asserting that rules are valid,
without further justification.

For the purposes of this specification, let's assume there is a primitive function

Is-assumed: Rule — B

which determines whether a rule is assumed. The function is actually defined (interac-
tively) by the user of the system, so no more detail need be given in this specification.
Note that assumed rules are qualitatively different from axioms: axioms are self-evident
truths upon which a whole theory is based, whereas assumed rules are believed to be
derivable from axioms, given ‘sufficient effort’. Note also that assumed rules may have
partial (or sketch) proofs and may depend on other rules.

In Section 4.7.6 we define a function
Is-complete: Proof — B

which determines whether a proof is complete. Putting the various concepts together we
can distinguish different levels of rules:

e axiomatic — in which the rule is an axiom
e fully derived — in which the rule has been demonstrated to follow from axioms

e rigorously derived — in which the rule has been demonstrated to follow from axioms
and assumed rules

e proven — in which the rule has a complete proof, but some of the rules on which it
depends may be as yet unproven

e unproven — in which the rule’s proof is not yet complete

More formally, we introduce a enumerated type
RuleStatus = { AXIOMATIC, FULLY DERIVED, RIGDERIVED, PROVEN, UNPROVEN}

together with a linear ordering

UNPROVEN < PROVEN < RIGDERIVED < FULLY DERIVED < AXIOMATIC

The sstatusof a rule is then defined by:

132 4 Foundation

Status : Rule — RuleStatus
Status(r) £ let p = proof(r), rs = Rules-used(p) in
if p = AXIOM
then AXIOMATIC
else if Is-complete(p)
then if Vr' € rs - Status(r’) > FULLY DERIVED
then FuLLY DERIVED
else if Is-assumed(r) V Vr' € rs - Status(r') > RIGDERIVED
then RIGDERIVED
else PROVEN
else UNPROVEN

Given a rule, the next function tells the user what rules must be established in order for
the given rule to be (rigorously) derived:

Rules-yet-to-be-proven : Rule — Rule-set
Rules-yet-to-be-proven(r) £ let p = proof(r) in
if Is-assumed(r) V p = AXIOM
then { }
else if Is-complete(p)
then U{ Rules-yet-to-be-proven(r’) | r' € Rules-used(p)}
else {r}

Claim: Status(r) > RIGDERIVED < Rules-yet-to-be-proven(r) = { }

The other extreme is to disregard all assumed rules. The following function gathers to-
gether the rules which must be established in order for a rule to be derived from first
principles:

Rules-ytbp-ffp : Rule — Rule-set
Rules-ytbp-ffp(r) £ let p = proof(r) in
if p = AXIOM
then { }
else if Is-complete(p)
then U{Rules-ytbp-ffp(r') | ' € Rules-used(p)}
else {r}

Claim: Rules-yet-to-be-proven(r) C Rules-ytbp-ffp(r)

Claim: Status(r) > FULLY DERIVED < Rules-ytbp-ffp(r) = {}

45.3 Theories

Rules are arranged intbeoriesin mural. For example, the rules about the logical con-
nectives\, vV, =, etc. might be collected together in a single theory, called Propositional
Calculus. Other candidates for theories would be Arithmetic, Set Theory, List Theory, the
theory of VDM primitives, the theory of a design method, and so on. The length function
on lists — for example — involves numbers and lists, so results about it could usefully be
stored in a theory which combines Arithmetic and List Theory. Many more examples are

4.5 The mural store 133

given in Chapter 3.

Experience shows that it is very useful to structure the theory collection as a hierarchy
with ‘inheritance’. For example, all the above theories build on Propositional Calculus,
and the Theory of VDM Primitives builds on Arithmetic, Set Theory and so on. This
notion is captured in the following definitions:

Ruley . theory . Theoryy
stmt . RuleStmt
proof . Proof | {AXIOM}

where
Theoryy . parents . Theoryy-set

As it stands, the definition of heory, is virtually trivial. For example, the least fixed
point of this definition is

Th@O?“yo = {{ }7 {{ }}’ {{ }7 {{ }}}7 . }

In the next section another field will be added, making for a less trivial definition; in the
meantime the above is enough to explore the concept of a hierarchy of theories.
The transitive closure of theurents relation is defined by

< : Theory x Theory — B
Ty < Ty & Ty € parents(Ty) V AT € parents(Ty) - Ty < T

Theancestorf a theory are itself, its parents, its parents’ parents, and so on:

Ancestors : Theory — Theory-set
Ancestors(T) & {T': Theory | T' < T}

Another useful auxiliary function collects the ancestor theories of a set of rules:
TheoriesOf : Rule-set — Theory-set
TheoriesOf (S) £ U{Ancestors(theory(r)) | r € S}

We shall add a clause to the invariant on the store to ensure that the theory hierarchy
admits no circularities?

12Some remarks about VDM are in order here:

According to some schools of VDM thought, the non-circularity condition on the theory hierarchy is not
strictly necessary, since it is enforced by a least fixed point semantics of recursively defined data types.
We've chosen to include the condition here anyway, in the belief that it is only fair to point out to the reader
that such a condition applies, and that it makes it easier to reason about the specification.

Of course, nothing should be inferred about the order in which theories can be defineciine.g. the
user should be free to add a ‘higher’ theory before introducing its parents; to think otherwise would be to
read too much into the specification. In some sense, the data model being described here is a ‘perfect world’
model in that it describes the state of a complete collection of theories and rules. In pratige will
almost always be in an incomplete state.

In the full specification, theories (and rules, and many other objects) are garaes— or references,
if you prefer — which goes some way towards modelling tineral state the user sees. The overhead
with using references is that mappings from names to objects must be passed to functions, which makes
the specification (even more) tedious to write and read. Some of these problems would be alleviated if
VDM had ‘pointers’. (Note that the non-circularity condition must be stated explicitly when references are
employed.)

134 4 Foundation

Store; = Rule;-set

where

inv-Store; (S) £ inv-Storeg(S) AVT € TheoriesOf (S) - T £ T
Thus= is a partial ordering on the theories of the store.
Finally, a theory inherits all the rules of its ancestor theories:

RulesOf (T: Theory) rs: Rule-set
ext rd S : Store
post s = {r € S | theory(r) € Ancestors(T)}

4.6 Syntactic contexts and well-formedness

4.6.1 Theories and their signatures

So how is the syntax introduced in Section 4.2 related to the theories introduced in Sec-
tion 4.5? To take some examples: the theory of arithmetic talks about symbols like

0,1,=,+,x,N,...
and list theory talks about things like
[],cons, hd, ", seq of], . ..

Note that0 and[] expect no arguments, whereas expects exactly twdZzp arguments
andseq of expects exactly onéype argument. It's useful to capture such information;
in fact, we've found it so useful that we’re going to go a little overboard and insist that
theories not only record what symbols they talk about but also how many arguments those
symbols expect.

Such information is stored insignature

Signature . constrs . ArityMap
binders : (DESymb | DTSymb)-set

ArityMap = (CESymb | CTSymb) — (N x N)

The numbers of arguments a symbol expects is calletiiggand is recorded as a pair of
natural numbers (the first for the numberfadps and the second for the numberfpes).
For later convenience, elementsdain constrs (i.e., the CESymbs andCT'Symbs) will
be calledconstructors

A theory inherits the constructors and binders from all its parent theories, and may intro-
duce new ones of its own (vialacal signaturg:

Theory, . parents . Theory,-set
localSig : Signature

where

inv-Theory (T) &
VT, Ty € Ancestors(T) - Are-nonclashing(localSig(T1), localSig(Ts))

4.6 Syntactic contexts and well-formedness 135

where

Are-nonclashing : Signature x Signature — B
Are-nonclashing(X, %) 2 let em = constrs(X), cm’ = constrs(X’) in
Vz € dom em Ndom em’ - em(x) = em/(z)

The invariant says that there should be no clashing declarations: i.e., any shared construc-
tors should have the same arities.

The rest of this section defines some auxiliary functions which will be needed later on.
The first one merges two signatures together, provided they have no clashing declarations:

Merge-sigs : Signature x Signature — Signature
Merge-sigs(X, %) 2
mk-Signature(constrs(X) 1 constrs(X’), binders(X') U binders(X"))
pre Are-nonclashing(X, X'")
Note that (when it is defined)/erge-sigs is an associative-commutative (AC) function.
The next function merges a set of non-clashing signatures:

Merge-sig-set : Signature-set — Signature
Merge-sig-set(SS) & if SS=1{}
then mk-Signature({ },{ })
else let V' € SS in
Merge-sigs(X, Merge-sig-set(SS — {X'}))
pre VX X' € SS - Are-nonclashing(X, X")
The order in which the signatures are merged is irrelevant gifwege- sigs is AC. Finally,
the last of the current batch of auxiliary functions collects the ‘full signature’ of a theory
by merging the local signatures of all its ancestors (including itself):

FullSigOf : Theory — Signature
FullSigOf (T) & Merge-sig-set({localSig(T") | T' € Ancestors(T)})

Note that symbols which occur in more than one ancestor theory get ‘coalesced’ —i.e.,
they enjoyall the properties they have in the various separate defining theories. This
calls for some care on the user’s part since it can easily result in inconsistent theories. In
Section 4.8.4 we describe a mechanism for renaming symbols before combining theories,
so that such coalescing is circumvented.

4.6.2 Rules and their metavariables

In essence, metavariables are constructors ‘local’ to a rule, and not exported to a theory.
To make it clear exactly which things in a rule are metavariables, and how many arguments
they expect, we’ll add a new field tBules recording its metavariables (and their arities):

Ruley @ theory . Theory,
stmt . RuleStmt
metavars : ArityMap
proof . Proof | {AXIOM}

where

136 4 Foundation

inv-Ruley(r) £ let X' = FullSigOf (theory(r)) in
dom metavars(r) N dom constrs(X) = { }

The invariant says that metavariables must be symbols not already declared in the theory
of the rule, which will prevent any ambiguity about whether a constructor is a constant or
a metavariable. Finally, it will be useful to have a function which extracts the signature
of a rule, which consists of all the symbols available in the rule’s theory plus any new
metavariables introduced by the rule:

SigOf : Rule — Signature
SigOf (r) & let X = FullSigOf (theory(r)) in

(X, constrs — constrs T metavars(r))

4.6.3 Well-formedness

Just as when using a programming language, all symbols in a proof must make some kind
of sense, even if they’re only temporary (local) variables. The next definition captures the
notion of asyntactic context

Context . vars . VSymb-set
sig . Signature

A term is well-formed in a syntactic context if — apart from its own bound variables — it
only uses symbols from that context, and it uses them in a manner consistent with their
arities:

Is-wfd : Termy; x Context — B
Is-wfd(z, ') & let mk-Context(vs, mk-Signature(cm, bs)) = I" in
cases ¢ of
VSymb — T € vs
mk-CompFEzp(c, el, tl) — ¢ € dom cm
A (lenel,lentl) = em(c)
AVy € elems el Uelems tl - Is-wfd(y, ")
mk-BindEzp(q,v,t,e) — q € bs N v & vs
A Is-wfd(t, I')
A Is-wfd(e, u(I", vars — vs U {v}))
mk-OPH (n) — true

end

Claim: The only variables which occur free in a well-formed term are those given by the
context: i.e.
Is-wfd(z, ") = freeVars(z) C vars(I")

Claim: Well-formedness is monotonic: e.g.

Is-wfd(x, mk-Context(vs, X))
A ws C wus" A Are-nonclashing(X, X")
= Is-wfd(z, mk-Context(vs', Merge-sigs(X, X')))

4.7 Proofs 137

Claim: The subterms of a well-formed term are well-formed in the appropriately ex-
tended context: e.g.

Is-wfd(z, ") = Yy € Subterms(x) - Is-wfd(y, pu(I', vars — freeVars(y)))

Here are some other useful definitions. The first says that a sequent is well-formed pro-
vided its (sequent) variables are new and its constituents are well-formed in the appropri-
ately extended context:

Is-wfd : Sequent x Context — B
Is-wfd(s, ') 2 let mk-Sequent(vs, prems, up) = s in

vs Nwvars(I') ={}
AVe € prems U{up} - Is-wfd(e, u(I", vars — vars U vs))

In particular, for a sequent to be well-formed in a context without free variables, its con-
stituents must have only sequent variables as their free variables: viz.

Ve € Constituents(s) - freeVars(e) C vars(s)
The notion extends to rule statements in the obvious way:

Is-wfd : RuleStmt x Context — B
Is-wfd(mk-RuleStmt(hyps, seqs, c¢), ') £
Vx € hyps U seqs U {c} - Is-wfd(x, ')

Well-formed instantiations are defined similarly.

Finally, rules should not have variables floating around freely: this reflects the desire
to ‘wrap up’ rules so that they can be freely moved between contexts. In technical terms,
the invariant on rules must be extended to say that the rule statement contains no free
variables:

Rules . theory . Theory,
stmt . RuleStmt
metavars . ArityMap
proof . Proof | {AXIOM}
where

inv-Rules(r) 2 inv-Ruley(r) A
let I' = mk-Context({ }, SigOf (r)) in
Is-wfd(stmt(r), I)

4.7 Proofs

The following sections formalize the notion of proof which was introduced informally
in Chapter 3. For the most part, the formal model is very close to the informal model
illustrated above, although of course it contains information that is not explicitly displayed
above, such as instantiations. (Line- and box-numbers will however not be used, since
they complicate the specification of editing operations and are not really needed in an
abstract specification — although circularities must of course be precluded somehow.)

In Section 4.7.7 we show that our model correctly captures the notibibgiroof.

138 4 Foundation

4.7.1 Scoping of assumptions

The first notion to be formalized will be that of the subordinate proohax Boxes can
introduce new (local) hypotheses and new (local) parameters. Because the new parame-
ters correspond to sequent variables, we represent them Usingbs and will call them

box variables Neither the new parameters nor the new hypotheses are available for use
outside the box, but they can be used within subboxes of their defining box. This leads to
the following definition:

Boxy 2 boxVars . VSymb-set
subBoxes . Boxy-set

Here we are only concerned about the use of boxes as a scoping mechanism: at this level
of abstraction we are not concerned about the ordering of subboxes and variables in a box,
nor with the lines in a box. The transitive closure of the subbox relationship is given by:

< :Box x Box — B
by < by & by € subBozes(by) V b € subBoxes(by) - by < b

To relate this to the usual (linear) textual displayNid proofs,b; < by if and only if b,
is contained irbs.

Our first attempt to specify’roof simply considers the box structure of a proof. The
whole proof will be contained in a box called th@ot. Since we have insisted that rules
have no free variables, the root box should have emptyars field. Also, since boxes
represent scopes of assumptions and box variables, the nesting of boxes in a proof should
be block-structured, in the sense that boxes may be nested but may not otherwise overlap.
In keeping with the principle that logically different variables should be spelt differently,
we’ll also insist that differentl/’Symbs must be used for the box variables of different
boxes. This leads to the following definition:

Proofy :: root : Box

where

inv-Proofy(p) £ let bs = BoxesOf (p) in
bozVars(root(p)) = { }
AVD € bs-b A b
AYby, by € bs -
b1 7é bg
= subBozxes(by) N subBoxes(by) = boxVars(by) N boxVars(by) = { }

where

BoxesOf : Proof — Box-set
BozesOf (p) & {b: Box | b < root(p)}

Part of the invariant says that box nesting is non-circular and another part that boxes do
not share immediate subboxes; together these conditions imply that the box structure is
tree-like (or ‘block-structured’).

4.7 Proofs 139

4.7.2 Linesin a proof

This section describes hoimes are assigned to boxes. There are many ways this could
be specified but the following seems to work out easiest. But first of all, lines are labelled
by assertionand come in two varietiesiypothesidines andordinary (or justified) lines.

Line = Hypline | Ordline
Hypline . assertion . Fxpg

Ordline . assertion . Expg
Justif . Justification

Each proof will have a mapping which assigns lines to boxes, but for each box one of
its (ordinary) lines must be distinguished asdatnclusion This leads to the following
definitions:

Box, 2 boxVars . VSymb-set
subBozes . Box;-set
boxConcl . Ordline

Proof, :: root . Box
IbMap : Line -~ Bom

where

inv-Proofi(p) 2 inv-Proofy(p) A

let Im = IbMap(p) in
rng Im C BozesOf (p) AVb € rnglm - Im(boxConcl(b)) = b

The last part of the invariant simply says that a box’s conclusion is assigned to the box
itself.

Note that (at this stage) we're not concerned about the order in which lines appear in
a box. In fact, there are good reasons — such as ease of specification and orthogonality
of concerns — for delaying such a design decision as long as possible. Instead, we'll
introduce (later) a notion of how a line depends on other lines, and use this to exclude
circularities in proofs. In the meantime, here are a couple of useful auxiliary functions for
collecting the lines of a proof:

LinesOf : Proof — Line-set
LinesOf (p) £ dom bMap(p)

OrdlinesOf : Proof — Ordline-set
OrdlinesOf (p) 2 {l: Ordline | | € LinesOf (p)}

A line will be saidto belong toa box if it is assigned to the box, or to one of its subboxes,
or to one of its sub-subboxes (and so on):

1s-1n : Line X Box x Proof — B
is-in(l,b,p) 2 bMap(p)(l) < b

pre [€ LinesOf (p) A b € BoxesOf (p)

140 4 Foundation

We'll write is-in(l, b, p) asl €, b, or simply ag € b whenp is clear from context.

Claim: < acts like the subset relation on lines in boxes — viz.

\V/bl, by € BOI@SOf(p) lebyANby =by = € by

Claim: The only box to which a proof’s conclusion may belong is the root: i.e.,
Vb € BoxesOf (p) — {root(p)} - boxConcl(root(p)) ¢ b

(This follows from the non-circularity ok.)

It will be useful to have functions which extract the (assertions labelling the) conclusion
and hypotheses of a box:

Conclusion : Bor — Fxpg

Conclusion(b) £ assertion(bozConcl(b))

Hyps-of : Box x Proof — Fxpg-set

Hyps-of (b,p) £ {assertion(h) | h: Hypline A IbMap(p)(h) = b}

As remarked above, a sequent is like a ‘squashed’ box: sequent variables correspond to
box variables, premises correspond to hypotheses, and the upshot corresponds to the box’s
conclusion. Thus we can extract a sequent from a box as follows:

Extract-sequent : Box x Proof — Sequent
Extract-sequent(b,p) 2
mk-Sequent(bozVars(b), Hyps-of (b, p), Conclusion(b))

4.7.3 Well-formedness of assertions on lines

The syntactic ‘context’ of a line in a proof consists of the signature of the rule being
proven (namely, its metavariables and the full signature of its theory) and the box variables
of the boxes which enclose the line. The latter will be called the line’s *available variables’
and are given by:

availVars : Line x Proof — VSymb-set
availVars(l,p) & {bozVars(b) | b € BozesOf (p) N1 € b}

The next function defines what it means for the assertion on a line to be well-formed:

Has-wfd-assertion : Line X Rule — B
Has-wfd-assertion(l,r) £
let p = proof (r),
I' = mk-Context(avail Vars(l, p), SigOf (r)) in
Is-wfd(assertion(l), I")
pre p: Proof Al € LinesOf (p)

4.7 Proofs 141

We'll now strengthen the invariant on rules so that their proofs and statements are related,
and proof lines are well-formed. In particular, the only variables that may occur free in
assertions in a proof are box variables from enclosing boxes:

Vi € LinesOf (p) - freeVars(assertion(l)) C avail Vars(l, p)

In fact, mural is rather more liberal than the above specification suggests. For example,
sometimes it is particularly useful to be able to leave ‘uninstantiated metavariables’ in
proofs when not enough information is at hand at the time an inference rule is invoked.
This lets the user continue with construction of a proof without committing to certain de-

cisions: e.g. a proof by induction can be set up without deciding on a particular induction
hypothesis. Another example would be to deliberately ldauminstantiated in

Vaz:N- Plr] = (2 —1)* < factorial(z)

until the proof is explored further and requirementsfohecome more apparent. The full
specification allows for many other kinds of ‘ill-formedness’ and syntactic inconsistency.

Ruley . theory . Theory,
stmt . RuleStmt
metavars . ArityMap
proof . Proof; | {AXIOM }
where

inv-Rules(r) 2 inv-Rules(r) A
let p = proof (r) in
(p # AXIOM
= (ordHyps(rs) = Hyps-of (root(p), p)
A concl(rs) = Conclusion(root(p))
AV € LinesOf (p) - Has-wfd-assertion(l,1)))

Note that, apart from the sequent hypotheses, a rule’s statement can be extracted from its
proof (if it has one).

4.7.4 Dependencies within proofs

This section considers (in abstract) how lines can depend on other lines and boxes, and
strengthens the invariant on proofs to respect scoping and to exclude circular arguments.
With each ordinary line we’ll associate a set of lines, boxes and sequents calded its
tecedents Typically, antecedent lines are the lines on which the justification of the line
depends, and similarly for boxes and sequents.

There are of course restrictions on which lines and boxes can be antecedents of any
given line. As remarked above it is not valid, for example, to appeal to a line (or box)
insidea box from a line outside that box, as illustrated in Figure 4.1. This leads to the
following first definition of the lines ‘accessible’ from a given line:

Accessible-linesy : Line X Proof — Line-set
Accessible-linesy(l,p) £
{I' € LinesOf (p) | Bb € BozesOf (p) -l &€ bAl' € b}

142 4 Foundation

L~ line !’ N

box &’
box b box b

-line { -line (
Figure 4.1: Invalid dependencies from lihe

It may help to note that the defining predicate can be written equivalently as
Vb € BozesOf (p)-1'€b = 1€b

The boxes accessible from a given line are defined analogously:

Accessible-boxesy : Box X Proof — Box-set
Accessible-bozesy(l,p) 2

{b" € BozesOf (p) | Bb € BozesOf (p) -l € bAV < b}

These definitions are over-generous in that they allow for example a line to appeal to itself
or to an enclosing box, which would not be valid logical reasoning. Later we’ll tighten
these definitions somewhat; in the meantime, it’s interesting to see how far we can get
with such weak restrictions.

Claim: The lines accessible fromare those which are assigned to boxes contaifing
ie.
I' € Accessible-linesy(l, p) < 1€ lbMap(p)(l')

It follows that the variables available at accessible lines are a subset of those available at
the line: i.e.,

Vi € Accessible-linesy(1, p) - avail Vars(l', p) C availVars(l, p)

Claim: The boxes accessible frohare the immediate subboxes of boxes which enclose
l:i.e.,
Accessible-bozesy(l, p) = | J{subBozes(b) | | €, b}

(The proof uses the tree-like nature of boxing.)

For the purposes of this specification, the antecedent relations will be stored as extra fields
of a proof. To prevent circular arguments it is necessary to place additional restrictions
on the antecedent relations: e.g. we do not allow a situation whereby igjeistified by

appeal to lineb, line b by appeal to line: and linec by appeal to linez. We do this by
defining

Proofy . root . Box
[bMayp : Line — Box;
antLines : Ordline = Line-set
antBozes : Ordline - Boz-set
antSeqs . Ordline > Sequent-set

4.7 Proofs 143

where

inv-Proofa(p) 2 inv-Proofi(p) A
let Im = antLines(p), bm = antBozes(p), sm = antSeqs(p) in
dom Im = dom bm = dom sm = OrdlinesOf (p)
AV € Ordlines(p) -
I 4,
A lm(l) C Accessible-lineso(l, p)
A bm(l) C Accessible-bozesy(l, p)

wherel; <, k stands forDepends-on (1, b, p) and

Depends-on : Line x Ordline X Proof — B
Depends-on(ly, b, p) 2
let cons = {boxConcl(b) | b € antBozes(p)(k)},
Is = antLines(p)(lk) U cons in
L €lsVv 3l els- Depends-on(h, 1, p)

The dependency relation is roughly the transitive closure of the antecedent relation(s),
where boxes ‘export’ their conclusions only. We’'ll simply write< » whenyp is clear
from context.

In Section 4.7.7 it is shown that this invariant correctly captures the notidviDof
proof. In the meantime we explore the consequences of our definitions, which leads to a
useful strengthening of the invariant éthoof .

The next function extracts the set of lines on which the conclusion of a proof depends:

Lines-used : Proof — Line-set
Lines-used(p) £ {l € LinesOf(p) | | < boxConcl(root(p))}

If all the individual justifications of ‘used lines’ are correct, then any other line in the
proof is redundant (in the sense that it's not actually needed to establish the result). Boxes
which don't contain ‘used lines’ are also extraneous to the proof. A ‘garbage collector’
— to be invoked by the user — is providedrmral which cleans up a proof by removing
redundant lines and boxes, but such an operation is awkward to specify at this level.

It's convenient to make the following abbreviation:

Ordlines-used : Proof — Ordline-set
Ordlines-used(p) 2 {l: Ordline | | € Lines-used(p)}

Claim: Ordinary lines used to establish the conclusion of a proof cannot appeal to boxes
to which they belong: i.e.

Vi € Ordlines-used(p) - Vb € antBozes(p)(l) -1 ¢ b

3For example,

GarbageCollect
ext wr p: Proof

post LinesOf (p) = Lines-used(p)
A Extract-sequent(root(p), p) = Extract-sequent(root(‘p), p)
is too loose a specification for what we have in mind because it says too little about the box structure. This

is not the place to go into a lengthy discussion; suffice it to say that it is much easier to specify the operation
at a level in which lines and boxes are given names (or ‘references’, if you prefer).

144 4 Foundation

(Hint: the proof uses the following lemma
L <b = Vbe BoxesOf(p)- (L €bANL &b = L = boxConcl(b) < k)
which can be proven by a straightforward induction. Let’s suppose
b € antBozes(p)(l)
and/ € b and derive a contradiction. First note that
boxConcl(b) < 1

by definition. We can thus rule out the cdse- root(p) since

[< boxConcl(root(p))
and< is non-circular. It follows from an earlier result that

boxConcl(root(p)) & b

and hence from the lemma that< boxConcl(b). But this contradicts the observation

above thaboxConcl(b) < 1.)
It's also clear that it would contradict the non-circularity-ofor a line to make appeal
to itself. Thus we can strengthen the definitions above:

Accessible-lines; : Line X Proof — Line-set
Accessible-lines, (I, p) 2
let bs = BoxzesOf(p) in
{I' € LinesOf (p) | l AU NBb€ bs- (1€ bAI €b)V 1= boxConcl(b)}

Accessible-boxes, : Box x Proof — Box-set

Accessible-bozes (I, p) &
{b" € BozesOf (p) | | € V' NBb € BoxesOf (p) -l € b A < b}

Proofs is defined exactly a®roof, above but with the new definition$ccessible-lines;
and Accessible-bozes .

We've said nothing about antecedent sequents yet. They will be taken from among the
sequent hypotheses of the rule being proven:

Rules :: theory . Theory,
stmt . RuleStmt
metavars . ArityMap
proof . Proof; | {AXIOM }
where

inv-Rules(r) 2 inv-Rules(r) A

let p = proof (r) in
(p # AXIOM = rngantSeqs(p) C seqHyps(stmt(r)))

4.7 Proofs 145

4.7.5 Justifications

In formal proofs, new ‘facts’ are deduced from existing facts and hypotheses by rules of
inference. In our terminology, ordinary lines in a proof are justified by (instances of) rules,
making reference to other lines, boxes and sequents; this notion is captuteld jnstif
below.

For various reasons, however, we find it convenient to introduce other kinds of justi-
fication — justifications which could be considered ‘shorthand’ for certain kinds of justifi-
cation by rules, such as

¢ folding and unfolding definitions

e appealing to sequent hypotheses

e nested justifications

e appeal to an ‘oracle’ (for example, an external decision procedure)

and more. After introducindRuleJustif, we'll look briefly at one of these ‘shorthands’
— namely justification by appeal to a sequent hypothesis. In Section 4.8.5 we look at
justifications by rules which are translated over theory morphisms. The other kinds of
justification are dealt with in the full specification.

Putting all this together gives us:

Justification = RuleJustif | SeqHypJustif | ...

For each kind of justification we shall define a predicate
Is-properly-justified: Ordline x Proof — B

which checks the correctness of a line’s justification.

Justification by rules

The most common way of justifying a line is by appeal to an instance of an inference
rule:t4

RuleJustif . rule : Rules
mstn . Instantiation

where

inv-RuleJustif (rj) 2 let m = metavars(rule(rj)),
mk-Instantiation(om, tm) = instn(rj) in
dom m = dom om U dom tm
AVc € dom om - Arity(om(c)) < m(c)
AYc € dom tm - Arity(tm(c)) < m(c)

140Once again (cf. the footnote in Section 4.5.3), it would be better to maka thef-field apointerto
arule, rather than the actual rule itself. Strictly, the noncircularity condition on rules in Section 4.5 follows
as a consequence of (VDM semantics and) the definitioRw@éJustif given here, but that was not the
specification writer’s intention, nor will the fact be exploited here.

146 4 Foundation

where(i,j) < (k,1) 2 i <kAj<I.

Part of the invariant says that the instantiation instantiates the metavariables of the rule
and no more. The rest of the invariant gives a sufficient condition for the instantiation to
be possible — namely, that each occurrence of a metavarablghe statement ofy has
enough arguments to fill the placeholders in the instantiand dhis, together with the
well-formedness invariant on rules, ensures the precondition on instantiation is satisfied:
ie.

Vrj: RuleJustif - pre-Instantiate(stmt(rule(rj)), instn(rj))

The following predicate says what it means foRale.Justif to be correct!®

Is-properly-justified : Ordline x Proof — B
Is-properly-justified (1, p) 2
let mk-RuleJustif (r, inst) = justif (1),
rs = Instantiate(stmt(r), inst), p = proof (r),
Is = antLines(p)(l), bs = antBozes(p)(l), ss = antSeqs(p)(l) in
assertion(l) = concl(rs)
AYoh € ordHyps(rs) - 3 € Is - assertion(l") = oh
AVsh € seqHyps(rs) -
Is-trivially-true(sh)
v 3" € s - Establishes(Extract-sequent(l’), sh)
V 3b € bs - Establishes(Extract-sequent (b, p), sh)
V s € ss - Establishes(s, sh)
pre justif (1): RuleJustif
where

Extract-sequent : Line — Sequent
Extract-sequent(l) £ mk-Sequent({ },{}, assertion(l))

Extract-sequent : Box x Proof — Sequent
Extract-sequent(b,p) £
mk-Sequent(boxVars(b), Hyps-of (b, p), Conclusion(b))

In other words, the assertion on the line in question should be equivalent to the conclusion
of the rule instance, and all hypotheses of the rule instance should be established by
antecedents of the line. Only a line can establish an ordinary hypothesis, but lines, boxes
and sequents can establish sequent hypotheses. Sometimes a sequent hypothesis even
becomes trivially true upon instantiation. (In practice however, sequent hypotheses are
usually established by boxes.) There are a number of examples in Chapter 3 above (e.g. in
Section 3.2.2).

We note in passing that the above definition leaves room for plenty of redundancy.
For example, there may be antecedent lines and/or boxes which are not actually needed
as far as establishing hypotheses of the rule instance. Such redundancy needn’t bother us
at this stage, but it would be useful (in a subsequent development of the specification) to

5Rules which have side conditions (cf. Section 4.3.5), should be checked as part of the
Is-properly-justified relation.

4.7 Proofs 147

introduce an ‘garbage collector’ for removing it from a proof.

Of course, only rules which are in, or inherited by, the theory of the rule being proven
can be used in &uleJustif . This restriction is enforced by strengthening the invariant on
Rule:'t

Ruleg . theory . Theory
stmt . RuleStmt
metavars . ArityMap
proof . Proofs | {AXIOM}
where

let p = proof(r) in
(p # AXIOM = VI € Ordlines-used(p) -
let 77 = justif (1) in
rj: RuleJustif = rule(rj) € RulesOf (theory(r)))

inv-Ruleg(r) 2 inv-Rules(r) A

Justification by sequent hypotheses

There are a whole class of rules to do with sequents which can legitimately be considered
to be general rules of Natural Deduction: e.g.

P, {Prr @ P, Q {P,Q}FR
Q R

When sequent variables are present the situation is slightly more complicated: e.g.

Plal, {Plz]} s Qfz]
Qla]

provided a is instantiated by a/Symb.!” Because such rules are common to il
logics (i.e. logics whose inference rules are expressibDnform), it was decided to
‘hard-wire’ them into the system, by providing a special kind of justification: namely,
justification by sequent hypothesi¥he relevant notions are captured in the following
definitions:

SeqHypJustif . sequent . Sequent
varMap : VSymb — VSymb

16 A note about the definition ofnv- Rules: as defined, the functioRulesOf depends on the store (or
‘state’) and so strictly should not be used here. The problem can be overcome by writing instead

theory(rule(rj)) = theory(r)

but although this is formally better it was felt to be less evocative for the reader.
17¢f. the discussion of our interpretation of ‘arbitrary variable’ in a footnote in Section 4.3.3. To take
account of the more general interpretation, theMap-field of SeqHypJustif should be replaced by

varMap: VSymb — Expy

in what follows. In the definition ofs-properly-justified, RenameFree Vars would also have to be suitably
generalized to allow free variables to be replaced by expressions.

148 4 Foundation

where

inv-SeqHyp Justif (mk-SeqHyp Justif (seq, vm)) £ domvm = seqVars(seq)

For a line to be properly justified by a sequent hypothesis, its assertion should be equiv-
alent to the sequent’s upshot, and each of the sequent’s premises should be established at
antecendent lines. Of course, this is subject to sequent variables being renamed according
to varMap:

Is-properly-justified : Ordline x Proof — B
Is-properly-justified(l,p) 2 let mk-SeqHypJustif (seq, vm) = justif (1) in
assertion(l) = RenameFree Vars(upshot(seq), vm)
AVe € premises(seq) - 3" € antLines(p)(l) -
assertion(l') = RenameFreeVars(e, vm)
pre justif (1): SeqHypJustif
In practice, to meet well-formedness criteria it will almost always be the case that

rgovm C availVars(l, p)

if the line is to be properly justified (because sequent variables usually occur free in at
least one of the constituents of a sequent hypothesis).

Once again, some of the antecedent lines may be redundant and could be ‘garbage
collected away’ (along with all of the antecedent boxes, if any).

4.7.6 The status of a proof
A line in a proof isknownif every line on which it depends is properly justified:

Is-known : Ordline x Proof — B
Is-known(l,p) & VI' <X 1-1": Ordline = Is-properly-justified (I, p)

A proof is completeif every ordinary line used to establish its conclusion is properly
justified (or equivalently, if its conclusion is known):

Is-complete : Proof — B
Is-complete(p) £ VI € Ordlines-used(p) - Is-properly-justified(l, p)

The rules which are used in a proof are just those used iR tie/ustif s of relevant lines:

Rules-used : Proof — Rule-set
Rules-used(p) 2

{rule(justif (1)) | | € Ordlines-used(p) A justif (1): RuleJustif }

This completes the definitions missing from Section 4.5 above.

4.7.7 ND proof trees

The second half ofnv- Proof; defines what it means for the dependency graph underlying
a proof to be well-formed. It seems like a reasonable definition, but how do we know that
it faithfully captures the notion dND proof? After all, it has probably never even been
written down in a textbook in quite this form (the closest description seems to be that of

4.7 Proofs 149

Jaskowski discussed in [Pra65]) — obviously some validation is called for. Fortunately this
can be done by showing how our proof graphs are related to the widely-accepted notion
of a Natural Deductioproof tree(cf. [Pra65]).

Without loss of generality, let's assume all justifications in a proof Rué Justif s
(cf. the discussion at the start of Section 4.7.5). Informally, a Natural Deduction proof
tree can be obtained by ‘unfolding’ the proof graph from the proof’s conclusion, fol-
lowing antecedents and copying nodes. More precisely, nodes of the tree correspond to
(copies of) lines in the proof, labelled by their assertions. When an antecedent is a box,
its conclusion is used as the new node and the unfolding continues from there. Clearly
the unfolding process terminates since the dependency relation is noncircular (and VDM
values are finite).

Hypothesis lines and lines which are not properly justified will be cashimptions
The next function extracts the assumptions upon which a line depends:

Assumptions : Line X Proof — Erpg-set
Assumptions(l,p) 2
if [: Hypline V — Is-properly-justified(l, p)
then {assertion(l)}
else let S; = U{Assumptions(l',p) | I € antLines(p)(l)},
Sy = U{Assumptions(boxConcl(b’), p)— Hyps-of (b', p) | b’ € bs},
bs = antBozes(p)(l) in
S1 U S,
pre [€ LinesOf (p)
Notice how the hypotheses of a box are ‘discharged’ from the assumption set when a line
appeals to a box. That's because they were temporary assumptions, relevant only to lines
inside the box.

Claim: Clearly the assumptions on which a line depends are a subset of the assertions on
lines on which the line depends: i.e.,

Assumptions(l, p) C {assertion(l') | I' <1}

Claim: The Assumptions function is monotonic with respect to the antecedents relation:
i.e.

I' € antLines(p)(l) = Assumptions(l',p) C Assumptions(l, p)
A similar result holds for antecedent boxes:

b € antBoxes(p)(l) =
Assumptions(boxConcl(b'), p) — Hyps-of (b, p) C Assumptions(l, p)
Claim: If a line is ‘known’, its only assumptions are hypotheses of enclosing boxes: i.e.
Is-known(l,p) = Assumptions(l,p) C | J{Hyps-of (b, p) | b € BozesOf (p) Al € b}
(The proof uses two of the lemmas in Section 4.7.4.)

Claim: If the conclusionc of a boxb is ‘known’, then the box variables éfdo not occur
free in any assumption on whiehdepends, other than the hypotheses:afe.

Vb € BozesOf (p) -
let ¢ = boxConcl(b), ass = Assumptions(c,p) — Hyps-of (b, p) in
Is-known(c,p) = Ve € ass - freeVars(e) N boxVars(b) = { }

150 4 Foundation

This fact embodies a common ‘variable occurrence’ side-condition (cf. Section 4.3.3
above and the discussion in the section on Predicate Calculus in Section 3.2.4). The
proof relies on the scoping and well-formedness invariants, and follows easily from ear-
lier lemmas.

Claim: Given a ruleR and a linel in the proofpf of R, assertion(l) follows from
Assumptions(l, pf) and the sequent hypothesesofit(R) according to the laws of Nat-
ural Deduction.

Sketch proof: The proof is by induction on the number of lines on whictlepends in
pf. Letn = card {I": LinesOf (pf) | I < I}. Without loss of generality we can assume

Is-properly-justified(l, pf)

Base caself n = 0 thenantLines(pf)(l) = { } = antBozes(pf)(l), andassertion(l) is
simply established byustif (1) and the sequent hypotheses/bfif any).
Induction step: For convenience, let's abbreviatesumptions(l, pf) by A.

Consider the justificationustif (/). To each ordinary hypothesigyp of the rele-
vant rule instance there corresponds a line antLines(pf)(l). By the induction hy-
pothesis,ohyp follows from Assumptions(l’, pf), and thus from the supersdt Sim-
ilar considerations apply to sequent hypotheses (of the rule instance) which are estab-
lished by lines or sequent hypotheses. That just leaves the case when a sequent hy-
pothesisshyp is established by a bok'. Now, after appropriate renaming of sequent
variables, the upshot ofiyp is equivalent toConclusion(b’). The latter follows from
Assumptions(boxConcl(b'), pf), and thus fromA U Hyps-of (V', pf), by the induction
hypothesis. Of course, according to the (meta-)laws of Natural Deduction, the premises
of shyp — in our caseyps-of (b', pf) — are ‘discharged’ by the rule ifustif (1). Thus,
sincejustif (1) is a proper justification, we getssertion(l) follows from A, as required.
O

Since any tree-lik&D proof can clearly be put into linear form, we have:
Corollary Themural proof model faithfully captures the notion BD proof.

In particular, unless the axioms of a theory are inconsistent, only valid consequences of
the theory can be proven mnural .

4.8 Morphisms

This section treats an advanced topic. Due to time constraints, the facilities described in
this section were not included in early releases ofitimeal system. The reader can thus
safely skip this section on first reading.

4.8.1 Motivation

In Sections 4.5.3 and 4.6.1 a simple theory structure was described, amounting to an
acyclic directed graph of theories with simple inheritance. Although this is good enough
for many purposes, there are times when it is too simple: e.g.

¢ When the same symbol is used for different purposes in different parent theories, it
inherits both sets of properties. In some cases this is precisely what is intended. In

4.8 Morphisms 151

other cases the symbol can safely be considered to be ‘overloaded’ with different
meanings. But there are also cases when such coalescing makes for inconsistencies.

e Sometimes it is desirable to be able to simply rename some of the symbols in the
theory. For example, the theory might be being used in an application domain with
different notation to that in which it was originally developed (e.g. list concatenation
might be written as ‘@’ instead of ’). Renaming can also be used to avoid symbol
clashes when combining theories.

e Descending the theory hierarchy from the root often means moving from abstract,
general theories to more specific theories. For example, a simple way to form a
theory of AC operators would be to develop theories of associative and commutative
operators separately and then to make them parents of the new theory. Once a theory
hierarchy is constructed however it’s difficult to insert further abstractions without
redoing a whole part of the hierarchy.

e Sometimes it is desirable to construct two different but equivalent versions of a
theory: e.g. propositional calculus formulated in terms &f and ‘=’ versus a
formulation in terms of V' and ‘—=". Wherever one theory is used the other should
be equally available: but this is clearly not possible in an acyclic directed graph.

Our proposed solution to these problems is to augment the simple structure by extra links,
calledmorphisms?® Essentially, morphisms define ‘faithful interpretations’ of one theory
in another — simple translations which preserve meaning (in the sense of ‘provability’).

A simple example of a morphism, taken from Abstract Algebra, would be to interpret
the integers as a group under(with identity 0). Let’'s suppose the Theory of Groups is
formulated in terms of primitive constants id andinv of arities(2, 0), (0,0) and(1, 0)
respectively (withs displayed infixed). We'll also assume the integers are formulated in
an appropriate Theory of Arithmetic, and that both theories inherit the appropriate Theory
of Equality. The axioms of Group Theory are

e (bRc)=(a®b)®c
a®id=a=1d®a
a® inv(a) =id = inv(a) ® a

(universally quantified ovet, b andc).
The translation from group theory to arithmetic is induced by

a®b — o +b
id — 0

inv(a) +— 0—d
wherea and b are formal parameters and and b’ are their translations. Symbols from

the shared parent Equality Theory are translated unchanged, as are variables and metavari-
ables. Thus for example, the teimy (id ® inv(z)) = z translates to— (0+(0—z)) = z.

8This solution was initially inspired by Burstall and Goguen’s modular approach to building mathemat-
ical models ininstitutions[GB84].

152 4 Foundation

Clearly, all the axioms of group theory remain true under this interpretation. And since
proofs can be translated in a similar way, it follows that the translation of any derived rule
of Group Theory will hold in the Theory of Arithmetic.

In the remainder of this section we lay down the basic foundations for morphisms in
mural . Unfortunately, time may not permit a full implementation of the supporting oper-
ations.

4.8.2 Signature morphisms
A morphismis defined by its action on the primitive symbols of a theory:

Morph :: CEMap : CESymb -~ Exp,
CTMap : CTSymb = Type;
DEMap : DESymb "~ DESymb
DTMap : DTSymb = DTSymb

In this definition, constructors can be replaced by more complicated expressions (of the
correct kind). The expressions may contain placeholders, which get filled in by (transla-
tions of) the constructor’s arguments upon translation (cf. Section 4.8.3.) Variable binding
symbols can only be replaced by other variable binding symbols (of the correct kind).

The definition uses the ‘placeholders’ mechanism — introduced in Section 4.4.2 — to
deal with the formal parameters in instantiations. Thus instead of writing

a®@b— ad +b

formally we would write
® +— [el] + [e2]

where[ei] stands formk-OPH (i). In fact, the definition of translation will be almost
exactly the same as for instantiation of metavariables (cf. Section 4.4) except that now
variable binding symbols may also be affected.

A signature morphisnis a morphism together with a pair of signatures such that
symbols from one signature get translated to expressions/symbols in the other signature
in a consistent way. In particular, constructors should be translated to well-formed, closed
expressions with at most as many formal parameters as the symbol expects arguments.

SigMorph . from : Signature
to . Signature
via . Morph

where

inv-SigMorph(c) & let mk-Signature(m, bs) = from(o),
mk-Morph(cm, ctm, bm, dtm) = via(o),
I' = mk-Context({ }, to(o)) in
dom ¢m U dom ctm C domm
A dom bm U dom dtm = bs
AYe € dom em - Is-wfd(em(c), I') A\ Arity(em(c)) < m(c)
AYect € dom ctm - Is-wfd(ctm(ct), ") A Arity(ctm(ct)) < m(ct)

4.8 Morphisms 153

(This definition leaves room idom m — (dom ¢m U dom ctm) for metavariables, which
would normally simply be translated identically under a morphism.)
Note in particular that terms in the ‘range’ of a signature morphism are closed: i.e.

Vz € rng em U rng ctm - freeVars(z) = { }

4.8.3 Translation under morphisms

Thetranslationinduced by a signature morphism is defined by applying the morphism to
the leaves of the syntax tree and propagating the result back up the tree, renaming bound
variables (if necessary) to avoid capture and to preserve invariants.

Translate : Termy x SigMorph — Term,
Translate(xz,0) 2 let mk-Morph(cm, ctm, bm, dtm) = via(c) in
cases z of
VSymb — T
mk-CompFEzp,(c, el, tl) — let el’ = [Translate(el(i),o) | i € dom el],
tl" = [Translate(tl(i),0) | i € dom] in
if ¢ € dom cm
then FillPHs(cm(c), el tl')
else build-CompExp,(c, el’, tl')
mk-BindEzp, (b, v, t,e) — let ' = bm(b),
t' = Translate(t, o),
¢/ = Translate(e, o) in
build- BindExp, (b, v, t', e’)
OHP —

end
pre Is-wfd(x, mk-Context(free Vars(z), from(o)))

The preconditiorpre- Translate ensures that, if a constructor inis to be morphed, then
it has enough arguments to fill all the placeholders of its image.

Claim: Signature morphisms do not introduce new free variables: i.e.

freeVars(Translate(z, o)) C freeVars(x)

Claim: Signature morphisms take well-formed terms to well-formed terms; more pre-
cisely

let I'y = mk- Context(vs, from(o)),
I'y = mk-Context(vs, to(o)) in
Is-wfd(z,I'y) = Is-wfd(Translate(z,o),)

4.8.4 Theory morphisms

A theory morphisnis a morphism which translates axioms of one theory into (not neces-
sarily proven) rules of another:

154 4 Foundation

ThMorph . from . Theory
to . Theory
via SigMorph
justif : Rules — Rules

where

inv- ThMorph(mk- ThMorph(Ty, Ty, 0,J)) £
FullSigOf (Ty) = from(o) A FullSigOf (T}) = to(o)
Adom J = {r € RulesOf (Ty) | proof (r) = AXIOM }
Arng J C RulesOf (T})
AT € dom J - Translate(stmt(r), o) = stmt(J(r))

where Translate and= are extended t&uleStmt appropriately.?

A theory morphism isvalid (or afaithful interpretation) if it translates axioms into
established rules:

Is-valid : ThMorph — B
Is-valid(7) £ Vr € rgjustif (1) - Status(r) > RIGDERIVED

Claim: Given a valid theory morphism from theory to theory 7’, the appropriate

translation of any derived rule i must be derivable irff”.

(This follows from the obvious fact that complete proofs translate to complete proofs.)
The reader is referred to Sections 3.4.3 and 3.4.4 for examples of valid theory mor-

phisms.

4.8.5 Theory morphisms in rule justifications

It's possible to take advantage of the last fact in the previous section to save the user a
lot of work repeating proofs which are simple translations of existing proofs. This will
be done by extending the notion &f:le.Justif to allow appeal to (translations of) rules
across theory morphisms.

The new kind of justification is defined by

MorphedRuleJustif . rule : Rules
via . ThMorph
mstn . Instantiation

where
inv-MorphedRuleJustif (rj) £
let mk-MorphedRuleJustif (r, T, inst) = rj in
r € RulesOf (from(T)) A pre-Instantiate(Translate(stmt(r), via(T)), inst)

The test for whether &/orphed Rule Justif is valid is exactly analogous to that for ordi-
nary Rulejustif s upon translating the rule across the morphism:

19For rule statementss should also take simple renaming of metavariables into account.

4.9 Pattern matching 155

Is-properly-justified : Ordline x Proof — B
Is-properly-justified(l,p) 2
let mk-MorphedRuleJustif (r, T, inst) = justif (1),
rs = Instantiate(Translate(stmt(r), via(T)), inst),
etc in
... as for RuleJustif
pre justif (1): MorphedRuleJustif
Finally, the invariant onRules should be strengthened to say that any theory morphisms
used are morphisms to ancestor theories of the rule being proven: viz.

rj: MorphedRuleJustif = to(via(rj)) € Ancestors(theory(r))

Rules-used should be redefined to include not juste(rj) but also all the rules to validate
the theory morphism (i.e. all rules ing justif (via(ry))).

4.9 Pattern matching

Themural proof assistant providespattern-matchingor ‘anti-instantiation’) algorithm

for its syntax. This is particularly useful for matching conclusions of rules against proof
lines, in order to determine exactly which rules are candidates for justifications. If in ad-
dition the user can identify a line or lines on which the justification depends, hypotheses
of rules can simultaneously be matched against them, which further narrows the choice
of applicable rules. As well as determining whether a match is possible, the algorithm re-
turns a set of (partial) instantiations, which is particularly useful when filling in the justifi-
cation of aline. (The instantiations are partial for example when the rule has metavariables
which do not appear in the conclusion, and hence which play no part in the matching.)
This has all been incorporated into thral search tool.

In this section we specify, develop and informally verify an algorithm for match-
ing TermyS againstTermys. In the worst case, matching is of exponential complexity:
e.g. whenP and « are metavariables anft[a] is matched against(d, d, ..., d), the
result is the set of all instantiations of the form

{a—d, Plz]— c(d)}

whered’ is (d, d, ..., d) with somed’s replaced by the formal parameter The com-
plexity of matching is the price we pay for allowing metavariables to take arguments
(cf. Section 4.2.2). With due care to the form of inference rules, however, matching is
often linear in practice (cf. the discussion in Section 3.3.1 above).

In fact, very significant improvements can be made to the algorithm given here, for
example by passing sets of (partial) candidate instantiations around the syntax tree in a
depth-first manner. Such improvements are left as exercises for the reader.

4.9.1 The specification of pattern matching

Before we give the formal specification, it will be convenient to define a type to hold the
set of metavariables to be matched:

MVS = (CESymb | CTSymb)-set

156 4 Foundation

An instantiation will be said to bek with respect to a setiws of metavariables and a set
vs of variables if it only instantiates metavariables frames and it only introduces free
variables fromws; more formally:

Is-ok-inst : Instantiation x MVS x VSymb-set — B
Is-ok-inst(mk-Instantiation(cm, ctm), mvs, vs) £
dom ¢m U dom c¢tm C mus
Az € rng em U rng ctm - freeVars(z) C vs

The setmuvs will usually consist of the metavariables of the rule being matched. (It's
necessary to make it explicit just exactly which metavariablsbe instantiated since
there may be metavariables which definitely catbe instantiated: e.g. the metavariables
in the statement of the rule being proven.) The @ewill usually consist of the free
variables available in the ‘context’ in which the matching is being done (e.g. the box
variables of boxes enclosing the line to be matched against).

We sayz can be matched againgt over (muws, vs) if there is an instantiatiorinst
which is ok with respect tomuvs, vs) such that

Instantiate(z, inst) = y

Here’s a first specification of pattern-matchitig:

Match-against (x,y: Termg, mvs: MVS, vs: VSymb-set) insts: Instantiation-set
post Vinst € insts -
Is-ok-inst(inst, mvs, vs) A Instantiate(z, inst) = y

It's not a terribly satisfactory specification, however, since it has a trivial implementation
(viz. insts = {}). You might think that a more appropriate specification would require
that insts containall relevant instantiations. Unfortunately, this would be asking too
much since there might be infinitely many possibilities: e.g. oneccannvert to one’s
heart’s content; and any extension of a possibility is another possibility. One way around
this would be to define an appropriate partial ordering/estantiation and insist that
Match-against return a ‘maximal set’ satisfying the above condition; on the other hand,
it doesn’t seem worth the overhead of specifying this formally. Instead, in Section 4.9.5
we give an informal argument that the algorithm presented gives a complete solution, in
the sense that, for anyst: Instantiation satisfying

Is-ok-inst(inst, mvs, vs) A Instantiate(z, inst) =y

there is an instantiation iflatch-against(z, y, mvs, vs) which is somehow equivalent to
st onz.

4.9.2 Some pre-processing

In this section we sketch a first step which takes care of the trivial cases, thereby allowing
us to assume a stronger precondition. For example, the only thing th&g:ab matches

is itself (in which case any instantiation works). The empty set of instantiations is returned
if no match is possible.

20Strictly, the postcondition offatch-against should be a total predicate. This could be achieved by
adding the conjungtre- Instantiate(x, inst) to the body of the formula.

4.9 Pattern matching 157

Match-against : Termg X Termg x MVS x VSymb-set — Instantiation-set
Match-against(z,y, mvs, vs) 2
cases z of
VSymb — if x = y then { Trivial-inst} else { }
CompExpy — let mk-CompEzxpo(c,el,tl) =z in
if ¢ € mus
then if y: Ezpg
then AUXg(z, y, mvs, vs)
else { }
else if y: CompEzpy A symb(y) = ¢ A
len el = len eArgs(y) Alentl = len tArgs(y)
then let eis = AUX (el, eArgs(y), mus, vs),
tis = AUXL(tl, tArgs(y), mvs, vs) in
Combine-inst-sets(eis, tis)
else { }
BindExpy — let mk-BindExpo(b,v,t, e) =z in
if y: BindEzpy N\ symb(y) = b
then let newvar: VSymb be s.t.
newvar & vs U freeVars(xz) U free Vars(y) in
let ze = RenameFreeVars(e,{v — newvar}),
ye = RenameFreeVars(body(y),{var(y) — newvar}),
univ = Match-against(t, univ(y), mvs, vs),
body = Match-against(ze, ye, mvs, vs) in
Combine-inst-sets(univ, body)
else { }
Comp Typey — let mk-Comp Typey(ct, el, tl) = z in
if ct € mus
then if y: Typey
then AUXr(z,y, mus, vs)
else { }
else if y: CompTypey A symb(y) = ct N
len el = len eArgs(y) Alentl = len tArgs(y)
then ...

else { }

end

where

Trivial-inst : Instantiation
Trivial-inst & mk-Instantiation({ },{})

Merge-insts : Instantiation X Instantiation — Instantiation
Merge-insts(mk-Instantiation(cm, ctm), mk-Instantiation(cm’, ctm’)) 2
mk-Instantiation(cm t em’, ctm ctm”)
pre V¢ € dom em Ndom em’ - em(c) = em/(c)
AYct € dom ctm Ndom ctm/ - ctm(ct) = ctm/(ct)

158 4 Foundation

Combine-inst-sets : Instantiation-set X Instantiation-set — Instantiation-set
Combine-inst-sets(is, is') £
{Merge-insts(i,i') | i € is Ni' € is" A\ pre-Merge-insts(i,i')}

This function is well-defined sinc&/erge-insts is associative-commutative (up te:")
when defined.

AUXy, : Termi x Termi x MVS x VSymb-set — Instantiation-set

AUXp(xl, yl, mus,vs) £ if 2l =[]
then { Trivial-inst}
else let head = Match-against(hd zl, hd yl, mvs, vs),

rest = AUX(tlz,tly, mvs, vs) in
Combine-inst-sets(head, rest)
pre len zl = len yl
The auxiliary operations are specified as follows:

AUXg (z: CompEzpy, y: Expy, mvs: MVS, vs: VSymb-set) insts: Instantiation-set
pre symb(z) € mus
post post-Match-against(x, y, mvs, vs, insts)

AUX7 (z: CompTypeo, y: Typey, mvs: MVS, vs: VSymb-set) insts: Instantiation-set
pre symb(z) € mus
post post-Match-against(x,y, mvs, vs, insts)

where the postconditions are as given in the previous section. The opeddii&p is
refined further in the following sectiom UX 7 is very similar.

4.9.3 The main algorithm

This section presents an ‘implementation’ 4f/Xz. One of the subsidiary functions
involved is given by an implicit specification, with its implementation deferred to the next
section.

We first sketch how the algorithm proceeds. Let's suppose
z = mk-CompExpy(c, el, tl)
and supposenst is a candidate element efUXg (x, y, mvs, vs) with ¢ € mvs, where
inst = mk-Instantiation(om, tm)

Now
Instantiate(x, inst) = FillPHs(om(c), el’, tl')

whereel’ & [Instantiate(el(n),inst) | n € domel], etc. In other wordsy should
result from filling placeholders inam(c). (Let’s ignore renaming of bound variables for
the moment.) Thusm(c) must correspond to a ‘pruned’ version of the syntax tree for
y, where certain subterms have been replaced by placeholders. If a subtdrmis
replaced bymk- OPH (n), say, then from the definition dfil//PHs we would require that
Instantiate(el(n), inst) = z.

Now, there might be many different ways of pruning the tree while satisfying this last
condition, so let’s introduce a subsidiary functid/.X,, for collecting the possibilities:

4.9 Pattern matching 159

AUX)y (y: Termy, el: Expg, tl: Typel, mvs: MVS, vs: VSymb-set) m: IndexMap
post dom m C Indices-of (y) AN{} & rngm
AYi € domm - Y(ph,inst) € m(i) -
Is-ok-inst(inst, mvs, vs)
Alet n = index(ph) in
(ph: OPH = Instantiate(el(n), inst) = Term-at-index(y,1)) A
(ph: TPH = Instantiate(tl(n),inst) = Term-at-index(y,i))

wheré!
IndexMap = Index — ((OPH | TPH) x Instantiation)-set

We won't go into details of the definition dfdex and its auxiliary function, except to
say that they are used to ‘get hold pgrticular subterms, even if there are other subterms
with the same structure. As usual, the reader is referred to the full specification for details.

Again, as specifiedd UX,, has a trivial implementation, but in the next section we
present an algorithm which gives a complete solution (in the same sense as discussed
above).

To return to our candidate farm(c), let's pruney at some set of subterms given by
AUX,,; of course, it's enough to consider ‘fringe-like’ sets of subterms, since it would
be wasteful to prune the same branch twice. If the candidate has all its free variables
amonguvs then we can try merging all the relevant instantiations returned by, to
getinst. (The individual instantiations might not be broad enough on their own, or might
be mutually incompatible — hence the need to merge them if possible.) And that'’s all there
is to the algorithm.

So here itis in more formal notation. The programming constructs

for each < var >€< set-expr > do < stmt > odef

if < bool-expr > do < stmt > odif
are self-explanatory.

2hts implicit in Instantiate(el(n), inst) = ... thatn < len el andpre-Instantiate(el(n), inst), etc.
22Signatures and preconditions of the auxiliary functions are as follows:

Indices-of : ProtoTerm — Index-set

Term-at-index : ProtoTerm x Index — ProtoTerm
Term-at-index(z,i) 2
pre i € Indices-of (z)

Replace-subterms : ProtoTerm x Index — ProtoTerm — ProtoTerm

Replace-subterms(z, m) JAR

pre Vi € dom m N Indices-of (z) - m(i): ProtoExp < Term-at-index(z,i): ProtoEzp
Finally, i < j iff Term-at-index(z,7) is a proper subterm dferm-at-index(z, i) in z.

160 4 Foundation

AUXE : CompEzpy x Expy x MVS x VSymb-set — Instantiation-set
AUXg(mk-CompEzpo(c, el, tl), y, mvs, vs) 2
local program variables: insts: Instantiation-set
m: IndexMap
s: (Index-set)-set
inst: Instantiation | {nil}
1.% Initialize insts %
insts: = { };
2.m:= AUXy (y, el, tl, mvs, vs);
3.s:={is Cdomm |Bi,j €is-i <j};
% s consists of fringe-like subsets of domm %
4. for each is € s
do for each m’ € Distribute-setmap(is <\ m)
% m': Inder — ((OPH | TPH) x Instantiation) %
do candidate: = Replace-subterms(y, Project;(m'));
if free Vars(candidate) C vs
do let insty = mk-Instantiation({c — candidate},{}) in
inst: = Merge-inst-set({insty} U rng Projecty(m’));
if inst = nil
do insts: = insts U {inst}
odfi
odfi
odef
odef;
5. return insts
pre ¢ € mus
(The valuenil is used when the instantiations cannot be merged.) Before defining the
auxiliary functions used above, note thatitontains only free variables frons, then
¢ — g Is a candidate instantiation: i.e.

freeVars(y) C vs = mk-Instantiation({c — y},{}) € AUXg(z,y, mvs, vs)

Three of the auxiliary functions are defined polymorphically, in terms of arbitrary
typesX, Y andZ:

Project; : X " (Y xZ) — X 5 Y
Projecty(m) £ {z+ fst(m(z)) | z € domm}

Projecty : X - (Y x Z) — X 5 7
Projecty(m) 2 {z+ snd(m(z)) | = € domm}

Distribute-setmap : X —— (V-set) — (X _m, Y)-set
Distribute-setmap(mg) 2

{m: X = Y | domm = dom mg AVz € domm - m(z) € my(z)}

(Of course, the set returned by this function is likely to be very large in practice. Some
data reification might be desirable at this point.)
Finally,

4.9 Pattern matching 161

Merge-inst-set : Instantiation-set — Instantiation | {nil}
Merge-inst-set(is) £ ifis={}
then { Trivial-inst}
else let 7 € is,
i’ = Merge-inst-set(is — {i}) in
if i’ 2 nil A pre-Merge-insts(i, i)
then Merge-insts(i,1i)
else nil

4.9.4 The subsidiary algorithm

The algorithm forA UX,, simply runs through all subtermsof y trying to match ele-
ments ofelems el U elems ¢/ againstz. (Thus it callsMatch-against recursively.)

AUX)s : Termg x Exp§ x Types x MVS x VSymb-set — IndexMap
AUXy(y, el tl, mvs, vs) 2
local program variables: m: IndexMap
z: Termy
L.m:={};

2. for each i € Indices-of (y)
do z: = Term-at-index(y,i);
if z: Expg
do for each n € dom el
do for each inst € Match-against(el(n), z, mvs, vs)
do m: = Auz-add-el(m, i, (mk-OPH (n), inst))
odef
odef
odif;
if z: Typeg
do for each n € dom ¢l
do for each inst € Match-against(tl(n), z, mvs, vs)
do m: = Auz-add-el(m, i, (mk-TPH (n), inst))
odef
odef
odif
odef;
3. return m

where

Auz-add-el : (X = YV-set) x X x ¥ — X ™ V-set
Auz-add-el(m,z,y) 2 if z € domm
then m t {z — m(z) U{y}}
else m 1 {z — {y}}

4.9.5 \Verification of the algorithm

The algorithm clearly terminates, because it is called recursiveyapersubterms of its
first argument. The verification of correctness will be done in pieces, with each algorithm

162 4 Foundation
verified individually against its specificationd (/.X,, is clearly correct by construction.)

Verification of Match-against
We are required to show that, for eaelst € Match-against(x,y, mvs, vs)
Is-ok-inst(inst, mvs, vs) A Instantiate(z, inst) = y
The first part follows easily from the following facts
1. Is-ok-inst(Trivial-inst, mvs, vs)
2. Merge-insts preserveds-ok-inst(-, mvs, vs)
3. Combine-inst-sets preserve§inst € - - Is-ok-inst(inst, mvs, vs)

and the post-conditions adUXz and AUX . (Of course, the definition oft UX;, must
also be unfolded.)

The second part follows almost directly from the definition@ftantiate(z, inst) by
case analysis om. We won’t go into the details as they are straightforward but messy;
instead we just note the following useful facts:

o [nstantiate(x, Trivial-inst) = x

e [nstantiate(x,-) iS monotonic: viz.
pre-Merge-insts(i,i') = Instantiate(z,1) = Instantiate(x, Merge-insts(i, "))

The rest of the details are left to the dedicated redder.

Verification of AUXg

Let inst be one of the instantiations returned BY/ X (x, y, mus, vs) — if any — and let
is € sandm’ € Distribute-setmap(is < m) be the corresponding choices. We use the
same notation as in the algorithm itself, so for exampte mk- CompExpy(c, el, tl), etc.
In particular,
inst = Merge-inst-set({insty} U rng Projecty(m’))

whereinsty = mk-Instantiation({c — candidate}, {}).
We must show that

Is-ok-inst(inst, mvs, vs) A Instantiate(z, inst) = y
The first part is easy. Sineec mus andfree Vars(candidate) C vs, we have:
Is-ok-inst(insty, muvs, vs)

When non-nil, Merge-inst-sets preserveds-ok-inst, S0 Is-ok-inst(inst, mvs, vs) will
follow once it is shown that

Is-ok-inst(inst’, mvs, vs) for eachinst’ € rng Projecty(m'”).

But this is clear frompost- AUX), (y, el, tl, mvs, vs).
For the second part, note that

z: Termg A 1 € Indices-of (2) A elp(n) = Term-at-index(z, 1)
A 2" = Replace-subterms(z, {i — mk-OPH(n)})
= FillPHs(Z', ely, thy) = =z

4.10 Reading the full specification 163

Using the monotonicity ofnstantiate with respect taV/erge-insts, and the fact thats is
fringe-like, it is straightforward (but messy) to extend this result to show that

FillPHs(Replace-subterms(y, Project;(m”)), el’, tl') = y
(whereel'(n) & Instantiate(el(n), inst), etc.), since byost-AUXy,

el'(n) = Instantiate(el(n), inst') = Term-at-index(y, 1)
when{i — (mk-OPH (n),inst’)} € m’. Hence

Instantiate(x,inst) = Instantiate(mk-CompEzpy(c, el, tl))
= FillPHs(candidate, el’, tl')
= FillPHs(Replace-subterms(y, Project;(m’)), el’, ')
=Y

as requiredd

The algorithm is complete

Let's call an instantiation aub-instantiatiorof another if each metavariable of the first
maps to something equivalent under both instantiations. (Of course, the second may
instantiate more metavariables than the first.) In this section we argue that, satisfies

Is-ok-inst(inst, mvs, vs) A Instantiate(z, inst) =y

then the algorithm forMatch-against(z, y, mvs, vs) returns some sub-instantiation of
inst. In this sense the algorithm yields a complete solution; moreover the solution is
the ‘cleanest’ possible, in that it does not instantiate more metavariables than it needs to.
The proof is by induction on the size ofas a syntax tree (or equivalently, by structural
induction onz).

The base case is trivial. For the induction step, note first that it is clear from the def-
inition of Instantiate that the syntax trees far and y must agree at least down as far
as compound terms with symbols fromws. So without loss of generality, let's assume
z = mk-CompExpy(c, el, tl) with ¢ € mus, the case:: Comp Type, being exactly analo-
gous. As discussed earliednst(inst)(c) must be a pruned version gf with the pruning
corresponding to some choice of fringe-like subset of the domain of the map returned by
AUXy (y, el, tl, movs, vs); the induction hypothesis is used to justify the fact thatX,,
returns a complete solution. It also follows from the induction hypothesis that each rel-
evant instantiation returned byUX,, is a sub-instantiation ainst, in the above sense.
The result of merging the relevant instantiations is again a sub-instantiatientpfind
the proof is completed

4.10 Reading the full specification

As remarked in the introduction, the Walk is an abstraction of thesfulal specification
given in Appendix C (simply callethe FullSpedtereafter). Because it is a simplification,

the Walk naturally differs from the FullSpec in several fundamental aspects. For a start,
the latter covers more topics, including:

164 4 Foundation

e other kinds of justification

e multiple proof attempts

¢ folding and unfolding of definitions

e incomplete and null terms

e editing operations and subterm access functions

e other user interface (Ul) operations

It also gives some flavour of the intended Ul by distinguishing whether for example func-
tions are

e exported (available to the user)
e auxiliary (introduced simply for purposes of definition)

e background (constraints maintained by the system)

In order to specify many of the Ul operations, the FullSpec dealsnefdrencegnames)
for individual theories, rules, proof lines, and so on. The mapping from names to the
objects they represent is stored as part of the ‘state’ ohtll proof assistant in the
FullSpec (theStore). To have a Ul which was unmoded as far as possible, it was necessary
for the FullSpec to allow for ‘temporary inconsistencies’ in the state, such as the statement
of a rule getting out of step with its proof, or the use of a symbol before its declaration.
As a result, invariants in the FullSpec are much looser, with more use being made of
‘consistency checks’ instead. (For example, the invariant on rule statements does not
insist that hypotheses have no free variables; instead, a predicai& - RuleStmt is
introduced.) These are the main stylistic differences between the two specifications.
There are also important terminological differences, explained below. Unless other-
wise stated below, classes and functions with the same name — give or take case distinc-
tions — can be assumed to correspond more or less exactly in the two specifications.

Syntax

Table 4.1 summarizes the correspondence between classes of symbols in the two speci-
fications. Selector names also differ, but the correspondence should be obvious enough.
There is also a slightly different factoring of the abstract syntax, but on the whole the
correspondence is quite close. The exception is the dass in the FullSpec, which
is much more general thaferm;, in that the former includes subcomponents — such as
individual symbols and lists of arguments — which are not considered to be terms in their
own right in the Walk. This difference is reflected in thebterms function; but for the
most part, all the other basic functions (efgee Vars and RenameFree Vars) have the
same meanings in the two specifications. Of courseprresponds tasEquivalentTo in
the FullSpec.

The correspondence extends to sequents and rule statements in a fairly straightforward
manner. For example, the definition BiileStmt in the Walk is

RuleStmt . ordHyps . Expg-set
seqHyps . Sequent-set
concl . FExpg

4.10 Reading the full specification

Walk FullSpec Walk FullSpec
CESymb OESymb | CTSymb OTSymb
CompEzp, OFExp CompType, OType
DESymb QESymb | DTSymb QTSymb
BindExp; QFxp BindType; QType
OPH EPHole TPH TPHole
Exp, Exp Typer Type
Table 4.1: Syntax classes.
Walk Section FullSpec Appendix
AXIOM 45.1 nil C.3.2
< dependsOnRule C.9.1
1muv-Storey 1sNoncircular Cc.9.1
- 4.5.3 inheritsFrom C.6.2
Ancestors ancestors C.6.2
RulesOf rules C.6.1
localSig 4.6.1 EXSIG C.6.2
Are-nonclashing areNonclashingSigs Cb54
Merge-sig-set mergeSigs C54
Is-wfd 4.6.3 isReasonable WRTSig Cb5.2
inv-Rules 1sReasonable WRT Theory C.6.2

165

Table 4.2: Functions and predicates.

while in the FullSpec itis

RuleStmt :: SEQHYPS : Sequent-set
ORDHYPS . FExp-set
CONCL . Exp

For sequents (Section 4.3.3)qVars corresponds taVF'V and Constituents tO exps
(Appendix C.3.1). The reader should note that flwe Vars function on sequents is de-
fined differently in the two specifications: in the Walk sequent variables are considered to
be ‘bound’ by the turnstile.

Rules, theories, signatures and well-formedness

Table 4.2 shows the rough correspondence between definitions of the main functions from
Sections 4.5 to 4.6 and their counterparts in the FullSpec. The status of a rule (Sec-
tion 4.5.2) is not discussed in the FullSpec, and neither specification treats the classifica-
tion of rules as theorems or lemmas. Similarly, there is no exact equivalent to contexts
(Section 4.6.3) in the FullSpec, nor are metavariables explicitly listéthias (cf. Rules

in Section 4.6.2).

Proofs

The two specifications take different approaches to the definitions of lines and boxes in
proofs, quite apart from the fact that the FullSpec manipulates references (pointers). In

166 4 Foundation

Walk Section FullSpec Appendix

boxVars 4.7.1 newFreeVarsOfBox C.8.2
< 1sSubbox C8.1
inv-Proofy nv-Boxmap C.8.1
inv-Proof; 4.7.2 hasClosedJustifs c.8.2
ley, b [€ linesOfBox(p, b) c.8.2
Hyps-of hypsOfBox C.8.2
Has-wfd-assertion 4.7.3 isReasonableAtLine C.8.7

inv-Ruley is-OK-Rule A isComplete (part) | C.3.2,C.8.9
inv-Proofs 4.7.4 is WfdProof C.8.5
=< dependsOnLine C.8.5
inv- RuleJustif 4.7.5 hasInstantiable Rule C.8.3
Is-properly-justified 1sJustifiedLine C.8.9
inv- Ruleg Vol - isOK (justif (ol)) C.8.3
Is-known(l) 4.7.6 assumptionsOfLine(l) = { } C.8.6
Is-complete 1sComplete C.8.9
Rules-used antecedents Col1
Assumptions 4.7.7 assumptionsOfLine C.8.6

Table 4.3: Functions and predicates on proofs.

the Walk, lines are assigned to boxes by a mapping
IbMap: Proof — (VSymb - Box,)
whereas in the FullSpec, lines are a direct attribute of boxes — viz.
LINES: Box — (Ordline-ref — Ordline)
A second difference is that box variables are an attribute of boxes in the Walk
boxVars: Box; — VSymb-set
but are instead assigned to boxes by a mapping
NFV: Proof — (VSymb -~ Box-ref)

in the FullSpec.

With these differences in mind, Table 4.3 gives the rough correspondence between
definitions in the Walk and their counterparts in the FullSpec. Note that there is no exact
equivalent toinv-Proofs in the FullSpec, and the definition of rule justifications (Sec-
tion 4.7.5) is considerably simplified by ignoring theory morphisms (cf. Appendix C.8.3).

4.11 Limitations of the mural approach

In this section we summarize the main theoretical limitations ofitheal approach and
look at what might be done to overcome them in future incarnations.

4.11 Limitations of the mural approach 167

4.11.1 Syntax

Aside from constraints on the concrete syntax, the following seem to us to be the main
areas where theural syntax is more restrictive than common ‘pencil and paper’ practice:

1. Certain syntactic conventions can't be supported, especially those which elide in-
formation and rely on the reader’s implicit understanding: e.g. throughout Sec-
tion 4.7.4 it was much more convenient to wrife< /, instead ofl; <, b, sincep
could always be inferred from context.

2. Essentially only one form of variable binding is supplied. This meanstbatéc-
expressions’ which involve mutually recursive bindings cannot generally be sup-
ported. It is also not really expressive enough to accurately capture the binding of
program variables in Hoare triples.

3. Simultaneous multiple bindings such @s, y, z: N - ... are not supported. The
restriction to single bindings was considered acceptable for our target applica-
tions, since multiple bindings could be achieved as nested single bindings (cf. Sec-
tion 3.2.4). The resulting notation

Ve:N-Vy:N-Vz:N- ...

is somewhat cumbersome however; a more flexible display mechanism might help
here, but would involve rethinking a number of our design decisidns.

4. The constraint that the ‘universe’ of a binding b&’@e can also be awkward at
times: cf. set comprehension (Section 3.4.1), ‘let’ clauses (Section 3.5.2).

5. Inmural , defined binders take formal parameters for both universe and body: i.e. the
left-hand side of a binder definition is always essentially of the form

Oz:A-Glz] & ...

(although of course different concrete syntax declarations are possible). The ‘two
parameter’ principle was adopted since it covers the most common defined binders
while respecting the ‘conservation of information’ principle for folding/unfolding

operations (i.e. the same formal parameters are used on both sides of a definition).

Unfortunately, there are times when it would be better to use a fixed universe. Con-
sider e.g. the operator
pn:N- Pln] & 12:N- (P[z]AVy:N-y <z = = P[y])

which finds the least number (if any) satisfyingP[n]. Under the existing mecha-
nism the definition must be given in terms of an arbitrary tyjpevhich carries the
danger thatd might be instantiated by a type for whick*is not defined.

23Note that simultaneous bindings are not the whole answer anyway: e.g. branching bindings such as

Vzd
(Vuaz > 'P[ﬂ?-,%%v]

cannot be expressed in terms of simultaneous bindings; Skolem functions are even more general.

168 4 Foundation

6. Defined dependent types are not supported at all. This was an ‘economy of de-
sign’ decision (read: laziness on our part) rather than because of any theoretical
problems: defined binders gave us enough headaches, and we couldn’t think of any
defined dependent types that weren't rather contrived.

7. It's sometimes rather restrictive to insist on fixed arities for function symbols and
type constructors. The first example that springs to mind is the use of function
names on their own (without arguments) in higher order logics: e.qg.

OneOneFunctions £ < f:N—= N |Vz:N-Vy:N-z £y = f(z)# f(y) >

But, as shown in Section 3.6.1, the problem is illusory, at least in this case: the so-
lution is to introduce an explicit ‘function application’ operator; the concrete syntax
facility can even be used to displayply(f, z) asf(z).

8. A more serious problem arises with (for example) associative-commutative (AC)
operators, where it would be convenient to allow arbitrary numbers)(of argu-
ments. An example would be a summation operator, with sum(z;, z, . . . ,)
displayed as

n+o+...+x,

say. Other candidates for operators with non-fixed arity would be associative oper-
ators, case statements and guarded conditionals. Note that what is being proposed
here is a significant extension to thbstractsyntax — not simply a new way of dis-
playing sum(cons(z, . ..)). In particular, new unification and matching algorithms
would have to be written, and many of thairal design decisions would have to

be rethought. It is an extension which is thought to merit serious research effort.

9. It would also be very useful to extend the syntax to cover indexing, such as

let rk; = mk-RKey(nmy, fs;, ts;) in ...1ky ... rky ...

4.11.2 Rules

A frequent comment we receive is that it would be useful to allow rules to have multiple
conclusions. Unfortunately, the proponents of this view cannot agree on an interpretation:
should conclusion s€tP,), R} be regarded as meaning tteditof P, @ and R hold, or

as meaning that (at least) one®f @ and R holds? There are good reasons for both in-
terpretations. We resisted joining the argument since an extension to multiple conclusions
would undoubtedly have made thairal User Interface (even) more complicated.

A less frequently received comment was that it would be useful to allow ‘arbitrary
nesting’ of sequents — so that e.g. a sequent could have another sequent as its premise.
Such an approach is explored for example in [Sch84]. No great practical benefit seems to
accrue beyond one level of nesting, however; in fact, fortineal target logics there is
demonstrablyioincrease in expressive power, since a sequent

{p1,-- - pn} Fu. 4, upshot

is essentially equivalent to the formula

Vo, .o @m - (DL Ao A pp = upshot)

4.11 Limitations of the mural approach 169

This is not to say that sequents should be done away with altogether, of course, since they
are essential to the efficacy of Natural Deduction as a proof system, leading to ‘block-
structured’ proofs: cf. the discussion in Section 4.3.1.

A broader interpretation of ‘sequent’ — whereby ‘sequent variables’ stand for (or are
‘instantiable’ by) arbitrary terms (fronvzp) rather than simply arbitrary variables (from
VSymb) — was discussed in Section 4.3.4. Again, in the case ofitinal target logics,
the narrower interpretation does not sacrifice any expressive power; on the other hand,
it quite considerably simplifies certain algorithms (such as checking whether a subproof
establishes a sequent hypothesis) and certain aspects of the User Interface (such as rule
instantiations).

4.11.3 Logics

In essencemural provides support for those many-sorted predicate calculi which can be
expressed in Natural Deduction format. As we have seen, this is a large class covering
by far the most commonly used logics in software engineering. There are certain log-
ics which cannot however be expressed in Natural Deduction format, particularly the
so-callednon-monotonic logics- logics in which the addition of new assumptions can
invalidate existing deductions (as for example in a logic of evidence in jurisprudence). To
date, the contribution of such logics to software engineering has been negligible.

A more serious limitation ofnural is that it only supportslirect derivations of rules:
that is, new rules are built essentially by fitting together (instantiations of) other rules;
see the discussion in Section 3.2.2. This excludes a large class of rules that could be
deduced by more sophisticated ‘meta-reasoning’. Apart from the obvious methodological
advantages of direct derivation — it's hard to imagine a User Interface for general meta-
reasoning for a start — it was felt to be important to makeal an ‘open’ system whereby
the user could build new theories by extending existing theories, simply inheriting results
from the latter. No extension will ever invalidate a direct derivation of a rule, whereas
most indirect (meta-) results assume a fixed (‘closed’) theory.

Paraphrasing, we could say thatiral is agenericproof assistant rather than a ‘full
worldview’ system. Without attempting to define these terms, the latter would support
reasoningaboutitself, so that for example its meta-theory could be formalized within
itself and used to derive meta-theorems, which could subsequently be applied to its object
logics. This is true to a certain extent of logical frames with formalized meta-theories,
such as ELE! By contrast, themural tactic mechanism — like that of its predecessor
LCF [GMW?79] — supports meta-reasoning by allowing the user to form ‘proof templates’
which can be rerun in different situations.

241n an interesting departure from the usual meta-theory/object theory dichotomy, Weyhrauch [Wey80]
explores the use of ‘reflection principles’ to allow a theory to reason about itself.

170 4 Foundation

Chapter 5

The tactic language

5.1 Mechanising proof inmural

It is perfectly possible to conduct all proofs in theairal proof assistant using only the
single-step-at-a-time strategy provided by the justification tool; this can, however, become
tedious. It was therefore felt advantageous to provide an additional layer of functionality
whereby the user can interact with the system using ‘large scale’ operations.

The method by whichnural (and indeed most other comparable systems) achieves
this higher level interaction is to providetactic language The tactic language is es-
sentially a kind of programming language which has access to the same functions (or a
superset thereof) which are visible at the user interface level, and some control constructs
or tacticalsfor composing sequences of these functionsiattics Tactics and the tactic
language, therefore, present the user with a language flexible enough to express the equiv-
alent of arbitrary sequences of (Ul level) interactions and, more importantly, to ‘code up’
algorithms or strategies which can search for things (e.g. rules to apply, definitions to un-
fold), possibly using backtracking to try alternative approaches, thus providing the user
with facilities for a limited (but customisable) mechanical theorem proving capability.

The approaches to tactics taken in other interactive theorem proving systems have
been quite diverse, with LCF and its derivatives being among the best known. In the LCF
(see [Sok83]) and Isabelle [Nip89] systems, tactics are effectively written in the functional
language ML; tactics are ML functions and are written using the provided tacticals and
built in tactics, which implement operations like resolution, sequencing, repetition, depth-
and breadth-first searching and so on. All this provides the LCF and Isabelle systems
with a fairly rich and powerful tactic language. In tlw@ Logic Environment (developed
at Imperial College, London) [Daw88] the only means of interacting with proofs is by
writing strategies- a very simple form of tactics somewhat akin to regular expressions
Strategies can repeatedly apply a set (or sequence) of rules to a proof, try applying a set of
rules until one succeeds, or try applying a rule once. The only ‘tactical-like’ feature is that
strategies can be sequentially composed and repeatedly applied. Additional constraints
can be applied like ‘first try using inference rules with only one hypothesis’ (to reduce
branching in the proof tree). The strategy mechanism, impoverished as it is, seems to
be quite successful in the contextwp; in mural, however, tactics of this kind would
not really be powerful enough since the structure of proofs (and the possible modes of

LA similar approach is taken in tHg-tool — the sole purpose of the ‘theory structureBiris to partition
conjectures so that the same set of tactics is likely to be applicable to each proof in the theory.

172 5 The tactic language

interaction with them) is rather more complicated.

This chapter describes theural tactic system, both from the point of view of the
syntax and semantics of the tactic language itself and of how this language is used to
write tactics. Some user-interface issues, such as how to operate the tools provided for
editing and invoking tactics are covered.

Tactics provide thenural user with a method of encoding commonly used strate-
gies for doing proofs as procedures in a procedural programming languagedaetice
language These strategies can either be very domain specific (such as setting up a par-
ticular kind of induction step) or more general (such as ‘given a set of inference rules, try
applying them backwards to all unproved lines in the proof’).

A mural user will see the tactics as being closely integrated with the rest of the system
even though the formal model of the ‘core’ (see Chapter 4) makes no reference to tactics.
Tactics seem to be valid only in certain theories (e.g. equational reasoning tactics will
only be useful in theories where equality has been defined), so a possible implementation
(the implementation!) would attach tactics to the theory hierarchy in a similar way to
rules; a tactic is therefore inherited by descendents of the theory to which it is attached
This is, of course, not the only way tactics could be attached to the theory hietaahy
it seems a flexible enough approach to cope with most situations which actually arise.

5.2 The language

A tactic is rather like a procedure in a (imperative) programming language; it hasea

(a string), somgarametersabodyand it may return a resdlt The formal parameters of

a tactic are pairs consisting of a variable and a type. The type is a symbol from the set
{ SEQOFPROOFOBJECT, SEQOFRULE, ARBITRARY }, and is simply there so that the

user interface can correctly enforce the types of arguments when a tactic is invoked. Some
run-time type checking is performed for some language constructs (e.g. the primitive
operations and operators), but not for whole tactics. The body of a tactic is a sequence
of statements (the various kinds of which are described below). The variables used in
tactic language constructs are not typed, nor are they declared, and the scope of a variable
is the entire tactic in which it is used (witholesin the scope whenever other tactics

are called). The parameter variables to a tactic and the loop variable of the iterative
constructs (for-some, for-each statements and binder expressions) are cornstlered

(for the duration of the tactic and construct respectively), which means any attempt to re-
assign the variable’s value (by explicit assignment or by another iterative construct) will
result in a run-time error. The set of values which can be passed as arguments to tactics,
or assigned to variables, or returned as a result of evaluating tactics or tactic language
expressions includes mural objects (rules, expressions, etc.) the Boolean uakiaad

false), nil, integers, sets and lists of these, maps containing these objects in their domain

2Although tactics are inherited via the theory hierarchy, the notion of translating tactics over theory
morphisms was not considered useful, and has not been developed.

3For instance thenural store could contain a collection of tactics alongside the theories it already
contains, and each tactic could have stored with it the arbitrary collection of theories in which it can be
used.

“4In fact all tactics return a result — the valuere$ult variableof that tactic at the time the tactic finishes
execution. If no result need be returned, then the result variable is left unassigned

5.2 The language 173

and range, and indices for accessing and manipulatingl subterms.

5.2.1 Abstract syntax

In this section we define the abstract syntax of the tactic language, from the level of
tactics and tacticals (called statements in the terminologywfil tactics) right down to
the level of expressions. In several places the language requires conditionals (Boolean
valued expressions), but here everything on this level is lumped together into one class of
TacticExpressions, and it will be left to the semantic functions to check things have the
correct value or type at ‘run time’.

Hopefully the meanings of most of the language constructs introduced should be fairly
intuitively clear. Further description and a specification of an interpreter for the language
are presented in Section 5.2.2.

Tactics

Tactic 2 ARGS : Variable*
RESULT : Variable
BODY : TacticBody

A tactic has a list of argument variables (whéf@-iable is just some class of structureless
tokens or spellings or something), a result variable — rather like the heading of an operation
in VDM —and aTucticBody, which is simply a sequence of statements forming the ‘code’

of the tactic. Additionally, each tactic will be associated with a nhame, so that tactics
can refer to (and call) each other. The name is not considered to be a property of the
tactic itself, but of the environment in which it is executed, and is thus reflected in the
specification of the interpreter in Section 5.2.2 rather than at the level of tactics.

TacticBody = Statement*

Statements

Statement forms the (fixed) class of tacticals supported by the system. It is hoped that
this set of tacticals is sufficiently rich that the user will not feel the need to define new
ones. This partially removes the need to make tactics ‘higher order’.

Statement = Assignment | IfStatement | WhileStatement | ForEachStatement |
ForSomeStatement | TryStatement | Call |
RepeatUntilNothingChanges

A SKIPstatementis not really needed (for instance, in a situation whetsbpart of an
If statement is absent), since an empiy:tic Body will do the same thing (i.e. nothing).

Assignment . VAR . Variable
VALUE . TacticEzpression

5Note that tactics are not themselves included in this class of values — this means that the tactic language
is nothigher orderin the way that ML tactics (cf. LCF, Isabelle, etc.) are. The examples which have been
tried suggest that this is not a serious restriction.

174 5 The tactic language

IfStatement 1 IF . TacticExpression
THEN : TacticBody
ELSE : TacticBody

WhileStatement :: WHILE : TacticExpression
DO . TacticBody

The meaning off, While and Assignment statements should be intuitively fairly clear,
since such things exist in many programming languages. The other kinds of statements,
however, may be less familiar. THerEach and ForSome statements are iterative con-
structs corresponding more-or-less to the existential and universal quantifiers of predicate
logic.

ForFEachStatement .. BOUND . Variable
UNIVERSE . TacticEzpression
DO . TacticBody

ForSomeStatement . BOUND : Variable
UNIVERSE . TacticEzpression
DO . TacticBody

OTHERWISE : TacticBody

TryStatement . TRY . TacticBody
COND : TacticExpression

The Try statement is a backtracking construct which allawgal tactics to try alternative
strategies for constructing proofs. Once a strategy has been tried, the proof reverts to its
previous state if the given condition is not satisfied.

Call = TacticCall | MuralCall

TacticCall . FUNC : TacticName
ARGS . TacticExpression™

MuralCall :: FUNC : MuralOperationName
ARGS . TacticExpression*

TheseCull statements correspond roughly to procedure calls, and come in two varieties:
TacticCalls, which are calls to other (user-defined) tactics, ahdalCalls, which cause

the execution of functions which are built into the tactic langudderalOperationName

refers here to the set of operations and functions which are available for use by tactics —
see Section 5.2.3.

RepeatUntilNothingChanges . BODY : TacticBody

Expressions

TacticEzpression = Variable | Constant | Unary | Binary | Pair | Call |
MuralObject | Comprehension | Make | Universal | Ezistential

The meaning of variables, constants, unaries, binaries and pairs is fairly straightforward;
Calls are calls tanural functions or to other tactics (which when executed as expressions

5.2 The language 175

return a value)ComprehensionUniversaland Existentialrepresent set comprehension,
universal and existential quantification respectively Brakeis intended to be similar to
the VDM mk- function (useful mainly for building justifications)//uralObject allows
the user to referencaural objects directly from within the tactic language (particularly
expressions and types).

Constant = {{ },], true, false, nil}

The class of constants includes the empty set and the empty list, the Booleantmadues
andfalse, and the literahil.

Unary :: OPERATOR : UnarySymbol
ARG . TacticEzrpression

UnarySymbol = {—,hd ,tl,last, { },[], fst, snd, IsEmpty, NotEmpty, OneOf}

The unary symbols are negation, head, tail, last (operators on lists), unit sets &nd lists
first and second projection functions for pairs, tests for whether a collection is empty, and
a OneOf operator which non-deterministically returns an element of a collection.

Binary :: OPERATOR : BinarySymbol
ARG1 . TacticEzpression
ARG?2 . TacticEzxpression

BlnarysymbOZ = {U7 m? E? ¢7 C? g? :7 %7 /\7 \/7 +7) *7 /}

The binary symbols include a variety of operators on sets, lists and numbers. The ele-
ments ofConstant, UnarySymbol and BinarySymbol are just tokens or spellings, rather

than operators of the VDM language. The intention is that unary and binary expressions
are those which operate on the basic tactic language types (sets, lists etc,.) whereas the
MuralCalls operate onnural objects, or, more generally, on thairal proof state.

Pair 2 FST : TacticExpression
SND . TacticEzpression
MuralObject = Rule | RuleStmt | Exp | Type | Justification | Symb . ..

The type MuralObject is provided so that tactics can directly refer to and manipulate
the expressions, types, symbols, rules and so on, ofiiral language as defined in
Appendix C.

Comprehension . VAR : Variable
UNIVERSE : TacticEzpression
PRED . TacticEzxpression

Make :» CLASS . MuralType
FIELDS : TacticExpression*

MuralType = RuleJustif , SeqHyp Justif , FoldDefJustif . ..

6The unary symbol$ } and[] are used to mean the symbols occurring in expressiong Jikeand[X |
— kind of ‘out-fix’ unary operators.

176 5 The tactic language

Universal . VAR : Variable
UNIVERSE . TacticEzpression
PRED . TacticEzpression

Existential :: VAR : Variable
UNIVERSE . TacticEzpression
PRED . TacticEzrpression

5.2.2 The tactic interpreter

The semantics of the language are defined by a set of evaluation operations which effec-
tively execute language terms, inducing a change in the state (e.g. the proof and the tactic
language variable bindings), and in some cases returning a result. These operations could
form the basis for a specification of a tactic language interpreter.

A couple of extra data types will be needed to keep track of variable bindings and
the proof state. First, th&nvironment keeps both a mapping from variables to their
(assigned) values and a set of ‘bound’ variables (i.e. those variables which cannot be as-
signed to, including variables bound byrSomel ForEach constructs and the parameter
variables to tactics).

Environment » VALUES : Variable = Value
BOUND : Variable-set

where Value is the set of values returned by evaluatifgctic Ezpressions — see below.
Secondly, theState holds (references tpthe proof, theory anehural storé' on which the
tactic execution is invoked, together with a map containing all tactics which are ‘acces-
sible’ from that theory. From the point of view of this specificatidfacticName needs

only to be an infinite set of tokens, much the same asStheb thingies in themural
specification. In an implementation they could be the actual names a user sees.

State :: PROOF . Proof
THEORY . Theory
MURALSTORE . Store
TACTICSTORE : TacticName — Tactic

Two new types must be introduced to represent the objects returned when expressions
are evaluated by the interpreter. The typ@ue includes the evaluations of all tactic
expressions, andlalue Pair contains the evaluations éfuir expressions.

Value = MuralObject | B | Value-set | Value* | ValuePair | {nil} | Index

ValuePair 2 FST : Value
SND : Value

Many of the evaluation operations have preconditions which either do some form of type
checking or test whether certain variables are bound; they need not, however, be precon-
ditions in the usual VDM sense, but simply specify the ‘run time error checker’ (described

“If it was necessary for this specification to resemblertheal specification more closely, th§tate
would have aProof-ref etc.

8The store is probably only needed to fit in with the way mamyal operations and functions are
specified.

5.2 The language 177

in Section 5.3.1). This is an important point since it means that the evaluation function
will not in general be satisfiable in the formal sense of [Jon90c]. The reason for this kind
of presentation is partly that it is a shorthand, and partly that it neatly encapsulates the
execution and error checking functions for each term of the language.

Tactics

TacEvaluate (t: Tactic) r: Value
ext rd £/ Environment
wr S State
pre ng ARGS(t) C dom VALUES(E)
post let env =

mk-Environment(((mg ARGS(t)<VALUES(E))1{RESULT (t) — nil}),
(rng ARGS(t))) in
dnewenv: Environment - L
post-BlockEvaluate(BODY (t), env, S, newenv, S) A
r = VALUES (newenv)(RESULT (1))

Note that the assumption here is that there can be no non-local accessing of variables
— variables are local to one tactic (hence the domain restriction of the environment), and
values can only be shared by passing parameters. If it were considered necessary, a change
to this postcondition could allow global or other non-local variables.

BlockEvaluate (b: TacticBody)
ext wr F © Environment
wr S State
post if b =[]
then E=E NS =S
else 3E': Environment, S': State -
post-StatEvaluate(hd b, E, S, E', S") A
post-BlockEvaluate(tl b, E', S") E, S)

Statements

StatEvaluate (s: Statement)
ext wr B Environment
wr S State

178 5 The tactic language

post cases s of

IfStatement — post-IfEvaluate(s, f, ?, E,S)
WhileStatement — post- WhileEvaluate (s, F, Ig, E,S)
ForSomeStatement — post-ForSomeEvaluate(s, E, ?, E.S)
TryStatement — post-TryEvaluate(s, /E, Ig, E,S)
Assignment — post-AssignmentEvaluate(s, E, ?, E,S)
Call — post-CallEvaluate(s, E, ?, E,S)
ForEachStatement — post-ForEachEvaluate((s, /E, ;, E.S)
RepeatUntilNothingChanges — post- RepeatEvaluate((s, E, ?, E,S)

end

AssignmentFEvaluate (a: Assignment)
ext wr £/ Environment
wr S : State
pre VAR(a) ¢ BOUND(E)
post dv: Value -

post- ExpEvaluate(VALUE (a), E, ?, S,v) A
E = mk-Environment((VALUES(E)1{ VAR(a) — v}), BOUND(E))

IfEvaluate (i: IfStatement)
ext wr £/ Environment
wr S State
pre 35’: State, v: B - post- ExpFEvaluate(IF (i), E, S, S’ v)
post 35": State, v: B -

post- Exp Evaluate(IF (i), E, ?, S v) A

if v

then post- BlockEvaluate(THEN (1), E,S", E, S)
else post-BlockFEvaluate(ELSE (i), E,S5', E, S)

WhileEvaluate (w: WhileStatement)
ext wr £ Environment
wr S State
pre 35": State, v: B - post- ExpEvaluate(WHILE (w), E, S, S', v)
post 35" State, v: B - post- ExpFEvaluate(WHILE(w), E, S ,5",v) A
if v
then JE": Environment, S”: State -
post-BlockEvaluate(DO(w), E, S, E",S") A
post- While Evaluate(w, E", S", E, S)
else (E=ENS=15)

ForEachFEvaluate (f: ForEachStatement)
ext wr /' © Environment
wr S : State

5.2 The language 179

pre 35" State, v: Value-set | Value*-post- ExpFEvaluate(UNIVERSE(f), E, S, S', v)A
BOUND(f) ¢ BOUND(E)
post 35": State, v: Value-set | Value* -

post- Exp Evaluate(UNIVERSE(f), E, ?, S v) A
let v' = if v: Value* then v else asList(v)
in

if o' ={}
then E=E NS =5
else post-SequenceEvaluate(v', BOUND(f), DO(f), E,S", E,S)

The following two functions convert a set into a list, and repeatedly evaluate a block of
statements with a different assignment of values to a variable respectively.

asList (s: Value-set) I: seqof Value

post rngl = s Acards =lenl

SequenceEvaluate (seq: Value*, var: Variable, block: TacticBody)
ext wr F . Environment

wr S State
post let env = mk-Environment(VALUES(E') t {var — hd seq},
BOUND(E)U{var}) in
if seq =[]

then E=E NS =S
else E’: Environment, S': State -

post- BlockEvaluate(block, env, S, E', S") A
post-Sequence Bvaluate(tl seq, var, block, E', S", E, S)

ForSomeFEvaluate (f: ForSomeStatement)

ext wr F . Environment
wr S State

pre 35": State, v: Value-set | Value*-post- ExpFEvaluate(UNIVERSE(f), E, S, S', v)A
BOUND(f) ¢ BOUND(E)

post 35": State, v: Value-set | Value* -

post- ExpEvaluate(UNIVERSE(f), E, S, 5", v) A
let v' = if v: Value-set then v else rngv
in

if o' ={}
then post- BlockEvaluate(OTHERWISE(f), E, S E,S)

else de € v/, E": Environment -

let newE = mk-Enmmnment((VALUES(IE)T{BOUND(]‘) — e}),

4L

(BOUND(E)U{BOUND(f)})) in
post-BlockEvaluate(DO(f), newE, S’, E",S) A

E = mk-Environment((BOUND(f)sVALUES(E")), BO UND(/E))

180 5 The tactic language

TryEvaluate (t: TryStatement)
ext wr ' Environment
wr S © State

post 3E’: Environment, S’: State-post- BlockEvaluate(TRY (t), E, S, E', S")A
38" State, v: Value -
post-ExpEvaluate(COND(t), E', S', 5", v)
if v = true
then E=FE' NS = 5"

eIseE:E/\S:?

In the evaluation of &ryStatement the type of the condition is not checked in the pre-
condition — unlike most of the other cases where tests, sets and other expression sub-
components must evaluate to the correct type. This is for simplicity since the condition
must be evaluatedfter the block of statements. Thus if the condition part evaluates to
true then execution continues normally; otherwise (if the condition evaluatasytiing

other thartrue) backtracking occurs, in which case the proof reverts to the state it was in
before execution of the statement began.

CallEvaluate (c: Call) r: Value
ext wr £/ © Environment

wr S State
post cases ¢ of

L L

MuralCall — MuralCallEvaluate(c, E, S, E,S,r)
TacticCall — post-TacticCallEvaluate(c, E, S, E, S,)

L L

Make — post-MakeFvaluate(c, E, S, E,S,r)
end

Plenty of checks could be put in the precondition for call evaluation (arity checks, making
sure the name in dacticCall is actually in theTACTICSTORE, etc.). Note that the op-
erationCallEvaluate is the only one in this section which returns a result. What happens
to this result in an actual execution will depend on the context in which the call occurs —
if the call is ‘acting as an expression’ (e.qg. if it occurs as el UE part of an assign-

ment statement) then its result will be used by the surrounding statement or expression;
if it is acting as a statement then the result is ignorétlralCallEvaluate does exactly

what the name suggests — executes (or asserts the postcondition of) a function/operation
in mural (see Section 5.2.3)MakeFvaluate is not specified, but it simply constructs a
new element of a particulanural type. TacticCallEvaluate allows a named tactic to be
called from within another tactic.

TacticCallEvaluate (c: TacticCall) r: Value
ext rd £ : Environment

wr S State
pre dtac: Tactic -

TACTICSTORE('S)(FUNC(¢)) = tacAlen ARGS(c) = len ARGS (tac)

5.2 The language 181

post let tac = TACTICSTORE(S)(FUNC(c)) in
35": State - L

post-ExpListEvaluate(ARGS (¢), E, S, S, argList) A

denv: Environment -
mg ARGS (tac) C dom VALUES (env) A
Vi € dom argList- VALUES (env)(ARGS (tac)[i]) = argList[i| A
dnewenv: Environment -

post- TacEvaluate(tac, env, S', newenv, S, r)

EzpListEvaluate (seq: TacticExpression®) r: Value*
ext rd £ : Environment
wr S State
post if seq = []
then r =[]
else 35’: State, h: Value, t: Value* -

post-ExpEvaluate(hd seq, E, S, S', h) A
post- ExpListEvaluate(tl seq, E, S', S, t) A
r = cons(h, t)

RepeatEvaluate (r: Repeat UntilNothingChanges)
ext wr I/ @ Environment

wr S State
post 45’: State, E': Environment -

post-BlockEvaluate(BODY (r), E, ?, E'" S A
if AreEquivalentStates(S ,S’)

then E=FE' NS =5

else post-RepeatEvaluate(r, E', S, E, S)

AreEquivalentStates is not specified, but is essentially a function with signattige x
State — B which decides if the proofs of the two states are ‘the same’.

Expressions

Most of the evaluation operations for expressions are fairly simple, so here’s a couple
of examples (mostly with the the preconditions missing). Note that all the evaluation
functions for expressions have read-only access to the environment (since they cannot
assign to variables) but require both read and write access to the state (since they can
change the proof by means miural calls).

EzpEvaluate (e: TacticExpression) r: Value
ext rd £/ : Environment
wr S @ State

182 5 The tactic language

post cases ¢ of

Pair — post-PairEvaluate(e, E, S, S,)
Binary — post-BinaryFEvaluate(e, E, S, S, r)

A

MuralObject — post- MuralObject Evaluate(e, E, S, S, r)

end

PairEvaluate (p: Pair) r: Value
ext rd F . Environment
wr S : State
pre true
post 35’ State, [, s: Value -

post- ExpEvaluate(FST (p), E, ?, S A

post- ExpEvaluate(SND(p), E, S, 5, s) A
r = mk- ValuePair(f, s)

BinaryFEvaluate (b: Binary) r: Value
ext rd £ . Environment

wr S : State
post cases OPERATOR(b) of

P

U — post-UnionEvaluate(ARG1(b), ARG2(b), E, S, S,r)

end

UnionEvaluate (a, b: TacticEzpression) r: Value-set
ext rd £ : Environment

wr S State
pre 35": State, f, s: Value-set -

post-ExpFvaluate(a, E, S, E', S, f) A
post-ExpEvaluate(b, E';S" E, S, s)
post 35”: State, f, s: Value-set -
post-ExpEvaluate(a, E, S, E', S, f) A
post-EzpEvaluate(b, E', S", E, S, s) A
r=fUs
Notice that the precondition enforces the run-time typechecking constraint that the union
operator can only be applied to sets of objects.

MuralObject Evaluate (f: MuralObject) r: MuralObject
ext rd £ : Environment

rd S . State
post r = f

5.2 The language 183

5.2.3 Built-in mural operations

Themural procedures to which tactics have access are divided into two categupess:
ationsandfunctions The only difference is that executing an operation may change the
state of the proof (possibly returning a result) whereas a function may only interrogate the
state and return a value.

The calls which are provided perform a wide range of functions, varying from reason-
ably high-level manipulation of proofs (such as adding new lines or finding the set of goal
lines) down to functions concerned with low-level manipulation of expressions. Decisions
as to which operations were to be provided were driven by requests from users of the sys-
tem working in several application areas, so the hope is that the facility is comprehensive
enough to cover most needs.

In addition to the descriptive text for each function, a signature is also given specifying
the types of the arguments and the result. At run time, a check is done to ensure that the
correct number of arguments has been supplied, that they are of the correct types, and that
performing the operation will not corrupt the proof or return a nonsensical tetfubine
of these conditions fails, then a run-time error is signalled.

Syntactically aMuralCall is a name followed be a sequence of arguments separated
by commas and enclosed in parentheses @ugfier(a, b)) just like an ordinary proce-
dure or function call.

Operations

InsertNewBoxAfter (Line | Box) x Ezp-set X Exp — Box
builds a new box whose hypotheses and conclusion are the expressions
supplied in the second and third arguments respectively. Adds this box
to the proof after the first argument (a line or box occurring in the proof).
The value returned is the new box.

InsertNewBoxBefore (Line | Boz) x Exp-set x Exp — Box
as above except that the new box is added to the proof before the first
argument.

InsertNewLineAfter (Line | Box) X Exp — OrdLine
builds a new ordinary line with the second argument as its body and with
a null justification. Adds this line to the proof after the first argument (a
line or box occurring in the proof). The value returned is the new line.

InsertNewLineBefore (Line | Box) x Exp — OrdLine
as above except that the new line is added to the proof before the first
argument.

InstantiateProof Instantiation — {nil}
instantiates the current proof by the argument (an instantiation). The
argument must be permissible. Not only are the expressions on all lines
instantiated, but also the instantiations in rule justifications.

SetJustif OrdLine x Justification — {nil}
the justification field of the first argument (&hrdLine) is set to be the
second argument (&ustification).

9For exampleSetJustif must not create dependency circularities in the lines of the proofretanti-
ateProof must only try to instantiate the proof withpgermissiblanstantiation.

184 5 The tactic language

CollapseLines Line x Line — {nil}

this operation expects as arguments two lines from the proof which have
identical (or equivalent) expressions as their bodies. These two lines are
to be ‘collapsed’ — the second is to be deleted from the proof and all
references to it should be replaced by references to the first line. A
special case occurs if the second line is the conclusion of a box (i.e. it
cannot be deleted). In this case the justification of the first line is copied
onto the second line.

Functions

ArgsList Term — Term*
returns a list containing all the expression and type parameters of the
argument.

ArgsMap
(CESymb | CTSymb | QESymb | QTSymb) — Index — Index-set
see Section 5.3.3 for more on indices.

BoxCon Box — OrdLine
takes a box as argument and returns its conclusion.

Boxes — Box-set
returns the set of all boxes in the proof.

BoxesAccessibleFrom OrdLine — Box-set
the argument is a line. Returns all boxaxessibldrom that line.

BoxesKnownAt OrdLine — Box-set
the argument is a line. Returns all boxes which are accessible from that
line and which ar&nown(i.e. whose conclusion line is known).

BoxHyps Boxr — HypLine-set
takes a box as the argument and returns its hypothesis lines.

EstablishesSeq (Boz | Justification | Line) x Sequent — B
returns true if and only if the first argument Bax, a Justification or a
Line) Establisheshe second (&equent) .

FillOutinstantiation Rule x Instantiation — Instantiation
the arguments are a rule statement and an instantiation. Returns a new
instantiation which is the second argument plus a map element for each
(exp or type) metavariable in the rule statement not in the argument
mapping to a brand new metavariable.

FreeVars (Term | Sequent) — VSymb-set
returns all the free variables of the argument.

GOALS — OrdLines-set
returns the goals (those lines with a null justification) of the current
proof.

IndexOfTerm Term x Term — Index | {nil}
see Section 5.3.3.

IndicesOfEquivalents Term x Term — Index-set
see Section 5.3.3.

5.2 The language 185

Instantiate Term x Instantiation — Term
takes a term and an instantiation and returns the result of instantiating
the first argument by the second.

InstAtPut Instantiationx (MESymb | MTSymb)x Term — Instantiation
a function for building instantiations. Adds to the relevant mapping (exp
or type) of the first argument (an instantiation) an element mapping the
second argument (an exp or type metavariable symbol) to the third ar-
gument (an exp or type).

IsDefined Symb — B
true if and only if the argument (a symbol) isdafined(rather than a
primitive) constant, type, binder, etc.

IsEquivalentTo Term x Term — B
takes a pair of terms and tests whether they are equivalent (as defined in
the mural specification).

IsinstantiableBy Term x Instantiation — B
tests the precondition for instantiating the first argument (a term) by the
second (an instantiation).

IsKknown Line — B
tests whether the argument is one of the known lines of the proof.

IsPermissible Instantiation — B
tests whether the argument igparmissibleinstantiation (i.e. only in-
stantiates metavariables which do not occur in the proof’s statement).

IsTriviallyTrue Sequent — B
true if and only if the argument is a trivially-true sequent (one whose
upshot is included among its premises).

IsValidindex Term x Index — B
see Section 5.3.3.

KNOWNS — Line-set
returns the set of known lines in the current proof.

KnownsAt Line — Line-set
returns the set of lines in the current proof which are known and which
are accessible from the argument (a line).

LeftOp Term — Term
the argument is an ordinary expression or type with at least one argu-
ment. Returns the first of these.

LineBody Line — Exp
given a proof line, returns the expression on it.

Lines — Line-set
returns all the lines in the current proof.

LinesAccessibleFrom Line — Line-set
returns all the lines in the proof accessible from the argument (a line).

MapAt A ™ Bx A— B
takes a map and an object. Returns the object’'s image under the map if
it is in the domainpil otherwise (map application).

186

5 The tactic language

MapAtPut (A " B)x Ax B — A-" B
adds a map element to the first argument (a map) mapping the second
argument to the third.

MatchAgainst Term x Term — Instantiation-set
performs pattern matching with the two args. Both arguments are terms,
the first is to be instantiated.

MatchesLine FEzxp x Line — B
matches the first argument (an exp) with the body of the second (a line).
Returnstrue if and only if the set of permissible instantiations returned
iS non-empty.

MatchLineAgainstLine Line x Line — Instantiation-set
matches the bodies of the two arguments (lines). Tries to make the
resulting instantiations permissible by throwing out of each instantiation
those elements which instantiate ‘fixed metavariables’.

MergeableWith Instantiation x Instantiation — B
tests the precondition for merging two instantiations (i.e. that they are
consistent).

MergeWith Instantiation X Instantiation — Instantiation
merges two instantiations.

NewMVar — MESymb
return a ‘brand-new’ metavariable (i.e. a completely new spelling).

NewTMVar — MTSymb
returns a ‘brand-new’ type metavariable (i.e. one with a completely new

spelling).
NewVar — VSymb
returns a ‘brand-new’ variable (i.e. one with a completely new spelling).

ProofConcl — OrdLine
returns the current proof’s conclusion line.

ProofOrdHyps — HypLine-set
returns the current proof’s ordinary hypotheses.

ProofSeqHyps — SeqHypLine-set
returns the current proof’s sequent hypotheses.

ReDrawProof — {nil}
causes the view of the main proof attempt to be re-drawn

RenameFreeVars Term x VSymb = VSymb — Term
replaces free variables in the first argument (a term) according to the
second (a map frormfural) variables to variables)

ReplaceEquivTerm Term x Term x Term — Term
returns the term which is like the first term, but with all subteeqaiv-
alent tothe second argument replaced by the third argument (all three
arguments are terms).

ReplaceTerm Term x Term x Term — Term
returns a term which is the first argument with ak&c) occurrences of

5.2 The language 187

the second argument replaced by the third argument (all three arguments
are terms).

RightOp Term — Term
the argument is an ordinary expression or type with at least one argu-
ment. Returns the last of these.

RuleConcl RuleStmt — Exp
returns the conclusion of the argument (a rule statement).

RuleOrdHyps RuleStmt — Ezp-set
returns the ordinary hypotheses of the argument (a rule statement).

RuleSeqHyps RuleStmt — Sequent-set
returns the sequent hypotheses of the argument (a rule statement).

RuleStmt Rule — RuleStmt
returns the statement of the argument (a rule).

SequentPremises Sequent — Ezp-set
returns the premises of the argument (a sequent).

SequentUpshot Sequent — Exp
returns the upshot of the argument (a sequent).

SubTerms Term — Term-set
returns all subterms of the argument (a term).

Symb Term — Symb
the argument is an ordinary expression or type, a binder expression or a
dependent type. This function returns the argument’s symbol.

TermAtindex Term x Index — Term | {nil}
see Section 5.3.3.

Unfold Term x Symb — Term
returns the result of unfolding the definition of the second argument (a
symbol) in the first argument (a term).

UnifierOf Term x Term — Instantiation X Instantiation

runs the unification algorithm on the two (term) arguments. Returns a
pair of instantiations, one to instantiate each of the arguments. Both of
these will be permissible. Names of metavariables in the first argument
take precedence over those in the second. If the algorithm fails to find
a unifier, the pair< nil, nil > is returned. The ‘occurs check’ often
used as a precondition in unification algorithms is not needed, since any
‘clashing’ metavariables are renamed interndlly

User interaction with tactics

Two MuralCalls exist which allow the tactic writer to ask the user for some assistance

while a tactic is running. They both cause the execution to stop and wait for the user to
take some action before continuing with the tactic. The intention is to allow the user to
guide searches and so on.

101n fact, the problem of finding a most general unifier for terms ofithweal language is not decidable.
What has been implemented is a partial algorithm (which always terminates!) based on [Hue75].

188 5 The tactic language

UserSelection X* — X U {nil}
the argument is a collection of objects. The user is presented with a
menu with an option for each of these objects (e.qg. if a collection of
rules is passed in, then a menu of their names will appear). The function
returns the object which is selected,ndrif the user selects outside the
menu.

UserSelectionOfSubterm Term — Term U {nil}
this is similar toUserSelection but the argument is a term, and one
of its subterms can be selected. Instead of a menu, this function first
prompts the user for the size and position of a window in which to dis-
play a structured presentation of the given term. A menu item allows
the designation of a particular subterm.

Make constructs

The Make construct which is provided for building composite objects is much the same as
the VDM ‘mk-’ function. The types of objects which can be formed with this construction
are limited to those listed below. For each type which can be ‘made’ the signature of the
correspondingnk-function is given. For each type, the make function has a precondition
which ensures that the resulting object will be sensible; if the precondition is false then a
run-time error occurs.

Ruledustif Rulex Instantiationx VSymb —— VSymbx OrdDeps-set'! x SeqDeps-set!?
— RuleJustif

FoldDefJustif Line x Term — FoldDefJustif

UnfoldDefJustif Line x Term — UnfoldDefJustif

SeqHypJustif SeqHypLine x VSymb — VSymb x OrdDeps-set — SeqHypJustif
Justification — NullJustification

Ordinary Expression (CESymb | MESymb) x Term* — OFEzp

Ordinary Type (CTSymb | MTSymb) x Term* — OType

Binder QESymb x VSymb x Type x Exp — QFExp

Dependent Type QTSymb x VSymb x Type x Type — QType

5.3 The implementation of tactics

This section describes the implementation of tactics which exists imtin@ system; the
facilities provided by the tactics system and the user’s view of them are discussed, but no
mention is made of the methods and techniques actually used in implementing the tactics
subsystem.

1 OrdDeps at present include only Lines, so no facilities are provided for constructing nested justifica-
tions from within tactics.
12 SeqDeps are SeqHypLines or Bozes.

5.3 The implementation of tactics 189

5.3.1 Note on error checking

All error checking is done at run-time (indeed, since the language is not statically typed, it
is impossible to decide prior to the execution of a tactic whether errors would occur as the
result of incorrectly typed parts of the tactic language (for example, the condition part of
anlf statement must be a Boolean) or callsitoral functions and operations. It would,
however, be possible to do some checking at the time a tactic is written — such as ensuring
that allmural calls have the correct number of arguments (though this was not done in the
implementation ofnural). The tactic system could be further enhanced by the addition
of an exception handling mechanism (such as exists in ML or Eiffel, for example) to deal
in a clean way with failures and abnormal conditions which occur at run time. Errors can

occur in several ways:

e calls (to tactics or thenural core) are given the wrong number of arguments.

e type check failure. Some typechecking is performed — for instance\treperator
must have Booleans as its arguments ddeéxpects a non-empty collection as its
argument.

¢ the name supplied to a tactic call doesn’t refer to any tactic available in the theory
where the execution is taking place.

e certain operations or functions have preconditions (which include a test that the
arguments are correctly typed); an error will occur is one is violated.

e the execution of &top statement, while not strictly erroneous, will halt the execu-
tion and behave in just the same way as an error.

When any of these error conditions arises a run-time error notifier, similar in style to

the Smalltalk-80 source-level debugger, will be displayed, showing the code of the tactic
which was executing, with the particular statement in which the error occurred highlighted
and some diagnostic text explaining the reason for the failure. Clicking with a mouse
button will remove the error notification, stop the execution of the tactic and return control

to the user interface.

5.3.2 Note on pattern matching and unification

Themural system provides algorithms for bgplattern matchingndunificationof terms,

although the unification algorithm cannot be invoked directly form the user interface in
the way that the pattern matcher can — it is only visible from the tactic system. The
provision of these two algorithms can sometimes lead to confusion when writing tactics.

Why is unification necessary?

When rules are applied backwards to goals in proofs, pattern matching (or unification
for that matter) will not always be able to find the complete instantiation which will be

13The disadvantage of this kind of error notification is that the notifier window ‘grabs control’, which
means that the user cannot go off and do anything else (like look in another window to try and track down
the problem) while the error message is displayed.

190 5 The tactic language

required, so some metavariables will be mapped to arbitrary new values and the relevant
new lines added to the proof (e.g. applyi"f@lZ to a linex the instantiation fom is not

known, so a new metavariable(actually just a unique number) is introduced and the
line z A b is added to the proof. Before the proof can ever be considered complete, all
occurrences ob must be ‘illed in’ using a call tdnstantiateProof. Later on, when

these new lines are themselves being treated as goals, more information may be found
and these new metavariables can be ‘filled in’. Pattern matching is not enough since it
will only instantiate metavariables ameof its arguments (typically an expression from

an uninstantiated rule); here we need to instantiate metavariables in both a proof line and
arule.

When to use unification and when to use pattern matching

When applying a rule backwards (or indeed doing anything involving matching or unifi-

cation) to justify a goal line in a proof, which may itself have been the result of an earlier
backward step, use unification — for most other things pattern matching will do (pattern
matching is somewhat more efficient, therefore preferable).

5.3.3 Indexing terms

The tactic language provides primitives for accessing and manipulating subterms of a term
by means ofndices Indices are sequences of non-zero natural numbers. Full details of
indexing are given in the specification in Appendix C, but here is an example.

Ezp
A EListXTList
EList TList

/\
/\ /\

A’ EListXTList B’ EListXTList

/\ /\

FEList TList FEList TList

Figure 5.1: Structure of mural Expression

5.3 The implementation of tactics 191

Figure 5.1 shows the structure of the expressionB. The nodes of the tree labelled
EListXTList, EList and T'List are parts of the abstract syntax of tiwral language
which are hidden from the user in ordinary circumstances (i.e. normal structure editing),
but which must be understood in order to write tactics which manipulate terms at this
level of detait*. In Figure 5.1 it can be seen (by following the branches of the tree which
are drawn as arrows) that the symigiP has the indeX2, 1, 2, 1]. For most applications
indices and the detailed structure of terms can be completely ignored, but the interested
reader (or one who is forced to write such perverse tactics) is referred to the specification
(in Appendix C.2.2) which defines the syntax of terms, explains indices, and specifies the
functions/sValidindex and TermAtindex as mentioned in Section 5.2.BudexOfTerm
takes a pair of terms; and b, and returns the index of a subtermafvhich isidentical
to 56 (or nil if no such subterm exists)ndices OfEquivalents is similar, but returns the
set of indices of those subtermsoivhich area-equivalent tab.

The MuralCall ArgsMap is slightly more complicated. It takes a defined expression
or type symbol and returns a map fradmdez to set ofIndex. Each index in the domain
of the map is a singleton list representing one of the arguments to the definitiofs(e.g.
indicates the third argument) and its image under the map is the set of indices correspond-
ing to the occurrences of that argument in the definition. (Slightly) more formally this can
be specified as follows:

ArgsMap (s: ExpOrTypeSymbol) r: Index — Indez-set
pre isDefined(s)
post Vh € Holes(Defn(s))-r([number(h)]) = IndicesOfEquivalents(Defn(s), h)

whereHoles returns all the expression and type placeholders in a termpDajidreturns
the definition of a defined expression or type symbadlhe functionnumber returns the
index of a placeholdét, with the quirk that it ‘adds type placeholders after expression
placeholders’. For example, if a definition had three expression arguments and two type
arguments theumbers of the type placeholders would bg and|[5].

Well that's enough of indexing. Now for something completely different.

5.3.4 Interacting with tactics
Editing

Inside a Tactic Notice (in a theory tool) a structured presentation can be displayed to
allow one of the theory’s tactics to be edited. When a new tactic is added to the theory it
is completely ‘empty’ — that is, it has no arguments, its result variable is set to a default
value fesult) and the body of the tactic contains no statements. Middle-button menu
options are available when the whole tactic is selected to add arguments and to change the
name. Null statements can be added to the body, and can subsequently be refined into one
of the types listed in Section 5.2.1. When such a refinement is performed, a template form
of the new statement will be displayed, which will typically contain null expressions and

Thankfully, such tactics seem to be fairly esoteric.

15Note: thesymbolB, rather than thexpressiomwith the symbolB.

16j.e. the same Smalltalk object as

1"To be fully formal, the symbol’s definition would have to be looked up in the signature of the theory
where it is introduced.

81n this case, ‘index’ refers to the numeric identifier of the placeholder (an eleméit)pohot to be
confused with the indices we're mainly concerned with in this section.

192 5 The tactic language

empty bodies (further blocks or sequences of statements) which can themselves be edited.
The editing options on expressions are similar to those for statements, and an expression
can be refined into any of the kinds listed in Section 5.2.1.

Figure 5.2: a Nearly-new Tactic

After a couple of editing steps, a tactic might look like Figure 5.2. The vioxdly
is not strictly part of the tactic; it is simply a piece of concrete syntax which delimits the
beginning of a tactic’s block of statements so that the whole block can be selected when
structure editing, rather than just single statements.

Although there are some differences between the structure editor for tactics and that
for the rest ofmural the general principles are much the same and anyone acquainted with
the othermural editors should have no trouble editing tactics.

A parser has been written for the tactic language, and works in much the same way
as the standarchural parser: left button to select and place the insertion point; middle
button menu option on text to copy and paste text and restore the previous state; middle
button menu option on the whole tactic to parse unparset’text

Invoking tactics

Tactics can (only) be invoked from a tactic tool inside a proof tool. A new tactic tool
(obtained by clicking on the ‘tactic tool’ button on a proof tool) initially has on its right-
hand side a list of the names of all the tactics which can be run in the current context
(i.e. all those in the current theory or its ancestors which haveRBIPRARY arguments).

The list of tactics can be filtered by selecting a theory from the left-hand list, causing the
right-hand list to show only the tactics in the selected theory.

When the user has selected an item from the list of applicable tactics the arguments
may be instantiated to appropriate things, and the tactic set to run. When the arguments
to a tactic are being ‘set up’ (prior to execution) a list appears, on the left-hand side, of all
the arguments, and when one is selected a list appears in the middle of the tool containing
all the things which can be added to the sequence corresponding to that argument (this
will either be all the rules in the current theory and its ancestors, or all the lines, boxes and

9Caveat in the current version this sometimes behaves rather unpredictably, particularly when some-
thing fails to parse.

5.4 Examples 193

sequent hypotheses in the current proof, depending on the type of the argument). When
one of the items in this central list is selected a menu option allows it to be added to the
argument sequence (shown in the right hand column). A menu option allows items to be
removed from the argument sequence.

It is often desirable to write tactics which are invokable from the user interface (i.e.
which have only sequences of rules or proof objects among their arguments), but which
actually require only a single object (for example the ‘goal’ line on which the tactic is to
operate). The simplest way of achieving this kind of effect is to pass in a unit list, and
only use the head of this list in the following way.

Tacticl (argl: SEQ OF PROOFOBJECT, - - -) result
body goalLine < hd argl

A couple of other things should be noted about the tactic invocation tool. Firstly, when
a tactic is running (after thetart button has been clicked), the main section of the tactic
tool is replaced by a ‘trace’ of the tactic’s execution. A line is displayed in this trace each
time a mural call is executed, and when various other events occur. The purpose of this
is to give the user some idea of what is going on at any instant in time (and also to prove
that somethings going on!). When a tactic is running theart button changes to be
labelledstop and can be used to interrupt an executing tactic. Secondly, each time the
start button is pressed to run a tactic, a copy is made of the main attempt of the proof
and is added to the list of existing proof attempts. This is a ‘back up’ facility so that
the effects of running a tactic can be undone — by simply switching back to the copied
version.

5.4 Examples

In this section a few simple example tactics are presented.

5.4.1 Backwards rule application

The first example is of a tactic which takes as an argument a sequence of rules and
tries applying them in a backwards way to all the goal fés the proof. The im-
portant part of the tactic is the line where the ta¢iplyRulesBackwards is called and
passed the rule list and one of the goals which is subsequently removed from the goals
set. ApplyRulesBackwards returns a pair of values, the first of which is a Boolean flag
indicating whether or not the tactic was successful in applying one of the rules to the
given line. The second element of the result is a set containing the new lines and boxes
which have been added to the proof. In general these lines correspond to a subset of the
instantiated hypotheses of the rule which was applied — a subset since some of the rule’s
hypotheses may already exist lasownlines in the proof. These new lines are added

to the current set of goals, so that a similar attempt will be made to justify them. The

20All lines in the main proof attempt which have null justifications are considered to be goal lines.

194 5 The tactic language

MultiApplyRulesBackwards tactic will terminate when there no goals left to try and
justify.

MultiApplyRulesBackwards (RL: SEQOFRULE) result
body goals «— GOALS.
while goals # []
do g < OneOf(goals).
res «— ApplyRulesBackwards([g], RL).
goals: «— goals — {g}.
goals «— goals U snd(res)

Of course, care must be taken not to supply a tactidfikec i ApplyRulesBackwards
with sets of rules which are ‘circular’. For example, eitheﬁgﬁ or % individually or

gé—g and% together as arguments will cause the tactic not to terminate.

5.4.2 Forward rule application

Whereas the example tactic shown in the previous section applies inference rules to goal
lines in a proof, generating new sub-goals, the one shown bé&lemwérdStep) applies

single rules in a forward direction to generate new known lines from existing ones. It
could be used as the basis afwél tiApplyRulesForwards, which would make repeated
calls toForwardStep from within a While loop. The arguments tBorwardStep are a

line (/y) to indicate the position at which new lines should be added to the proof, the rule
to be applied R), a sequence of linegs) and a sequence of boxels;) which the tactic

will work forward from, and an instantiationir{st) which will be applied to the rule.

The return value is a pair, the first element of which is the new proof line corresponding
to the conclusion of the rule, and the second is the set of new lines added to the proof
corresponding to hypotheses of the rule.

ForwardStep (ly: ARBITRARY, R: ARBITRARY, ls: SEQOFPROOFOBJECT,
bs: SEQOFPROOFOBJECT, inst: ARBITRARY) S
body rs « RuleStmt(R).
inst' « FillOutInstantiation(rs, inst).
new <« InsertNewLineAfter(ly, Instantiate(RuleConcl(rs), inst’)).
newHyps «— ApplyMizedStep(new, R, ls, bs, inst’).
S «— < new, newHyps >

5.4.3 User interaction

As was mentioned in Section 5.2.3, tactics can be written which ‘poll’ the user for extra
information; the tactic shown below makes use of this facility. The purpose of this tactic
is to help the user set up a proof by induction over sequences. The rule for sequence

5.4 Examples 195

induction is built into the tactic (its name is enclosed in ‘Strachey’ bracksts; Ind] —

like this), but a variation could easily be written in which the particular induction needed
was passed as a parameter, so that the tactic would be applicable in a larger set of theories.
Additionally, some checks should be put is to deteldbeing returned from the user selec-

tion calls, but have been omitted for the sake of simplicity. Both this tactic and the next
one BasicEqualsSubstitution) operate at a fairly low level by manipulating terms
using theSymb, RightOp and LeftOp MuralCalls, and by constructing instantiations for

use in justifications. Subsequent tactics which rely on these can operate at a higher level,
so some of the gory detail is hidden.

SetUpInduction (gl: SEQOFPROOFOBJECT) result
body ¢ « hdgl.
b «— LineBody(g).
| «— UserSelectionOfSubterm(b).
P «— ReplaceEquivTerm(b, [, [el]).
r «— [Seq-Ind].
con « RuleConcl(RuleStmt(r)).
ts «— Symb(LeftOp(con)).
Ps «— Symb(con).
inst «— InstAtPut(InstAtPut(mk-Instantiation({},{}), ts, 1), Ps, P).
inst «— FillOutInstantiation(RuleStmt(r), inst).
ApplyRule Backwards(g, r, inst)

The conclusion of the rule for induction over sequenéeg{/nd) is of the form@)[z],
where () is some predicate andis the ‘induction variable’. The above tactic builds an
instantiation for the metavariablés andz based on the line given as input to the tactic,
and the user’s selectioh, In building this instantiation, the subterm selected by the user
is replaced in (a copy of) the originaby an expression holé¢1]. This is often necessary
in tactics which construct instantiations (suctBasicEqualsSubstitution below).

5.4.4 Equational reasoning
Basic rewriting tactic

The tactic shown here forms the basis of a range of others which use equations (or rather
inference rules with equations as their conclusion) to rewrite lines in a proof, substituting
equals for equalBasicEqualsSubstitution takes three arguments: aline in the proof,

[, a subexpression of the expression on the proof liney, and a rule (with an equation

as its conclusion);. The idea is to add a new line to the proof which has the expression
of [with term rewritten using the equation of This involves applying the rule of equals
substitution:

sl = s2, E[s1]

=-subs E[SQ]

The tacticForwardStep is used twice, first with the ruleto add the equation as a line
in the proof, and secondly with the-subs rule applied to this equation and the original
line which is to be rewrittenl].

196 5 The tactic language

Not only is the name of the equals substitution rule ‘hard-wired’ into this tactic (for
simplicity), also the tactic contains information about the form of the rule, in the lines con-
taining MuralSymb(. ..) close to the end of the tactic. These are quetedal metavari-
able symbols which correspond directly to the metavariables in the statement of the equals
substitution rule.

BasicEqualsSubstitution(l: ARBITRARY, term: ARBITRARY, r: ARBITRARY)lp
body left < LeftOp(RuleConcl(RuleStmt(r))).

insts «— MatchAgainst(left, term).

if IsSEmpty(insts)

then

else kI «— KnownsAt(l).
if IsEmpty(RuleSeqHyps(RuleStmt(r)))
then kb — {}
else kb «— BozesKnownAt(l)
inst < OneOf(insts).
eqn «— fst(ForwardStep(l, r, kl, kb, inst)).
term’ «— RightOp(LineBody(eqn)).
newBody «— ReplaceTerm(LineBody(l), term, term’).
pterm <« ReplaceTerm(LineBody(l), term, [el]).
sls «— MuralSymb(sl).
$2s «— MuralSymb(s2).
Es — MuralSymb(E).
inst2 «— InstAtPut(InstAtPut(InstAtPut(mk-Instantiation({ },{}),

sls, term), s2s, term’), Es, pterm).

lppair — ForwardStep(eqn, [=-subs], {1} U{egn},{}, inst2).
Ip — fst(lppair)

Interactive rewrite

The previous tactic is rather unwieldy, and in any case cannot be invoked by the user
since it has arguments which are of typ&®B#TRARY. Consequently, a more ‘user-
friendly’ variant is required.InteractiveFR (Or interactive forward rewrite) is a tac-

tic which hides the functionality dfasicEqualsSubstitution behind a user interface
similar in style to the induction tactic. The tactic takes a sequence of lingsntain-

ing the line to be rewritten), and a list of rulgsl. providing the rewriting equations.

The user is prompted for a subterm to rewrite and a rule to apply, then a call is made to
BasicEqualsSubstitution to actually perform the rewrite.

Interactive FR (1l: SEQOFPROOFOBJECT, RL: SEQOFRULE) newLine

5.4 Examples 197

body [< hdlIl.
term <« UserSelectionOfSubterm(LineBody(l)).
if term = nil
then newLine <« nil
else rule < UserSelection(RL).
if rule = nil
then newLine <« nil
else newlLine < BasicEqualsSubstitution(l, term, rule)

Multiple rewriting

A common strategy employed in proofs is to use chains of equalities to rewrite or simplify
terms over a number of steps, and further extensions can easily be made to the interface
of the term rewriting tactics which support thidultInteractiveFR repeatedly calls
InteractiveFR until the user makes a nil selection (for example by clicking outside a
menu), thus creating a sequence of lines related by applications of the equals substitution
rule.

Multilnteractive FR(startLine: SEQOFPROOFOBJECT, RL: SEQOFRULE) result
body line < hd startLine.

while line # nil

do line «— InteractiveF'R([line], RL)

198 5 The tactic language

Chapter 6

Implementing the mural proof assistant

Previous chapters describe theiral proof assistant, both at the abstract level and in
terms of the specification of the system. We should not forget that this abstraction has
been realized as a working piece of software. This chapter discusses the process of im-
plementation and points out some of the things we learned along the way that we believe
may be of interest or significance to others. This is not the place to attempt to give full
detail of the implementation, rather we attempt to illustrate the general structure and to
focus on some of the interesting issues in its development. It is written more for the cu-
rious than for those who would like to implement their own version of the syst@&tris
chapter deals specifically with the implementation of iheal proof assistant, but much

of it applies to the entirenural system.

Background

As with any system of more than trivial size, much of the eventual form and style of
the mural proof assistant was due to an evolutionary process involving a large number
of design decisions. To understand the reasoning behind such design decisions without
having been present at these discussions is a difficult task. A lot can be deduced from the
scene setting given in Section 1.4. Here we offer a little more background to give you a
picture of our thinking and perspective during the design.

Things uppermost in our minds

There were many possible routes we could have taken in the developmentmiitiie

proof assistant, even after things had been fixed at the specification level. To give you a
flavour of the things that led us in the direction we chose, the points that were uppermost
in our minds at the time were:

e The VDM specification was the Bible of current information. It was the sole repos-
itory for decisions already made.

e Any decision that had been made in the absthaat to be reflected in the code
If we discovered the need during implementation to alter something recorded in
the specification, then thenly permitted mechanism for doing so was to amend

LIf there are any such people, and if going and sitting in a dark room for a while doesn’t cause you to
think better of it, then we suggest you get in touch with us directly. We should be able to give more useful
information in higher bandwidth communication than anything we could provide in a book of this kind.

200 6 Implementing the mural proof assistant

the specification and then to implement from the revised specification. Given the
lack of a system offering the functionality of a fullural, it was not reasonable

to attempt a formal development of thairal proof assistant. However, the rela-
tionship between the specification and the code was monitored informally as if the
retrieve functions had been written. In a few cases where the correspondence of
the implementation was not obvious, some formal proof was done. The specifica-
tion also contained some validation properties of the operations that were used as a
confidence check on some parts of the implementation.

e The initial implementation had to be a fully functional prototype. It was considered
acceptable to compromise on performance to a reasonable extent to expedite the
development, but we had to provide all of the functionality necessary to use the
mural proof assistant on realistic examples.

e We viewed the system as broadly divided into two parts:

1. the kernel functionality covered by the specification;
2. the user interface that permits access to this kernel.

The specification had addressed many of the design issues involved in 1, but we had
no way of conveniently discussing 2 without constructing prototypes. We needed a
great deal of flexibility in constructing interfaces since we were sure to get it wrong
the first time.

These points should be kept firmly in mind when reading the following sections.

The implementation language: Smalltalk-80

We have been asked on many occasions: ‘Why Smalltjlk?’ this would seem to dis-
tance ourselves from most of the other work that was being done in the area of supporting
formal reasoning. Traditionally, theorem provers and their brethren have been imple-
mented in either ML [Pau85a] or one of the LISP dialects. It is generally believed that
these languages are particularly suitable for supporting the symbolic manipulation in-
volved in this class of application. As was discussed in Chapter 1 and above, we had
different priorities as far as thaural proof assistant was concerned.

As we have said, we believed that one of the key requirements ohiingd system
was to provide an interface that was helpful in constructing proofs. Since we had no clear
picture of precisely what this entailed when starting out, we needed to be able to try a
number of different approaches to the Ul. This led us to pick an environment where the
basic facilities necessary for building an interface, such as windows, selection mecha-
nisms and so forth, were available and could be easily combined in a variety of ways.
From the literature and simple experiments, we thought Smalltalk to be more suitable in
this regard than any of the other options we had available since it offered the necessary
primitives and allowed rapid experimentation without a high rebuilding overhead for a
large application. We were also of the opinion that Smalltalk lost nothing on the sym-
bolic manipulation front since it supported abstract data types, such as sets and lists, that
matched the way we had specified the kernel operations. This would allow a very direct

2The mural system was developed in Objectworks for Smalltalk 80, Version 2.5, ParcPlace Systems,
using Sun 3 and 4 as our development systems.

6.1 The process of implementation 201

implementation of the specification. Early experiments to convince ourselves (and others)
of the suitability of Smalltalk and the conclusions we reached are discussed in [Jon87a].
Section 6.3.4 gives our opinion on this matter at the end of the project.

As is often the case, our choice of implementation language had some effect on the
style of the eventual implementation. It is obvious to anyone familiar with Smalltalk that
mural is a Smalltalk application. It is equally obvious that it is not a standard application.
This is discussed later.

6.1 The process of implementation

One of the interesting aspects of tinaral project was that it combined the approaches of
formal specification and prototyping in a complementary way. In this section, we discuss
this relationship and explain why we feel that this proved to be a very successful approach
to building our system.

As we mentioned above, the starting point for the implementa@rsewvas the VDM
specification (Appendix C). This document recorded a complete description of the core
of the system at a behavioural level.

The process by which we arrived at the final version of the specification is of interest
in itself. We will describe it here, even though it is a precursor to what would normally
be considered part of the implementation.

‘Ground Zero’ was a mathematical presentation of the functionality of the kernel.
This was written as a description of the logical frame tingral proof assistant was to
support [Lin87a]. This document allowed many of the discussions and decisions to be
taken at a very abstract level where the issues were clearer. This allowed a separation of
concerns, since we could concentrate solely on the issues of importance at that level of
abstraction.

Once we were happy at this level, the mathematical description was then translated
into a VDM specification [Jon87b] which gave the base for the system specification. From
this point, the specification was expanded to be a complete functional specification for the
kernel [Mo0883].

At this point, we realized that we needed some feedback on aspects of our design, such
as the level of user interaction involved, that could not be examined very well in abstract.
To get this feedback, we built a prototype by ‘translating’ the specification into Smalltalk
and executing it. As expected, this led to our realizing the need for some changes in the
primitives and a revision of the structure of the kernel.

At this point it would have been too easy to just make what we felt were the necessary
changes at the implementation level, ignore the specification hereafter, and plough on
regardless — especially since we now had a working prototype to play with. This is not
the model that use of a formal method suggests and we forced ourselves to take our own
medicine. It should be noted that this was easier for some than for others and any project
using these techniques can expect some problems with programmers who don’t see that
this discipline is necessary for their work. It's also easy to predict which people have
responsibility for the parts of the system that cause problems further down the track!

The changes were documented by producing a revised version of the specification
and this document ([LM89]) served as the gospel during the construction ehihd

3This translation was not exactly a mechanical process since in general the specification was not directly
executable. However, this sentence gives the flavour of what we were trying to achieve.

202 6 Implementing the mural proof assistant

proof assistant. The prototype was notionally thrown away and the implementation began
cleanly. In retrospect, we feel that this was one of the key points in the process and the
reason that the combination of techniques worked well for us. If we had not been prepared
to incorporate the feedback from the prototype at the specification level, rather than at the
code level, then this is the stage where we would have lost our precise specification and
would have been reduced to a ‘hack it and see’ strategy. Given the number of times an
appeal to the specification solved a problem, or resolved an ambiguity, or cleared up a
misunderstanding, in the weeks that followed, this would have been a high price to pay
for the instant gratification of being able to carry on playing with our prototype.

Just to complete this historical perspective, the system kernel was then implemented
from the specification, exploiting the obvious relationship between the types in the spec-
ification and the objects that could be constructed in Smatltafk user interface was
designed and built on top of this, and the system was released to the group for feedback.
The final step in the process was modifying the system according to user feedback, via the
specification where this was relevant, and by improving efficiency where this was shown
to be important.

Now that you know some of the reasons theral proof assistant looks the way it
does, we can look at some detail of the implementation.

6.2 The implementation

6.2.1 The implementation of the kernel

The kernel of thanural proof assistant was implemented as a class hierarchyMuth
ralObjectas its root. Fig. 6.1 shows an outline of this hierarchy. Iltems followed by ...
have further subclasses. Those marked wistne pragmatic rather than semantic entities.
Since there is a natural correspondence between a VDM type and a Smalltalk class (par-
ticularly when the type is a record, as most of the types inatheal specification are),

the derivation of the classes in this hierarchy was quite straightforward.

Since there is no notion of inheritance in VDM, we were somewhat surprised how
inconvenient it was to be limited to Smalltalk-80’s single inheritance model when trans-
lating the types. All of the kernel classes needed to be subclasddsarafObject to
inherit the basic properties of amyural type, but we often would have liked to be able
to inherit functionality from a pre-existing Smalltalk class as well. An obvious example
of this is theArgListtype. As well as being &onstruct it is also an obvious subclass of
OrderedCollection

Toillustrate the correspondence between the code and the specification, Fig. 6.2 shows
both the specification and the implementationRule

Each field of the record was represented as an instance variable of the class. In ad-
dition extra variables were used to hold information that was not relevant at the level of

4During this part of the implementation, we evolved a style of working that was remarkable successful
for us, involving two people at one workstation. This is now referred to as the ‘spare feet on the desk’ pro-
gramming paradigm, so named because of the working position usually adopted by the person not driving
the keyboard. The combination of this style, which avoided many errors of both omission and commission
that would have been harder to track down after the fact, together with the use of the formal specification
in an environment that provided powerful programming abstractions, gave us high productivity during this
phase. How well this would translate to other teams, on other projects, is left as an exercise for the interested
manager.

6.2 The implementation 203

MuralObject *
MICollector ... *
Store
Theory
Signature
ThMorph
Proof
Box
HypLine ...
Rule
Sequent
Term

Construct
Arglist ...
BTerm ...
Exp ...
Type ...

Symb ...

Zilch *

Figure 6.1: An outline of thenural class hierarchy

abstraction at which the specification was written, such as a comment associated with the
rule.

The rest of the kernel types were implemented in a similar fashion. In some cases, we
had to resort to tricks to simulate multiple inheritance. This was usually done in one of
two ways, although in some cases of sheer desperation we had to resort to copying code.

1. For the cases where we wished to inherit the functional behaviour of an existing
class, the trick was to encode an object of the desired second superclass in an in-
stance variable of the class. For examplgyListis a subclass dfluralObjectand
has an instance variablést, which contains a®rderedCollection

2. When we were actually interested in subtyping (i.e. not in method inheritance), we
made use of a separate hierarchy rootedvbollector, the subclasses of which
were used to represent second parentsiforal classes. For examplégaf has
one instance variable that contains a list of all the classes that would be considered
subclasses dieaf, such aAtom, Vsympetc. We could then test if something was
a subtype by checking if it was in this list.

This lacked the elegance of true multiple inheritance but was sufficient to allow us to write
the operations we were interested in.

Most of the operations given in the specification were implemented as methods on the
obvious class. Sometimes, the class structure of Smalltalk allowed a number of possibil-
ities for the ‘right’ place to attach a method. In such cases, ‘obvious’ was decided by the
toss of a coin. If the specification was sufficiently explicit, the code was usually written by
simply translating the VDM, since most of the operations used in the specification (such
asuy, 1 etc.) were also available in Smalltalk (Fig. 6.3).

204 6 Implementing the mural proof assistant

For the cases where the specification was implicit, some non-trivial design was neces-
sary. The problem usually involved searching thorough a fairly small domain of possibil-
ities, taking advantage of some meta-knowledge of the situation. In these cases, a proof
of consistency with the specification was done in an informal manner. The correctness of
the relationship shown in Fig. 6.4 is less obvious than for the case above.

The security of thenural proof assistant depends only on the security of this kernel,
since all operations available to the user through the user interface interact with the state
only through the kernel functions.

6.2.2 The implementation of the user interface

Our aim for the user interface was to take advantage of the sophisticated interaction possi-
ble on a workstation to make the process of constructing a proof as convenient as possible
for the user. We had a number of broad principles in mind:

e No arbitrary restrictions on the order of actions or on the layout of information.
We assumed that the user was more intelligent than the machine and if he or she
wanted to do things in a particular order, or lay out windows in a particular way,
then, provided there were no semantic restrictions, we should allow this. We should
support the user, not enforce a style.

e Wherever possible, the interface should follow the direct manipulation principle,
i.e. you should be able to edit the representation of the object that you see.

¢ Notation and layout etc. should be as close to what the user actually wants as we
were able to achieve. Mathematical founts make a large difference to the readability
of the texts.

¢ In contrast to the previous item, we should not slavishly follow what one would do
on paper, but should take advantage of the processing power of the machine and the
interactive nature of the medium to do better than paper.

This led us to create two basic interactors which underlie most of thexdind proof
assistant user interface:

e Structured presentatiorare representations of an object that allow the binding of
menu actions to subcomponents. Using this mechanismpiing proof assistant
presents a structure editing interface to the underlying objects. This mechanism is
used for the construction and editing of most small objects within the system.

¢ Noticeboardsllow the grouping ohotices which can be regarded as sub-windows,
in arbitrary ways. This technology allows the user to decide on the layout and
organization of information within a view of a larger structure. For example, the
presentation of components within a theory uses a noticeboard to allow the special
grouping of related rules and signature items for convenient navigation. This is in
keeping with the principle of allowing the user complete freedom when there are
no semantic constraints.

Both of these components are visible in a number of forms in the picture in Fig. 6.7 on
page 213.

6.3 Lessons learnt and advice to the young 205

User interaction with small-scale objects

The basic user interface component necessary for the majority of kernel objects was some

mechanism for constructing such objects. We chose tstugetured presentationshich

permit the editing of the objects. As an efficiency improvement, a parser was added later.
The basic interactor for a simple kernel object is presented as a notice containing the

syntactic definition of the object, plus a definition of its concrete syntaiRukeNoticdas

shown in Fig. 6.5.

User interaction with complex objects

For objects of more involved structure, one structured presentation would not be a very
good interaction mechanism. In factRaleis the largest structure we approached in such

a fashion. For objects of greater complexity, such dheaoryor a Proof, we used the
notion of aTool as a structuring mechanism, together withoalViewwhich handles the
physical layout on the screen.

Tools can be considered as part of the user interface even though they have nothing to do
with the screen interaction as such. The basic idea behind a tool (we shdirtak@ool

(Fig. 6.6) as an example) is that there is information that is not part of the state, in the
sense the specification describes the state, but that needs to be stored somewhere. For
example, in thé’roofTool| there are a number of instance variables. Some contain kernel
information, such as the proof itself. Others hold selection or caching information, such
as the selected attempt. It is the tool that provides the functionality the user actually sees.
Since the tool only changes the state via the kernel operations, the security of the system
depends only on the security of the kernel functions. Tools should be viewed solely as
pragmatic constructs.

ToolViews describe the layout of the interface to an object in terms of the panes, buttons,
lists and so on that the user sees on the screen. Most views are built of a number of
common interactors, such as buttons, menus, selection from lists and so forth. There is
little point in discussing these here since the best way of getting a feel for what's in a
ToolViewis to look at some of the example screens in this book, such as Figs. 2.1 to 2.12
in Chapter 2.

6.3 Lessons learnt and advice to the young

The mural project has two things to offer: the system itself and the experience of the
use of formal methods gained by building this system. To benefit from the former, you
need a large workstation and a copymadral . The benefit from the latter is more cheaply
obtained and perhaps of more general interest. Many of the points are made piecemeal
and by implication in the preceding sections. This final section tries to bring them together
and make some definite comments. Much of it is repetition of what's above, but being
brought together makes it a stronger statement of what we believe. This is probably even
less of a consensus view than most of the preceding comments. Comments in bold should
be surrounded by aMounts soapbax bracketing.

206 6 Implementing the mural proof assistant

6.3.1 The use of formal specification with prototyping

Sincemural is a support system for formal methods, we obviously had to make use of
such technology in its developméntWe are convinced that this made the development
much easier and more successful than it would have been otherwise. It was a number
of months before the first line of code was written and by the time it was, many of the
contentious and difficult problems had already been resolved. This is evidence of one
of the classic arguments for the use of formal specifications: problems are picked up
earlier in the lifecycle. The initial implementation was quite straightforward and went
much more quickly than we had hoped. Had we had more suitable tools, this would have
been done more formally. Given what was available, this was not feasible; the actual
development can at best be described as rigorous. Some of the code was verified, using
theclaimsin Chapter 4 as validation conditions. A bold statemdéortmal specification
has benefit even without formal verification Also, formal verification increases the
benefit but at higher cost

We feel that the interaction between the specification and the prototypes contributed
significantly to the development of the system. The early feedback from a running system
allowed us to validate our specification at a pragmatic level and helped us to improve the
system at a number of levels of abstraction. This worked only because we made sure all
of the feedback was reflected in the specificatiBnototypes enhance a development
provided they feed back into the specification, not replace it This was a difficult
discipline to maintain at first, but we are convinced that this is one of the most important
points we learnedthe specification should be the ‘Truth’ at all stages of the project
lifecycle. Also, the specification should lead the code, not track it

6.3.2 Naive implementation

Our approach to writing the code was perhaps atypical. Where possible we took ad-
vantage of Smalltalk’s sophisticated abstractions and simply translated the VDM into an
executable form. Generally, this would have been decried as sure to produce a grossly
inefficient system. And, surely enough, it did. However, we would argue that this was not

a problem and actually saved us much wasted effort. One of the benefits of a language
like Smalltalk is the ease with which things can be changed. There were large portions
of the code for which optimization was completely unnecessary since the significance of
these sections to the overall performance of the system was small. The chances are that
if we'd tried to write optimal code from the start we would have wasted time and effort

in these areas. For the places where the system did need tuning, and there were quite a
number of these, Smalltalk allowed us to do so in an incremental fashion. Eventually, we
ended up with a system that has acceptably efficient code, without much wasted effort.
It's not clear how much more we could have gained if we’'d been prepared to do a more
complex development from the specification and benefited from optimization at a more
global level. | can't think of a nice pithy one-liner that sums up this point, so I'll use

a quote that I first heard from Richard Bird in a slightly different contexemature
optimization is the root of most evils

SWould you trust a BMW salesman who drives a Mercedes?

6.3 Lessons learnt and advice to the young 207

6.3.3 User interface experimentation

Formal techniques were not much help to us in designing the user interface. Actually,
that's not entirely true. The specification ensured that we knew precisely what functional-
ity the interface had access to, so the underlying structure of the interface was determined
by the specification. The actual combination of buttons and texts and what-nots that repre-
sent the system as far as the user is concerned was designed by scribbles on a whiteboard
and experimentation. We followed the guiding principles mentioned above and tried to
give an interface that permitted as much freedom as possible. This made the task of build-
ing the interface much harder. It is much easier to develop an interface to a proof, for
example, that only allows you to construct new lines from existing lines (forward rea-
soning) than one which allows you to go forwards, backwards or from the middle. The
other thing that became obvious was that to design an interface that allows total flexibility
without significantly increasing the user’s workload, igeaty hard task. Thenural proof
assistant allows a lot of freedom but it has its price: the user often has to do a lot of the
positioning of windows by hand, such as in noticeboards. This is often inconvenient if
you really don’t care where they go and just want a quick look at the contents. Perhaps
this could be summarized &gedom has its price?

The first interfaces we tried on theural proof assistant were more simplistic than
the current version. Such interfaces were quickly shown to lack some functionality that
users needed. The current interface is the end point of a number of experiments and
seems to offer most of the facilities one would look for. However, using some of these
features is more complicated than we would have wished. Further development would
now concentrate on packaging some of the more common features to make them easier
to use.Interfaces are not right the 1°* (or n**) time, no matter how hard you try, and
need to evolve with feedback

6.3.4 Smalltalk as an implementation language

We should state here that we doubt that we could haveutisl to the level of sophisti-
cation we did, in the time that we had, in any other language that was available to us at the
time. It's important to mention this since most of the rest of this section is griping about
various features of Smalltalk that we were unhappy with. We’ll try to remember to point
out the positive features, but it’'s always easier to take what you're happy with for granted
and complain noisily about the bits you'd like to change.

The abstractions provided as standard in Smalltalk, such as sets, lists and dictionaries,
make it very easy to program the complex structuresitheal proof assistant depends
upon. However, it was not as easy to take full advantage of these as we had hoped.
We often found ourselves in the situation of wanting to make a subclass of a system
container class to add functionality specific to the element type, as inAsglyist We
also usually wanted these classes to have the functionality of any mthet class in
the same category. Usually the only way to achieve this was to copy code from one or
other of the possible parents which seemed contrary to the reuse philosophy of Smalltalk.
Inheritance is nice but nothing more complex than an amoeba is really born from a
single parent

We made much use of some features of the environment that are not provided in
many languages. The most important of these was the dependency mechanism. Smalltalk
provides a classylodel which gives mechanisms for attaching dependents to an object,

208 6 Implementing the mural proof assistant

and notifying these dependents whenever certain events take place with respect to the
object. The obvious use of such a mechanism is within the interface to notify a view that
its underlying object has changed state. We use this mechanism heavily in our interface
code. However, we also make use of dependencies in other ways. For exafripkeisa
dependent on itdustification which in turn is dependent on the lines it refers to and the
rules it uses. If one of these rules is changed in any way, then the dependency mechanism
is used to inform the proof that, say, it is no longer complete and should unset the relevant
flag. Use of this mechanism was one of the main modifications we made when improving
the efficiency of the implementation. To have had to either build such a mechanism, or
manage without it, would have made life a lot harder for us.

We managed to build prototype interfaces very quickly and easily making use of
Smalltalk's MVC® mechanism and using the provided window classes. Unfortunately,
this only gave a loose approximation to the interface we actually wanted. Once we moved
away from the standard Smalltalk kind of interface, the cost seemed to go up exponen-
tially. Eventually, themural interface code required the redevelopment of the interface
components from a very low levebmalltalk makes building interfaces easy, but only
provided you stick within the bounds of its standard philosophy

Smalltalk works best as a single person environmeafe found that it was often quite
difficult to successfully hive off chunks of the development to different people and then
recombine the code. The problem was usually caused by needing to modify an existing
class in both branches of the development, with each developer needing to add an instance
variable to the class, say. There is then no automatic way of combining these classes into
a single image. We often ended up reading through the code manually, trying to work
out what could be read in, what needed modifications to be done by hand and so forth.
Smalltalk needs to provide a mechanism for multi-person change management.

The final, and perhaps largest, complaint we had about Smalltalk was that after the
development was finished we had no way of doing the equivalent of shipping a binary.
In a conventional compiled language, we could have compiled to a client’'s machine and
shipped the binary. With Smalltalk, we could only give the system to those people who
had a license for the Smalltalk runtime system, and then we had to be careful to ensure
that the sources were not visible in the circumstances where we didn’t want them to be.
The opposite of this complaint is the benefit that theral system runs on any system
that supports Smalltalk-80 without any porting whatsoever.

Our final word on Smalltalk would be that there was much we were unhappy with, but
for a prototyping projectve could not have done as much without it.

6.4 The future

At the end of any project, you can see how you could have done better. This $¢eli®n
some of the truth about what we believe could be betteiiral .

One of the things we would like to do, now that we have a complete system, is to
reimplement in a language that would avoid the problems mentioned in the final point of
the preceding section. This would give us easier distribution and probably more efficiency.

SModel-View-Controller.

“Actually, it works even better as a two person environment — provided they adopt the ‘spare feet on the
desk’ paradigm mentioned earlier.

8Subtitled, a bettemural would have been. ..

6.5 The final word 209

The drawback is that we would have to target to some generally available window system,
such as X. The porting exercise would be non-trivial, to say the least.

Some of the features of the interface, and jinsification toolsprings immediately
to mind as an example, are general enough to permit all the desired functionality, but
are overly complex for most simple interactions. The system would be better from the
user’s perspective if these general tools were replaced (or more probably augmented) by
a number of simpler mechanisms for those simple cases. We have some ideas about ways
in which this could be achieved by extending certain basic selection mechanisms to allow,
for example, selecting a set of lines in a proof.

It would also be nice to increase the power of the prover in a number of ways to
remove some of the burden of proof construction from the user. Extending the system to
incorporate rewrite rule technology, in a way consistent with the fundamental belief that
things should always be under the user’s control, would make certain kinds of proof less
tedious to construct. In a similar vein, the tactic language did not get as much attention
as other aspects of theural proof assistant, and was considered more of an existence
proof than the ideal language. The system should have a powerful tactic language together
with a basic library of tactics. These should be easy to invoke from the interface with a
minimum of interaction to make their use in proof more seamless.

6.5 The final word

The best way to truly understand any system is to use it! So just to pique your interest,
Fig. 6.7 presents a picture of thairal proof assistant in action.

210 6 Implementing the mural proof assistant

specification

rule :: STMT : RuleStmt
THEORY : Theory-ref
PROOF : [Proof]

implementation

MuralObject subclass: Rule

instanceVariableNames: ’STMT THEORY PROOF comment lemmaStatus metaVars’
classVariableNames: ’RuleActions’

poolDictionaries: ’

category: ’mural-Kernel’

Figure 6.2: The specification and implementation of Rule

specification

subterms : Fxp — Term-set

subterms(e) £ cases e of
mk-QFzp(qet, be) — {e, get} U subterms(be)
mk-OFzp(oet, elxtl) — {e, oet} U subterms(elxztl)
others {e}
end

implementation

(This method is on the clag3Exp Something similar is on the cla&Exp

subterms
s |
8 « Set with: self with: self symbol.
Ts union: self args subterms

Figure 6.3: The subterms function

6.5 The final word 211

specification

establishesSequent : Sequent x Sequent — B
establishesSequent(s,s’) 2 3Im € VSymb — VSymb -
domm = NFV (s) Arngm C NFV(s')
A (freeVars(s) — NFV(s)) N NFV(s') ={}
A isEquivalent To(renameFree Vars(UPSHOT (s), m), UPSHOT(s"))
AYe € PREMISES(s) - 3¢’ € PREMISES(s') -

isEquivalentTo(renameFree Vars(e, m), €')

implementation

establishesSequent: seq
"One sequent establishes another ‘weaker’ sequent
(i.e. one with more hypotheses and less collapsing of freevars).
This kind of enumeration is believed to be acceptable
since there are unlikely to be many premises or many free vars"
| mSeemsOK equivfound testExp
self nfv size < seq nfv size ifTrue: [Jfalse].
((self freeVars diff: self nfv) intersect: seq nfv) isEmpty
ifFalse: [Tfalse].
"Try all possible renamings to find an equivalent"
(Map makeAllMapsFrom: self nfv to: seq nfv)
do: [:map
"first check upshots - if they’re not equivalent, forget this map"
((self upshot deepCopy renameFreeVars: map)
isEquivalentTo: seq upshot)
ifTrue:
[mSeemsOK « true.
‘Now try to find an equivalent premise’
self premises do: [:exp
"if the map’s not already junked, keep trying"
mSeemsOK ifTrue:
lequivfound <« false.
"so far we don’t have an equivalent"
testExp < exp deepCopy renameFreeVars: map.
"try all premises of seq"
seq premises do: [:expprime
(testExp isEquivalentTo: expprime)
ifTrue: [equivfound « true.]
"Ah ha we’ve found one"]].
equivfound ifFalse: [mSeemsOK « falsel]].
"if m still seems good then we’ve found a map that works,
so seq is established"
mSeemsOK ifTrue: [Ttruell].
Tfalse

Figure 6.4: The establishesSequent function

212 6 Implementing the mural proof assistant

Figure 6.5: A Rule Notice

Tool subclass: ProofTool

instanceVariableNames: ’proof markedBuffer selectedAttempt’
classVariableNames: °

poolDictionaries: '’

category: ’mural-Interface’

Figure 6.6: ProofTool

6.5 The final word 213

Figure 6.7: Thanural proof assistant in action

214 6 Implementing the mural proof assistant

Chapter 7

Supporting formal software
development

This chapter presents the concepts of formal software development as a basis for the
description of the VDM Support Tool in the following chapter.

The primary aim of formal methods of software development is to produce software
systems that are formally verified with respect to their specifications. It is important
that the specification should be at a high, ‘human-oriented’ level of description, devoid
of machine-dependent or implementation-specific representations. Most formal develop-
ment methods incorporate an abstract specification language designed for this purpose.
To determine that an implementation formally satisfies its specification often involves the
generation and discharge pifoof obligations the foundation of a formal method is that
the proof of these is sufficient to ensure the correctness of the implementation. Discharg-
ing a proof obligation involves the construction of a proof; ensuring the correctness of
the reasoning in this proof is of central importance. The development method should also
be compositional, so that the process of moving from an abstract specification towards a
particular implementation can be performed in small, manageable steps. Even with com-
positionality, the management of a fully formal design is non-trivial. Machine support
for the processes involved is essential in order to maximise the degree of formality. This
applies not only to the construction of proofs as described in Chapter 1, but also to the
roles that these proofs play in the design process.

7.1 Abstract specification

7.1.1 Aims

An abstract specification of a system should concentrate whaha system should do,
rather tharhowit should do it. The intention in the design of the abstract specification
should be to describe the properties the system should exhibit, rather than to attempt
to describe a particular way to produce such a system. Thus, the specification should
avoid making decisions about the data representations or algorithms to be used in the
final system. This is not merely an exercise in the joys of abstraction; the separation
of implementation decisions from the description of the system has many benefits. For
example:

e The specification provides a precise description of the system eatrlier in its develop-

216 7 Supporting formal software development

ment and thus may expose faults in design that would otherwise not have emerged
until after implementation.

e Discussion and correction of any weaknesses in a design is easier by reference to
a specification than an implementation, (for example, there is no need to ‘back-
translate’ from program-language constructs to what they are intended to represent
or achieve).

¢ A specification makes it possible to consider alternative implementations (using
different data representations, algorithms, or implementation languages).

There are two main ‘flavours’ of formal specification language: model-oriented and
property-oriented (or ‘algebraic’). In each case, the specification describes the class of
those mathematical models which can be considered to satisfy the specification. The
making of implementation decisions can be viewed as narrowing this class of models.

Both kinds of specification language typically have high-level data type constructors:
model-oriented data type definitions correspond to set constructions, while algebraic type
constructions define algebras (which may be modelled in a variety of ways, not necessar-
ily set-theoretically). In the model-oriented approach, functions are specified by giving
mathematical predicates that describe the relationship between the result and the argu-
ments. An algebraic specification language wsdems(often equations) which define
properties of (combinations of) functions over data types.

Each of the two approaches has advantages and disadvantages. We will not go into
these here. In the following, we will adopt the model-oriented approach, and work with
the Vienna Development Method (VDM) as our example, but it should be noted that much
of what follows can also be applied to the algebraic approach.

7.1.2 Specifications in VDM

We will give only a brief outline of specifications in VDM,; further details may be found
in [Jon90c].

A VDM specification typically consists of a set of data type definitions and a set of
function and operation definitions upon these data types. The type definitions are ab-
stract in the sense that they are built from mathematical type constructors (sets, maps,
sequences). Of particular importance is the use of dataityaeiants in a type defini-
tion, an invariant is a property that must always hold for members of that type. The use
of invariants gives a richer (more expressive) type language than type constructors alone.

Unlike algebraic specifications, VDM specifications have a notion of state. The state
is described as a particular type; often this is a composite type whose components can
then be referred to separately. Operations can be defined in terms of their effects upon the
state (i.e. operations can have side effects). Functions cannot have side effects.

Both functions and operations may be implicitly specified by givimeg- and post-
conditionswhich stipulate criteria that are to hold before and after their ‘execution’. The
pre-condition of a function is a predicate on its ‘arguments’ whilst the post-condition is
a predicate on it's ‘arguments’ and ‘result’. For an operation these predicates may in
addition describe how the operation must effect the state. Thus functions and operations
may be defined in terms of their effects rather than the means by which they are to achieve
them.

7.1 Abstract specification 217

VDM permits specification at varying levels of abstraction. Through the use of ab-
stract data types and implicit function and operation definitions, specifications can be
written which capture what a system should do, rather than how it should be done. How-
ever, other specifications can capture particular design decisions through the use of type
definitions with more implementation bias or through more explicit function and opera-
tion definitions. How one verifies that such a specification implements a more abstract
specification will be discussed in more detail later.

7.1.3 Validation and verification of specifications

The construction of a formal specification is motivated by an informal notion of the be-
haviour of the final system. It is important to satisfy ourselves (or our clients) that the
formal specification agrees with this informal idea. For example, we should check that
no unexpected behaviour arises, and that every eventuality is catered for. The name given
to this process of relating a formal specification to informal requirementalidation

We can formally prove that an implementation is correct with respect to a formal specifi-
cation, but since validation concerns the interface between formality and informality, we
can never conclusively prove that a formal specification agrees with an informal one: we
can only increase our confidence that this is so. In a sense, validation is to specifications
as testing is to programs. However, it can be carried out at a higher level of reasoning,
using terminology suited to the particular application, rather than implementation-biased
representations. The use of a formal development method increases confidence in a de-
sign by minimising the informal aspects, and by restricting the informal/formal interface
to an early stage in the design process.

In the VDM Support Tool, our main concern is in reasoning about formal specifica-
tions and developments: tiverificationside of the design process. Some techniques for
validation of formal specifications are addressed in Chapter 9.

A major advantage of a formal specification over an informal specification is that it
can be mathematically analysed for flaws and weaknesses. There are several kinds of
checks that will reveal inconsistencies in a formal specification.

One possible check is to determine whether or not a particular data type in a specifica-
tion is actually inhabited (whether or not it will be possible to construct an object of that
type). ‘Simple’ type-checking, as is performed in most programming languages, can be
used to detect blatant type errors. However, the use of invariants can lead to subtler type
errors, whereby one can construct objects that have the correct ‘type shape’, but which
fail to satisfy the invariant. In general, this cannot be decided automatically, and thus type
checking becomes a theorem proving exercise.

Another check, given an implicit specification of a function, is to consider whether
or not there are indeed functions that satisfy this specification. impéementibilityor
satisfiabilityobligation states that for any valid inputs, there is at least one possible valid
output. A proof of this assures us that so long as we implement the data types correctly,
then there will be some way to implement the functioThe statement of the implemen-
tibility proof obligation is wholly determined by the function specification (and the type
definitions), and so it can be automatically generated in a support environment.

Hn fact this is not quite true, as it is possible to implicitly specify a non-computable function that
could not then be implemented. Thus a satisfiability proof is to be seen as eliminating one kind of non-
implementability.

218 7 Supporting formal software development

The major role of verification, however, arises when relating one formal specification
to another, as we will see in the next section.

7.2 Relating specifications

Once we have a formal specification, the remainder of the development process towards an
implementation can be made fully formal. Note that this does not mean that the process is
automatic, for the design decisions often involve a degree of intuition, but that each design
step can be formally verified. Indeed, the need for proof obligations is partly due to the
presence of intuitive steps. Each time we introduce intuition into a formal development,
we must back it up by verification.

We can view the development process as the production of successive layers of speci-
fications, where each layer adds some implementation bias to the previous layer. Thus we
move from an abstract specification that describes the task to be performed towards one
particular solution to the problem.

7.2.1 Data reification

In data reification the designer chooses new representations of data types in the abstract
specification. The new representations will typically be suited to data types available
in the final implementation language of the design. A particular choice may be made
to ensure that some operations can be efficiently implemented. In a multi-layered design,
each layer might encapsulate a single small design decision. For example, we may choose
to represent sets by lists of non-repeating elements in one reification, and then represent
lists in turn by arrays. By breaking the reification into several steps we can isolate the
issues involved in each form of representation.

When a new data representation is made on an intuitive basis, we must then justify the
choice formally. In VDM, when we claim that one data type is a reification of another, we
must give aetrieve functiorwhich for any element of the more ‘concrete’ type will give
the corresponding element of the more *abstract’ one. We can then proeed¢eacy
obligation, which insists that every element of the abstract type is represented by some
element of the concrete type (via the retrieve function). Note that two or more elements of
the concrete type could be retrieved to the same abstract value; in other words, redundancy
is permitted in the concrete representation.

7.2.2 Function/operation modelling

As well as relating the data structures of the two specifications via data reification, we
must also relate the functions and operations in the ‘concrete’ specification to their coun-
terparts in the ‘abstract’ specification. Roughly speaking, the concrete version of a func-
tion or operation must behave ‘no worse than’ the abstract version in analogous cir-
cumstances. That is, there must be an increase in definedness and a decrease in non-
determinism.

In VDM, these conditions are captured in tdemainand result proof obligations.
The domain obligation states the increase in definedness: that is, whenever the abstract
specification can be invoked, then so can the concrete counterpart. The result obligation

7.3 Support for reasoning about formal developments 219

encapsulates the decrease in non-determinism: that is, when invoking the abstract speci-
fication could lead to one of a range of behaviours, then the possibilities for its concrete
counterpart will be a subset of these. The precise formulation of these obligations is
detailed in Section 8.2.3; for further explanation and justification, see [Jon90c].

7.2.3 Operation decomposition

In a VDM specification, it is also possible to define an operationasgositiorof other
operations, for example as the invocation of one operation followed by another. The con-
structs for composing operations are very much like some of those found for composing
statements in many programming languages. Though such a definition may be thought
of as anexplicit definition of the operation, it should not be forgotten that the individual
‘statements’ may consist afplicit operations, or even pre- and post-assertions. Sim-
ilarly, a function may be explicitly defined by an expression in its arguments, but that
expression may contain applications of other implicit functions.

The above description details ‘bottom-up’ design. Often, it is desired to build the
operation in the opposite direction: that is, given its pre- and post-conditions, we wish
to decompose it into simpler operations, such that their composition satisfies the original
conditions. Associated with the composition constructs are a set of rules in the style of
Hoare logic which relate the pre- and post-annotations of a composition to those of its
components and thus provide a means for the verification of decomposition steps.

Thus, development of a specification can proceed in two directionsdakyy re-
finement through reification and function/operation modelling, @gdrithmrefinement
through function definition and operation decomposition.

7.3 Support for reasoning about formal developments

A method such as VDM prescribes the proof obligations whose discharge ensures validity
of design decisions. Thus such formal software development processes are suitable for
automated support, not only in generating proof obligations from designs and in assisting
in their proof, but also for maintaining the relationships between the proof obligations and
the particular design steps from which they arise.

Clearly, we want our support tool for VDM to use the proof assistant for the dis-
charging of proof obligations. In this section we discuss some of the issues involved in
achieving this. (A more detailed description of the VDM Support Tool will be given in
the next chapter.) Though our description will be based upon a support tool for VDM,
there is much that will apply to the design of any specification support system that intends
to usemural § proof assistant for its formal reasoning.

7.3.1 Instantiating the theory store for VDM

Before we can reason about VDM proof obligations, we must instantiate the proof assis-
tant to provide the logic, types, constants, axioms and rules which form the ‘reasoning
kernel’ for VDM, and which will be used in every single development. In addition to the
LPF predicate calculus, this includes definitions of integers, sets, maps and so on, axioms
which define the properties of them and functions on these types such as set membership
and addition that VDM specifications assume are available. Note that this instantiation

220 7 Supporting formal software development

need only be carried out once, by the designers of the specification support tool: users of
the tool need only know how to browse through the resultant body of knowAedde
Section 3.5 it is shown how such an instantiation can be carried out in detail; here, we
merely note that every development in our support tool for VDM can take advantage of
this large, structured body of knowledge.

7.3.2 Translation of specifications and reifications

The foregoing is not the end of the theory-building story. Each VDM specification can be
thought of as an extension of the base theory: it may define new types; and its function
(and operation) specifications define properties of functions upon these data types (and
its state). When attempting to discharge the proof obligations arising from a specifica-
tion, the proof assistant (or the user thereof) must have access to this new information,
otherwise the statement of the proof obligation will be meaningless. Where proof obli-
gations concern the reification of one specification by another, then the information from
both specifications should be available. This can be done by placing reification obliga-
tions in a theory which inherits information from the theories of its abstract and concrete
specifications.

The VDM Support Tool provides a means for extracting the relevant information from
a specification to form a theory (or hierarchy of theories) in the proof assistant; this then
becomes the theory within which the proof obligations connected with that specification
can be discharged. It also constructs suitable theories within which to reason about reifi-
cations. Thus the generation of proof obligations is part of a much larger translation
process. Ideally, the writer of a VDM specification could be ‘sheltered’ from the theory
construction. Perhaps the support system should even go so far as to never let the writer
see the resultant theory, but to always ‘unparse’ it as a VDM specification. (Of course,
this could only be done for theories that arose from translated VDM specifications.)

In our case, we are interested in showing that it is possible tamuse! to support
a particular development method; we are not so concerned with the niceties of convert-
ing specifications into theories. Our solutions are therefore crude, and fail to make the
best use of the sharing and reuse of information that is possible using the full power of
mural’s hierarchical theory store. Instead of directly translating a specification (or in-
deed, a development) intoraural theory, we shall have a separate VDM store which
contains specifications and reifications as structured objects in their owt1 tigkde are
then translated to creatsural theories containing the appropriate definitions and proof
obligations. The translation process is defined in greater detail in the next chapter.

20f course, this ‘core of knowledge’ about VDM constructs need not be static. In order to simplify
proofs of obligations, users are likely to want to prove new theorems about the basic types and functions of
VDM which would then be available for use in subsequent proofs.

3At first thought, it may seem that this is tloaly sensible approach, on the basis that specifications
etc. contain extra information in addition to theoretical content (their display format, semantic relationships
between certain components, and so on). However, there is no reason to prevent such extra information from
being associated with the generatedral theory; this could even be done by providing an extension to the
implementation ofnural theories. (Readers who have an understanding of Smalltalk may best appreciate
this point.)

Chapter 8
The mural VDM Support Tool

This chapter describes the support tool for VDM which has been built to integrate with
the proof assistant. Through reference to the formal specification of the tool, it intro-
duces the notions of specification, reification and development, and describes some of
the operations upon the components of a development, including the generation of proof
obligations.

As will be seen, there are many respects in which the support offered is incomplete.

The VDM Support Tool was never intended to be a complete support environment for
VDM, its main purpose being to demonstrate thatal could be extended by such tools.
The tool only caters for a subset of the VDM specification language, and only permits
limited kinds of reifications. In particular, operation decomposition is not addressed at
all. Finally, the tool makes little effort to ‘track’ dependencies between specifications or
reifications and their counterparts in thraral theory store.

The first section describes the support offered for building specifications in VDM and
the second how theories can be built in the proof assistant to reason about them. In the
third section we focus on some particular areas where the level of support provided could
be improved.

8.1 Specifying VDM developments in VDM

From an early stage of its design, the VDM Support Tool (or VST) was envisaged as a
structure editor within which specifications (and indeed reification relationships between
specifications) could be built. Thus far it is a separate tool frommtheal proof assistant

and its theory store. In order to reason about specifications and reifications constructed
in the VST, it would be necessary to construct corresponding! theories about them.
Originally considered to be a separate process, this ‘translation’ stage later became a
function of the structure editor itself.

In developing the VST as a structure editor, we had to determine at least the ‘abstract’
syntax of the structures to be constructed. We chose to do this by specifying it in VDM,
using type structures for the various syntactic classes.

For the specification language, this had already been done, as part of the BSI stan-
dardisation effort for VDM. From the (then current version of the) draft standard, we
chose what we considered to be an ‘interesting’ subset of the language’s abstract syntax
definition. Here, ‘interesting’ means, ‘neither too hard, nor too dull'! Some parts of the
language were not considered because they introduced too much syntactic complexity,

222 8 The mural VDM Support Tool

others because they were too similar to constructs that had already been intfodlrced
practice, many constructs from the draft standard’s syntax for expressions were added on
a ‘need to use’ basis (as in, ‘I need a set comprehension expression for this example’).

As mentioned above, one of the main interests in constructing a support tool for VDM
was in the generation of proof obligations that would ‘exercise’ the proof assistant. The
most interesting proof obligations in VDM arise not from the need to check that an in-
dividual specification is well-formed and implementible, but from the need to justify the
intuition behind design decisions in reification of one specification (or even of a single
type definition) by another. In order to get to the stage of producing such interesting
proof obligations, we chose to provide structure editing support for the construction and
maintenance of reifications as objects in their own right. This led us to the model of a
structure fordevelopmentsvhich record a formal development leading from an abstract
specification towards a concrete implementation by reification. Such a model for devel-
opments is not provided in BSI/VDM.

It is important to note that for most of its lifespan, a development is incomplete, in that
one or more levels of specification will be unfinished, or a reification of one specification
by another will be incomplete, or incompletely justified.

Another important point to note is that the process of constructing different levels of
specifications and reifications between them should have the same degrees of freedom
as the construction of theories and proofs in the proof assistant. It should be possible
to ‘expand’ a development in any direction, leaving some aspects incomplete whilst ex-
ploring others. For example, a developer may wish to concentrate upon reifying the type
definitions in an abstract specification, perhaps for several levels, before considering the
functions and operations in detail. In preference to imposing a process model of devel-
opments that insists (for example) that the abstract specification should be syntactically
complete and semantically well-formed before work can begin on a more concrete spec-
ification, it should be possible to construct partial versions of both. Though this freedom
in construction order could lead to misfortune (a mis-managed development could end up
with countless ‘loose threads’ to be tied up), we consider it preferable to the imposition
of unnecessary order It is not for us to decide what is ‘the’ correct manner in which to
proceed with a development. What matters is that, regardless of the route taken, the final
development is verified (as ever, with respect to its most abstract specification). Our struc-
ture for developments does not record the order of construction, but only the relationships
between the parts constructed thus far.

8.1.1 Developments

In its most abstract sense, a development is a directed graph, whose nodes are specifica-
tions, with an edge from a specificatiohto a specificationB when B is a reification

of A. We might expect that a completed development will have a single ‘most abstract’
specification (which does not reify any other specification) and one or more ‘implemen-
tations’, and that for each implementation we can trace a path from the abstract speci-
fication to it. However, during construction, a development may look quite unlike this.

The above is not intended as a criticism of BSI/VDM, but is merely the result of our intention to develop
a prototype which examined some interesting issues, rather than a marketable support tool.

21t must be recognised that there is also a degreeoéssarprder in the design process. For instance,
it is not possible to determine whether or not a function definition is well-formed if the types it refers to
have not yet been defined.

8.1 Specifying VDM developments in VDM 223

There may be multiple attempts at the most abstract specification; there may be incom-
plete specifications and reifications even in the middle of a development path; or there
may be specifications which have not yet been related to any others. In short, there is very
little structure that we can impose upon developments in mid-construction that would not
restrict the developer’s style of working.

In preference to defining a general notion of directed graphs in VDM, and then us-
ing this to define our ‘syntax’ for developments, we chose to model a development as
a collection of (named) specifications, and a collection of (named) reifications between
them:

Development . SPECM : SpecName — SpecDef
REIFM : ReifName - ReifDef

8.1.2 Specifications

The abstract syntax of the specifications we support closely follows that of (part of) the
draft BSI standard for VDM.

In a SpecDef , we associate the body of a specification with a theoryrimgal theory
store; the intention is that the associated theory will contain or inherit all of the informa-
tion necessary to reason about the specification.

SpecDef :: Spec . VdmBody
Theory . MuralTheoryName

A VDM specification may define new types, constants, functions and operations. We
model this by a collection of maps from names to these different kinds of definitions. It
may also define a state model.

VdmBody :: typem : TypeName — TypeDef
state : [Statelnfo)
constm : ConstName — ConstDef
fnm . FnName = FnDef
opm : OpName = OpDef

The VDM Support Tool does not support modular specification as, at the time of writ-
ing, both the syntax and semantics of modularity in the draft standard are in a state of flux,
and we considered that to provide such support would require a considerable amount of
research into reification of modular specifications. As a result, each specification in a de-
velopment is both ‘flat’ and isolated from every other specification. If the same definition
is required in two different specifications, then it must be duplicated in each. This could
lead to confusion if the two specifications define the same name in different ways. It was
a sad but necessary decision that we did not have the effort to consider modularity issues,
especially as the hierarchical nature of theral theory store encourages reuse of defini-
tions. We will return to this subject when we consider the generationuwél theories
from developments in Section 8.2.

224 8 The mural VDM Support Tool

Type definitions

A type definition in a specification has a ‘type shape’ and possibly an invariant, which is
described as an explicit function definition.

TypeDef . shape . Type
inv @ [ExplFnDef]

The type shape part is made up from a number of type constructors:

Type = BasicType | Composite Type | UnionType | SetType |
SeqType | Map Type | FnType? | TypeName | Optional Type

We shall not give the formal definitions of the various type constructors here: a full
definition of Type can be found in [BSI90]. To give two examplesgsic Type includes
the typedN, Ny, B, etc., whilstComposite Types are Cartesian products with named com-
ponents, such as:

Date . day . Day
month . Month
year . Year

(Note: this is actually a named type definition. Unlike otlépes, Composite Type
shapes are not used except in type definitions.)

Notice that invariants are only associated with type definitions, and cannot appear
within type shapes. However, a type shape can of course beatheof a type whose
definition includes an invariant.)

Describing the invariant as a function definition raises the question of what type it
should have. The approach we take is that the invariant is a function from values of the
type shape part of the type definitionBothe type being defined can then be described as
comprising those values of the type shape part for which the invariant holds. For example,
in the type definition:

Evens =N

where
inv-Evens(n) £ 3m:N-n =m x 2

the invariant functionnuv- Fvens has the typdN — B.

This interpretation fits in well withnural's subtyping construction. However, it leads
to problems with composite type definitions: thou@hmposite Type is indeed alype,
it is not properly a ‘type expression’ in that it can only be used in type definitions, and
not in other places where a type expression is expected. In particulamposite Type
cannot appear as an argument type of a function definition. One solution would be to
introduce an ‘intermediate’ type name to represent the composite type without the invari-
ant’s restriction, but we feel that these ‘in between’ types are usually irrelevant. Instead,
we prefer to treat the invariant as a function from the Cartesian product of the field types
to B. For example in:

3 FnType is included only to simplify the specification of explicit function definitions; it is not available
as a ‘first class’ type in our model.

8.1 Specifying VDM developments in VDM 225

Date . day : Day
month : Month
year . Year

where
inv-Date(d, m,y) & (m =IAN = d <31)A...
the invariant is considered to have typey x Month x Year — B.*

State definitions

The state of a specification is defined to be a special type definition whose shape is a
Composite Type. This defines the ‘state variables’ of the specification as the components
of the record, with the appropriate types. In addition to an invariant, the state may also
have annitialisation condition which specifies properties of the initial state.

Statelnfo :: name : Name
tp . CompositeType
inv @ [ExplFnDef]
init : [ExplFnDef]

Constant definitions

Constant definitions declare constants of particular types, which may or may not be given
explicit values:

ConstDef :: type : Type
val : [Ezpr]

As with the type shapes, we will not describe the various forms of expression here —
a full definition of expressions can be found in [BSI90]. It will suffice for the moment to
say that there are a large number of them and that the support tool does not cater for them
all.

Function definitions

Functions may be defined explicitly or implicitly:

FnDef = ImplFnDef | ExplFnDef

ImplFnDef . dom : PatternTypePair*
rng . IdTypePair
pre . Ezxpr
post . Expr

4Since this decision was made, the abstract syntax of BSI/VDM type definitions has changed, so that an
invariant is recorded as an expression and an ‘argument pattern’, where the free variables in the expression
should also occur in the pattern.

226 8 The mural VDM Support Tool

EzplFnDef . type : [FnType]
pre . [ExplFnDef]
parms . Pattern*
clause . Expr

An implicit function definition has a precondition and a postcondition. The precondition
should be a predicate in the arguments to the function; the postcondition can additionally
refer to the result (whose name is given by fhen the rng). An explicit function has no
postcondition; instead it has an explicit clause expression. In both cases, the arguments
are given asatterns (either a single variable, or an expression containing variables, such
asmk-Date(d, m, y)).

Operation definitions

Operation specifications are similar to functions, but with an additional list of ‘read and
write’ state access descriptions:

OpDef = ImplOpDef | ExplOpDef

ImplOpDef :: dom : PatternTypePair*
rng [IdTypePair]
exts . ExtVarInf*
pre . Expr
post . Expr

ExtVarInf :: mode : (READ | READWRITE)
rest . IdTypePair

FExplOpDef :: dom . Type*
rng 1 [Type]
pre : [ExplFnDef]
parms . Pattern*
clause : Stmt

The above gives a brief overview of the components of specifications in the VDM
Support Tool. More detail will be introduced when we describe the generation of proof
obligations and the kinds of consistency checks to be made upon specifications.

8.1.3 Reifications

The above abstract syntax definition of a VDM specification has followed, more or less,
that given in [BS190]. However, that definition does not give a model for the reifica-
tion process. The basis for the following model of reification is the description given
in [Jon90c].

The main information to be recorded in the reification of one specification by another
is recorded in &eifDef . It gives the names of the specs, the definition of the initial state
reification obligation, and the operation and function models:

8.1 Specifying VDM developments in VDM 227

ReifDef . Reifier . SpecName
Reifiee . SpecName
StateReif : StateReif
OpModels : OpModel-set

We could also have added a set of data reifications at this level, to match the type
definitions of the specifications. However, as we shall see, the required data reifications
are ‘driven’ by the operation and function models, rather than by the type definitions
themselves. Therefore, we have encapsulated the data reifications within the operation
and function modelling components.

State reifications

Reification of the state model of one specification by another involves showing that the
more concrete specification’s state type reifies that of the more abstract specification. In
addition, there is an obligation to show that the concrete invariant initial state condition

satisfies their abstract counterparts under retrieval:

StateReif :: DataReif . DataReif
InvStateObl : OblPacket
InitStateObl : OblPacket

This is the first place where we have introduced a proof obligation into our model.
(Strictly speaking, we should have done so earlier, and associated an implementibility
proof obligation with each implicit function definition.) We model proof obligations as
OblPackets, which simply record the (VDM) form of the obligation and possibly a refer-
ence to the corresponding theorem in tieral theory store:

OblPacket . ProofObl : Ezpr
Place [ThmRef]

(In the implementation the need fatblPackets has been circumvented: proof obli-
gations, in the form of unproven rules, are generated directly as part of the translation of
the specification.)

Operation modelling

Each operation model records a modelling relationship between an abstract and a concrete
operation. Though we refer to them as abstract and concrete operations, ‘concrete’ in this
case does not mean ‘explicit’. Both operations should be implicit. Relationships between
implicit and explicit operations fall within the remit of operation decomposition, which is

not catered for in our support tool.

228 8 The mural VDM Support Tool

OpModel :: AbstractOpn . OpName
ConcreteOpn . OpName
DomReifs : DataReif*

RngReif . [DataReif|
ExtReifs . DataReif*
DomainObl . OblPacket
ResultObl . OblPacket

We associate a data reification with each argumBat{Reifs) and each state desig-
nator (FztReifs), and with the resultRngReif). (The two operations must have the same
number of arguments and state designators for this to be possible.) This is done because
it is possible that each argument of the abstract operation could be reified in a different
way in the concrete operation (even if they are of the same abstract type, although this
would be somewhat unorthodox.) Furthermore, the arguments of an operation may have
type shapes that are not just the names of types given in the type definitions of the speci-
fication. (Consider an operation which takes an argumeft-set.) This is why it is not
sufficient to have data reifications only for the type definitions of a specification.

The insistence that the abstract and concrete operations must have the same number
of state designators imposes restrictions upon the ways in which the state model can be
reified. If an operation refers to state components rather than to the state as a whole, this
forces us to treat the reification of the state as a composition of the reifications of the
components, whereas in general, data reification of the state model of a specification is
performed on the state as a whole.

To see this in more detail, suppose that the abstract state mgtdebntains two
componentsg;: A; anday: Ao, and that an abstract operatiohP, readsa; and writes
az. In order for a concrete operatian” to be a candidate to modélP, the concrete
stateC'S must have components: C; andc,: C; which are the concrete counterparts of
a; anda, under retrieval. In other words, there should be retrieve functions

retr-A: C1 — Ay, retr-Aq: Co — Ay

such that these components are independent of each other when the entire state is re-
trieved, thus forcing the definition of the state retrieval as:

retr-AS : CS — AS
retr-AS(mk-CS(ci, ca)) 2 mk-AS(retr-Ay(cy), retr-As(cy))

(i.e. forcingretr- AS to satisfy a homomorphism property). Furthermore, the abstract and
concrete operations must mention the corresponding components in the same order in the
externals list.

The alternative to the above treatment would be to ‘expand out’ the externals of an
operation, replacing their occurrences in the pre and postconditions by references to the
entire state. For example, suppose our abstract state model is as above and we have the
abstract operation:

OP4 ()
ext rd a; : Al
wr as . A,

pre P(ay, ap)
post Q(al,@, az)

8.1 Specifying VDM developments in VDM 229

then the externals information would be expanded to give the operation:

OP, ()
ext wr as @ AS

pre P(s-ai(as), s-az(as))

post Q(s-a;(as), s-ax(as), s-az(as)) A s-ar(as) = s-a;(as)

Each instance of a component in the pre and postcondition has been replaced by an appli-
cation of the corresponding selector function upon the whole state. Note in particular how
the ‘before’ state has to be handled in the postcondition, and the need to explicitly state
that thea; component remains unchanged. The situation is more complex when there are
state components that are neither read nor written by the operation.

Ideally, rather than build a new data reification for each argument of each operation
we model, we would want to refer to some existing body of data reifications. This can be
modelled by having a ‘library’ of nameflataReifs within eachReifDef, and by giving
these names in the operation models instead. However, at the moment we want to avoid
introducing such ‘referential clutter’ as much as possible (it is a form of implementation
bias, after all), in order to concentrate upon the relationships between data reifications and
operation models. Therefore we choose our abstract specification as.above

Domain and result proof obligations are associated with the operation model. Details
of how this is done will be given in Section 8.2.3.

Data reifications

A data reification is between an abstract type and a concrete type. It requires a retrieve
function from the concrete type to the abstract type, and has an associated adequacy proof
obligation (as described in Chapter 7.)

DataReif :: concr-type . Type
abstr_type . Type
retrieve-fn . ReifF'n
adequacy-obl : OblPacket

8.1.4 Well-formedness checks: an apology

As stated in the introduction to this chapter, it was never intended that the VDM Support
Tool should be ‘complete’. Effort in its design has concentrated upon the generation
of proof obligations together with sufficient information to permit the use of the proof
assistant in discharging them. As a consequence, many of the checks that one might
expect such a tool to perform (without resort to the proof assistant) have been omitted:
static patent type-checking, checks on arities of function calls against their definitions,
use of undefined names, and so forth. Some such checks are described in earlier project

5In this case, it is easy to see how the transition towards a more referential implementation may be
made. It is more problematic to consider how one might alter our model to alloeothpositiorof data
reifications, that would for example allow us to use the information in a reificatioieftDays by N in
the construction of a reification dVeekDay-set by N*.

230 8 The mural VDM Support Tool

documents. In the main, these checks would not be difficult to perform. However, errors
of these kinds in specifications will be revealed either during the translation into the theory
store (see next section), or in attempting to reason about the translated specification.

8.2 Theories from specifications

In this section we outline how specifications and reifications are translated int@aa
store to yield new theories complete with relevant proof obligations.

Recall from the previous chapter that tlnaral store to which we translate should be
instantiated for VDM, so that it contains a ‘VDM Primitives’ theory. This theory should
be an ancestor of every theory generated from a specification or reification in the VDM
Support Tool.

8.2.1 Translation of specifications

How best to divide the objects corresponding to specifications into theories is largely a
matter of taste. For example, we could try to place each type definition in a theory of
its own; this would allow reuse of the type definition when reasoning about other spec-
ifications. However, we would then have to make the theory structure reflect the inter-
dependency of type definitions, in particular, mutually recursive type definitions would
present some difficulties. We choose a simpler approach where each specification be-
comes a singlenural theory. If a finer-grained’ structure is required, then the theories
must be rebuilt by hand.

Thus, the result of translation of a specification is a singleal theory, with the
VDM Primitives theory as its (sole) parent. The theory contains:

mural type definitions, type formation and checking axioms corresponding to the
type definitions of the specification;

definitions of any constants and explicit functions;

definitions of the pre- and postconditions of implicit functions and operations;

(initially unproven) rules corresponding to proof obligations and type-checking (in-
cluding invariant checking) of functions and operations

Translation of types and type definitions

Generally, a type definition in a specification will be translated to a similar type definition
in mural. Most of the type constructors of VDM can be described in ‘general’ theories
which form part of the VDM Primitives theory. Sets, maps, sequences, (binary) type
unions and optional types are in this category. Type definitions using these constructors
can be translated asural definitions using instances of the generic constructors. N-ary
type unions can be translated as a composition of binary unions.

8.2 Theories from specifications 231

Invariants

For a definition of typ€el’ with an invariant where the type shape uses the above construc-
tors, translation is straightforward. First, the definition of the invariamt 7' is translated

as an explicit function definition (as will be described later), then the type definition is
translated to &ubType definition. For example, the type definition:

T = Texp
where
inv-T(v) & P(v)

is translated to
T —< v: Texp' | inv-T(v) >

where Texp’ is the translation of the type shafiezp andinv-T is the defined constant
corresponding to the invariant function.

Composite types

Composite type definitions require a different treatment. It is not a simple matter to define
a generic ‘composite type constructor’'nniral . Therefore composite type shapes cannot
be translated intonural type expressions directly. Furthermore, a greater amount of
information is associated with composite types than with other type constructions, in that
a composite type definition also defines constructor and destructor functions. Instead, we
create an axiomatic definition, with formation and typing rules for expressions involving
the constructor and destructors.

For example, the composite type definition

T :fl1: A
f2: B
should be translated to a type constdhiand a declaration of the constructor and
destructor functions as expression constants with expression arity two and one:
mk-T +— [2,0]; s-f1,s-f2 — [1,0]

with the appropriate typing axioms:
a: A, b: B

mk-T formn " T a b)

~

S

—_
~—

T

DO| £+

S

and axioms definingnk- T, s-f1 ands-f2:
t: T

mKk-T intro () sz())

232 8 The mural VDM Support Tool

mk-T(a,b): T

s-f1 intro fl mk T(a b))

mk-T(a,b): T
[s-42 intro] s-f2(mk-T(a,b)) = b

(note the use of typing assertions to ensure that7'(a, b) is well-formed)
When a composite type definition has an associated invariant, this must also be de-
clared and mentioned in thek- T formation axiom, e.qg.:

: A, b: Binv-T(a, b)

a: A, b: B, inv-
kT formn)——) T

and we must also provide an axiom for asserting the invariant:

mk-T(a,b): T

inv-T intro mv—T(a, b)

Translation of functions and operations

A VDM definition of a function,f, declares a new function name for use in expressions.
Therefore the process of translation creates a declaration in the corresponding theory of
a constant symbal of the appropriate arity. To help the readability of any expressions
involving them, it is also useful to create declarations for the precondition and postcon-
dition of the function where appropriate. Operations do not form part of the expression
syntax and therefore have no direct counterpart in the theory of the specification; rather
we create, in the translation of operations, unproven rules whose proof corresponds to
the demonstration of desired properties of the operation such as satisfiability or well-
formedness.

There are various different approaches that can be taken to ‘interpretation’ of func-
tions and operations in the theory store. In this section we describe just one possible
approach and give some discussion of its advantages and disadvantages over some pos-
sible alternatives. In particular, the approach described here differs somewhat from that
described in Chapter 3.

Translation of preconditions and postconditions

The most natural way in which to interpret preconditions and postconditions is as defined
constants in the proof assistant. Thus, for example, the implicit function:

f(a:Ab:B) R

pre P(a,b)

post Q(a, b,)

Would give rise to two defined constants:

pre-f 2 P([1], [2])

post-f 2 Q([1], [2], [3])

Here,P([el], [e2]) is the translation of(a, b) with instances of. andb replaced by the
placeholdergel] and[e2] respectively.

8.2 Theories from specifications 233

These are then available in the theory of the specification. For example, one might
wish to show that the function is implementable by proving the rule:

L a: A, b: B, pre-f(a, b)
'3r: R - post-f(a,b,r)

During this proof,pre-f andpost-f could be unfolded and folded simply as required.

There are, however, a few consequences of this approach that are worthy of elabo-
ration. One difficulty arises when the expressidghsind ¢) do not mention all of their
possible free variables. If the expressiBnsay, does not involve variable then the
translation is complicated for it is impossible simply to construct the defifiition

pre-f 2 P([2])

A possible solution would be to simply add some clause to the translated form of
P that mentioned the absent variable but did not alter the semantic content. One such
possibility would be to addA a« = o’ to the body of the definition. This would have
the additional consequence of making the precondition strict in all the arguments of the
function which may or may not be desirable. In either case, it is certainly not an elegant
solution.

Another approach, indeed that which is favoured here, is to translate such predicates
to definitions of smaller arities and for the translation mechanism to ‘remember’ which
arguments are to be used in the translation other things that use them. For example, in the
above case, the precondition translates to the definition:

pre-f 2 P([1])

but then the mechanism that constructs the satisfiability obligation must ‘know’ to insert
the second of the possible arguments into the precondition, thus:

. a: A, b: B, pre-f(b)
'3r: R - post-f(a, b,)

A third alternative is to translate the preconditions and postconditions to primitive
constants and give their semantics via axioms added to the theory. This was considered
to complicate their manipulation unnecessarily and is not discussed here, though the ap-
proach will be described in the treatment of the function bodies in the next section.

Another source of possible debate regards whether preconditions should be denoting
for all values of the types of the function’s arguments. One viewpoint is that we are only
interested in those properties of a function that hold when its precondition is true, and
therefore the precondition need not be defined for all possible values of the function’s
argument types. It does not matter whether the precondition is false or undefined for
some values, because in either case we will not be able to prove anything about the result
of applying the function. However, this does become relevant if we want to be able to
determine for which values the functionnstdefined. This may happen in validation, for
example. Furthermore, a prototype implementation may include tests to check whether or
not preconditions hold before functions and operations are invoked (providing one form

] f-implementibility

] f-implementibility

5The proof assistant does not allow this kind of defined constant as the ensuing complication of the
folding and unfolding of definitions would work against their intended purpose. Technically, definitional
equality corresponds to strong equality and so is non-strict. Congidef(a,b) = P(b) wherea is
non-denoting.

234 8 The mural VDM Support Tool

of specification testing). This could run into problems if such tests were derived from
non-total preconditions.
The insistence that the precondition should be total can be captured by the proof obli-
gation:
a:A,b: B

@ pre-f(a,b): B

A similar requirement can be made of the postcondition: that is, that it should always
be denoting, or at least whenever the precondition holds. Formally, this is captured by the
rule:

a: A, b: B, pre-f(a,b)

@ post-f(a, b, r): B

These two well-formedness rules can be thought of as describing points of style rather
than being essential to the validation of the specification. Instead of regarding them as
proof obligations, they could be thought of as ‘proof opportunities’.

Translation of explicit function definitions

It is possible to use defined constants for the translation of the body of explicit functions
definitions. This approach is described in 3.5. Thus the explicit function definition

f:AxB—R
fla,b) & Qa,b)
pre P(a,b)

could be translated to the two defined constants

f 2 Q([e1], [e2])
pre-f & P([e1], [e2])

The information in the signature can be captured by the rule:
a: A, b: B, P(a,b)

[Hormn |-=—7 "=y &

and this can be proven by using the typing rules for the construats iffhis rule
plays a similar role to that which implementibility plays for implicit functions.

Again, however, we have the problem of unmentioned arguments, this time addition-
ally in the function body. However, the translation of a binary function to a unary defi-
nition is not really acceptable as some of the intended meaning of the function definition
would be lost. Equally the addition of a dummy clause to mention the dummy argument
is not very attractive: if the function is Boolean valued, we could use ‘= «’ again;
however, if it is not, then a different ‘trick’ needs to be found. One possibility would be
to use det expression; thus:

f:AxB—R
fla,b) 2 Q(b)
pre P(a,b)

8.2 Theories from specifications 235

would give:

fLleta: A=[1]in Q([2])

but this is not at all natural

Therefore we have chosen to translate explicit functions into primitive constants and
to give their meaning via axioms rather than directly via definitions. This has the fur-
ther advantage of making the translation of explicit functions similar to that for implicit
functions. In this way:

f:AxB—R

fla:A,b:B) & Q(a,b)

pre P(a,b)
yields a primitive constant with expression arity two (and, as described above, a defined
constant for the precondition). The semantic content is given via the axiom:

a: A, b: B, pre-f(a,b), Q(a,b): R

f-def'n

e) = Q(as)

Note that we encode the fact that the body should be well formed as a hypothesis in
the axiom. This precaution prevents reasoning about ill-formed functions; however, it
is likely to cause some inconvenience in use. Thus it may be advisable to discharge a
general well-formedness requirement:

ap: A27p7°€‘f(02)
[we} Q(az): R

Then we could prove a lemma corresponding to the axiom without the last hypothesis.

With this mechanism for translating explicit functions it becomes a simple matter to
handle unmentioned arguments. For example:

f:AxB—R
fla:A,b:B) & Q(b)
pre P(a)

would still yield a primitive constant with expression arity two and the axiom:

— a: A, b: B, pre-f(a), Q(b): R
et | 8y = Q(b)

Translation of implicit function definitions

Using the above mechanism for the translation of explicit functions has the aesthetic ad-
vantage of making it possible to handle implicit functions in a similar manner. Consider
the similar example:

fla:Ab:B)rR
pre P(a,b)
post Q(a, b, r)

7Of course, we could consider defining a new bindeand translating to a nullary defined constant:
Aa: A.\b: B.Q(b) but this is departing too far from the style of VDM.

236 8 The mural VDM Support Tool

This again yields one new primitive constgnodf expression arity two. In this case
we have two defined constants, the extra one being for the postcondition:

f=12,0]
pre-f & P([1], [1])
post-f 2 Q([1], [2], [3])

The definition axiom is also similar to the implicit case except that now we do not know
the value of the application gf, rather only that the postcondition holds for this value:

a: A, b: B, pre-f(a,b),3r: R - post-f(a, b, r)
f-def'n
|: pOSt-f((l, baf(a))

This time the typing information must be given via an additional axiom:

Formn] a: A,pre—f(a)}zflag::};- post-f(a,)

As before, general implementability is then a rule that can, but need not, be dis-
charged:

T a: A, pre-f(a)
@ Ir: R - post-f(a,r)
In this case it is crucial to have the last hypothesis to the definition and formation
axioms. Without it one could prove the implementability obligation directly from the for-
mation axiom (see the discussion in Section 3.5.3). More generally, one would also be

able to introduce inconsistencies into the theory — even when the function is not imple-
mentable. To see how this might happen, consider the function specification:

f(a:Ab:B)r:R
pre true
post false

|
1

The definition axiom (without the extra hypothesis) would become:
cAb: B

false

This is certainly not desirable!

Translation of operation definitions

As operation decomposition is not supported, only implicit operation definitions are trans-
lated.

Preconditions and postconditions are translated in a similar manner to that for function
definitions except that their translation is slightly more complicated because they can
additionally refer to the ‘before’ and ‘after’ states of the operation. The externals construct
makes it possible to refer to subcomponents of the state and these are added to the list of
parameter variables in the predicates. The order in which these variables are arranged is
unimportant but, of course, the same order must be used in all cases.

The implementibility obligation for an operation

8.2 Theories from specifications 237

OP (z: X) R
ext rd rd . Rd
wr wr . Wr
pre P(z,rd, wr)
post Q(z, r, rd, wr, wr)

is translated as an unproven rule:

_ — z: X, rd: Rd, wr: Wr,pre—OP[x,r,rd,m‘]
’OP implementibility Ir: R - Jwr: Wr - post-OP[z, r, rd, wr, wr]

8.2.2 Translation of reifications

In order to reason about a reification of one specification by another, we need the infor-
mation contained in the two specifications. Therefore, the theory within which we reason
about the reification inherits from the theories associated with both specifications. This is
achieved by making the theories of the two specifications parents of the reification theory.

Roughly, the theory of a reification contains definitions of the retrieve functions used
in the data reifications, together with all the concomitant proof obligations of data reifi-
cation and operation modelling. It also contains definitions of any auxiliary types and
functions used.

Translation of data reifications

Within a reification, a particular data reification from concrete typt abstract typel
via a retrieve functionetr- A translates to:

e adefinition or declaration of the retrieve function (in the same manner as for explicit
function definitions), as a function froif to A:

retr-A — [1,0];
e and an unproven rule expressing the adequacy obligation for the data reification:

a: A

tr-A ad f
I@Hc: O . T@t?”—A[C] = a

Both of these are situated in the theory of the overall reification.

8.2.3 Translation of operation models

Recall that an operation modelling refers to the abstract and concrete operations and a
number ofDataReifs. Translation of theDpModel amounts to the translation of each of
these along with the creation of two unproven rules in the reification theory: one express-
ing the domain obligation, and another expressing the result obligation.

Suppose an abstract operatiof, is modelled by a concrete operatiah’- and
that a.,r.,rd.,wr. are names of the argument, result, reads and write3/f and that
retr-a,. .. retr-wr are their associated retrieve functions. Then the proof obligations gen-
erated are of the form:

238 8 The mural VDM Support Tool

a.: A.,rd.: RD,., wr.: WR,,
[retr-a(a.), retr-rd(rd.), retr-wr(wr,)]
pre-OP¢lac, rd., wr.]

-OP
’ OPs domain obligatiorlk pre A

which says that the concrete precondition should hold whenever the abstract precon-
dition holds for the retrieved values, and

a.: Ao, re: Ro,rd.: RDg, wry: WRec, wr.: WR¢,
pre-OP 4[retr-a(a.), retr-rd(rd,), retr-wr(wr,)],

E— post-OP¢lac, 1, rd., wr, wre|
’ OP¢ result obligatior post-OPy[retr-a(a.), retr-r(r.), retr-rd(rd,),
retr-wr(wr,), retr-wr(wr,)]

that is that the abstract postcondition should hold on the retrieved values whenever
both the abstract precondition and the concrete postcondition hold. The generalisation to
multiple arguments and state references is straightforward.

Note that this definition supports operation modelling where the types of the argu-
ments and results are reified. It could be argued that these are the ‘visible’ types of the
specification and as such should not be subjected to refinement. We choose the more gen-
eral formulation here, but notice that a simpler form of the obligations could be given in
the restricted case.

8.3 Scope for growth

As we have frequently pointed out, our VDM Support Tool is not a fully-fledged envi-
ronment, but was developed to demonstrate some of the interesting issues arising from
reasoning about VDM specifications and developments. In this section we describe some
of the ways in which the tool could be improved or extended, both in itself and with
respect to its interface with the proof assistant.

8.3.1 Theory structuring for greater reuse

At present, each specification is translated into a single theory which is a direct descendant
of the VDM Primitives’ theory. In practice, this proves very restrictive: for example, it is
not possible to re-use the type definitions etc. of one specification in other specifications.
From the proof assistant’s point of view, there is no reason why this cannot be done.
However, our tool would then have to support modular VDM specifications, or extend
its VDM with some form of non-standard ‘use the definitions from this theory’ construct.
The latter approach is unacceptable in the face of current attempts to standardise the VDM
notation; the former awaits the outcome of further research in modularisation.

Reification is also limited in practice by the present approach of making the reification
theory a direct descendant of the theories of its abstract and concrete specifications. Just
as it would be useful to be able to reuse type definitions, etc., it would be useful to be able
to draw data reifications from a library, and to compose new data reifications from them.

This suggests a far more complex theory structure for developments. Commonly used
type definitions would reside in their own theories, creating a hierarchy of type definition
theories. Data reifications between particular types would belong in theories which are
descendants of the theories of those types, or possibly of other data reifications. Specifi-
cation theories would then inherit information from the theories of the types (and possibly

8.3 Scope for growth 239

other specifications) to which they refer. Finally, reification theories would inherit from
the theories of their abstract and concrete specifications, and from the theories of the data
reifications that they use.

8.3.2 Determining a correct order for translation

Ideally, when asked to translate a specification, the VDM Support Tool should determine
the dependencies between the components of the specification, and translate them in the
correct order. At present, this is not done, and ‘blind’ translation can cause problems;
frequently, the user must translate the components individually in the correct order. Fur-
thermore, it is not possible at present to translate recursive type definitions or mutually
recursive function definitions. At the time of writing, some work is planned to improve
this situation.

8.3.3 Tracking of proof obligations

At present, the VDM Support Tool does not keep track of the translations of specifications
and reifications. This has two main disadvantages: firstly, changes to a specification or
reification are not carried through to any existing translation; and secondly, there is no way
of knowing from the VDM Support Tool whether or not all the obligations pertaining to

a specification or reification have been discharged. The latter problem would be easy to
solve, modulo the first problem, which would be more difficult.

8.3.4 Consistency checks

As mentioned earlier, the VDM Support Tool performs very few consistency checks.
Many errors in specifications that are left to be discovered when using the proof assis-
tant (or during translation) could be detected much earlier, for example:

static (patent) type-checking: in the presence of invariants, it is not possible to be cer-
tain that an expression is correctly typed without resorting to proof; however, it
would be perfectly possible to detect and inform the user of ‘blatant’ type errors.

consistency of usageit would be easy to check that function calls have the correct num-
ber of arguments, etc.

consistency of definition: for example: at present, it is possible to change the arity of the
retrieve function, and to give it the wrong type signature. It would not be difficult
to make it impossible for the user to do this, thus limiting the damage.

undefined names:would be easy to detect.

unfilled templates: in some cases an incomplete definition in a specification will yield an
incomplete translation in the proof assistant. (The user is warned, but the translation
is still performed.) In other cases (for example, an uncompleted operation model),
an attempt to translate will fail. It would be better if unfilled templates could be
checked for in advance of translation.

240 8 The mural VDM Support Tool

8.3.5 Data reification and patterns

In BSI VDM, the formal arguments to operations can take the fornpaifernssuch

asmk-T(a,b): T; then the pre- and postconditions can refemtand b. However, if

this were the argument to the concrete operatign: in an operation model, we would

want to retrievemk-T'(a, b) as a single value, rather than retrievandb separately. At

present, this is not possible in our support tool, and patterns are not supported.
Unfortunately, the same problem arises when an operation accesses subcomponents

of the state rather than the state as a whole. An abstract operation can only be modelled

by a concrete one if both refer to the state as a whole, or if, when retri&jrigpm T,

we have:

retr-T,(mk-Te(ac, b.)) = mk-T,(retr-A,(a.), retr-B.(b.))

This greatly limits the possibilities for state reification.

One solution in the state case is to considemnd @ in the above as abbreviations
for s-a(t) ands-a(/T), wheret and are names representing the initial and final states
and to replace occurrences @fand ‘@ by the latter expressions in translation of proof

obligations. Suppose that the abstract operatigry in an operation model as above
writes a component of the abstract state, and th@P. only writes state componeit
Then the result obligation might look like:
t: T, ?: T
pre- OPA[s—c[retr—T[?]]],
post-OP¢[s-a[t], s—a[T]]
0st-OPyls-c[retr-T|[t]], s-c|[retr-T|

A similar solution may be possible for patterns.

t

’ OP¢ result obligatiod »

il

8.3.6 Support for operation decomposition

This would require a considerable amount of work. One possible approach would be to
construct a theory of a Hoare-like logic for operation decomposition withimitel the-

ory store, and to then translate ‘explicit’ operations into this (in an analogous fashion to
explicit functions). Another approach would be to construct a specific tool for operation
decomposition, which would encapsulate the Hoare-like logic. In order to show that a par-
ticular composition satisfies certain assertions (for example, the pre- and postconditions
of an implicit operation) this tool could produce proof obligations (in ‘ordinary’ predi-
cate logic rather than as Hoare triples) for the proof assistant to discharge. Certainly, our
model would have to be significantly extended to accommodate operation decomposition.

Chapter 9

Foundations of specification animation

One major problem in producing software (both using formal and informal methods) is
the capture of the user’s requirements. Although one can (at least in theory) prove the
correctness of an implementation with respect to a specification, this is no help at all if
the specification itself is not correct, i.e. does not match the user’s requirements.

It was therefore decided to include mmural some support for the validation epec-
ificationsagainst their informal requirements, in order to allow validation early on in the
development process while it is still comparatively cheap to correct any mistakes. The best
method for doing this was considered todr@mationof the specification, where anima-
tion is taken to mean any method for making the specification ‘move’ or ‘behave’ in some
way in order to derive some consequences or properties of the specified software system
before it is actually implemented. The following discussion will only be concerned with
animation and not with other validation techniques, such as static checks, including for
example checking of syntax and static semantics, even though their use should obviously
also form part of the validation process. It will always be assumed that syntax checks
have already been done and the specifications handled are syntactically correct.

9.1 Approaches to animation

Animation can be done on different levels, for example:

Actual execution (Testing or prototyping) Interpreting the specification on given input
values. This approach obviously requires that one uses an executable specifica-
tion language, which is a severe restriction on the expressiveness of the language
(cf. [HIB9)]). Actual execution is discussed in more detail in Section 9.1.1 below.

Symbolic execution Running the specification on symbolic input, i.e. variables over the
input domain or, more generally, predicates on such variables, which we will call
‘description values’. This approach is discussed in more detail in the following.

Formal reasoning Deriving properties of the specification using theorem proving tech-
niques. This can be a useful technique in some cases but in general it is often not
clear what should be proven about a specification (although formal methods such as
VDM do give rise to a number of proof obligations). Possible properties to derive
include implementability, security with respect to some security model, or correct
treatment of certain border cases.

242 9 Foundations of specification animation

Formal reasoning is a very general technique and can be said to include both actual
and symbolic execution: execution can be viewed as deriving theorems of the form
mput = ... = output =

User interface prototyping User interface (Ul) ideas can be used for animating a spec-
ification in two different contexts. First, they can be used to animate and validate
the Ul, as opposed to tHenctionalityof the system. This usually involves building
a prototype that displays only some of the functionality of the system, but basically
the same Ul as is intended for the final system, or at least a good graphical de-
scription of it. Such a graphical description might be most adequate for computer
systems that regulate or control some other equipment and which require the user
to enter some data, for example by pressing buttons.

Second, graphics can be used to help understand the functionality of a specified
system. In this case, they just provide a different front-end to (or view of) the output
of animation. Consider for example a specification of a lift system. Rather than
describing with formulae and/or text that the lift moves from one floor to another,
one might display a picture of a lift moving on the screen.

This second approach seems very difficult to generalise: any one system can prob-
ably only support graphical animation of a small group of similar applications.

For a survey of different approaches to user interface prototyping see [f323,

Each of the methods described has got a number of drawbacks if used on its own as a
tool for ensuring the correctness of a program. To a certain extent, these can be overcome
by combining the different methods and using each to check a particular aspect of the
program’s correctness. Sineeural is intended to support non-executable specification
languages, it was decided to use symbolic execution as the main approach to animation,
thus complementing the support for formal reasoning provided by the proof assistant. In
this chapter, we will therefore discuss some of the theoretical questions that had to be
solved in order to support symbolic execution for a range of different languages. Ap-
pendix D will then describe the specification animation toeM8 EX developed as part

of mural . Chapter 9 and Appendix D are based heavily on [Kne89].

9.1.1 Actual execution and prototyping

For some languages, actual execution of specifications will be possible directly (this is
often referred to aprototyping. As described in [Flo84], a prototype is a system that
displays some, but not all, of the features of the final product. This way, one can try out
some ideas without investing the effort to build a complete system. Which features are
left out depends on the particular application; a common approach is to ignore efficiency
and Ul questions and build a prototype which only displays (some of) the functionality
of the final system. Often this can be done in a language that is higher-level than the
implementation language of the final system, because the prototype does not have to be
as efficient.

[Flo84] distinguishes three main classes of prototyping:

exploratory prototyping puts the emphasis on clarifying requirements and on helping
communication between software developer and user. Used for discussing various
alternative solutions.

9.1 Approaches to animation 243

experimental prototyping puts the emphasis on determining the adequacy of a proposed
solution before implementing it.

evolutionary prototyping puts the emphasis on adapting the system gradually to chang-
ing or evolving requirements. In this case, the prototype gradually develops into the
final product.

The following is mainly concerned with experimental prototyping, since it is assumed
that a specification (and hence a ‘proposed solution’) already exists, or at least a high-
level rudimentary version of it.

In general, prototyping is different from animation of specifications since a prototype
is not usually derived directly from the specification. It usually has to be implemented
separately and, since it is executable, the prototyping language cannot be as rich as a spec-
ification language might be, an aspect that is often ignored in the prototyping literature.
Strictly speaking, prototyping can only be regarded as animation if the prototype itself
is (part of) the specification of the final system, or at least can be derived directly from
it. Languages suitable for this are often referred texascutable specification languages
[HJ89] gives a detailed account why it is not advisable to restrict oneseltdoutable
specification languages.

Examples of executable specification languages that are used for prototyping are/ Heni@,
HM85] and EPROL [HI88]. They are both based on the executable part of VDM, ex-
pressed in a functional style. In particular, this implies that implicit definitions and oper-
ations (functions with side effects) cannot be handled. In medpecifications written
in this restricted subset of VDM are then translated into a version# talled Lispkit.
EPRoOLIs interpreted in the BROSprototyping system.

In general, however, a specification may contain non-executable constructs, so that
testing or prototyping will not be possible directly. In this case, one has to translate (manu-
ally, semi-automatically or automatically) the specification into a suitable (programming)
language. This requires a major refinement of the specification before it can be ani-
mated. Note here that the specification and programming language are not necessarily
separate languages: wide-spectrum languages combine the two into a single language
(e.g. Ap, see [B"87]) to allow for a gradual refinement from a specification including
non-executable terms to an executable program.

A different approach to prototyping is based on algebraic specification or program-
ming languages, where systems are described in terms of (conditional) equations on terms.
Functions are defined implicitly by giving equations describing their effects, for example
pop(push(e, st)) = st. These equations are then directed to turn them into rewrite rules.
The specification is animated by applying the resulting rewrite system. Example systems
of this approach are & (see [GM82]) and RP (see [Hus85, GH85]).

Prototyping can be very useful for providing some early ‘hands-on’ experience of a
system and helping to clarify the requirements on the system. The benefits that can be
gained from prototyping are discussed in some detail in [H}8%]. However, prototyp-
ing as a method for validating specifications also has a number of disadvantages, including
all the usual disadvantages of testing. In particular, it is very unreliable as a tool for valida-
tion, since testing only provides results for a fairly small set of input values. Furthermore,
it loses at a very early stage in the development process all the under-determihéuhtess

LA specification]spec] is non-deterministic, if, given any input values, the output value of executing (an
implementation of)[spec] is not uniquely defined and may be different in different executidmgec] is

244 9 Foundations of specification animation

a good specification usually allows, since a prototype will always have to choose one out
of several possible output values. Additionally, any possible non-determinacy will often
not be visible to the user.

9.1.2 Symbolic execution

The problems described above were the reason why it was decided sgrabelic exe-
cutionas the main technique for animation of specificationsiimal . The work done on
this is described in detail in [Kne89].

Symbolic execution is a concept that was first introduced by King (see [Kin76]). Itis
based on the idea of executing a program without providing values for its input variables.
The output will then in general be a term depending on these input variables, rather than an
actuat value. This is usually described as supplyirgyabolicinput value and returning
a symbolic output value.

Symbolic execution has been used for a number of different purposes, such as program
verification, validation, and test case generation. See [KngBd] for a summary of
these different approaches and a survey of systems implementing symbolic execution,
including in particular those mentioned below.

In the work described here, the original concept of symbolic execution has been ex-
tended in order to handle specifications as well as programs. This is done by introducing
so-calleddescription valuesn addition to the usual actual and symbolic values. Descrip-
tion values of (program) variables are formulae that describe (usually implicitly) the value
associated with this variable.

Symbolic execution can be considered as a technique for ‘executing’ programs when
some of the information normally needed is not available. In this sense, symbolic execu-
tion allows one to handle partial information about

e input data: the input values are not determined (or at least not uniquely); this means
one has to handle a whole range of input values, rather than a single value.

e algorithm: the algorithm for computing the output value for any given input value
is not provided (or at least is incomplete). In this case one usually talks about a
specificationrather than a program. So far, symbolic execution has usually only
been applied to programs; only in thes@ system [Coh83] and the system devel-
oped by Kemmerer [Kem85] has the concept of symbolic execution been extended
to specifications.

e Output data: the output values are not determined uniquely by the input values
and the algorithm, i.e. the program or specification is non-deterministic or under-
determined.

The symbolic execution system described here (calle’dlESEX) is intended to be
used as a tool to validate a (formal) specification against its (informal) requirements, and
thus to support the first step in formal software developmerteEEX should help the

under-determined if, given any input values, the output value of executing an implementafipachfis
not uniquely defined, but for any given implementation the value is always the same. Under-determinedness
is thus a property ofpecificationonly, while non-determinism may be a property both of specifications
and of programs, see [Wie89].

2| shall call values in the usual sense ‘actual values’, in order to distinguish them from ‘symbolic values’.
Similarly, | shall call the usual form of execution of programs ‘actual execution’.

9.2 Denotational semantics of symbolic execution 245

user to analyse and understand a specificdtedareit is implemented, by providing suit-

able feedback about the specified behaviour. Therefore, symbolic execution as described
here is intended to be used during and after the development of a specification. Symbolic
execution can indeed be a useful tool edeming the specification phase, since it can be
applied to incomplete specifications. This is possible since symbolic execution can deal
with namegqsymbols) of functions instead of their definitions.

A problem with using symbolic execution for checking the correctness of a specifi-
cation or a program is the danger that, even though the system sfighta mistake,
such as referencing a wrong variable, the user mightnotiteit. This can happen in
particular when the results of symbolic execution look too similar to the original speci-
fication. Since the user overlooked the error there, he will probably do the same again
when looking at the results of symbolically executing the specification. This puts special
importance on the Ul of ®B EX, since it has to present the information in such a way
that it helps the user understand a specification. The UkofeEEX is discussed in more
detail in [Kne89,56.2].

Providing ausefulsymbolic execution system is made more difficult by the fact that
users are different from one another and therefore find different kinds of expressions easy
to understand. Thus, a ‘simplification’ for one user, perhaps by folding a function def-
inition, will make the output considerably more difficult to understand for another user,
who might not know the new function introduced. This implies that the system has to be
highly interactive and give the user a lot of control about the information presentation,
for example what simplification to apply. For this reason, ‘simplification’ in the follow-
ing will always mean ‘simplification with respect to a certain user’. Section 9.3.3 will
describe simplification in more detalil.

The remainder of this chapter will discuss the theoretical foundationsymiBEX.

First, the denotational and operational semantics of symbolic execution are discussed.
These will be used to achieve language genericity W1SEX. The denotational se-
mantics of symbolic execution, expressed in terms of the denotational semantics of the
specification language, provide a correctness notion for symbolic execution. A descrip-
tion of the operational semantics of the language is used as a parameter to tailor symbolic
execution to that language. The operational semantics of a specification language will
be expressed as a collection of theoriesnimral. These theories are introduced in Sec-
tion 9.4. (For more detail on the semantics of symbolic execution see [Kne89, Kne91].)
Additionally, Appendix D describes the specification of theM® Ex system. This spec-
ification builds on the theoretical basis given here by using the theories describing the
semantics of the relevant language.

Using this approach, language-genericity was achieved in the sensevthatER
supports all languages whose semantics can be expressed in terms of states and state
transitions. This includes in particular specification languages such as VDM or Z, and all
imperative programming languages. The language-genericity @BEX is discussed in
detail in [Kne89,54.3].

9.2 Denotational semantics of symbolic execution

Given a setVame of identifiers (names) and a st/ of values, a state is a map of type

Y = Name — Val,

246 9 Foundations of specification animation

Define
Y, =XYuU{L}

where_L denotes abortion or non-termination.
Pred is the type of predicates (over states) whose valuation function is some function

/\/lpred:Pred — Z; —B
such that
Vf:{partial recursive function¥', — B} - 3[p]: Pred - Mpealp] = f

This condition is introduced in order to ensure that the language of predicates as used
later is ‘sufficiently expressive’, i.e. that all recursive predicates can be expressed.

A specification denotes a binary relation on states. A valuation function on specifica-
tions Spec therefore is some function that satisfies

Mspec ([spec]: Spec) R: (XL x ¥) — B
post Vo: X, - [R(L£,0) = o= L]ATo" Y. R(o,0")

and
Vf: {partial recursive function&', x X — B} - I[spec]: Spec - Mgpec[spec] = f

We now can define the denotational semantics of symbolic execution in terms of the
denotational semantics of the specification being executed. This definition should satisfy
the following requirements:

e The input should model a set of input states to a specification. Originally, this set
will often be the universe of all states, but may be restricted by the user to a subset,
usually because the result expressions would otherwise get too complicated. For
example, when symbolically executing a conditional statement, the user may as-
sume that the condition tsue, after which symbolic execution only needs consider
thetrue-case.

e The semantic model should describe the relationship between individual input and
output states (and not just the relationship between the sat ofput states and
the set ofall output states). Otherwise, given for example the specificatiea
0V z =7 + 1, symbolic execution would only maj to N and thus not really
provide sufficient information. To get more useful information, one would have
to restrict the input sef, in this case{c | o(z) € N}, to a small subset, which
would be contrary to the ideas of symbolic execution and lead towards ‘testing’ of
specifications.

e It should allow composition of two (or more) symbolic execution steps. This im-
plies in particular that input and output must be of the same type.

e Furthermore, it should be possible to make assumptions on the set of input states
(as described above) not only at the beginning of a sequence of symbolic execution
steps but also at an intermediate stage. In this case, assumptions may be expressed
in terms of the values of variables in earlier states.

The model of symbolic execution that we are going to use is based on a ‘symbolic execu-
tion state’ calledSEStateDen which contains sets cfequencesf states. The definition

9.2 Denotational semantics of symbolic execution 247

of SEStateDen is given in Figure 9.1. The nant& StateDen is a shorthand faBymbolic
ExecutionStateas used foDerotational semantics. Similarly, Section 9.3 will introduce
SEStateOp for states in operational semantics.

In addition to the set of sequences of statd#sState Den contains a field.EN which
stores the number of symbolic execution steps performed, plus 1 for the initial state (see
Figure 9.1). At the same time, this is the numberaofual execution steps modelled
in any sequence of states in the fidldQS plus 1, which leads to the first conjunct in
the invariant. In this model, user-introduced restrictions on the set of states allowed are
modelled by ‘cutting off’ as much as necessary from the end of all sequences of states
until the condition is satisfied. This intuition explains the second conjunct on the invariant
on SEStateDen, which demands that no sequence&iState Den is an initial segment of
another such sequence.

A state as used in symbolic execution is given by

SEStateDen :: SEQS : P(X})
LEN : N

where

inv-SEStateDen(mk-SEStateDen(set, 1)) £
Vo-seq € set -leno-seq < [
AVo-seq, 0-seq € set - Vo-seq: VT -
o-seqy = 0-seqy 0-seq = 0-seq = ||

Figure 9.1: Denotational semantics of symbolic execution — State

As a conventiony will be used to denote elements 8 State Den, while o denotes
elements ofY,, as before.

Symbolic execution of a specification is modelled by adding another state to all those
sequences that have not been ‘cut off’, see Figure 9.2. Just as interpretation or execution,
given a specification, maps states to states, so symbolic execution, given a specification,
mapsSEStateDens to SEStateDens.

Doing symbolic execution in the way described here and stoalhgpossible se-
guences of states allowed by a sequence of specifications requires a fairly rich language
for expressing the results of symbolic execution, which might not always be available.
For example, the result of executingshile-loop will often not be expressible in the
language available. Therefore, in addition to sl symbolic execution Figure 9.2
also definesveaksymbolic execution, where the result includes the seatllopossible
sequences of states. This ensures that the properties one gets as a result of weak symbolic
execution still hold for the denotation of the full result; they just do not in general give a
complete description.

Note that there is a distinction between symbolic execution of the composition of spec-
ifications and the composition of symbolic executions. They give ris&ft6tate Dens
that describe the same relationship between initial and final states, btiftetc Dens
themselves are different. They lead $&'StateDens of different lengths, since sym-
bolic execution of the composition of specifications is considered as a single step, while
a sequence of symbolic executions in general consists of several steps (Lemma 4.1.7 of

248 9 Foundations of specification animation

(Full) symbolic execution is given by the functions

symbolic-ex : Spec — SEStateDen — SEStateDen
symbolic-ex[spec]r £
mk-SEStateDen(
{o-seq | leno-seq = LEN (1) + 1 A fronto-seq € SEQS(T)
A Mgpec[spec] (last front o-seq, last o-seq)
Vleno-seq < LEN (1) A o-seq € SEQS(T)},
LEN(7) + 1)

and

symbolic-ex-s : Spec* — SEStateDen — SEStateDen
symbolic-ex-s[spec-seq]T £

if spec-seq =[]

then 7

else symbolic-ex-s[tl spec-seq](symbolic-ex[hd spec-seq]T)

Weak symbolic execution is a function

w-symbolic-ex ([spec]: Spec, 71: SEStateDen) To: SEStateDen
post SEQS(12) 2 SEQS (symbolic-ex|spec]t)
A LEN (19) = LEN (symbolic-ex[spec]r)

with a similar function for sequences of specifications.

Figure 9.2: Denotational semantics of symbolic execution — Functions

[Kne89])).

It is not immediately obvious thaymbolic-ex as defined is gotal function. Although
a result is constructed for any input values, this result might not satisfy the invariant and
thus might not be of typé&FEStateDen. The following lemma shows that this case does
not arise.

Lemma 9.2.1 The functionsymbolic-ez is total, i.e.symbolic-ex[spec]r satisfies the in-
variant inv-SEStateDen for all [spec] and all .

Proof See Lemma 4.1.1 of [Kne89[J

Example 9.2.2 Let Name = {z, y}. We want to symbolically execute the operation

OP,
extwrz . Z
wry @ Z
pre z > 0
post 2 <7 Az ="T +1
Then

MSpec[[OPd](Ua 01)
& if o(z) > 0then 0y(y)? < o(z) Aoi(z) = o(x) + 1 else true

Now the uselassume that the pre-condition o®P; is true. This means thaDP; is to

9.3 Operational semantics of symbolic execution 249

be symbolically executed in thefState Den 7, which represents the predicate> 0:

71 = mk-SEStateDen({[o] | Mprea[z > 0]o}, 1)
= mk-SEStateDen({[o] | o(z) > 0}, 1)

Then symbolic execution of the specificatiorP; starting in theSEStateDen 71 results
in the SEStateDen

symbolic-ex[OP, |
= mk-SEStateDen({o-seq | leno-seq = LEN (1) + 1 A front o-seq € SEQS (1)
A M spec[OP:] (last front o-seq, last o-seq)
Vleno-seq < LEN (1) A\ o-seq € SEQS(m1)}, LEN (1) + 1)
= mk-SEStateDen({o-seq | len o-seq = 2 A o-seq[1](z) > 0
A My [P, (0-seq[1], o-seqf2))}, 2)
= mk-SEStateDen({o-seq | leno-seq = 2 N\ o-seq[1](z) > 0
A o-seq(2)(y)* < o-seq[1](x)
N o-seq[2)(z) = o-seq[1](x) + 1}, 2)

9.3 Operational semantics of symbolic execution

This section describes a model of symbolic execution based on the operational semantics
approach. The style of operational semantics used is based on that of Plotkin’s ‘Structured
Operational Semantics’ [Plo81], but of course many of the transitions themselves are
rather different since they descriggmbolicrather than actual execution. However, if
there is no danger of confusion, | shall in future not explicitly mention that | am dealing
with the particular version of operational semantics used for symbolic execution, but just
talk about operational semantics.

The following discussion starts off with the underlying data structure used, then shows
a number of transitions and rules for various language constructs.

There is an important difference between the descriptions of the denotational and op-
erational semantics of symbolic execution. While it is possible to explicitly define the
denotational semantics of symbolic execution itself by expressing them in terms of the
denotational semantics of the language used, this is not feasible for the operational se-
mantics. Instead, one here has to provide a different version of the operational semantics
of the language, specifically for symbolic execution. This chapter does not try to provide
the complete operational semantics for any language, but shows the rules for a number of
important language constructs instead.

9.3.1 The data structure

States as used on the operational level will be callédtateOps — Symbolic Execu-

tion Statesas used foOperational semantics. I§EStateOps, the information derived

by symbolic execution should get associated with those identifiers whose values are de-
scribed by it. For this reasor§EStateOps use maps fromVame to the relevant in-
formation. This information will be modelled by predicates. These predicates must be
predicates osequencesf states rather than single states, since they should model the re-
lationship between different states. Such predicates are introducgdd&sbelow. These

250 9 Foundations of specification animation

are the predicates the user should actually get to see as description values of variables at
any stage in the symbolic execution. PedS then is any expression whose semantics
can be given as

M preas: PredS — StateSeq — B
whereStateSeq is defined as
StateSeq = (X | StateSeq)*

StateSeq is defined recursively rather than just as a sequence of states in order to be able
to handle blocks and loops, as described below. This decision does not seriously affect
the definition ofPredS. The language oPredS has to include constant symbatse and
false, and operator symbols fox, =, < (all with their standard interpretation), and a
conditionalprovided-then (as defined in Section 9.3.3).

The only condition on the internal structure BfedS is that it must be possible to
define a function

mentions: PredS — Name-set

which collects the identifiers mentioned in a givBredS into a set. No other conditions

are needed since symbolic execution itself makes almost no use of the information con-
tained in thePredS; only simplificationneeds to know about the syntax and semantics
of PredS (in particular, it needs to know when twlredS are equivalent.). The defini-
tions of the syntax and semantics BfedS are therefore given in a theory which is used

to instantiate symbolic execution for a particular specification language (and thus for a
particular language oPredsS), but they are not used in the model of symbolic execution
itself. These simplification theories will be described in Section 9.4.2.

Since allowingsets ofPredS rather than only individuaPredS as description values
makes it easier to combine differeRtedS and, when needed (for example for simplifica-
tion), split the result again to get its componerttgState Ops are modelled using maps
from Name to PredS-set.

An additional complication arises because each symbolic execution step gives rise to
a new predicate on sequences of states, and obviously each such predicate may provide
valuable information that should be associated with the appropriate identifier and the ap-
propriate execution step. ThereforState Ops will be defined asequencesf maps
from identifiers to sets of predicates on sequences of stateSEAtute Op thus stores a
history of the results of symbolic execution.

In this history a loop should be considered as a single step, even though it may really
consist of any number of steps (including 0). Therefore, the result of the loop is modelled
as anSEStateOp itself, which is then considered as one step in the orightedtate Op.
Similarly, blocks should be considered as a single step and are therefore also modelled
as anSEStateOp themselves. This leads to the recursive definitios Bbtate Op given
below. One might thus consider & StateOp as a tree, where the leaves of the tree are
maps and the inner nodes &&StateOps. Pre-order traversal of this tree describes the
execution sequence modelled by the (radf)StateOp.

In addition to the sequence described abavBStateOp contains a field NDEX
which stores the index or position of thi/State Op in the recursive definition — this will
be needed to get the right description values inB8tate Op. Since these express prop-
erties of sequences of states, they need to know which sequence of states they should refer
to. This issue should become clearer in the discussion of simplification in Section 9.3.3.

9.3 Operational semantics of symbolic execution 251

Compare also the example transition for VDM-operations given in [Kn&89,6], where
INDEX is actually needed.

Definition 9.3.1 (SEStateOp)Define
Indexr = Nj

A state as used for describing the operational semantics of a language as used for
symbolic execution is defined recursively as

SE-map = Name - PredS-set
SE-elem = SE-map | SEStateOp

SEStateOp » SEQ . SE-elem*
INDEX : Index

where

inv-SEStateOp(mk-SEStateOp(Seq, ix)) &
Seq # []
A hd Seq: SE-map
A Yk < len Seq - Seq[k]: SEStateOp = INDEX (Seq(k]) = cons(k, ix)

The invariant onSEStateOp ensures that everyE Q) (.S) has a first element which defines
the allowed parameter states. Ah'StateOp itself would not be allowed as first element
because it should only arise a result oBymbolically executing a specification (usually a
loop or block). Additionally, the invariant ensures titdtStateOp describes the intuition
behindINDEX as described above — ti&/DEX of any SEStateOp which is thek-th
element ofSEQ of the SEStateOp S isthe INDEX iz of S with k£ added at the front, or
cons(k, iz).

A valuation functionM gsgsi.ic0, has also been defined, see [Kne89, Figure 4.3]. It
maps ansEStateOp to anSEStateDen, where theSEState Den contains those sequences
of states that satisfy all the predicates in #1&5tateOp.

In Figure 9.1 we described how &FEStateDen can represent a predicate on states
(expressed there as a set of states). Similarly, one can represent such predicates by
SEStateOps. Giveny: Pred, let @ be thePredS

Mprea[e]{n — a([1],n) | n: Name}
and let
S(¢) & mk-SEStateOp([{n — {&} | n: Name}],[])

ThenM ggsiateop[S ()] is the SEState Den that represents, and we say that (¢) is
the SEStateOp that representg. Of course,® does not have to be associated with each
Name n; one could alternatively only associate it with thoséhat are mentioned i@,
or even only with one arbitrary.

The valuation function ofSEStateOp, like the others defined before, could also be
considered as eetrievefunction [Jon90c, pages 204ff]. In this case, it has an adequacy
proof obligation associated withitlf Val is finite, then it depends on the expressiveness

3A representatiorRep is adequatewith respect to a retrieve functiortr: Rep — Abs

252 9 Foundations of specification animation

of PredS whetherM gggs.qic0, Satisfies this obligation. For infinitga/, however, there are
uncountably many sets of state sequences and therefore uncountably Bf&nyeDen.
On the other hand, there are only countably méa¥tateOp, and therefor&FEState Op
cannot be adequate W.tA sgstateop -

9.3.2 Transitions and rules

In the following | am going to define the kind of transitions and rules used for describ-
ing the operational semantics of language constructs in general, and then give the ap-
propriate transitions and rules for various constructs. In many cases (e.g. the rule for
if-then-else), the transitions and rules of the operational semantics of various lan-
guage constructs are defined by translating them into an equivalent construct in the lan-
guage used for describing the results, then simplifying the result whenever possible. This
simplification will hopefully help to eliminate the construct from the description.

From the point of view of their purpose, one can therefore distinguish three different
kinds of transitions:

e Transitions describing (state-changing) specifications. Since such operations actu-
ally lead to a new state, they are described by transitions that exteéfidb&ibtate Op
by adding another element to the sequefigé)(.S).

e Transitions that eliminate combinators such &sthen-else for specifications by
translating them into equivalent constructs used ingideS expressions.

e Simplification transitions derived from the theory fBredS, as discussed in Sec-
tion 9.3.3. The transitiort; — S, is allowed if S, can be derived fronb; by
simplification of PredS only.

We now define the various components that will be needed to express transitions.
SpecName is the type of specification names, asyetc M ap associates specification names
with specifications:

SpecMap = SpecName — Spec

A configuration consists of a sequenceSptcNames (which may be empty) and an
SEStateOp:

Conf . SNSEQ . SpecName*
STATE : SEStateOp

A configurationmk- Conf (sn-seq, S) will be written as(sn-seq, S). The configuration
(sn-seq, S): Conf describes the fact that the sequence of specifications given-byy is

to be applied ta5. Given somesm: SpecMap, the denotation of a configuration is there-
fore defined as (using the auxiliary functienalseq which appliessm to every element
of the sequencen-seq)

M ons + Conf — SEStateDen
M ons[{sn-seq, S)] £ symbolic-ex-s[evalseq(sn-seq, sm)](Msgsiateop[S])

iff Va € Abs-3r € Rep - retr(r) = a

9.3 Operational semantics of symbolic execution 253

Transitions are defined as
Trans =Yg B X E

wherew denotes disjoint union, ankl ranges ovelConf and the different syntactic cate-
gories of the specification language, suclFagr. A transitionmk- Trans(ey, e;) will be
written ase; — e,.

(Op1, S1) — (Ops, S;) denotes the fact that one interpretation step transfamps, S)
into (Opa, Ss), but— will also be used to denote its transitive-reflexive closure.

Rules take the form

Rule 2 ordhyps : (Trans | PredS)-set
conc : Trans

This is a simplified version of the definition of rules (or rule statements, to be exact)
in mural , since bothTrans and PredS are special forms ofzps. Sequent hypotheses are
not needed here.

An important general rule that shows how symbolic execution of a sequence of speci-
fications can be split up into symbolic execution of its elements is the following:

Rule 9.3.2

([sn], 5) — (], 5")
(cons(sn, sn-seq), S) — (sn-seq, S")

Lemma 9.3.3 Rule 9.3.2 preserves faithfulness: if the hypothesis transition is faithful
then so is the conclusion.

Proof See Lemma 4.2.6 of [Kne89[J

9.3.3 Simplification

Now assume we are given a fixed specification languag&o reason abouPreds, for
example to decide whether RredS ps; can be simpl@gd tps,, one needs a suitable
theory of PredS. This theory, which will be calledI'h(£), needs to be based on the
theory used to reason about termgirbut additionally an indexing mechanism is needed

to differentiate between the values of program variables (identifiers or names) at different
stages in an execution sequence. To do so, sequéngesf states are introduced, where

0,2 Y. Since the definition o EState Op is recursive, simple sequences are not enough —
we actually need iterated sequences whemmight be a sequence of states itself. This is
modelled by introducing a functiaf, which returns the name of the value of the identifier

n at a given stage in the execution, with the signature

o: Index x Name — Val-ref

For simplicity, we shall in the following identify the elementN; with the index[:].
Now a PredS is a predicate that contains names of values of identiiesome stage
instead of the identifiers themselves. See Section 9.4.2 for a more detailed explanation of
PredS. The resulting theory of’redsS' is the theory used for simplifications;: PredS
inside someSEStateOp can be simplified tgs,: PredS if they are equivalent irfl’h(L).

4Atransitionc; — ¢ is faithful with respect tou1, if itimplies M| c;] = M([cz], or M[e1] 2 M[ea]
if M returns asetof valuations. See [Sch8§10.7]

254 9 Foundations of specification animation

Weak simplification, as used in weak symbolic execution, requiregpthamplies ps, in
Th(L).

The language ofTﬁ(vﬁ) has to include therovided-then construct onPredsS, which
is used for expressing predicates with pre-conditions. The following should hold

(provided true then) < ¢
and
(provided false then) < true

The reason for not expressipgovided then) asif ¢ then v else true is that one
may want to treat unsatisfied pre-conditions differently and for example provide a warning
message. Thdenotationakemantics of both expressions are the same.

9.3.4 Block structures and local variables

We start off the description of operational semantics of language constructs with some
rules describing block structures. The approach taken, for example, by Plotkin [Plo81]
for operational semantics atctualexecution of blocks and local variable declarations is
not adequate here, since it discards information about earlier states, only the current values
of variables being stored. In symbolic execution, this is not sufficient since the predicates
describing a current value of a variable in general refer to earlier values, therefore the
whole history needs to be preserved.

Therefore, as mentioned before, blocks will be modelledSBistateOps that are
element®f the sequenc8E(Q of the originalSEStateOp. In order to be able to describe
how this is done, the following auxiliary functions will be needed:

current-names : SEStateOp — Name-set
current-names(S) 2 if last SEQ(S): SE-map

then dom last SEQ(S)

else dom hd SEQ(last SEQ(S))

and

add-to-SEStateOp : SEStateOp x SE-elem — SEStateOp
add-to-SEStateOp(S,e) £ mk-SEStateOp(SEQ(S) @ e, INDEX (S))

Here® denotes addition of a single element to the end of a sequence.

The functionstart-block starts a new block by creating a n&#StateOp which is then
added as a new element to the sequefi€€) of the current one.SEQ of the new
SEStateOp only consists of one element which describes that ‘nothing changes’ — all
identifiers keep the same value that they had before.

start-block : SEStateOp — SEStateOp
start-block(S) &
let S’ = mk-SEStateOp([{n — {5([1,len SEQ(S)+1) INDEX (S),n) =
7([len SEQ(S)] T INDEX(S),n)}
| n € current-names(S)},
cons(len SEQ(S) + 1, INDEX(S))) in
add-to-SEStateOp(S, S’)

9.3 Operational semantics of symbolic execution 255

finish-block : SEStateOp — SEStateOp
finish-block(S) £
let m = {n — {5([len SEQ(S)] " INDEX(S),n) = 6(INDEX(S),n)}
| n € domhd (SEQ(S))} in
add-to-SEStateOp(S, m)

The rule for describing the operational semantics of a block is then given by
Rule 9.3.4
(sn-seq, last SEQ(start-block(S))) — ([],S")
(begin sn-seq end, S) < ([], add-to-SEStateOp(S, finish-block(S")))

wherebegin sn-seq end is used as theameof the appropriate sequence of specifica-
tions. A similar convention will be used for other constructs below.

The functionsstart-block andfinish-block are not just auxiliary functions for express-
ing these rules, but will also be used in the specification of the UivoiESEXin order to
be able to display the newly-start®@State Op, which represents the block (or, similarly,
a loop), as an element ¢fE£(Q of the old one. As long as discharging the hypotheses
in a rule such as Rule 9.3.4 above can be done automatically, one does not need such a
special mechanism, but if user interaction is required then one needs to disphapf
the resultsbeforethe hypothesis has been fully discharged. In this case, the functions
start-block and finish-block should be used to ‘tell the system’ that it is dealing with a
block which should be displayed accordingly.

9.3.5 Example: A VDM-operation

Given the specificatiorP; from Example 9.2.2. As before, we assume that the pre-
condition holds. Since andy are the only identifiers used, we therefore start with the
SEStateOp

S = mk-SEStateOp([{z — {5([1], 2) > 0}, y — {5([1],z) > 0}}],[])

The appropriate instantiation of the rule giving the operational semanticoof-V
operations is then given by (after some simplification)

z = {o([2],y)* < o((1],2),

let m = ([2],z) =a([1],z) + 1} in
y — {0([2],y) <o([1],2)}

F([OP4], S) — ([], add-to-SEStateOp(S, m))

In the resulting state we then have

value ofz y22 <
To = X1 + 1
value ofy : y3 <z

The full rule describing the operational semantics of VDM-operations is given in [Kne89,
64.2.6].

9.3.6 Applying the Operational Semantics

Assume we are given some configuratien-seq, S), plus the operational semantics of
the relevant language. Such a configuration, as defined in Section 9.3.2, consists of a

256 9 Foundations of specification animation

sequencen-seq: SpecName* of specification names and &¥StateOp S, and denotes

an interpreter configuration in which the sequence of specifications referredsto day

is to be applied taS. The operational semantics will be expressed as a collection of
theories, as described below in Section 9.4.

One now wants to transform the configuratien-seq, S) into an equivalent configu-
ration (under the equivalence relation inducedMay,,,) of the form([], "), since this
provides the resultingEStateOp S’. This transformation is done by repeatedly applying
transitions from the operational semantics to the configuration until it has the right form.

Considered as an object handledrhyral , a transition is an expression of typeop
(proposition). The rules of the operational semantics correspond to axioms or rules as
defined in the specification afiural, and thus consist of zero or more assertions (pos-
sibly themselves transitions) and sequents as hypotheses and an assertion which is its
conclusion, and, in the case of (derived) rules, a justification.

So what exactly happens if one has a configurationseq, S) and wants to evaluate
it? The relevant theory should contain (an instantiation of) a rule that has as its conclusion
the transition(sn-seq, S) — conf for some configuratioronf. The hypotheses of such
a rule consist of a (possibly empty) set of transitions &ndiS (predicates on sequences
of states). Before a rule can be used, its hypotheses would have to be discharged. For each
PredS this is done by trying to prove it using thf&edS known to hold inS as hypotheses.

A transition is therefore discharged by recursively running the same algorithm on this
transition as or{sn-seq, S) — conf:

transform(trans) 2

1. Try to find a ruler with (instantiated) conclusiotrans

cases Number of such rules of

0 — answer N and stop

1 — make the appropriate substitution and store it

> 2 — let user decide which one to use

end

2. for everypreds in hyps(r)

do try to decide — is it the conclusion of a provable rule,
where all hypotheses are known to hold?

cases result of

true — nothing needs to be done

false — ignore the rule- and go back to 1.

others keep it as a condition on future results

end

3. for everytrans in hyps(r)

do transform(trans)

4. If you get this far, the collected substitution applied#ens gives
the provable instantiation

This recursive algorithm will be expressed as a proof tactic, which can then be used to
find a proof of the relevant transition. Alternatively, it could be expressed as a program
procedure or an oracle.

If conf has the form[], S") then symbolic execution ofn-seq on SEStateOp S is
finished with the resultingEStateOp S’. If not, then conf must itself have the form
(sn-seq’, S"). Inthis case there should be (an instantiation of) a rule that has as its conclu-
sion the transition{sn-seq’, S") — conf’ for some configuratiomonf’. Now one needs

9.4 Theories to support symbolic execution 257

a rule that says: if the transitions— b andb — ¢ are (instances of) conclusions of
rules, then one can derive a rule with conclusion— ¢, i.e. transitions are transitive.
In the example, this leads to a rule with conclusien-seq, S) — conf’, and the same
cycle starts again. Ifonf’ has the right form, symbolic execution is finished, otherwise
there should be a transition starting witbwf’. This cycle is repeated until one gets to a
configuration of the forng[], S”).

Effectively, in symbolic execution one tries to prove a theorem but, in contrast to the
usual way of doing so, one does not know the conclusion of the theorem when starting
to prove it. Instead, one knows that it should take the fésmseq, s) — S’, and that at
any stage either there is only one rule that applies, or the user gets the choice which one

to apply.

9.4 Theories to support symbolic execution

The theory of the operational semantics of a particular langdagesplit up into two
separate theories

e ThOpSem is common to all such theories

e ThOpSem(L) contains the part specific to language

Simplification is based on a theofff (L) which includes the logic used for describifg

(for VDM, this would be LPF [BCJ84]), plus the theories of its basic data types. Addi-
tionally, every specification module has a thediyModule(Mod) of its own containing,
among other things, the type and function definitions of the module.

So far, only ‘full’ theories were mentioned, i.e. theories that describe the operational
semantics of full symbolic execution (as defined in Figure 9.2). Additionally the ‘weak’
theoriesWThOpSem(L) and WThModule(Mod) are needed that describe weak sym-
bolic execution where some of the restrictions on the result state are ‘lost’, leading to
non-faithful transitions in the operational semantics.

These theories are all based on the same logic, a common ‘logic of operational seman-
tics’, rather than having a collection of different language-dependent logics. Here one has
to distinguish between the logic of a specification language, which is includ@d (i)
and used for reasoning about terms of the language, and the logic used for reasoning
within the various theories about transitions etc., which is independent of the language
used. LPF was chosen as this common logic.

Before describing these theories in more detail, the following diagram shows the
parent — child relationships existing between them= denotes the fact that the parent
theory is inherited by the child theory vianaorphism)

Th(L)

ThOpSem —*~ ThOpSem(L) — ThModule(Mod)

Y

WThOpSem(L)— WThModule(Mod)

258 9 Foundations of specification animation

Several of the definitions in the following were already introduced earlier. The new
definitions are given because they now define objects in the various theories of operational
semantics, used byy&B EX, while before they defined general data structures.

9.4.1 The common theoryThOpSem

Sorts

The theoryThOpSem should have the sort symbatame, preds and SEStateOp. Here
one has to distinguish between thi@mitive sort symbolsiame andpreds as introduced
in ThOpSem, and the defined sorf8ame and PredS which are language-dependent and
will therefore be introduced iThOpSem(L). ThOpSem (L) will inherit ThOpSem via
a morphism translatingame to Name andpreds to PredsS.
ThOpSem also has the sort constructass for sequences, with type parametér
and A - B for maps and4 | B for type union, both with type parametersand
B. All these sort constructors have their appropriate theory associated, either as part of
ThOpSem itself, or, more likely, as a parent theory. Also needed is the Basp of
propositions. Among other things, this includes equations and transitions.

Transitions
ThOpSem has the primitive (polymorphic) constant
—:A X A— Prop

which denotes transitions, and the constgits: and o denoting the inverses cf-.
Since— is polymorphic,from andto cannot be declared as having a certain type.
Transitions are reflexive and transitive:

El'—>E2 EQ"—>E3

FE—E B L,
andfrom, to are the inverses of:
t): A
F from(El — EQ) = E1 F tO(El — EQ) = E2 fm

SEStateOps

SEStateOps are defined as in Definition 9.3.1, except that we herenuse: and preds
instead ofName and PredS. Note that anSEStateOp as defined here is an object in the
theory ThOpSem rather than a general data structure.

9.4.2 The simplification theoriesTh(L) and Th(L)

Now assume that a fixed specification langudges given. LetTh(L) be the theory
used to reason about termsh For example,7h(VDM) = LPF+ theories of data
types. Th(L) should not be considered as denoting paeameterisedheory, but rather
a collection of different theories, one for each langu4dge

9.4 Theories to support symbolic execution 259

Th(L) is based on the logic &, with type Propg;.,, of propositions, and additionally
contains the theories of the basic data type& @luch as sets, sequences, etc. It is thus
the theory needed for reasoning abgun general, independent of symbolic execution.

Let Name be the type of identifiers or program variablesfgfas before. For a typed
language’, this would actually have to be a collection of types, but for simplicity this
fact is ignored here. LeVal be the type of values that an identifier may take. Again, for
a typed language this would have to be a collection of types.

We require that the language &fops;,, includes the constantsue andfalse, and
operatorsA, provided-then, = and<. Also needed are the functionsart-block and
finish-block, as defined in Section 9.3.4. These are needed in order to be able to describe
the operational semantics of blocks (cf. Section 9.3.4) or loops (cf. [Krid88.8]). Fur-
thermore, the language should be ‘reasonably expressive’ in the sense that the transitions
of the operational semantics 6f as will be discussed in Section 9.4.3, can be expressed.

One needs to introduce an indexing mechanism to differentiate between the values
of program variables (identifiers or names) at different stages in an execution sequence.
To do so, we introduce sequendes); of states, where;: .. Since the definition of
SEStateOp is recursive, simple sequences are not enough — we actually need iterated
sequences where might be a sequence of states itself. This is modelled by introducing
a constant symbat with arity (2,0), which is the name of the value of the identifieat
a given stage in the execution, with the only axiom

i-seq: Nj i-seq # [n: Name

g (i-seq, n): Val-ref

For simplicity, the element: N will in the following sometimes be identified with the
sequence-seq = [i].

Now define aPredS as a proposition of (L) where eactVame n has been replaced by
d(i-seq, n) for somei-seq.

D: Propspec i-seq: Nj
?[n/d(i-seq, n) | n: Name]: PredS

These are the predicates the user actually gets to see as description values of variables
at any stage in the symbolic execution. The resulting new theory Wit instead of
Propsim, Will be called Th(L). Effectively, this new theory then contains multiple copies
of Propg,.., one for each value of-seq. Note that, in the example of LPF, if gets
replaced by (i, n) thenn gets replaced by (i — 1, n).

Also needed is the following auxiliary function:

mentions: PredS — Name-set

which collects the identifiers mentioned in a giveps: PredsS, i.e. thosen for which ps
containss (i, n) for anyi. This function has to be defined recursively over the syntax of
PredS (0or Propgimyp)-

The theoryTh (L) is used for simplificationps;: PredS inside someSEStateOp can
be simplified to (i.e. replaced by),: PredS if they are equivalent irT?z—(vﬁ), given that
all PredS that occur in theSEStateOp at an earlier stage hold. Note that, in symbolic
execution, one is not directly interested in the theorem®/gfL) as such, but indirectly
in them providing a justification of those theoremsidfOpSem (L) which describe sim-
plification steps.

260 9 Foundations of specification animation

9.4.3 The language-dependent theorieBhOpSem (L)

Again assume one is given some fixed langudgand wants to describe the theory
ThOpSem(L) of its operational semantics. As beforéhOpSem (L) does not denote
one parameterisedheory, but a collection of different theoriesThOpSem(L) is the
theory that describes the operational semantics of symbolic execution of a particular lan-
guageL. Itinherits as parent theories the thedi%OpSem of operational semantics in
general (via a morphism translatingme to Name andpreds to PredS), independent of
the language’, and Th (L), the simplification theory of.

Let Spec be the type of all specifications and programs, i.e. all term8§ @enoting
a binary relation on statesSpecName is the type of specification names, afigecMap
associates specification names with specifications:

SpecMap = SpecName — Spec
Configurations consist of a sequenceSpécNames and anSEStateOp:

Conf . SNSEQ : SpecName*
STATE : SEStateOp

One can now introduce the transitions and transition rules describing the language
as axioms or rules of hOpSem (L), as described in Section 9.3, and derive the wanted
transitions from them.

9.4.4 The theoriesThModule(Mod) of specification modules
A specification modulé/od® consists of

e type definitions

¢ function definitions

e definitions of specifications. Here specifications are terms denoting a relation on
states. In VDM, these would be called operations.

The theoryThModule(Mod) of a specification modul@/od then inherits the theory
ThOpSem /(L) of the language used and additionally contains

e symbols for all the defined types of the module, plus their definitions

e symbols for all the functions of the module, plus their definitions (axiomatic or
otherwise)

e a constankpecmap: SpecMap
e transitions found by symbolic execution, expressed as rules.

However, in ThModule(Mod) all these definitions have to be expressed in the language
of mural rather than the specification language, since they are to be parhafaa the-

ory. Since they are originally expressed in the specification language (and stored in the
specification support tool described in Chapter 7), they will have to be translated first.

®Note that a specification module is similar to, but not the same A&dale in the BSI-Protostandard
for VDM [And88, BSI90].

9.5 Conclusions 261

The constantspecmap

The functionspecs takes a reference to a theory (it will be applied to theories of speci-
fication modules) and returns the names of specifications in the domain of the constant
specmap, i.€. the names of specifications in the module. From nows@amap will be a
fixedconstant symbol of typ€'ESympb.

specs (thr: Theory-ref) r: SpecName-set
ext rd mural : Store
pre thr € dom THS (mural)
A specmap € atoms(thr, THS (mural))
A 118 (murat) (thr) SpECTUAP: SpecMap
post Vsn: SpecName - sn € v < Frys(murat)(thr) ST € dom specmap

We require for any theorsl'’hModule(Mod) that the axioms provided abogiecmap
ensure thatpecs is implementable. This will usually be achieved by defining the map
specmap explicitly.

9.4.5 The weak theoriedVThOpSem (L) and WThModule(Mod)

The theoryWThOpSem/(L) includes those rules of the operational semantiaS which

are not faithful (and therefore do not describ# symbolic execution) but which do de-
scribeweaksymbolic execution. It hagd'hOpSem (L) as a parent theory. ThBredS-
information contained in awEStateOp after weaksymbolic execution is also correct
underfull symbolic execution, but it may be incomplete and not fully describe the results
of actual execution.

The theoryWThModule(Mod) merges information about the modul&d and infor-
mation about weak symbolic execution. Therefore it is defined as a theory that does not
contain any constants or axioms itself, but only the two parent the@¥idfodule(Mod)
and WThOpSem(L).

One can see that from the point of view of the theories involvezhksymbolic ex-
ecution is not essentially different frofall symbolic execution. The rules used take the
same form, and they will be applied in the same way. The essential difference between
the two is that the rules for weak symbolic execution convey less information in the sense
that the sets oPredS one gets as values for the differedémes may be smaller, and the
individual PredS may only be consequences of rather than equivalent to those one gets
from full symbolic execution. However, this does not affect the structure of these rules;
indeed a rule describing weak symbolic execution of one operation may at the same time
describe full symbolic execution of some other operation:SlefR7'1 be an operation
that sorts a list ofPersons by their age. If severdPersons have the same age then they
may be put in some arbitrary order. Alternative$f)R7T'2 requires that in this case they
should be ordered alphabetically on their names. Themdaksymbolic execution of
SORT?2 the additional requirement might be dropped and thus lead to the same result as
full symbolic execution o6ORT1.

9.5 Conclusions

This chapter described the theoretical foundations for a componentraf called Srm-
BEX. SymBEX supports the symbolic execution of specifications in order to validate

262 9 Foundations of specification animation

them against the informal user requirements. In order to achieve language-genericity
for SYMBEX, it is based on a variation of the operational semantics of the language con-
cerned. These are expressed as a collection of theories in the TPA. A notion of correctness
of symbolic execution is added by defining the denotational semantics of symbolic exe-
cution. As a result of this approach, symbolic execution as described here is applicable
for a large class of specification (and programming) languages, namely all those that are
based on a notion of states and state transformations.

A specification of SMBEX is given in Appendix D. This specification only deals
with the functional aspects of the system; the user’s view of the system is not covered
here but is described in [Kne8%.2].

Because of time pressure, only a very basic prototypeYofiEEX was eventually
implemented, and it is therefore not included in the versiomofal distributed. At the
time, the tactics language was still under development; there was only a small number
of tactics available, and the pattern matching/unification algorithms were faikhg aad
slow. As a result the system at that stage was very slow, and only a few small experiments
with it were possible.

Chapter 10

Case Studies

The PA (‘proof assistant’) has been instantiated with a hierarchy of theories with rules for
VDM. These cover rules for inferring the well-definedness and the dynamic properties
of VDM specifications. This chapter contains two case studies highlighting some of the
capabilities of this special instantiation of theural system. To prepare for the case
studies, we first give a description of VDM specifications, and then describe how a few
VDM constructs can be transformed intairal .

The first case study is a watchdog for a reactor systehhis case is nice, since it
is small and fairly simple without being trivial. The second case study is an algorithm
for topological sorting. The algorithm is interesting, because its formal specification
involves an abstract data structure that is not trivial. This ‘TopSort’ example is so far the
largest example that has been processeaimial . The case studies are presented in turn.

In the presentation we show most of timaral constants and rules directly representing
the specification, but have skipped most of the additional rules (and constants) created as
lemmas during proof construction.

When doing the case studies, the VST was still at a rather prototypal level, which
meant that it was necessary to create the PA theories for the VDM specifications ‘by
hand’ in order to come through. However, with the later additions to the VST both case
studies could have been carried out using the direct transformation from specifications in
the VST to theories in the PA.

The basis for these case studies is the VDM instantiatiomwf!. The theory for
VDM entered intomural is a form of LPF [BCJ84] extended also to handle typasere
conservative extensions are added to handle sets, sequences, mappings, etc. The work on
the VDM instantiation has been done independently of —and does not correspond to — any
established proof theory for VDM apart from what is described here. The VDM theory
store consists of a huge number of rules. We only present a few of these rules, namely
the ones that have been applied in the small examples we are giving of proofs. The style
of the proofs and proof rules is similar to that in Cliff Jones’ book [Jon90c], so that is the
place for the hungry reader to collect more information.

IThe reactor example originates from Bloomfield and Froome [BF86]. The VDM formulation given
here has been extracted from [FE91].

2The algorithm for topological sorting has previously been given a VDM formulation in [EB89], which
includes a complete VDM development from an abstract specification over several design stages to an
implementation in VAX-11 Pascal. The VDM development in this chapter is extracted from [EIv90].

3There is no magic in this. We are referring to expressions of the forfl) saying thats has typeT'.
Such typing expressions are not part of the original definition of LPF.

264 10 Case Studies

10.1 Specifications in VDM

A VDM development — in its purest form — consists of a sequence of less and less ab-
stract specifications and of reifications between succeeding abstract/concrete specifica-
tions. The first specification in the sequence is referred to as the abstract specification.
The succeeding specifications are referred to as design step one, two, etc.

VDM specifications automatically give rise to some proof obligations that have to be
discharged in order for the specification to be consistent. Similarly for steps of develop-
ment. There are also a number of proof obligations that arise less automatically, namely
those we regard as validation conditions. Thus proof obligations for a VDM development
divide into three classes: validation conditions for the specifications, consistency proof
obligations for the specifications, and proof obligations for the reifications.

To validate an abstract specification means to increase your own confidence that it is
really a model of the problem you want to solve. To validate design steps means to assure
yourself that the new features/properties added to the design do not affect the validity of
the specification.

Each of the specifications must be internally consistent. Functions must be total over
their specified domains and operations must be satisfiable

Concrete specifications must be proper refinements of more abstract ones. The con-
crete data structures must be adequate to represent the abstract ones. The concrete func-
tions and operations must be proper models of the abstract ones, which can be ensured by
discharging the domain and result proof obligations.

The two latter classes of proof obligations can easily be extracted from the speci-
fications. The obligation to validate a specification is more difficult to formalize: you
can never undertake a formal proof that guarantees you a contented customer. It is only
necessary to validate the extensions added to the design steps, since validity of the core
part of the specification, originating from the refinement of the previous step (initially the
abstract specification), is inherited.

Discharging a proof obligation is performed through a formal proof. The preparation
for carrying out such formal proofs is usually to represent the specification or develop-
ment as logical formulae in some theorem prover or proof assistant. This is exactly the
approach that we take in the two case studies, where the properties expressed by the proof
obligations must be logical consequences of (the representation of) the specification: that
is they must be derivable from the specification by the rules in the VDM instantiation of
mural .

10.2 Transformation of VDM into mural -theories

This section describes the transformation of a few VDM constructs into constants and
rules in the VDM theory store. We are only giving a few very specific examples, which

have all explicitly been used as central parts of the transformation of the case studies.
A more complete set of transformation rules for VDM constructs has been developed in
connection with the description of the VST — see Chapter 8. This section is not comple-

4Satisfiability was in the first edition of [Jon90c] called implementability. Satisfiability means that
an operation satisfies the satisfiability proof obligation. If some function ensures this property, then this
function is denoted as the implementation of the operation. We use the sloppy convention, that an operation
is an ‘implicitly defined function’, and that a function is ‘an explicitly defined operation’.

10.2 Transformation of VDM into mural -theories 265

menting, but rather illuminating, other aspects of that work. The transformation schemes
in this section have been developed solely as an aid to carry the case studies through.
Better schemes could perhaps be found.

10.2.1 Data types

The VDM instantiation takes a number of types as primitive, such as natural numbers,
sets, sequences, and maps. These will not be described here. Instead we propose a way of
providing new composite data types with induction rules. The technique is based on the
algebraic principle of generator induction.

In VDM a new data type is introduced by a (set of) domain equation(s). The valid
objects are pointed out by an invariant. To prove properties of such defined data types we
often need an induction rule.

One way to derive an induction rule can be found in the algebraic principle of gener-
ator induction over finitely generated domains. Consider the following example:

Example 10.2.1 (Generator Induction) Let the domair. be non-empty lists of elements
from the VDM domairP, with the partial ordering=<: P x P — B.

L=P*"
where

muv-L: L — B
inv-L(1) A (lenl >2) = (hdtll < hdl)

L is finitely generated by the single generator function

gen-L:P X L — L
gen-L(p,1) 2 ifhdl<p
then [p] "1
else [hd 1] " [p] “tll

from the basic sétof objects{[p] | p: P} of singleton lists ove”. To prove that
objects inL have some property): L — B, the following generator induction scheme
can be applied:

p:
— [p, {p: P, I: L, Q[I]}

Example 10.2.1 is easy to generalize for other finitely generated domains, and we will see
another example of how this works for the TopSort case study.

The principle of generator induction is in particular applicable in VDM, where all
objects of any domain must be of finite size, and therefore are very likely to be finitely
generable in some sense.

Remark: In [Elv90] we tried to formulate a general scheme for how to formulate induction
rules, where the soundness of the resulting rules should be provable in the PA. This turned
out to be very indigestible. It seems that such induction rules are best formalated

5This set is not a VDM set.

266 10 Case Studies

hoc and then added as axioms to the PA. Whether their formulation in practice can be
automated is still an open question, even though there are no deep foundational questions
involved in this.

10.2.2 Functions

We use a loose abstract notation — borrowed fronral — to express how function defi-
nitions look in general. Thus a function defined in VDM as

f:Aix...xA,—D
flay,...,a,) 2 FElay,...,a,),n >0
pre Play, ..., a,]

transforms inmural to
fln, 0] & E[[e1], ..., [en]] pre-fln, 0] & Play, ..., ay]

Here we have usefl to denote an arbitrary expression afién arbitrary predicate, both

with free variables among, . . ., a,,. Note that it is possible also to define recursive func-
tions in this way. Examples of recursive functions can be seen in the TopSort case study.
The typing information of the precondition and the function are expressed in definedness
rules, which need to be proved, i.e. they are consistency proof obligations:

ar: Ay, ..o an: Ay, pre-flaa, ..., a,]
def f
E flai,...,as): D

ap: A1, ..., an: Ay
def pre-f pre-flay, ..., a,]: B
For proving properties about recursive functions defined over some abstract data type,

we have defined a rule for well-founded induction, which could also have been called
induction ‘on the size of the argument’:

par: PAR,
Vpp: PAR - ord[pp]:N
[¢{q: PAR, (Vp: PAR - (ord[p] < ord[q]) = F[p])} = F[q]

WF Induction F[par]

The functionord is a function that decides the ‘size’ of a given argument. It is always
possible to define such a function for objects in a finitely generated domain, since the
size can be defined as the number of generator function applications that is necessary in
order to generate the object. Thagl is not a bijection, but an injection fromAR to N,
defining a well-founded ordering aPA R (of coursePA R must be finitely generated).

Refer to Chapter 8 for a description of how to transform operations.

10.2.3 Let expressions

The let-expressions used in the case studies generalize to expressions of the form

let Plz] in Elz],

10.3 A watchdog for a reactor system 267

which can be translated to an expression of the form
El(e z: A.P[z])] iff 3z: A- Plx],

wheree is the usual choice operator from first order logic. Since variables can only be
primitive, there is no way to define things like (recursive) functions in let constructs.
Thee-operator is defined as a primitive binder, together with the following axioms:

dz: A - Plz] dx: A - Plz]
I@P[ex:A-P[x]] @EZ‘ZA'P[:L‘]ZA

There are no problems with non-determinism of choice. To see that choice is determinis-
tic, one can easily prove:
dz: A - Plz]

EI:A-P[]I]ZGIZA'P[QZ]

This follows since a rule in the VDM instantiation requires that all well-defined expres-
sions are equal to themselves.

10.3 A watchdog for a reactor system

The system — a part of which we are going to specify — is illustrated in Figure 10.1.
It consists essentially of four units: a reactor, its controller, a watchdog, and a display.
Trip, veto, and indicator signals are transmitted between these units. We shall specify the
functionality of the watchdog unit, whose responsibility it is to set the indicator signals
and the mode (a special ‘error’ or ‘danger’ indicator) on the basis of the trip and veto
information it receives from the other units.

The presence of a trip signifies an abnormal situation (for example, the output of
some sensor in the reactor rising above a threshold level) which may require intervention
by the user (the ‘user’ could either be a human operator or another part of the system).
The display board, therefore, must be notified (by setting indicators) if a trip occurs. A
veto is a signal indicating that a particular trip signal has either been properly handled
or that the controller unit has decided to ignore or override the trip. An indicator signal
is a notification of the occurrence of a particular trip (the indicator signals could drive
warning lights on the display board). There are only a finite number of different signals.
The mode (or overall safety indicator of the reactor) can take one of two valuesir O
TRIP, representing, respectively, the normal operating state and some emergency state.

The function of the watchdog — specified as an operation calteédh — is to control
the reactor by setting (i.e. updating) indicators and the mode depending on how trips and
vetoes have been altered since the last update. The (mode of the) reacetaf (ar@ only
if) the set of all trips is equal to the set of all vetoes and the reactor was not previously
in TRIP-mode, otherwise the reactor is irrRTP-mode. Problems of initialization and
SO0 on are not being considered. It is envisaged that something periodically causes the
watchdog to execute theatch operation. We are mainly concerned with the internals
of the watchdog. A specification of the whole reactor would have to ensurevthat
was, for example, executed sufficiently frequently or immediately following certain other
events.

The watchdog’swatch operation must satisfy the following conditions in order to
operate safely:

268 10 Case Studies

Figure 10.1: The Reactor Control System
e signals (indicators, trips, and vetoes) must latch — that is, once@nh must not
turn them off,
e asignal can never be indicated before it has been tripped,
e asignal can never be vetoed before it has been tripped,

e once the reactor is inRIP-mode we must rely on some external agent to cancel the
TRIP (that is,watch must never take the system from &IP state to an @ state),

o if there is an un-vetoed trip, thamtch must set the state torRIP-mode, and

any tripped signal must be indicated by the watchdog.

The condition described in the third item is a requirement on parts of the reactor system
external to the watchdog. In the validation of the abstract specification in Section 10.3.2
we discuss this in more depth.

10.3.1 Design guidelines

We model signals as a type with finitely many objects. The state of the watchdog is
then modelled as consisting of four parts: vetoes, trips, and indicators, which are sets of
signals, and a reactor mode, which is either @ TRIP. With access to this state the op-
eration watch operates. In the first design stage signals are changed to be natural numbers
from some index set, and the sets of signals are changed to be lists of Booleans with a
fixed length equal to the maximum of the index set. Each number then indexes a position
in the list, and that position’s Boolean value indicates whether the signal represented by

10.3 A watchdog for a reactor system 269

that number has been registered. It is not decided how the watchdog interacts with the
other units. We are mainly interested in the functionality of dhsch operatiofi.

10.3.2 Formal development
Abstract specification

We model signals as a type with finitely many objects. This type is described by an index
set of natural numbers, whereaz denotes some fixed but arbitrary natural number. The
state of the watchdog is then modelled as consisting of four parts: vetoes, trips, and
indicators, which are sets of signals, and a reactor mode, which is eithar QRIP.

With access to this state the operatiostch operates.

Signal = {1, .., max}
Mode = {TRIP,OK }

State @ tr . Signal-set
vt : Signal-set
md . Mode
ind : Signal-set

The fields ofState aretrips, vetoesamodeand somendicators The state of the watch-

dog is formalized as a subtype Sfate. Note how the requirements that no signal can
ever be indicated before it has been tripped and that no signal can ever be vetoed before it
has been tripped are built into the state through the invariant.

WDstate = State

where

inv-WDstate(s) £ (ind(s) C tr(s)) A (vt(s) C tr(s))

watch
ext wr s . WDstate
post ((md(s) = TRIP) < ((=(tr(5) C vt('5))) V (md(5) = TRIP))) A
ind(s) = ind("s) U tr(s) A
tr(s) = tr(’s) A
vt(s) = vt(s)
Strictly speaking it is not necessary to model the change in the indicators as the union of

the trips and the indicators in the old state. It would be sufficient just to assign the trips to
the indicators, since a trip can only be removed by some reset operation.

51t is very convenient to limit our concern to pure functionality, since there is no standard way of han-
dling interaction, that is concurrency, in VDM, and in particular not in the VDM logic implementadiin
ral. (Such extensions have been seen. Refer for instance to the work of Woodcock and Dickinson [WD88]
or Ketil Stglen [?]).

270 10 Case Studies

First design stage

The design decision guiding the data reification from the abstract to the concrete level uses
the information that only finitely many different signals exist. The three sets of signals in
the abstract state can then be modelled as sequences of Booleans of length equal to the
number of different signals; the state still includes a mode.

Mode = {TRIP,OK }

State2 . tr2 : B*

vt2 1 B*
md2 : Mode
md2 B*

WDstate2 = State2
where

inv- WDstate2(mk-State2(tr, vt, md, ind)) 2
len tr = len vt A
len ind = len vt A
ptwImplied By (tr, ind) A
ptwImplied By (tr, vt)

All the lists of Booleans must have the same length, and still no signal can be indicated
or vetoed before it has been tripped. The auxiliary funcpon/mplied By (‘pointwise
implied by’) models theC-relation on sets.

ptwImpliedBy :B* x B* — B
ptwlmpliedBy(l,m) £ Vi:N;-(i €indsiAi €indsm) = (m[i] = [[i])

In the initial state all items in the lists afelse. We insist thatwatch must not take
the system from a RIP state back to an ©state. The refined version afutch is called
watch2. Note that the predicateest Unchanged makes sure that the lengths of the lists
in the old and the new states are the same. This property is not ensured by the invariant,
since we did not give fixed length to the lists — we simply stated that they should all have
the same length. Now we have also made sure that this length is fixed over time.

watch?2
ext wr s . WDstate2

post ((md2(s) = TRIP) < (sigNotVetoed(s) V (md2('s’) = TRIP))) A
indsCorrect(‘s | s) A
restUnchanged(’s | s)

The auxiliary functions are self-explanatory:

sigNotVetoed : WDstate2 — B
sigNotVetoed(s) £ Ji:Ny - (i € indsind2(s)) A tr2(s)[i] A = (vt2(s)[4]))

indsCorrect : WDstate2 x WDstate2 — B
indsCorrect(s,ss) £ Vi:Ny- (i € (indsind2(s) Nindsind2(ss)))
= ind2(ss)[i] = (ind2(s)[i] V tr2(s)[i])

10.3 A watchdog for a reactor system 271

restUnchanged : WDstate2 x WDstate2 — B
restUnchanged (s, ss) 2

tr2(s) = tr2(ss) A

vt2(s) = vt2(ss)

Proof obligations

Consistency of the abstract specification

The following two formulae express ‘sensibleness’ conditions (i.e. well-formedness proof
obligations) to ensure that the definitions are total and correctly typed. The reason it is
necessary to show that the invariant and postcondition are ofBy(getype with two
elements{true, false}) is that VDM is based on logic for partial functions, where you are
only allowed to reason about terms that have a well-definatlie (refer to [BCJ84]).

Vs: State - inv- WDstate(s): B
Vs: WDstate, ss: WDstate - post-watch(s, ss): B

The following formula is the standashtisfiabilityproof obligatiori:

Vs: WDstate - 3ss: WDstate - post-watch(s, ss)

Validation of the abstract specification

We now express formally the validation conditions stated informally at the beginning of
this section. Indicator, trip, and veto signals must, once they are on, stay on after an
execution of the watchdog. New indicators can be signalled byitiieh operation:

Vs, ss: WDstate - post-watch(s, ss) = ind(s) C ind(ss) (10.1)

Nothing — neither the watchdog nor its environment — must change the trips or the vetoes
during the execution ofatch:

Vs, ss: WDstate - post-watch(s, ss) = tr(s) = tr(ss) (10.2)

Vs, ss: WDstate - post-watch(s, ss) = vt(s) = vt(ss) (10.3)
A signal must never be indicated before it has been tripped, and a signal must never be
vetoed before it has been tripped:

Vs, ss: WDstate - post-watch(s, ss) = ind(ss) C tr(s) (10.4)

Vs, ss: WDstate - post-watch(s, ss) = wvt(ss) C tr(s) (10.5)

The watchdog’s mode will ‘latch’ in RiP-mode:

Vs, ss: WDstate -

(post-watch(s, ss) A md(s) = TRIP) = md(ss) = TRIP (10.6)

“For example the propositior%‘: 3" is considered undefined, and does not denote an element of the
typeB.

8Note that we use to denote the old state, and to denote the new. The reason for this is, that it is
easier to write in the PA, where it is not possible to wiie

272 10 Case Studies

The watchdog will set the mode toRTP if there is an un-vetoed trip:

Vs, ss: WDstate -

(post-watch(s, ss) A = (tr(s) C vt(s))) = md(ss) = TRIP (10.7)
The watchdog must always set the indicators according to the present trips:
Vs, ss: WDstate - post-watch(s, ss) = ind(ss) = tr(s) (10.8)

One can see that the validation conditions range from simple functionality require-
ments (the first three) to essential safety properties of the system (the last three).

Note (again) that two validation conditions, namely the one saying that no signal
is ever indicated before it has been tripped (10.4) and the one saying that no signal is
ever vetoed before it is tripped (10.5), have been built directly into the specification —
they are part of the invariant. Whatever updates the state of the watchdog in between
the executions ofvatch, it must leave the state as a valid object in the typ®state.

Thus, through the definition of a subtype, we have imposed a number of requirements
on the external world. Finally, note that without stating these properties as part of the
invariant on states, we would not have been able to assure that they were fulfilled. From
a higher level view of the system (perhaps a specification of the entire reactor system)
a variety of other safety or validation properties may be stated (such amdhdt is
executed sufficiently often). However since we are considering the watchdog more or less
in isolation, such higher-level properties and obligations can legitimately be ignored (and
indeed are).

The validation conditions (10.2) and (10.3) could also have been build into the speci-
fication by splitting the state into four components vt, md, andind and assigning the
read only optiontd) to the components- andvt in the watchdog specification. The rea-
son for not doing so is that we decided to consider the state as a whole instead of splitting
it into four parts. The possibility of splitting a state into its components is often used in
[Jon90c].

Validation and consistency of first design step

By undertaking the refinement proofs (i.e. showing tHabstate2 is anadequateepre-
sentation oflW Dstate and showing thelomainandresultobligations forwatchlwatch?),

all the validation conditions are inherited from the abstract specification to the concrete
specification, since these could easily be re-proved by application of the retrieve function.
All that remains is to prove the new consistency proof obligations, which arise automati-
cally for the concrete specification:

Vs: State2 - inv- WDstate2(s): B

Vi:B*, m:B* - ptwImpliedBy(l, m): B
Vs: WDstate2 - sigNot Vetoed(s): B
Vs: WDstate2, ss: WDstate2 - indsCorrect(s, ss): B
Vs: WDstate2, ss: WDstate2 - restUnchanged(s, ss): B
Vs: WDstate2, ss: WDstate2 - post-watch2(s, ss): B
Vs: WDstate2 - 3ss: WDstate2 - post-watch2(s, ss)

10.3 A watchdog for a reactor system 273

Refinement

The refinement is proved correct in the traditional way. First a well-defined retrieve func-
tion is found, and then thadequacyof the concrete state to represent the abstract state
is proved. Thedomainandresultrules are proved for each operation. In this case the
domain rule is trivial, since neither the abstraetich nor the concretevatch2 operation
carries any precondition.

retr- WDstate : WDstate2 — WDstate
retr- WDstate(mk-State2(tr, vt, md, ind)) £
let ¢r' = {7 | tr[i]}
vt" = {i | vt[i]}
ind" = {i | ind[i]} in
mk-State(tr', vt', md, ind")

Definedness of retrieve function

Vs: WDstate2 - retr- WDstate(s): WDstate

Adequacy of state

Vs1: WDstate - 3s2: WDstate2 - s1 = retr- WDstate(s2)

Result rule

Vs: WDstate2, ss: WDstate2- post-watch2(s, ss)
= post-watch(retr- WDstate(s), retr- WDstate(ss))

10.3.3 Representation imural

Instead of using the default translation mechanism we generated the definitions by hand
For types, operations, and functions introduced in the VDM specification, type symbols
and constant symbols are declared in a theory in the PA. Each part of the development
has its own theory. Translating composite types will result in constants for the VDM
‘make’ and ‘selector’ functions being added explicitly. In addition to a declaration (stat-
ing the expected number of arguments), each function symbol needs a definition. VDM
operations are translated to a pair of Boolean-valued constants to represent the pre and
postconditions. VDM functions are also translated to constants. The type information is
added as definedness proof obligations, as briefly described in Section 10.2.2.

Consistency properties (traditional proof obligations: definedness, satisfiability) are
generated automatically by the V8TValidity properties cannot be automatically gener-
ated since in general they rely on the specifier’s understanding of what the system should
do and must therefore be entered by thwral user as unproven conjectures (yet-to-be-
proven rules) in the PA.

A ’print-out’ facility is included in mural which allows the generation ofTiEX doc-
uments describing theories, rules, proofs, and so on. The following subsections contain

9As explained in the introduction of this chapter, the automatic translation mechanism was not available
at the time these case studies were carried out.

10At least they would have been generated automatically if we had been able to use the VST’s translation
tool.

274 10 Case Studies

output generated by the PA from the theories for the abstract specification, the first design
step, and the reification from the abstract specification to the first design stepg‘TgXe L
source files which are generated can easily be edited and directly included in"gtiXer L
documents.

Representation of the abstract specification

Types
Signal— (i: Ny . (i <max)), State— [0,0],
WDstate— (n: State . (inv-WDstate [n]), Mode [0,0]

Signal and WDstate are subtypes oN; and State respectively. Mode and State are
primitive types. That means that their ‘meaning’ will be introduced through axioms, as
can be seen below.

Constants
max+~— [0,0], s-tr— [1,0],
s-vt— [1,0],
OK — [0,0], s-md— [1,0],
TRIP — [0,0], s-ind— [1,0],

mk-State— [4,0],

The above constants are all primitive with arity [0,0], [1,0], or [4,0], meaning that they
take 0, 1, or 4 expression arguments respectively, and that none of them take any types
as argument. The- symbols are selectors for the composite type, atdState is the
corresponding make function. All these constants are defined by the axioms below.

inv-WDstate— (((s-ind [[e1]]) C (s-tr[[el]])) A ((s-vt[[el]]) C (s-tr{[el]])))

inv- WDstate is a defined constant, which takes one expression as its argument. The
‘expression hole’[e1], serves as a placeholder for this argument.

post-watch—
(((((s-md[e2]])=TRIP) <
((= ((s-trfe1]]) € (s-vt[[e1]]))) vV ((s-md [el]]) =TRIP))) A

((s-ind [[e2]]) = ((s-ind [[e1]]) U (s-tr[[e1]])))) A

(((s-tr[e2]]) = (s-tr[el]])) A

((s-vt[[e2]]) = (s-vt[[e1]]))))
post-watch is a defined constant, which takes two expression arguments (thetware
holes in the definition fe1] and[e2]). For both of these defined constant®emation
rule (to ensure well-typedness and totality) will be added as a new unproven rule.

In order to make the proofs go through more easily, an auxiliary funatiaih has
been added to the theory (by hahd This is a useful and fairly standard procedure
when doing constructive proofs of satisfiability (and — as we shall see in Section 10.3.4
—adequacy), which generally involve proving an existential statement, and proceed using
the ‘exists introduction’ rule (refer to Section 10.5) which requires the construction of a
‘witness’ element.

1 Obviously, the functionwatch cannot usually be generated automatically, since it is effectively an
implementation of the specification.

10.3 A watchdog for a reactor system 275

watch—
mk-State [(s-tr[e1]]).
(s-vt[[el]]),
(if ((= ((str{[e1]]) € (svt[[e1]]))) v ((s-md [el]]) = TRIP))
then TRIP
else OK),

((s-ind [le1]]) U (s-tr [[e1]]))

Axioms

max iS an element ofN;. Expressions max form
Ok and TrIP are distinct elements of type {}
Mode. Ok and TRIP are the only elements {}
of Mode, and they are not equal. —

(max:Nyp)
OK-formation TRIP-formation
{} {}
{} {}
(OK: Mode) (TRIP : Mode)
Mode closure Mode values unequal
{} {}
{ (g:Mode)} {}
((g=TRIP)V (g=0K)) (= (TRIP=0K))

The record typéstate is defined next. By a number of axioms we give sense to the
constant symbols introduced earlier. It takes 10 axioms to define theStype and we
show four of them below. The other six are the analoguestoidefnands-tr-formation
for the other selector functions and are left as an exercise for the reader.

s-tr-defn s-tr-formation

{} {}
{((mk-State[el,e2,e3,e4]): Staté¢) {(t: State)}
((s-tr[(mk-State[el,e2,e3,e4])])=el) ((s-tr[t]): (Signal-set))
State-formation

{}

{(el:(Signal-set)), (e2:(Signal-set)),(e3:Mode),
(e4: (Signal-set)}

((mk-State[el,e2,e3,e4]): State)
State-introduction

{}
{(t: State)}

((mk-State [(s-tr[t]), (s-vt[t]),(s-md[t]),(s-ind[t])])=t)

Rules

The following three rules express the conditions that WDstate and post-watch are
total and correctly typed for all arguments of the correct type, and thaidtheé operation
is satisfiable.

276 10 Case Studies

inv-WDstate form

{}
{(s: State)}

((inv-WDstate[s]) B)

post-watch form watch satisfiability

{} {}

{ (s:WbDstate), (ss: WDstate}) { (s: WbDstate)}

((post-watch[s,ss])B) Jss: WDstate . (post-watch[s,ss])
Lemmas

As previously mentioned, the constamitch was introduced purely as a construction to
aid the proof process, and the following two lemmas ahatith allow the satisfiability
proof to go through smoothly. The last lemma is just another one which turns out to be
convenient when doing the proofs.

watch form lem watch is implementation
{} {}

{ (s :WDstate)} { (s :WDstate)}
((watch[s]): WDstate) (post-watch [s, watch[s]])
lem (s:State if s:WDstate)

{}

{ (s :WDstate)}

(s: State)

Validation of abstract level

The validation conditions (10.1) to (10.8) are easily transformed niniml. They are
transformed to 8 unproved theorems, of which you can see 2 below. Note — as remarked
in Footnote 8 — that we do not use the usual hook notation, but let ‘s’ denote the old state
and ‘ss’ the new.

val 5

{}
{(s:WbDstate), (ss: WDstate})

((post-watch[s,ss])= ((s-vi[ss])C (s-tr[s])))
val 7

{}
{ (s:WbDstate), (ss: WDstate})

(((post-watch[s,ss])N (= ((s-tr[s])C (s-vt[s])))) = ((s-md[ss])=TRIP))

If you carefully study ‘val 5’ and ‘val 7’ you will see why the invariant of the state cannot
just require trips and vetoes to be equal.

Representation of the first design step

Here we only provide the bare translation of the specification, leaving out all the auxiliary
constants and lemmas. As the representation of the first design step is very similar to that
of the abstract specification no explanation should be required.

10.3 A watchdog for a reactor system 277

Types

Mode [0,0],

State2— [0,0], WDstate2— (ss:State2 . (inv-WDstate2[s§])
Constants

max+— [0,0], s-tr2+— [1,0],

s-vt2+— [1,0],
OK — [0,0], s-md2— [1,0],
TRIP+— [0,0], s-ind2— [1,0],

mk-State2— [4,0],

inv-WDstate2—
((((len[(s-tr2 [[e1]])]) = max) A
(((len[(s-vt2[e1]])]) = max)A
((len[(s-ind2 [e1]])]1)=max))) A
((ptwimpliedBy [(s-tr2 [el]]), (s-ind2 [e1]])]) A
(ptwimpliedBy [(s-tr2 [e1]]) , (svi2 [[e1]])1))))
ptwimpliedBy —
Vi:Np.(((ie(inds[el]])) A (i€ (inds[[e2]])))
= (([e2]@i) = ([el]@1))),
post-watch2—
((((s-md2[e2]])=TRIP) &
((sigNotVetoed [e1]]) V ((s-md2 [[e1]])=TRIP))) A

((indsCorrect[el], [e2]]) A
(restUnchangedE1] , [e2]1))) .,

sigNotVetoed—
Fi: (ii: Ny (i <max)) . (((s-tr2lel]l) @i)A (= ((svi2[[el]])@1i))),
indsCorrect—
Vk:(ii: Ny. (il <max)).
(((s-ind2 [e1]]) @ k) = (((s-ind2 [e2]]) @ k) v ((s-tr2 [[e2]]) @ k)))
restUnchanged-
(((str2[e1]]) = (s-tr2[[e2]])) A ((s-vt2 [[e1]]) = (s-vi2 [[e2]])))

Axioms
Most of these axioms are almost identical to those of the abstract specification, so we will
only show four of them. Try to create the 11 axioms that are not explicitly shown.

s-tr2 defn s-tr2 form

{} {}

{((mk-State2 [el,e2,e3,e4]): State?) {(t: State2)}
((s-tr2[(mk-State2[el,e2,e3,e4])])=¢el) ((str2[t]):(B*))
mk-State2 defn

{}

{(t:State2)}

((mk-State2 [(s-tr2[t]), (s-vi2[t]), (s-md2[t]), (s-ind2[t])])=t)

278

mk-State2 form

{}
{(el:(B*)),(e2:(B*)),(e3:Mode),

(e4:(B*))}

10 Case Studies

((mk-State2[el,e2,e3,e4]): State2)

Rules
inv-WDstate2 form

{}
{(s:State2)}

((inv-WDstate2 [s]) B)

ptwimpliedBy form

{}
{(1:(B*)),(m:(B*)) }

((ptwimpliedBy [I, m]):B)

indsCorrect form

{}
{(s:WDstate2), (ss: WDstate2)

((indsCorrect[s,ss])B)
watch2 sat

{1}
{ (s:WDstate2)}

Jss: WDstate2 . (post-watch2 [s,ss])

Refinement

Apart from giving the translation of the reification constructs, we emphasize also the con-
structs necessary to undertake the adequacy proof, thereby providing the (two) auxiliary
constructs and lemmas. In particular we have as one auxiliary construct introduced an
inject-function, which is in some sense the opposite of a retrieve-function, since such a
construct — which in general may not exist — tends to make the constructive adequacy
proof simpler. Like in the satisfiability proofs the problem is with the existential quanti-

sigNotVetoed form

{}
{(s:WbDstate2)

((sigNotVetoed [s]) B)
post-watch2 form

{}
{(s:WDstate2), (ss: WDstateZ)

((post-watch2[s,ss])B)
restUnchanged form

{}
{(s:WDstate2), (ss: WDstate)

((restUnchanged[s,ss]B)

fier, so the other auxiliary construct is a ‘witness’.

Constants

retr-wDstate—
(mk-State [(extr-Set [(s-trB1]]) 1),
(extr-Set [(s-vt2[el]]) 1),
(s-md2 [el]]),
(extr-Set [(s-ind2[el]])1) 1),

inj-WDstate2—

(mk-State2 [(extr-List [(s-tr[le1]]) , max]),

(extr-List[(s-vt[[el]]), max]),
(s-md [[e1]]),
(extr-List [(s-ind [[e1]]), max])1),

10.3 A watchdog for a reactor system 279

extr-Set—

those i:N; . ((ie(inds[el]])) A([el]@i)),
extr-Listi—

(if ([e2]=1)

then ([(1€[e1])])
else ((extr-List [e1] , (pred [e2]]1)]1) ~ ([e2]€[el])))

Rules
retr-WDstate form

{}
{ (s:WbDstate2)

((retr-WDstate [s]) : WDstate)

Adequacy

{}
{ (s :WbDstate)}

3s2: WDstate2 . (s = (retr-WDstate [s2]))

Result Rule

{}
{(s:WDstate2), (ss: WDstate2)

((post-watch2[s, ss])= (post-watch[(retr-WDstate[s]), (retr-WDstate[ss])]))

Lemmas
To give you a feel for what kind of properties you have to proof for VDM developments,
we show a couple of lemmas ‘at length’.

These lemmas are all related to the adequacy proofj-wDstate2 form
for the watchdog. One thing you will experience{}

when usingmural is that you have to be careful { (s:WbDstate)}
when you decide how to decompose your proofs——

into suitable lemmas. ((inj-WDstate2[s]) : WDstate2)
extr-Set form extr-List form
{} {}
{(s:(B*))} {(n:Ny),(s:(Signal-set)}
((extr-Set[s]): (Signal-set)) ((extr-List[s,n]):(B*))
lem (extr-Set[extr-List[s,max]]=s) lem (length of list)
{} {}
{(s:(Signal-set)} {(s:(Signal-set)),(nN;)}
((extr-Set[(extr-List[s, max])])=s) ((len[(extr-List[s,n])])=n)

lem (ptwimpliedBy models C)

{((len[I])=(len[m])),(1:(B*)),(m:(B*)),(ptwimpliedBy [I,m]) }

((extr-Set[1])C (extr-Set[m]))
lem (retr oinj = id-WDstate)

{}
{ (s :WDstate)}

((retr-WDstate [(inj-WDstate2[s])])=s)

280 10 Case Studies

lem (s-md2[inj-WDstate2]...]]=...)

{}

{ (s :WDstate)}

((s-md2[(inj-WDstate2[s])])=(s-md[s]))

lem (s-ind2[inj-WDstate2[...]]=...)

{}

{ (s: WDstate)}

((s-ind2 [(inj-WDstate2[s])])=(extr-List[(s-ind[s]), max]))

lem (s-tr2[inj-WDstate2]...]J]=...
{}

{ (s:WbDstate)}

((s-tr2[(inj-WDstate2[s])]) = (extr-List[(s-tr[s]), max]))

lem (s-vt2[inj-WDstate2][...]]=...)

{}

{ (s:WbDstate)}

((s-vt2[(inj-WDstate2[s])]) = (extr-List[(s-vt[s]),max]))

lem (C is impl by ptwimpliedBy)

{}
{(s:(Signal-set)), (ss:(Signal-set)), (sss)}

(ptwimpliedBy [(extr-List[ss, max]), (extr-List[s, max])])

10.3.4 Proofs

We do not include all the proofs, since these tend to be tedious and uninteresting to read.
In order to give a flavour, we show three of the more interesting examples. The first of
these proofs is a derivation of the formation rule (ensuring well-typedness and totality)
for the invariant (i.einv-WDstate form

hl (s: State)

1((s-tr[s]): (Signal-set)) by s-tr-formation on [h1]; []
2((s-ind[s]): (Signal-set)) by s-ind-formation on [h1]; []
3((svt[s]): (Signal-set)) by s-vt-formation on [h1]; []
4(0((s-ind[s])CS(str[s]))) byd-C on [2, 1]; []
5(6((svt[s])S(strs]))) byd-C on [3, 1]; []

6(0(((s-ind[s])C (str[s]))A((svt[s])C(str[s]))))

by dA-inherit on [4, 5]; []
7 (6 (inv-WDstate [s])) folding from 6
c ((inv-WDstate [s]) B) by bool form on [7]; []

The rules to which this proof (and others in this chapter) appeals are collected in Sec-
tion 10.5, so that is the place to look for rules lik& and ‘dA-inherit’. Note thatfolding
in Lines 6-7 indicates that an instance of a right-hand-side of a definition (in this case the
definition of inv- WDstate) has been replaced by the corresponding left-hand-side.

The second proof is of the satisfiability afatch. This proof goes through rather
easily by an application of the lemma ‘lem update is implementation’ which asserts that
the newly introduced constantaich (used as the ‘witness’ for adlintroduction’) is a

10.4 An algorithm for topological sorting 281

correct implementation.

hl (s: WDstate)

1((watch[s]): WDstate) by watch form on [h1]; []
2 (post-watch [s, (watch[s])] by lem watch is implementation on [h1]; []
cdss: WDstate . (post-watch[s, ss]) By on[1, 2];]

The more interesting proofs seem to be those establishing the correctness of the reifica-
tion. Here is the proof of adequacy. In order to undertake the proof we have defined an
inject function, which is part of the reification theory. The proof has been broken down
into a number of lemmas. These are all part of the reification theory and were given in the
previous subsection.

hl (s: WDstate)

1((inj-WDstate2[s]): WDstate2) by inj-WDstate2 form on [h1]; []
2 ((retr-WDstate [(inj-WDstate2[s])])=s) by lem (retnj = id-WDstate) on [h1]; []
3 (s =(retr-WDstate [(inj-WDstate2[s])])) by =-comm on [2]; []
c3ds2: WDstate2 . (s = (retr-WDstate [s2])) Byl on [1, 3]; []

Remark: When starting with the case studies, we expected to be able to concentrate on
the ‘interesting’ proofs concerning validation and refinement, but it turned out that the
consistency proof obligations required much more time than expected. The reason why
we needed to spend more time on the consistency proof obligations was twofold. The
first thing that one encounters is that if something is wrong in the specification that you
are reasoning about, you will have to do all the proofs again, since the specification acts
as a kind of assumption in your proof, and if the assumptions change the proof changes.
Caused by the first reason, you start by proving that your specification is consistent, be-
cause it is tedious to do almost the same proofs over and over again. This leads directly to
the second reason: even trivial proofsimral take time, and since a lot of trivial proofs
need to be done in order to ensure consistency, the proof of consistency takes time.

10.4 An algorithm for topological sorting

Topological sorting is the act of transforming a (finite) partial order into a linear order.
This concept of topological sorting is formalized with a precise definition, which involves
the definitions of a partial order and a linear order. The definition of linear orders is only
needed to explain what a topological order is.

Definition 10.4.1 (Partial Order)
A partial order (S, <) is a set,S, and a binary relation, on S which is

1. reflexive Vse S -s=<s,
2. antisymmetric Vs, t€ S-s <t ANt=<s = s=t,and
3. transitive Vs,t,bueS-s=<tANt=u = s=u.

Definition 10.4.2 (Linear Order)
Alinear order(S, <) is a partial order for which any two elements ®fare related by<:

Vs, teS-s=<tVt=s.

282 10 Case Studies

Figure 10.2: A simple Partial Order.

Any finite linear order can be represented as a sequénedth indices in the sends L.

Definition 10.4.3 (Topological order and Topological Sorting)

A topological order of a finite partial ordefS, <) is a sequencé of all and only all the
members irf, so that no elemeritin the sequencé is preceded by an elemeht(i > j)
for whichl; < [;, i,j € inds L, whereinds L is the index set of. The act of transforming
a partial order into a topological order is called topological sorting.

It is easy to see that a topological order of a partial order is always a linear order. The
definition of topological sorting is best illustrated through an example.

Example 10.4.4 (Topological Sorting)Consider the partial order(S, <), where S is
equal to{a, b, ¢, d}, and =< is defined by

(z =2y) = ((,9) € {(a,0),(b,0),(c, ¢),(d,d), (a,b),(a,c),(a,d),(c,d)})

for all z,y € S. For the partial order (S, <) three possible topological orders exist:
la, b, c,d],[a,c d, b],and[a,c, b, d].
In Figure 10.2 you can see a drawing of the partial order, ordered left-to-right.

10.4.1 Design guidelines

By modelling partial orders with directed acyclic graphs and linear orders with non-repe-
ating sequences we develop an algorithm for topological sorting. In the abstract specifica-
tion directed acyclic graphs are modelled as mappings from nodes to sets of imiiediate
successors and non-repeating sequences are modelled as sequences.

Example 10.4.5 (Partial Orders in Abstract Specification) The representation as a map-
ping of the partial order(S, <) from Example 10.4.4 is:

{a—=Abct, b= A} e {d}, d—={}}

In the first design step the representation of graphs is changed to support the act of sorting.
Selecting a node with no predecessors is the basis for the data structure refinement: each
node is represented by a triple, n, ns) wherep denotes the number of immediate pre-
decessorg; is the node name, ang is the set of immediate successors. Directed acyclic
graphs are modelled as sets of triples. The representation of non-repeating sequences is
not changed. The price paid for this change in the representation of graphs is that it will
become harder to update graph representations when nodes are either added or removed.

12The immediate successors (predecessors) are to be opposed to all successors (predecessors) of a given
node. For instance in Example 10.4.4asb andc as immediate successors, dna, andd as successors.
The analogy to predecessors is straightforward.

10.4 An algorithm for topological sorting 283

Example 10.4.6 (Partial Orders in First Design Stage)The representation as a set of
triples of the partial order(.S, <) from Example 10.4.4 is:

{(07 a’{b7 C})7 (1’b7{})7 (1’0’{d})7 (17 d7{})}

Note that for a partial order there might exist many sequences that are proper topolog-
ical orders. Thus the result of applying a topological sorting algorithm to a partial order
is in general non-deterministic. However, for each partial order we are only interested in
computing one topological order. This is a design decision. Thus, if we again consider
Example 10.4.4 the expected result of applying topological sortig§ te<) could be any
of the three listed topological orders.

10.4.2 Formal development
Abstract specification

Directed acyclic graphs are mappings from nodes to their set of outgoing graph’edges
G0 = Nd0 = NdO-set

NdO = TOKEN
where

inv-G0 : Nd0 — NdO-set — B
inv-GO(g) 2 isClosed0(g) A AcyclicO(g)

The graph is closed and acyclic. These properties are the obvious criteria for a mapping
modelling a directed acyclic graph since the basic data structure ensures that the graphs
are inherently directed.

isClosed0 : Nd0 =+ Nd0-set — B
isClosed0(g) 2 Vns € rngg-ns C domyg

For a graph to be closed, all outgoing edges must be nodes in the graph.
AcyclicO : Nd0 -~ Nd0-set — B
AcyclicO(g) 2 Vn € domg-n & successorsO(n, g)
pre isClosed0(g)

For a graph to be acyclic, no node must be its own successor.

successors0 : Nd0 x Nd0 - Nd0-set — Nd0-set
successorsO(n,g) 2 if n € domg
then g(n) U (U{successorsO(m,{n} < g) | m € g(n)})

else { }

The successors of some node are all the nodes in the transitive closure of that node’s
immediate successors (i.e. outgoing edges).
Sequences are non-repeating sequences of node names.

S0 = NdO*

13In Example 10.4.4 the nodein the graph haga} as its ingoing edge(s) anf} as its outgoing
edge(s).
14A way to model undirected graphs would be to choose a set of unordered pairs of nodes.

284 10 Case Studies

where

mv-S0 : NdO* — B
inv-S0(s) 2 Vi, j€indss- (i £j) = (s(i) # s(j))

The sorting algorithm is specified by a relation between graphs and sequences, called
an implicit definition. The partial order represented by a graph is related to the sequences
that represents its topological orders. Note, as remarked in Section 10.4.1, that this rela-
tion in general will specify a non-deterministic sorting algorithm.

TopSort0 (g: GO) s: SO
post dom g = elems s A
Vi,j€indss-i<j = s(i) ¢ successorsO(s(j), g)

To show directly that the above relation is satisfiable, an explicit function definition is
given. The function works by ‘stripping off earlier nodes’. Essentially it would not have
been necessary to ‘strip off’ nodes in the recursive call$@iSort0, since we know that
graphs are acyclic. But it will be difficult to prove anything about the function if you
cannot use ‘well-founded induction’ on the actual parameters of the recursive calls

TopSort0 : GO — SO
TopSort0(g) 2 ifg={}
then []
else let n € {m € domg | imPred0(m, g) = {}} in
[n] 7 TopSort0({n} < g)

imPred(: NdO x GO — NdO-set
imPred0(n,g) 2 {m €domg|n € g(m)}

The set of immediate predecessors for a node in a graph is the set of ingoing edges.

First design step

Now, directed acyclic graphs are sets of nodes represented as triples of the number of
ingoing edges, their name, and the set of outgoing edges.

G1 = Nodesl-set inv-G1 : Nodesl-set — B
inv-G1l(g) 2
Nodes1 . p:N UniqueNamel(g) A
nd: Nd1 isClosed1(g) A
ns: Nd1-set Acyclicl(g) A
ProperPred1(g)
Nd1 = TOKEN

Nodes are distinguished on their name, and graphs can only contain one node with the

same name. Still graphs must be closed and acyclic, and finally the predecessor count in

each node must have the right value. These properties are expressed through the predi-
cates and auxiliary functions listed below.

15This is one of the experiences gained in [EIv90], where we had to change the formulation of the explicit
definition from that given in [EB89].

10.4 An algorithm for topological sorting 285

UniqueNamel : Nodesl-set — B
UniqueNamel(g) £ Vt,s € g-(nd(t)=nd(s)) = (s=1)

1sClosed] : Nodesl-set — B
isClosed1(g) 2 Vmk-Nodes1(,,ns) € g-ns C allNodes1(g)

allNodesl : Nodesl-set — Nd1-set
allNodes1(g) £ {nd(t)|t € g}

Acyclicl : Nodes1-set — B
Acyclicl(g) £ Vmk-Nodesl(,n,) € g-n ¢ successorsl(n,g)

successorsl : Nd1 x Nodesl-set — B
successorsl(n,g) 2
if (,n,ns) €y
then ns U U{successorsl(m, g — {mk-Nodes1(,n,ns)}) | m € ns}

else { }

ProperPred] : Nodesl-set — B
ProperPred1(g) 2
V(p,n,) € g-p=card{m | (mk-Nodesl(,m,ms) € g) A\ (n € ms)}

Sequences are modelled in the same way as in the abstract specification.
S1 = Nd1*
where

mv-S1: Nd1* — B
inv-S1(s) 2 Vi,jeindss- (i #75) = (s(i) # s(j))

The specification of the sorting algorithm is very similar to the abstract one. First we
give an implicit definition.

TopSortl (g: G1) s: Nd1*
post allNodes1(g) = elems s A
Vi,j €indss-i <j = s(i) ¢ successorsl(s(j), g)

The explicit definition is still based on the principle of stripping off previous nodes.

TopSortl : G1 — S1
TopSortl(g) 2
if g={}
then []
else let mk-Nodes1(0, n, ns) € g in
[n] 7 TopSort1(upPC1(ns, g — {mk-Nodes1(0,n, ns)}))

After having stripped off a node, the counters on ingoing edges are readjusted for the
immediate successors to a just-removed node. This is specified through the auxiliary
functions defined belowufp PC' abbreviates ‘update predecessor counter’).

286 10 Case Studies

upPC'1 : Nd1-set x Nodesl-set — G1
upPC1l(ns,g) 2

{mk-Nodes1(decr1(q, m € ns), m, ms) | mk-Nodes1(q, m, ms) € g}
pre In € Nd1 - inv-G1(g U {(0,n,ns)})

decrl :Nx B — N
decrl(n,b) 2

if b

then n-1

else n

pre b = (n>0)

Proof obligations

Validation of abstract specification

To validate the abstract specification we can show that directed acyclic graphs, as repre-
sented by the specified mappings, are proper representations of partial orders, and, simi-
larly, that non-repeating sequences are proper models of linear orders. The latter proof is
trivial, since a sequence is indexed by a subset of the natural numbers, which is a linear
order, and thus the sequence is also a linear order. The former proof is less trivial. To
prove that any graph: GO models a partial order we define a partial ordering relation on
nodes of graphs iid-0.

(i <mging) = (ny € {m} U successorsO(ny, g))

Based upon this order relation we can prove the properties of reflexivity, antisymmetry,
and transitivity.

Note, that neither of the above ‘proof obligations’ can arise automatically. They arise
from the informal requirements that we are specifying. They are sort of formal expres-
sions of the customers requirements. In general such requirements are not expressible
— consider for instance a requirement like ‘The program must execute sufficiently fast’;
there is no way in VDM to formalize such a requirement.

Consistency of abstract specification
The invariants, the implicit and explicit definition of the sorting algorithm, and the auxil-
iary functions must be well-defined, expressed formally by the following requirements:

Vg: Nd0 = NdO-set - inv-G0(g): B

Vg: Nd0 = NdO-set - isClosed0(g): B
Vg: Nd0 -~ NdO-set - isClosed0(g) = Acyclic0(g): B
Vn: NdO, g: NdO - NdO-set - successors0(n, g): NdO-set
Vs: NdO* - inv-S0(s): B
Vg: GO, s: 50 - post-TopSort0(g, s): B
Vg: g0 - TopSort0(g): SO
Vg: GO, n: NdO - imPred0(n.g): NdO-set

10.4 An algorithm for topological sorting 287

To aid the proofs of these properties one can develop a theory for the data types included
in the specification. Such a theory would include induction rules for the data types. Such
induction rules can be developed as ‘generator induction’ schemes, and they will extend
the theory of the specification. In order for the induction schemes to be valid, one has
to define a set of generators of each data type and prove that all objects in this type are
finitely generated from some set of base values. One — primitive — method of doing so was
described in Section 10.2.1. Finally the implicitly defined functions must be satisfiable,
which is expressed as

Vg: GO - 3s: S0 - post-TopSort0(g, s)

Validation of first design step

Again we need to justify that the (new) representation of graphs is also a model of partial
orders, but this will be implicit from the reification proof (see below), since sets of triples
are a proper implementation of the mappings from the abstract specification.

Consistency of first design step
The proof obligations that arise automatically from the first design step are very similar to
those in the abstract specification. Thus we shall take the opportunity to save some space.

Reification

Both the retrieve and the inject functions are easy to define. However in the case of
the inject function for the concrete graphs we need to compute some extra information,
namely the number of immediate predecessors for each node in the graph. For the non-
repeating sequences the inject and retrieve functions are simple identity functions.

retr-G0 : G1 — GO
retr-G0(g) 2 {n — ns | mk-Nodes1(,n,ns) € g}

inj-G1: GO — G1
inj-G1(g) & {mk-Nodesl(card imPred0(n, g),n, g(n)) | n € dom g}

retr-S0: 51 — S0 inj-S1:50 — S1
retr-S0(s) 2 s inj-S1(s) L s

The inject function is not strictly part of the VDM specification model, but its presence
makes the discharging of the refinement proof obligations easier; however, in general it is
not possible to state the inject functions. Similarly to any other functions the inject and
retrieve functions must be well-defined. The refinement proof obligations that arise from
the first step of development for the topological sorting algorithm are listed below.

Adequacy Rules:
Vg0: GO - Jg1: G1 - g0 = retr-G0(g1)

Vs0: S0 - 3s1: S1 - s0 = retr-S0(s1)

288 10 Case Studies

Result Rule:

Vg: G1,s:S1- post-TopSortl(g,s)
= post-TopSort0(retr-GO0(g), retr-S0(s))

The result rule is most elegantly expressed through the implicit definitions of the sorting
algorithm, but it could as well have been expressed through the explicit definitions.

Vg: G1,s: 51 TopSortl(g) = s
= TopsortO(retr-GO0(g)) = retr-S0(s)

The last requirement is much more strict than the previous one, due to the non-determinancy
of the implicit specification of the sorting algorithm. Thus we prefer the former to the lat-
ter.

10.4.3 Representation imural

The transformation of VDM formulae intmural goes rather easily (even without the
translation tool). This subsection explains in detail the transformation of the abstract
specification for the TopSort development, together with the properties (rules and some
of the lemmas) that have been necessary to prove in order to establish the validity and
consistency of the algorithm. The transformation of the first design step is presented
without too many comments, and to give a feel of whatal is able to do, the print out

of the reification part is given in its raw forth

Representation of abstract specification

G0 is a domain, which can be shown to be finitely generated. Thus we can state an
induction rule following the same principles as used in Example 10.2.1.
GO~ (gg: (map[NdO, (NdO -set)]) . (inv-GO[gg]))

NdO— TOKEN, definv-GO
{}
inv-GO — { (g: (map[NdO, (NdO-set)]) }

((isClosedQ[el]]) A (AcyclicO[[el]])),
((inv-GO[g]):B)
The type information ofnv- G0 is — as explained in Section 10.2.2 — expressed in the rule
‘def inv-GO’, which needs to be proved. The proof of ‘def inv-GO’ has been included as
one of the example proofs in Section 10.4.4.
isClosed0— V ns:(ms: (NdO-set).(mg (rng[[el]]))). (nsC (dom[el]])),

def isClosedO

{}
{(g:(map[NdO, (NdO -set)])}

((isClosedO[g]) B)
AcyclicO— V¥ n:{(m:NdO.(me (dom[el]]))).(— (ne (successorsO[fel]]))),

16Recall thatmural is able to generatéTgX.

10.4 An algorithm for topological sorting 289

def AcyclicO

{}
{(g:(map[NdO, (NdO -set)])), (isClosedO[g)

((AcyclicO[g]):B)
Note how the precondition to ‘AcyclicO’ is represented as an additional hypotheses in the
rule ‘def AcyclicO’.
successorse-
(if ([e1]e (dom[[e2]]))
then (([e2] at [el])U
(Jthose ns: (NdO -set)3m: NdO.
((ns=(successorsO[m, ((addL], {}1) <[e2])]))
A(me ([e2] at [e1])))))
else{}),

def successors0

{}
{(g:(map[NdO, (NdO-set)])), (n:NdO}

((successorsO[n,g]): (NdO-set))

For the story of the proof of the rule ‘def successorsQ’, refer to Section 10.4.4.

We also want an induction rule. This can be obtained as explained in Section 10.2.1.
The case is, however, a bit more complicated, so a few auxiliary constructs are applied.
The generator function is calledn- G0, and it can only be applied to certain arguments.
For this reason it has a precondition.

pre-gen-G0— def pre-gen-GO
((= ([e1]e(dom[[e3]]))) {}
A([e2]S(dom[e3]1))), {(n:Nd0), (ns:(NdO-set)), (g: G0}

((pre-gen-GO[n,ns,g])B)

gen-GO— def gen-GO
(addm([e1], [e2], [e3]]), {}
{(n:Nd0),(ns:(NdO-set)), (g:G0),
(pre-gen-GO[n, ns, g 1)

((gen-GO[n,ns,g]):GO)

The base set of70 only contains the empty mapping}m. Since there is only one
generator function, it can also serve as a partial ordering@nThus we can formulate
an induction rule that is a little different from the one in Example 10.2.1. The difference
is caused by the precondition gan-G0.
GOind
{[ig, in, ins]
{(in:Nd0), (ins: (NdO-set)), (ig: GO0), (pre-gen-GO[in, ins,ig]), (P[ig])
F(P[(gen-GO[in,ins,ig])]),
{(g:G0), (P[{}m])

(Plg])
Remark: Other induction rules can be formulated, and one should make an effort to for-
mulate a scheme that suits one’s needs best. The above induction scheme is the most
primitive, and therefore the most readable, that has been formulatéfor

Transformation of sequences is straightforward:
SO (ss:(NdO*).(inv-SO[ss])}

290 10 Case Studies

inv-S0+—
Vi:(h:N.(he(inds[lel]]))).Vj:(h:N.(he (inds[[el]]))).
((=(i=])) = (= (([el]@i)=([e1]@])))).

def inv-S0O def post-TopSort0

{} {}

{(s:(Nd0*))} {(g:G0),(s:S0)
((inv-S0[s]):B) ((post-TopSort0[g,s]1)B)

post-TopSortG—
(((dom[[e1]]) = (elems[e2]])) A
Vi:(ii: N.(ii e (inds[[e2]]))) .Vj: {jj: N.(jj € (inds[e2]]))).
((i<j) = (= (([e2]@) € (successorsO[[e2]@), [e1]]))))) .

TopSort0—
(if ([e1]= {}m)
then(]
else (([en:NdO. ((ne (dom[el]])) A ((imPredO[nJe1]])={}))1)
(TopSortO[((addg n: NdO . ((ne (dom[el]])) A

((imPredO[n[el]]) = {})), {} 1) <[e1]) 1)),

def TopSort0 def imPred0

{} {}

{(9:G0)} {(g:G0), (n:NdO)}
((TopSort0[g]):S0) ((imPred0O[n,g]): (NdO-set))
imPred0—

those m : NdO . ((ne (dom[[e2]]))
A((me (domf[e2]])) = ([el]e ([e2]atm))))

Satisfiability of specification

sat TopSort0 lem sat TopSort0

{} {}

{(9:G0)} {(9:G0)}

3s:S0. (post-TopSort0[g, s]) (post-TopSort0[g, (TopSort0[g]) 1)

To prove the satisfiability proof obligation the lemma ‘lem sat TopSort0’ was stated. To
undertake the proof of satisfiability tends always to demand that you construct a function
and then prove that it is a correct implementation. This function acts as a ‘witness’ for the
existential quantifier in the satisfiability proof obligation.

A few more lemmas
It is of major importance to decompose larger proofs into smaller ones. One way to do so
is by stating a number of useful properties as lemmas. The above lemma is an example of
such lemmas, and below you can see a few more examples. The first looks very nice

lem successors0 (def &)

{}
{(n:NdO), (g:(map[NdO, (NdO-set)])}

(((successorsO[n,g]): (NdO -set \)((successorsO[n,gl13 (LJ(rng[gl))))
whereas

10.4 An algorithm for topological sorting 291

lem def TopSort0 inv-SO (special case - ii/jj=1)

{}

{(= ((([n]) "~ TopSortoSmth) =[])),

((pred[ii]): (6359 :N.(6359¢ (inds[TopSortOSmth]))),

(ji € (inds[(([n]) " TopSort0Smth) 1)), & ((TopSort0Smth@(pred[ii])) =n)),
(i € (inds[(([n]) " TopSortoSmth)])), ((([n]) TopSort0OSmth): (Nd0 *)),
((hd[(([n]) " TopSortoSmth)])=n), & (ii=1)),

((t[(([n]) " TopSort0Smth)]) = TopSort0Smth), (jj=1),

(TopSort0OSmth : (NdO *)), (n: Nd0})

(= (((([n]) " TopSortdSmth) @ii)=((([n]) TopSort0Smth) @ jj)))

documents that lemmas can sometimes be huge and used solely as a way of limiting the
size of a proof by stating a very specialized lemma. The PA has a feature which allows you
to construct such lemmas automatically from within a proof. Besides, the latter lemma
makes little sense, and is meant only as an example. Also the name of the latter lemma
shows that it can be difficult to come up with meaningful names for new lemmas all the
time.

Validation of abstract specification
A way in which the specification can be validated is by proving that graphs as modelled
by GO really are proper representations for partial orders. So that is what we will do.

The following constant can be defined, and proved to possess the properties of a partial
order.

NLEQ — NLEQ anti sym{ }
(([e1]=[e2]) v {((n<ming)),((m<ning))}
([e2]€ successorsPgl] , [e3]1))
(n=m)
NLEQ refl NLEQ trans{ }
{((n<ming)),((m<hing))}
{(n:Nd0),(g:G0)}
((n<hing))

((n<ning))
Here we have taken advantage of the possibility to define concrete syntaxah The
operator ‘NLEQ’ is defined ag 1] < [e2] in [e3]).

Representation of the first design stage

The transformation of the concrete specification is very much like the abstract one. We
will not discuss the formulation of induction rules fof1.
Gl (gg:(Nodesl -set) . (inv-G1[gg]))

As explained previously, records cannot easily be modelled directly as defined types. To
model Nodes1 a number of constants and axioms must be added.
Nodes1—[0,0], mk-Nodes1-[3,0],

s-p—[1,0],

s-nd—[1,0],

s-ns—[1,0],
To give ‘life’ to these primitive constants, a number of axioms are added, just like for the
state(s) in the reactor example. Below we only show an equality rule, leaving out eight
other axioms.

292 10 Case Studies

mk-Nodes1 =-1

{}

{(tl:Nodesl), (t2: Nodesl)
((s-p[tl])=(s-p[t2])),
((s-nd[tl])=(s-nd[t2])),((s-ns[tl])=(s-ns[t2])}

(t1=12)
Nd1— TOKEN,

inv-G1—
((UniqueName{Jel]]) A
((isClosed1[el]]) A
((Acyclic1[[el]]) A
(ProperPred1E1]])))),

UniqgueNamel-
Vit:(tt: Nodesl. (ticfel])).Vs:(ss:Nodesl . (ss[el])).
(((s-nd[t]) = (s-nd[s])) = (t=s)),

isClosedl— Vt: (tt: Nodesl. (te[el])). ((s-ns[t])C (Nodesl[el]])),

As can be seen there is no support for pattern matéhingnural . Instead one has to rely
on selector functions. This can be seen by comparing the above formulatiaif@fed 1
with the original one. In order to transfortaClosed1 to a constant imnural , it had to be
slightly reformulated.

Nodesl— thosen:Nd13p:N.3ns:(Ndl-set).((mk-Nodesl[p,n,nsgjel]),

Acyclicl— Vt: (tt: Nodesl. (tfel])) .
(= ((s-nd[t]) € (successors1[(s-nd[t] JJel]]))) .

successorsi
(if 3t: (tt: Nodesl. (tic[e2])) . ((s-nd[t]) Fel])
then ((s-nsf{t: (tt: Nodesl. (tic[e2])) . ((s-nd[t]) Hel])]) U
(lJthose ms: (Nd1-set)dm:Ndl.
((ms = (successorsi[m [¢2]- (addEt: (tt: Nodesl . (te[e2])) .
((s-ndit]) =e1]), {31))1)) A
(me(s-nsgt: (tt:Nodesl. (te[e2])) .
((s-nd[t]) =[e1])1)))))
else{}),

ProperPredi-
Vt:(tt: Nodesl. (tee[el])) .
((s-p[t]) = (card[those m : Nd13q:N.3dms:(Nd1-set).
((t=(mk-Nodesli[g, m,ms])) ((s-nd[t])e ms))])),

Sl (ss:(Nd1*). (inv-S1[ss]),

inv-S1+—
Vi (ii: N.(ii e (inds[[el]]))). ¥j: (jj: N.(jj € (inds[[el]]))).
((=(i=])) = (~ (([e1]@i)=([e1]@])))),
post-TopSortl—
(((Nodesi[el]]) = (elems[e2]])) A
Vi (ii: N.(iie(inds[e2]]1)))-¥Yj: (jj: N.(jj € (inds[[e2]]))).
((i<]) = (= (([e2]@i) € (successorsife2]@]) . [el]]))))).

17Please do not confuse pattern matching in the PA with pattern matching in VDM.

10.4 An algorithm for topological sorting 293

TopSortl—
(it ([e1]={})
then[]
else (([(s-ndft: Nodesl . ((€[el]) A ((s-plt])=0))1)])
(TopSortl[(Removel[(s-nsf: Nodesl . ((t&[el]) A ((s-plt])=0))1),
([el]- (addEt: Nodesl. ((E[el]) A
((s-plt1)=0)).{31))N)).
Removel—
those t: Nodes13 tt: Nodesl . ((tie[e2]) A

(((s-plt]) = (decrl[(s-ptt]), ((s-nd[tt] E[el])])) A
(((s-nd[t]) = (s-nd[tt]))A ((s-ns[t]) = (s-ns[t])))))

decrl— (if[e2]then ([el]- 1) elsdel]),

Consistency of first design step

Thirteen rules ensuring the consistency of the first design step are added in a way similar
to the representation in the abstract specification. We do not show them here, but you
could try to create them yourself.

Correctness of reification

The last of the theories is printed exactly in the wayral has done it. The reason for this

is to give the reader an impression of which kind of output you can get frommtirel
system. There is also a single example of a rule and a constant printed in the original
‘LATEX source code'.

TopSort Reif 6-1

amural theory

Parents
TopSort Spec 0, TopSort Spec 1, TopSort Val 0

Signature

constg retr-GO— m{n:NdO.m ns: (NdO-set)Ip:N.
((mk-Nodesl[p,n,ns]&[e]]), retr-SO— [e]],

inj-G1 — those t: Nodesl. (((s-nd[t]g (dom[led]])) A ((((
s-nd[t])e (dom [le]])) =
((s-ns[t])=([eNat(s-nd[t]))))A ((s-p[t])=(card][
those m: NdO . ((ne (dom [[el])) A ((me (dom[e]])) = (
(s-nd[t])e ([elatm))))])))) . inj-Sl— [el]}

types}

binderg}

dep types}
Axioms
Derived Rules

294 10 Case Studies

adeq G1

{}
{(g0:G0)}

3gl:G1l.(g0=(retr-GO[gl]))

adeq S1

{}
{(s0:S0)}

3s1:S1.(sO0O=(retr-S0[sl1]))
def inj]-G1

{}

{(9:G0)}

((in-G1[g]):G1)

def inj-S1

{}

{(s:S0)}

((inj-S1[s]):S1)

def retr-GO

{}
{(g:G1)}

((retr-GO[g]):GO)

def retr-S0O

{}
{(s:S1)}

((retr-SO0[s]):S0)

Result Rule TopSortl

{}
{(g:G1l),(s:S1)}

((post-TopSortl[g,s])= (post-TopSort0
[(retr-GO[g]),(retr-SO[s])]))

Remark: The functionetr- G0 involves an implicit map construction. To handle the
implicit map construction, the primitive binderg{ andm} have been defined, together
with the following axiom

s: A-set
Vr:Ay, 2 B (Plr,y] APlz,2)) = (y=2).
Ve:A-(Jy:B - Plz,y] = z €5s)
m{ z: Am} y: B - Plz, y]: map[A,B]
Notice that the relation denoted by the metavaridblaust be a function. This is guaran-

teed by the second hypotheses. The first and third hypotheses together ensure the finite-
ness of the constructed map.

’ map comprehension for%n

10.4 An algorithm for topological sorting 295

ATEX source code
Below you can se the'IeX source code for the constant ‘retr-GO’ and the rule ‘adeq G1’

retr-GO\ \mapsto\ m\{\ n\ :\ NAO\ .\ m\}\ ns\ :\ (\ NAO\ -se\t\)\
A\ \Exists\ p\ :\ \Nat\ .\ F \\

\mbox{\ (\ (\ mk-Nodesi\ [\ p\ ,\ n\ ,\ ns\]\)\

$$\in$$ [\mkern-\thinmuskip[$e1$\] \mkern-\thinmuskip] $\)\

\noindent

\mbox{\Large adeq\ G1}

\noindent

\mbox{\{\ \}} \\

\mbox{\{\ (\ gO\ :\ GO\)\ \}} \\

\mbox{\ \Exists\ gi\ :\ GI\ .\ (\ gO\ =\ (\ retr-GO\ [\ gi\ I\ D\)\ }

10.4.4 A few proofs

In this subsection we give a description of some of the strategies that were applied to un-
dertake one of the proofs, together with a skeleton of it. A few more proofs are presented
— in the directmural -syntax. All the rules from the VDM instantiation that have been
applied in the proofs below are shown in Section 10.5.

Definedness of ‘successors0’

The first proof is very simple, because we have asserted an appropriate lemma — the proof
of which would have been left as an exercise for the reader in any reasonable téktbook
The proof is of the rule ‘def successors0'.

h1 (g: (map[NdO, (NdO -set)]))
h2 (n: NdO)
1 (((successors0[n, g]): (NdO -set)(successorsO[n, gl) (U (rglg]))))
by lem successors0 (def &)on[h2, h1];[]

¢ ((successors0[n, g]): (NdO -set)) byE-right on[1];[]

Proof of lemma ‘lem successorsO (def &)’

As can be seen the proof of the lemma is an induction proof. The lemma is one of the lem-
mas shown above. In order to finish the proof we needed a strong induction hypothesis.
The reason is that the set comprehension formation axiom (refer to Section 10.5) requires
that all sets are finite, i.e. that you point out a larger (finite) set. The place where this was
actually used has been left out of the proof as presented here, since the whole proof takes
up approximately four full pages and — partly for the same reason — is not very reddable

181n total the complete proof of the lemma takes up 10 to 15 tightly written A4 pages.

19To represent all the proofs for the TopSort development would have required more that 50 full pages.
This could be formulated as a ‘rule of thumb’, saying that the complete proof for consistency and validity
of a specification in general takes up ten times as much space as the specification itself.

296 10 Case Studies

h1l (n: NdO)
h2 (g: (map[NdO, (NdO -set)]))
1[y]
1.h1 (y: (map[NdO, (NdO -set)]))
1.c ((card[(dom[y])]):N) by card-form on[dom-form on [1.h1];[]];[]
2V ma: (map[NdO0, (NdO -set)]). ((card[(dom[ma])Ni:) by V-1 on[];[1]
3[q]

3.h1V p: (map[NdO, (NdO -set)]). (((card[(dom[p]}) (card[(dom[q])])) =
vV x: NdO . (((successorsO[x, p]): (NdO -set))

((successors0[x, pd (U (ralp))))))
3.h2 (g: (map[NdO0, (NdO -set)]))

3.1[nd]

3.1.h1 (nd: NdO)

] SOMETHING HAS INTENTIONALLY BEEN LEFT OUT(INCL. LINE 3.1.5)‘

3.1.c ((successorsO[nd, q]): (NdO -set)) folding from 3.1.5

3.2V x: NdO . ((successors0[x, q]): (NdO -set)) Byl on[];[3.1]
3.3V x: NdO . ((successorsO0[x, al) (U (rng[a])))
by lem successors@ on[3.h2, 3.h1, 3.2];[]
3.c¥ x: NdO . (((successors0[x, q]): (NdO -sen)f(successorsO[x, ql) (U (rng[al))))
by VA-dist-contract onf-1 on[3.2, 3.3];[]L]

4V x: NdO . (((successors0[x, g]): (NdO -set)f(successorsO[x, o) (U (rngla]))))
by WF Induction on[h2, 2];[3]
¢ (((successors0[n, g]): (NdO -set)f(successorsO[n, gl) (U (rng[g])))) byV-E on[4, h1];[]

From the part of the proof that is presented above it can be seen that the strategy to un-
dertake it has been by well-founded induction (Line 4). The induction step itself has been
split up into two parts ending respectively in Lines 3.2 and 3.3. Line 3.3 has been proved
by a lemma, the proof of which is also of size approximately four full pages. Before start-

ing with the proofs of the TopSort example we had expeétedch proofs to be rather
simple, but they turned out to involve an incredible amount of symbol manipulations.

To motivate why we have not provided a full print-out of all the (completed) proofs,
we show one of the smaller ones in its full detail. Such proofs are unreadable. Just
imagine what it would be like when you have to unfold the definition of some constant

with a large definition.

hl(g:(map[NdO, (NdO-set)]))
1 (6 (isClosed0[g])) by bool def on [def isClosed0 on [h1];
{5 0

2]

2.h1 (isClosed0[g])

2.c (6 (AcyclicO[g])) by bool def on [def AcyclicO on [h1, 2.h1];
a5 a

3(((isClosed0[g]) (AcyclicO[g])):B)
by bool form on pA-inherit (weak) on [1, 2]; [11; []
c((inv-GO[g]):B) folding from 3

20This observation is similar to the remark on Page 281.

10.5 Theories for VDM in mural 297

After all the above example is not that bad, but to give a feel for how unreadable things
can be, consider the few following lines that have been extracted from the above proof.
(The lines are not supposed to be readable, and the rules that have been applied in the
individual proof lines are not necessarily presented in Section 10.5).

3.1.3.c

((if(nde(dom[qg]))then((qatnd) (U
thosens : (NdO -set)dm: NdO. ((ns=(

successorsO[m, ((add[nd}])<q)]))
A(me(qgatnd)))))elsg}): (NdO -set

)) by ITE-true-form on [3.1.3.h1-formation on [3.1.3.2,
|J-formation on [3.1.3.8]; (11; 0I; 00

3.1.41]]
3.1.4h1((nde(dom[qg])))
3.14.c

((if(nde(dom[qg]))then((qatnd) (U
those ns : (NdO -set)3 m: NdO. ((ns=(

successorsO[m, ((add[nd}]1)<q)]))
A(me(qgatnd)))))elsg}): (NdO -set
)) by ITE-false-form on [3.1.4.h1{}-formation on []; [1]; [I

3.1.5((if(nde (dom[qg]))then((gatnd)

U (|Jthose ns: (NdO-set)dm:NdO. ((ns

=(successorsO[m,((add[nd}1)<q)]))

A(me(qatnd)))))elsg}):

(NdO -set)) byv-E on [3.1.2]; [3.1.3, 3.1.4]
The above examples are not supposed to be a negative critigqueraf. Rather they are
justifications for the need for tools likaural . It would be impossible to perform proofs
with such detail as described above without some tool to guard the correctness of each
proof step.

10.5 Theories for VDM in mural

The following constant definitions and rules are brought out of their context, and they
really do not give more than a feel for what the rules in the theory store are like. The
reason they are here is that they have been applied in the small proofs that we presented
earlier.

The symbob is the definedness operator from LPF [BCJ84].

S (([el])V (= ([el]))),
The next three rules are the well-known rules foelimination and introduction.

A-E right A-E left A-l

{} {} {}
{(elne2)} {(elne2)} {el,e2}
el e2 (elne2)

Then the rule for definedness of an expression witas its main operator, and the rule
for commutativity of equality.

298 10 Case Studies

5- C =-comm
{} {}
{(sl:(A-set)),(s2:(A-set)) {(s1=s2)}
(0(s1Cs2)) (s2=s1)

The next ten rules are all from the formalization of the predicate calculus. Thejrule *
(weak)’ has not been applied in any of the particular proofs in this chapter. It is however
important, because it makes clear how ‘conditional-and’ is implicitly part of the LPF
vocabulary. This question might have puzzled the reader, since it is a prerequisite for
stating most of the invariants in this chapter the way we did.

bool form bool def
{} {}
{(ox)} {(x:B)}
(x:B) (6x)

dA-inherit (weak)
{[1{el}F(de2)}

d = -inherit (weak)
{[1{el}F(de2)}

{(del)} {(éel)}
(0(elne2)) (0(el = e2))
oA (weak) dA-inherit
{[1{el}re2} {}

{el} {(del),(6e2)}
(elne2) (0(elne2))
V-1 V-E

{Iyl {(y:X)}E(PIyD)} {}

{} {Vx:X.(P[x]),(a:X)}
VXx:X.(P[x]) (P[a])
VA-dist-contract 3-1

{} {}

{(VxX.(ELx]) AVxX.(E2[x])) }

VX:X.((EL[x])A(E2[X]))

{(a:A),(P[a])}

Ix:A.(P[x])

The next two rules tell the conditions under which the two standard operatiehsand

dom are well-defined.
card-form

{)
{(s:(A-set))}

((card[s]):N)

dom-form

{1}
{(ml:(map[A,B]))}

((dom[ml1]):(A-set))

This rule is the rule that was described in Section 10.2.2.

WEF Induction
{[a]{(9:PAR) ,Vp:PAR.

(((ord[p])<(ord[q])) = (F[p]))}-(F[al)}

{(par:PAR) Vpp:PAR.((ord[pp])N)}

(Flpar])

Finally the rule for construction of implicitly defined sets. In order to ensure the finiteness,
you must be able to point at a set that is both finite and larger than the one you are

10.5 Theories for VDM in mural

constructing. In practice this is very troublesome.

comp-formation

{}
{(s:(A-set)) Vx:A.((P[x]) = (xes))}

(thosex:A.(P[x]):(A-set))

299

300 10 Case Studies

Chapter 11

Conclusions

This chapter presents some of the reactions and reflections which resulted from experi-
mental use ofnural. It covers both the sort of detailed observations which have been
made by the people who have used the system and indications of major developments
which the designers ahural hope to see pursued in subsequent projects. The first sec-
tion describes some of the experimental use.

The intention here is to be self-critical. This could result in a rather negative end to the
book and obscure the fact that a great deal has been achieved. The project was undertaken
as research and it was not intended to create an industrial product. In fact, rather more
has been achieved towards industrial usability than in most research projects. Moreover,
as researchers, there is greater interest in identifying the remaining research goals than in
writing adverts for a commercial system

11.1 Experimental use ofmural

Even at the stage of the ‘Muffin’ prototype (see [JM88]), the developers were keen to get
feedback on the evolving systems by exposing them to usBecause of the emphasis
which was being put on achieving usability by offering a productive user interface, the
reactions of users were an essential check-and-balance to our design. It was therefore
natural for the group to endeavour to obtain appropriate usemadet! as it existed in

the last six months of the Alvey project (i.e. October 1989 — March 1990).

The only attempt to usmural by the industrial collaborators of tH®SE 2.5 project
was undertaken by Geoff Scullard of ICL. His effort was limited but the exercise was of
particular interest because he had earlier run the same example through HOL. Therefore,
his favourable comments on the user interface (see [Scu9@pueifl were particularly
gratifying.

As can be seen from Chapter 10, Morten Elvang-Ggransson was one of the major users
who came from outside the project. In addition to the material in this book, [EIv90, FE91]
give comments on his reaction to versionsmafral. Amongst users who were more-or-
less familiar with the project were Michel Sintzoff (who had consultedIRSE 2.5 in
general, and the work of the Manchester group in particular, most of the way through the
project), Peter Lindsay (who had taken up a post in Sydney in July 1989 and flew back
to review a later version of the system) and John Fitzgerald (who significantly extended

LOne such user was the then Alvey Software Engineering Director.

302 11 Conclusions

Peter Lindsay’s work on populating theural theory store and wrote [Fit89a, Fit89Db,
Fit89c, Fit89d, Fit89e]).

Another sort of exposure ahural has arisen out of attempts to exploit it commer-
cially. ‘Adelard? have demonstrated the system to a significant number of groups — most
of whom are actively involved with safety critical systems (SCS). It was originally en-
visaged that revenue would be generated from useupéil on a consultancy basis; most
excitingly, it appears that groups involved in SCS are prepared to purghaskfor their
own use.

When reading reports of users, it is important to remember that many of the experi-
ments were made on relatively early versionsmofral. The system has developed and
continues to do so. There has, however, been almost no use of the Symbolic Execution
work (cf. Chapter 9). Because the necessary code was added at a relatively late stage,
there has also been only limited use of tactics. Similarly, some early users were forced to
hand generate the theories corresponding to their specifications because the VST was not
available at the time of their experiments.

11.2 Detailed observations

The experiments conducted by members ofitineal group and by outsiders gave rise to a
number of detailed observations about the system. These are, in many cases, by no means
trivial; but they are more specific and easier to resolve than the items discussed in the next
section. This section presents items which give a flavour of users’ reactions; the full lists
of observations can be found in the various references (see also Section 4.11 above). Of
particular importance are those items which militate against our stated objective of ‘proof

at the workstation’.

e Users have requested a variety of syntactic extensions. Some of these like the ability
to present multiple bindings with one quantifier (&,7 e N - ... for Vi € N -
V5 € N-...) are relatively trivial to achieve. Some, like the ability to rename within
theories (cf. Section 3.5.5), would be straightforward and non-disruptive extensions.
There are, however, ideas whose implementation would require significant changes
even to the specification afural. One example of this is that a proper treatment of
associative and commutative operators is probably best achieved on top of a model
for expressions where operators take a set of arguments. Such a change could have
a profound effect on the matching algorithmsninral .

e Structure editor input is intended to help the user with large and unfamiliar lan-
guages. It is well-known that this can become tedious, especially for the experi-
enced user. So famural does not have a consistent policy on providing an al-
ternative parser route whereby the user can type linear text. This is not merely an
oversight: achieving the goal of parsing is far easier with simple objects — whose
only structure is given by a context-free syntax — than with objects with a rich,
graph-like, structure. What must, however, count as an oversight is that the well-
understood ideas on natural two-dimensional presentation of large tree-like objects
(cf. [KS69]) were not properly implemented.

2Adelard, Coborn House Business Centre, Coborn Road, London, E3 2DA

11.2 Detailed observations 303

e It is worth reviewing a specific example where the ‘proof at the workstation’ ob-
jective was compromised by the lack of a specific option. Typiealal users fre-
guently search for inference rules and instantiations which match particular proof
situations. It must be emphasised that this is not a case of ‘thrashing about’: a well-
populated theory base is a rich quarry and few users are likely to aspire to knowing
every rule. This valuable feature can be made virtually unusable if the performance
is not acceptable. There have been many technical proposals for ways to speed such
searches. One which was not initially implemented was the ability to cut down the
search for instantiations by allowing the user to provide a partial instantiation. Al-
though this is now implemented, there is certainly a need for further ideas which
improve the performance of searches over the theory base.

e The ability to provide different sorts of views of proofs could also be added to
mural . Indeed, in view of the success of this idea in the prototype ‘Muffin’ system,
its omission is to be regretted.

e There are a number of limitations to the ‘logical frame’ underlyimgral . As is ex-
plained in Section 3.3.3, the intention to cover VDM'’s sub-typing via invariants by
recognising ‘inclusion polymorphism’ precluded taking over the ‘Edinburgh Logi-
cal Frame’ of [HHP87]. But neither of these logical frames would cope with non-
monotonic logics since, if the addition of new assumptions can invalidate existing
deductions, a Natural Deduction proof style is inappropriate. Perhaps even more
deeply, it is not easy to see how the logical framemifral could cope with the
sort of meta-reasoning which is used in the standard justification of the Deduction
Theorem.

e The existing VST is by no means complete. But the combination of a full speci-
fication support tool and a corresponding population of a theory store would be a
complete codification of a development method. Like any other effort of formalisa-
tion, it requires great insight and care. Ideally, it should be accompanied by proofs
of its soundness.

e The currentmural proof assistant is very open in that most changes can be made at
any time. This, in fact, was seen as an objective whose achievement has disclosed
where the idea needs qualification. Users have pointed out that there are theories
such as ‘sets’, which they would rather know can not change other than — possibly
— by the addition of further derived rules. Such ‘frozen’ theories could also have all
of the proofs removed as a way of significantly reducing the size of the Smalltalk
image. The ability to freeze theories and — perhaps automatically — remove proofs
could easily be added taural .

e The original paper [Lin87b] about the ‘Formal System for Inclusion Polymorphism’
discussed the idea tiieory morphismsEssentially, this was intended to provide a
way of placing generic results in general theories and then inheriting these general
results into more specific theories. An example — prompted by the ‘Larch Shared
Language Handbook’ — would be proving the associativity of a constructor in a
theory of ‘collectors’ and then interpreting this variously as the associativity of

3This is not so much a pointer to a potential changeteal as it is a realization whose full force only
became apparent after the system was in use.

304

11 Conclusions

sequence concatenation and set union. Although the underlying concepts are clear,
many implementation problems can be identified and theory morphisms remain to
be implemented imural .

Perhaps the group buildingural concentrated on User Interface questions too
exclusively. There is, of course, a wealth of algorithms related to theorem proving;
in many cases, their use could contribute significantly to the objective that users
should seenural as providing a better environment than pencil and paper. Too few
of these algorithms are currently availablennral . It should be straightforward to
code up more decision procedures, although there is an interesting issue about their
correctness (see next section). A more general extension would be to add facilities
for automatic use of rewrite rules. One of the authors (CBJ) experimented with the
‘Larch Prover’ (LP) at DEC-SRC and feels it might be possible to obtain a more
controlled interface to such a tool by employing a user interface like thedued]

to construct the outline of a proof and then drive constrained rewrites from this
overall structure. So far, not even the specificatiomafal has been extended to
define such features.

(This, and the subsequent items relate solely to the implementatiomf and

need not affect its specification.) There are several respects in which the perfor-
mance ofmural reduces its usability. The implementation strategy described in
Chapter 6 has made it possible to tuneral based on the experience of its use.

It remains true that unconstrained searches in well-populated theory stores are too
slow for the user to maintain a train of thought. Ways of cutting down the search
space are available to the user but a significant constant factor speed improvement
could probably be sought using ideas like those in [Mor88a, Mor88b] on auxiliary
representations of expressions.

Even more worrying — because it is not possible for the user to circumvent — is the
machine resource needed to run the Smalltalk implementationuedl. To use
mural effectively, it must be run on a machine of at least the speed of a Sun 3/60
and with a minimum of 12MB of real store. Startup times can also be excessive
unless the workstation has a local disc. The justification for listing this difficulty
in the current section is the belief that it would not be too difficult to re-implement
mural , from its formal specification, in another object-oriented languaGearly,

the effort involved would depend greatly on the platform of (shallow) user-interface
facilities available.

Last, but by no means least, the currantral implementation is single-user be-
cause of its underlying implementation system (Smalltalk). Clearly, a system for
use on large projects would have to support multi-users. At the time of writing
(November 1990), Smalltalk’s planned upgrade from V2.5 to the V4 presents both
major worries about the cost of portimgural and potential gains from the fact that
V4 is X-based.

“Peter Lindsay has supported a project which has re-coded the kemetdfin ‘Miranda’.

11.3 Further developments 305

11.3 Further developments

The ideas listed in this section have also become clearer during the experimental use of
mural . But, in many cases, the concern was already clear when [JLW86] was written. In
most cases, the worries have been identified byitlwal team rather than its users. In all
cases, the resolution of these points requires more research and their eventual resolution
will probably result in new systems being specified and built.

e The reason for wanting to show that a design or implementation satisfies a speci-
fication is to increase the confidence which can justifiably be placed in a stage of
design. One aim in buildingnural has been to elevate confidence that purported
proofs do indeed discharge the required proof obligations. But proof assistants like
that inmural are themselves large pieces of software. Who is to say that the proof
assistant is correct? The designersmiral have, as explained elsewhere in this
book, worked from a VDM specification. But thererieta complete formal proof
of the design (steps towards what was done are mentioned in Chapters 4 and 6); nor
would the group recommend that such a massive proof be undertaken! There is,
fortunately, a much more cost-effective way of ensuring that a flamwiral could
not camouflage an error in a proof: it would be straightforward to extemel so
that it could generate an external form of any complete proof in its store. As is
pointed out in Chapter 1, it is also not difficult to write a program which checks a
completely formal proof. This program could be written in perhaps ten pages of
some high-level functional programming language and the proof of this could be
formalised and/or widely scrutinized. The theorem proving support would then be
split between, on the one hand, a large program with many modes of interaction
which was carefully constructed but not formally justified and, on the other hand,
a small program whose correctness is critical and treated accordingly. The former
offers a user-friendly environment in which it is realistic to create proofs of sig-
nificant systems; the latter requires as input excruciatingly detailed proofs which
would be unlikely to see the light of day without its overweight twin.

It would be highly desirable to create a single proof checker to cover a variety of
proof assistants.Unfortunately, such a plan has a pre-condition of agreement on
standardized proofs which is unlikely to be easy to achieve.

One final concern about correctness can be put into context at this point. Decision
procedures offer — in special circumstances — a way of greatly reducing the burden
on the user who is constructing a proof. Unfortunately, many decision procedures
do not produce (even as a by-product) a proof in a formal system. The reliance on
the correctness of the decision procedures would not be diminished by the construc-
tion of a slimline proof checker. Therefore, each such decision procedure should be
justified.

¢ It could be said that thenural proof assistant has been built around inference rules
as the fundamental unit. Steps in a proof are related by inference rules which state
that, if their premises are (have been proved to be) true, their conclusion is true.
There are, however, many proofs where it is useful to gather facts about other re-
lationships. For example, chains of equalities where each new step is generated

5Chris Wadsworth attributes this idea to Malcolm Newey.

306 11 Conclusions

by substitution of equal subterms. Clearly, such proofs can be couched in terms
of deductions, but more perspicuous presentations of proofs could be created by a
system which recognised the role of equality. One reasondtadding such a fea-

ture as a simple extension ofural is that equality is clearly only one example of a
large class of other relations about which one might wish to reason. Other instances
which come to mind include many (irreflexive) ordering relations. There is also a
deep question about capitalizing on similarities in the properties of such relation-
ships, which is posed in [Jon90a]. It would be wise to think hard about these issues
rather than make sons&l hocextensions tenural .

¢ It should, by now at least, be clear to the reader that specifying and constructing
a proof assistant for a given family of formalisms is not a trivial task. However,
in at least one crucial technical sense the task is clear-cut: it is possible to state
precisely what is meant by a formal proof. In contrast, the aim to provide — in a
proof assistant — support for what might be called ‘rigorous proofs’ is altogether
more nebulous. In spite of the difficulty, this was a goal of [JLW86].

It could be claimed that some featuresmiiral permit the creation of rigorous
proofs. It is, for example, possible to construct a proof in which some steps are not
formally proved. There is a clear distinction between steps which are (not) justified
by the application of an established inference rule from identified hypotheses. As
with many proof assistantspural permits one proof to be completed although it
relies on a number of precisely stated — but unproved — inference rules. At the other
extreme, one might store a string of text as a justification. It is, alas, more difficult
to pin down something useful between these extremes. The sort of thing envisaged
at the beginning of the project was a facility for the user to record the claim that
a certain proof could be completed ‘by induction on §étand the program to
make certain minimal checks (at least ti$ais of type ‘set’l) and to record their
success or notify their failure. In a similar vein, the system should record facts
like the automatic generation of a formula by unfolding a function even if this link
does not constitute a full proof. In each case, the aim is to record formal links so
that the potential exists for its completion if the user subsequently decides to make
a rigorous proof (more) formal. During the project, it was realized that a stable
version of a formalmural proof assistant had to be built and appreciated before
tools to assist with rigorous proofs could even be properly specified.

e The authors have reacted similarly to suggestions that Al or IKBS techniques could
have been used more widely in order to lighten the burden omtin&l user. These
techniques appear to offer support in well-understood domains of knowledge. Ex-
tended use ofnural and experience with structuring theory stores and defining
tactics, could give rise to a ‘knowledge base’ which subsequent systems could hope
to exploit®

e The VST (cf. Chapter 8) supports a large enough subset of BSI-VDM to permit

6A reluctance to promise what could not be delivered in this area led to the N&$E 2.5": the
Alvey Software Engineering Strategy document [TW83] had relatively conservative objectives for second
generation IPSE’s whereas their third generation successors were predicated on Al techniques. To express
the original commitment of the project to the support of formal methods, but to distance it from techniques
which were unlikely to pay off in the timescale of the Alvey programiRSE 2.5 was proposed as a
working title. For better or for worse the name stuck.

11.4 Summary 307

major case studies and could be extended to support the whole of the standard. It
is also believed that the same model — and even some of the code — could be used
to support other formal development methods. There is however a feeling that this
is not the wisest course of development. The split between the VST and the proof
assistant has unfortunate consequences. It is, for example, possible to generate the
proof obligations from some specifications (even to then fully formally prove them)
and then to edit the specifications. The lack of warning when this is done must be
contrasted with the way in which thaural proof assistant would flag a theorem
which had been proved using a rule which is subsequently changed. The authors
would like to undertake research into what might be called (in analogy to ‘logical
frames’) ‘method frames’. In fact Michel Sintzoff and his colleagues have already
gone some way towards this89, Laf90, Web90] and the main objective might

be said to be combining ‘Deva’ ideas with the user-interface work which has come
from mural. There is, however, a suspicion with at least one member of the group
that the frequent recurrence of problems which are expressed in terms of relations
points to a more general approach.

e One last area where it is clear that an idea fromtineal team requires more work
before it comes to full fruition is the symbolic execution approach to the animation
of specifications. It is clear from even limited experience with an implementation
of the ideas exposed by [Kne89] that expressions are generated which become un-
wieldy. Here again, it looks as though some (semi-) automatic rewrite tool is an
essential component of a viable animation system. More particularly, rewriting
should be aimed at eliminating state expressions since the user is likely to be in-
terested in the relationship between visible (or input/output) values; the only state
relationship which should be requested in most cases is equality.

11.4 Summary

This chapter presents a frank evaluationnafral. In case this leaves a negative feel-

ing, it must be reiterated that the project produced many successful outputs. The final
report [Jon90b] lists a prodigious number of papers and talks; a working system is avail-
able and commercial exploitation looks viable. At the beginning of the project, a clear
research direction (greater usability for a proof assistant by serious attention to its deep
Ul) was enunciated; a system has been specified, designed and built which must provide
a benchmark for future work in this area.

The ‘Kemmerer Report’ [Kem86] identifies two of the key goals for ‘next generation
verification systems’ as the use of graphics interfaces and the development of reusable
theories. We believe that our project has contributed to research in these, and other, areas.
Above all, the group would say ‘it was fun’. Given a good group of researchers, there is
probably no better measure of a successful research project.

308 11 Conclusions

Appendix A

Summary of VDM Notation

Logic
B {true, false}
-F negation (not)
E N Ey conjunction (and)
E, V E, disjunction (or)

E, = FE, implication

E, & E, equivalence

Vr € S-E universal quantifiet
Jdr e §-F existential quantifier
Jlz € §- F unique existence

I' - FE sequent

L inference rule

E

b . . .

I bi-directional inference rule

2

Numbers

N, {1,2,...}

N {0,1,2,...}

z {..,-1,01,..}

Q rational numbers

R real numbers
Functions

f:Dy x Dy — R signature
f(d) application

if ... then ... else ... conditional
letz=...1in ... local definition

lwith all of the quantifiers, the scope extends as far as possible to the right; no parentheses are required
but they can be used for extra grouping.

310

A Summary of VDM Notation

Sets
T-set all finite subsets of’
{t1,t2,...,1,} setenumeration
{} empty set
{z € S|p(z)} setcomprehension
{1,...,7} subset of integers (fromto ; inclusive)
tesS set membership
t¢ S - (tes)
S C Sy set containment (subset of)
S1 C Sy strict set containment
S1 N Sy set intersectiod
S1 U S, set union
S1 — S5 set difference
Uss distributed union
card S cardinality (size) of a set
Maps
D™ R finite maps
D« R one-one map
{dy — ri,dy— 19,...,d, — r,} mMapenumeration
{} empty map
{d—f(d)e D xR|p(d)} map comprehension
domm domain
rng m range
m(d) application
my T my overwriting
s<m domain restriction
s<gm domain deletion
m >t range restriction
Sequences
T finite sequences
T+ non-empty, finite sequences
[t1,t,...,t,] Sequence enumeration
[] empty sequence
len s length
s17 Sy concatenation
dconc ss distributed concatenation
hd s head
tls tail
inds s indices
elems s elements

$(iy...,7)

sub-sequence

2Intersection is higher priority than union.

Composite Objects

s compose
mk-N(...) generator

nil omitted object
s1(0) selector

Function Specification
f(d:D)rR

pre ...d...
post ...d...r...

Operation Specification

OP (d:D) r:R
ext rd e; : T,
wr ey @ Th
pre ...d...ej...ey...

post ...d...e1...e...7T...

311

312 A Summary of VDM Notation

Appendix B

Glossary of terms

automatic theorem proving A style of seeking to establish theorems mechanically char-
acterized by large systematic searches, sometimes constrained by heuristics (see
below) or user advice (typically given in advance).

axiom An inference rule whose validity (in some context) is accepted without proof,
either because itis considered ‘self-evident’ or because its justification is considered
to belong to a ‘lower level’ (such as a more primitive logic).

Boyer-Moore theorem prover A computer system for proving theorems by induction,
mainly in the style of proofs in elementary number theory. The user supplies a
conjecture which the machine then tries to prove (using built-in heuristics) from
axioms and already-proven results, but without direct assistance from the user. It
has been used to prove many theorems, and its benchmark reaches a long way into
elementary number theory. S&g.[

CLEAR A specification language permitting modular structuring of specifications, based
on Institutions (see below). See [BG81].

constructive logic A logic which accepts only direct constructions as proofs. This re-
sults, for example, in more subtle interpretations of the usual logical connectives
and the rejection of the law of excluded middle. See [Bee85].

correctness An implementation is said to beorrect with respect to a specification if
it satisfies all of the properties required by the specification. Such a correctness
criterion is often defined by a proof obligation; it would normally be established by
a proof.

data reification A specification is likely to be written in terms of data objects which
are more abstract than those available in an implementation language. Steps of
design which introduce — and justify — (more) concrete representations for such
abstractions are steps @éta reification See Section 1.2.

eqguational reasoning Reasoning with systematic treatment of sets of (more or less arbi-
trary) equations, such as term rewriting.

FOPC First order predicate calculus: the classical logic of predicates with quantification
over individual elements. See Section 3.2.

314 B Glossary of terms

formal proof A formal proof is one in which the validity of every step can be checked
purely mechanically, without recourse to imagination or intuition. In its simplest
form, a formal proof is a structure of valid applications of inference rules, in one of
the following forms:

e asequence of lines which each line is either a hypothesis or follows from a
number of preceding lines by an inference rule; or

e atreein which each leaf is a hypothesis expression and each non-leaf node
follows from its immediate subnodes by an inference rule.

For a discussion of other styles of formal proof, see Section 4.3.nfthel proof
assistant uses Natural Deduction style proofs (see below).

FRIPSE A post-Muffin (see below) prototype ahural supporting first order logic.
See [JL88].

generic proof assistantOne which can be configured for different logics.

goal-directed A goal-directedmethod of solving problems is one which proceeds by
successively breaking a problem (the goal) into sub-problems (subgoals) in such a
way that ‘achievements of the subgoals’ can be composed to form an ‘achievement
of the goal’. See [Mil84].

heuristics Techniques used to guide searches in automatic theorem proving. Such tech-
niques are not usually universally applicable, but can shorten searches considerably
when used on appropriate problem domains.

induction Mathematical induction is a method of proof used to establish properties of
recursively defined data types by an analysis of how their elements are built up.
Roughly stated, the method requires showing that an arbitrary element enjoys the
property, under the assumption that all elements built up ‘before’ it do so. Elements
without ‘predecessors’ give rise imse casesand others tanduction steps

inference rules The basic building blocks of formal proofs. They generally consist of
a number ofhypothesesnd aconclusion the idea being that the validity of the
conclusion can be inferred from the validity of all the hypotheses. In Natural De-
duction proofs, however, the validity of certain hypotheses (catglientsmay
sometimes depend on additional assumptions, which are said to be ‘discharged’
upon application of the rule.

Institutions Burstall and Goguen developed the notiorirmdtitutionsto provide an ab-
stract model theory for program specifications; they generalize the notion of many
logical systems by providing a uniform treatment of syntax and semantics, largely
in the terminology of category theory — see [GB83].

lambda calculus A calculus for reasoning about and evaluating lambda expressions.
See [Bar84].

lambda-expression An untypedlambda-expressionz - £ — whereE is an expression
usually involvingz — denotes that function whose value (on argumgrns £. The
typedlambda-expressiohz: S - E is defined similarly, except thatis restricted to
range overs.

315

LCF Originally LCF stood for Logic for Computable Functions, which was a partic-
ular logic proposed by Scott. Early work on a proof checker for this logic was
done by Milner and colleagues at Stanford in the early 1970s [Mil72, New75].
Experience with the Stanford system provided the basis for the development of a
‘second generation’ LCF at Edinburgh in the late 1970s [GMW?79]. (Besides the
original Edinburgh system, there are at least two other significant versions —at Cam-
bridge [Pau85a] and atd@#eborg [Pet82] — the main difference being the logics they
support.) The Edinburgh work focussed on an interactive ‘guided system’ style for
proof construction and introduced the seminal ideas of

e using a programming meta-langua#, , in which the user can build derived
inference rules and tactics, and

¢ having ‘theorem’ as an abstract type (in ML) whose primitives are the axioms
and basic inference rules of a logic.

It is these aspects which now characterize a system as being ‘LCF-like’ or ‘de-
scended from LCF’; notable examples are the PRL and NuPRL systems of Con-
stable and colleagues at Cornell [PRL86], Veritas [HD86], HOL [Gor85] and Is-
abelle [Pau86]. (See also [Pau85hb].)

logical frame A formal system in which logics can be defined. The fundamental no-
tions it should define are ‘term’, ‘well-formed formulae’ (wffs), ‘inference rule’,
‘proof’ and ‘theory’. To be suitably general, it must also define a substitution mech-
anism and ancillary notions, such as how capture of free variables is to be avoided.
See [Lin87c].

LPF Logic for Partial Functionsis a logic introduced in [BCJ84] to handle undefined
terms in program proofs.

model-oriented A model-orientedspecification of a system defines its operations in
terms of models built up from primitive data types such as integers, sets and se-
guences (cf. ‘property-oriented’ specifications).

Muffin A prototype proof-constructor developed at Manchester University to perform
experiments on user interface aspects of formal reasoning. It was not intended to
have the full generic capabilities afural, being restricted to propositional calcu-
lus, for example. See [JM88].

Natural Deduction A style of proof developed by Gentzen in which the set of assump-
tions is determined by context; this has the great advantage of allowing very suc-
cinct inference rules. The examples of proof structures in the entfgifioral proof
above must be changed to allow for assumptions to be ‘discharged’:

e in the linear form, ‘boxes’ are introduced for subcontexts;

e in the tree form, leaves can be sequents provided they are discharged further
down the branch.

See [Pra65, Pra71].

316 B Glossary of terms

NuPRL An LCF-like system for constructing proofs in a constructive theory of types
similar to Martin-Lof's [Mar85, NPS90]. Besides the logical differences (such as
the ability to extract ‘programs’ from constructive proofs), NuPRL's main non-LCF
feature is its user interface, which has user-introduced abbreviations, a proof-tree
manager, proof editing and a library module. See [PRL86].

operation decomposition Operation decomposition of a design entails the stepwise de-
velopment of operation specifications until all of the operation steps have been re-
fined to available primitives of the implementation language/system. Such decom-
positions arise because operation specifications given by pre- and post-conditions
cannot be executed.

oracle A hand-coded decision procedure which checks the validity of lines in a proof.

proof obligation A logical formula whose validity must be established as part of a for-
mal design method (such as justifying the correctness of a data reification or an
operation decomposition).

proof assistant Computer Aided Proof Engineering (to coin a phrase). A software sys-
tem which aids in the construction of formal proofs and checks their correctness.
A mural credo is that the best currently achievable synergy between human and
machine is to have the former guide proof creation using insight into the problem
domain, and the latter performing faultless clerical steps and (constrained) searches.

property-oriented A property-oriented specification characterizes its operations implic-
itly via statements of their inter-relationships (rather than defining each operation
over a model). Such specifications are frequently referred to as ‘algebraic specifi-
cations’ — see [EM85, EM90].

resolution rule A rule of inference usually of the form

aVb,cV-d
(aVc)d

wheref is the most general unifier @¢f and d. It is complete in the sense that a
formula A of FOPC is valid iff there is a proof using only resolution rules that (the
Skolemized form of}-A leads to a contradiction.

resolution theorem provers Theorem provers adopting various search strategies to find
a resolution proof — see [Lov78].

sequent A logical expression consisting of a setppEmisesand anupshot usually sep-
arated by a ‘turnstilet-. A sequent holds iff its upshot follows from its premises.
See Section 4.3.3.

sequent calculusA style of formal proof whereby sequents are manipulated directly:
thus for example its inference rules have sequents as ‘hypotheses’ and ‘conclusion’,
and the nodes of a proof tree (see the second example in the entoyrfal proof
above) are sequents. See [Smu61]. (See Section 4.3 for a discussion of different
styles of formal proof.)

317

simplification The process of reducing an expression ‘towards normal form’, often by
term rewriting.

Smalltalk An object-oriented programming language developed and supplied by Par-
cPlace Systems, 1550 Plymouth Street, Mountain View, California 94043, USA.
The implementation language of theiral system.

tactic The mural proof assistant provides a simple imperative language for expressing
certain commonly-used proof strategies, cali@ctics Thetactic languagegives
the same access to basiaral operations as is available from the user interface, in
addition to imperative constructs such as sequencing, branching and backtracking.
Tactics can be parameterized, can call other tactics — including themselves — and
can even poll the user for additional information at runtime. Conceptually, tactics
are operations which extend the ‘state’ of a proof. See Chapter 5.

tactical A (possibly parameterized) operation for composing tactics, by analogy with
functionals as operations for composing functions.

target logic As remarked in the early project ‘concepts paper’ [JLW8bjral was in-
tended to be used in many different applications of formal reasoning. Perhaps the
main theoreticalproblem thatmural faced arose from the fact that these different
applications call for different logics: e.g.

e extracting the computational content from proofs requires a constructive logic
(cf. [PRL86])

e algebraic-style specification languages (e.g. CLEAR [San82]) call for many-
sorted equational reasoning

e LARCH traits correspond to theories in FOPC (&)[

e VDM’s proof obligations are expressed in LPF [BCJ84]

e domain theoretic reasoning is probably best donBin\ (cf. [GMW79])
e Hoare logic is often used for program verification

These (and other) logics were identified astdrget logicsmural should support.

term rewriting A method for reducing expressions (with respect to a set of equations)
by repeated replacement of instances of the left hand side of an equation by the
corresponding instance of the right hand side.

theory ‘Theory’ is a heavily overloaded word. Besides its normal meaning(s) in English,
there are two particular usages in the formal reasoning context. The first comes
from formal logic where it is customary to refer to the seabiftheorems provable
in a logic as the (deductively closettieory of a logig or logical theoryfor short.

The second usage relates to ‘theories in practice’ as found in proof assistants such
asmural . A mural theory consists of:
e asignature indicating which symbols are available,

e a set ofinference rulessome of which araxioms some of which arderived
from axioms using proofs, and some of which are meoalyjecturesvhich
the user may or may not prove at some later date,

318 B Glossary of terms

e a set oftactics and
e a set oforacles

with the set ofmural theories being arranged in an inheritance hierarchjogic
is just a theory of special significance: logics and theories are not distinguished in
mural .

Further support for ‘theories in practice’ suggests adding a mechanism for creating
yet further additional components when expedient.

Ul User interface. In this book the term is used to mean not simply the visual layout of
the system, but also the operations by which the user accesses and manipulates the
underlying data structures.

unification A substitutiond (i.e. an instantiation of variables by terms) is saiditofy
two expressions if they become equal witeis applied to them. The process of
finding a unifying substitution (ounifier) is calledunification

VDM TheVienna Development Methaslan (evolving) attempt to apply formal methods
to the development of significant industrial computer systems. The current status
can be seen in [BJ82] and [Jon90c].

verification conditions Logical formulae generated from assertions and loop invariants
attached to a program which, when established, are sufficient to demonstrate that
the assertions and invariants are indeed satisfied each time execution passes the
points to which they are attached. Compare proof obligations.

vcg A verification condition generatds an automatic process for constructing verifica-
tion conditions.

Veritas An LCF-like system for constructing proofs; its meta-language is Miranda —
see [HD86].

VST Themural VDM Support Tool. See Chapter 7.

Appendix C

The Specification of the Proof Assistant

C.1 The Raw Syntax

C.1.1 Primitives

Apart from the standard VDM primitive types, the primitive types used in this spec are
the following:

e Object-level ‘atomic’ symbols:CESymb (for constants and functions) ESymb
(binders or quantifiers), T'Symb (types and type-constructorg),7’'Symb (depen-
dent type constructors)

e VSymb (for variables), MESymb (expression metavariable symbolg),7'Symb
(type metavariable symbols)

e Null objects: NullExp, NullType
e Things in proofs (explained laterBox-ref, Hypline-ref , Ordline-ref , Sequent-ref
e Other namesRule-ref, Theory-ref, ThMorph-ref

They are assumed to be mutually disjoint, infinite sets of structureless tokens.

Other tokens used are:

Exp,VSymB, QEXP, OEXP, EPHOLE, NULL EXP,

TYPE, SUBTYPE, QTYPE, OTYPE, TPHOLE, NULLTYPE,
OESvmB, MESYMB, CESyMB, NULLOESYMB, QESYMB,
OTSvymB,MTSymMB, CTSYmMB, NULLOTSYMB, QTSYMB,
BEXP,BTYPE, ELISTXTLIST, ELIST, TLIST

Here are some groupings which will come in useful later

NullThings = NullExp | NullType
Def = Exp | Type

NullSymbs = NullOESymb | NullOTSymb

!As an aside: all type union$)(n this specification happen to be disjoint unions.

320 C The Specification of the Proof Assistant

OTerm = OFExp | OType

CSymb = CESymb | CTSymb

OSymb = OESymb | OTSymb

QSymb = QESymb | QTSymb

Atom = CSymb | QSymb

Leaf = Atom | VSymb | MESymb | MTSymb | EPHole | TPHole
ArgList = EList | TList

Construct = Exp | Type | BTerm | EListXTList | ArgList

Term = Construct | OSymb | QSymb

BTerm = BEzp | BType

They are introduced mainly for simplicity and to save writing their expansion multiply.
In general, they are not things that a user of the system should ever be aware of.

C.1.2 Expressions
The current preference for what an expression can be:
Exp = VSymb | QExp | OFEzp | EPHole | NullExp
All kinds of expression should be visiblée?
Quantified expressions:
QFzp :: SYMBOL : QESymb
BODY : BExp

See§C.1.4 for the definition oBFExp.

Ordinary’ expressions:

OFzp :: SYMBOL : OESymb
ARGS . EListXTList

Basically, this class provides a description of constant expressions (both primitive and
defined) and (parametrized) expression metavariables. The distinction between these two
subclasses is made at the level of theSymb:

OESymb = MESymb | CESymb | NullOESymb

2These visibility comments in bold fount relate to the export status etc. of the implementation.
3or other, oroh, hell, I don't know what to call themér ...

C.1 The Raw Syntax 321

See§C.1.5 below for the definition oklist X T'List (basically pairs ofzzp lists and Type
lists).

Expression placeholders:
EPHole :: INDEX : Ny

Placeholders will normally appear only in certain classesafal object: viz. as instan-
tiations of metavariable symbols, in definitions of constants, and as images of (primitive)
constants under signature morphisms. Just exactly how they are used will be explained in
the relevant later sections. (Basicallyk- EPHole(n) will be filled by thenth argument

of a EList.) In practice, with a carefully chosen concrete syntax we hope to shield the
user from placeholders altogether.

Thesubtermsf an expression are given by:

subterms : Fxp — Term-set

subterms(e) £ cases e of
mk-QFExp(qget, be) — {e, get} U subterms(be)
mk-OFEzp(oet, elztl) — {e, oet} U subterms(elxtl)
others {e}
end

Not exported.
And itsfree variablesare obtained via the following function:

freeVars : Exp — VSymb-set

freeVars(e) £ cases e of
VSymb — {e}
mk-QFEzxp(qet, be) — freeVars(be)
mk-OFEzp(oet, elxtl) — free Vars(elxtl)
others { }
end

Not exported.

Similar functions (with the same names) will be defined on each of the other subclasses
of Construct (see below).

C.1.3 Types
The various subclasses of type:
Type = SubType | QType | OType | TPHole | NullType
All kinds of type should be visible.
A subtypeconstructor:
SubType = BODY : BFExp

322 C The Specification of the Proof Assistant

A dependent type

QType :: SYMBOL : QTSymb
BODY . BType

An ordinary type is much like an ordinary expression:

OType :: SYMBOL : OTSymb
ARGS . EListXTList

OTSymb = MTSymb | CTSymb | NullOTSymb

Type placeholders are analogougitBHoles:
TPHole :: INDEX : N;

The subterms and free variables in a type are given respectively by:

subterms : Type — Term-set

subterms(t) £ cases t of
mk-Sub Type(be) — {t} U subterms(be)
mk-QType(qtt, bt) — {t, qtt} U subterms(bt)
mk-O Type(ott, elztl) — {t, ott} U subterms(elxtl)
others {t}
end

Not exported.

freeVars : Type — VSymb-set

freeVars(t) 2 casest of
mk-Sub Type(be) — free Vars(be)
mk-QType(qtt, bt) — freeVars(bt)
mk-OType(ott, elxtl) — free Vars(elztl)
others { }
end

Not exported.

C.1.4 BExps and BTypes

A BEzp is used to help define botEzps and Sub Types. It consists of a bound variable,
the declared type of that variable (tbeiversg, and an expression predicate (thady).
The universe should not reference the bound variable, neither should that variable be
already bound in the body. Any other variable bound in either the universe or the body
should not occur in the other of these component®: Bype is analogous, but has a type
as its body instead of an expression. It is introduced only because the resulting symmetry
makes some of the later stuff easier to write.

BFEzps and BTypes should probably not be visible as separate objects.

C.1 The Raw Syntax 323

BEzp @ VAR : VSymb
UNIVERSE : Type
BODY . Fap
where

inv-BEzp(be) 2 is-OK-BTerm(be)

BType :: VAR o VSymb
UNIVERSE : Type
BODY : Type
where

inv-BType(bt) & is-OK-BTerm(bt)

is-OK-BTerm : BTerm — B
is-OK-BTerm(bterm) 2
let vt = VAR(bterm),
t = UNIVERSE (bterm),
def = BODY (bterm) in
vt ¢ allVars(t) U boundVars(def) A
allVars(def) N boundVars(t) = { } A boundVars(def) N allVars(t) = { }

Not exported.

The usual functions for finding the subterms and the free variables of eitB&raor a
BType:

subterms : BTerm — Term-set
subterms(bterm) &
{ VAR(bterm)}Usubterms(UNIVERSE (bterm))Usubterms(BODY (bterm))

Not exported.

freeVars : BTerm — VSymb-set
freeVars(bterm) 2
freeVars(UNIVERSE (bterm))Ufree Vars(BODY (bterm))—{ VAR (bterm)}

Not exported.

C.1.5 EListXTLists

An EListXTList is really just a list of expressions and a list of types. No variable bound
in some expression or type in it can occur in any other of its expressions or types (part of
this invariant actually appears as invariants on EList and TList, defined below).

FEListX TLists should probably be visible as a list of expressions and a list of types,
with the system maintaining the invariant automatically.

EListXTList :: ELIST : EList
TLIST : TList

where

324 C The Specification of the Proof Assistant

inv- EListX TList(mk-EListX TList(el, tl)) £
Ve € rngel -
YVt € rngtl -
allVars(e)Nbound Vars(t) = { } AboundVars(e)NallVars(t) = { }

Those boring old functionsubterms andfree Vars again:

subterms : EListXT'List — Term-set
subterms(elztl) 2 subterms(ELIST (elxtl)) U subterms(TLIST (elxtl))

Not exported.

freeVars : EListXTList — VSymb-set
freeVars(elatl) 2 freeVars(ELIST (elztl)) U free Vars(TLIST (elxtl))

Not exported.

Plus an exciting new function for finding tisg&zeof an EListXTList. This is just a pair
of integers, respectively the length of its two separate lists of arguments:

size : BListXTList — N < N
size(elztl) 2 (len ELIST (elxtl),len TLIST (elxtl))

Not exported.

C.1.6 ELists and TLists

An EList is a sequence of expressions such that no variable bound in some element of the
sequence can occur in any other element of the sequence. A EList may contain expres-
sions which are equivalent to each other, however. A TList is analogous, but is a sequence
of types rather than expressions.

ELists and TLists as such probably shouldn’'t appear, only their constituent
parts. Their invariants should be maintained automatically.

EList = FExp*
where

inv-EList(el) & is-OK-ArgList(el)

TList = Type*
where

inv-TList(t]) & is-OK-ArgList(tl)

1s-OK-ArgList : ArgList — B
is-OK-ArgList(al) 2
Vm,n € domal-m # n = boundVars(al(m)) N allVars(al(n)) ={}

Not exported.

The subterms and free Vars functions forArgLists hold no surprises:

C.1 The Raw Syntax 325

subterms : ArgList — Term-set
subterms(al) 2 U{subterms(def) | def € rgal}

Not exported.

freeVars : ArgList — VSymb-set
freeVars(al) & U{freeVars(def) | def € rgal}

Not exported.

C.1.7 Other Accessing Functions

This section contains lots of really exciting functions for finding out what'’s in things. With
the exception of the first, which just finds the size of the arguments of some ordinary term,
they all act on constructs in general rather than on each subclass thereof individually.

argSize : OTerm — N x N
argSize(oterm) £ size(ARGS (oterm))

Not exported.

The next function finds all variables in a construct, that is the set of subterms which are
variables (/Symbs):

allVars : Construct — VSymb-set
allVars(c) 2 {v e VSymb | v € subterms(c)}

Not exported.

Thebound variablesn a construct are then simply those variables which are not free!

boundVars : Construct — VSymb-set
boundVars(c) £ allVars(c) — freeVars(c)

Not exported.

In §C.1.8 below it’s argued that the above agrees with the usual definition of bound vari-
ables.

Theleavesof a construct are its symbols, variables and placeholders, aatbitssare its
constant (i.e. not variable or metavariable) symhols

leaves : Construct — Leaf-set
leaves(c) 2 {leaf € Leaf | leaf € subterms(c)}

4For those of you whose memory’s completely shot or who just weren't paying attention earlier
Leaf = Atom | VSymb | MESymb | MTSymb | EPHole | TPHole
and

Atom = CSymb | QSymb

326 C The Specification of the Proof Assistant

Not exported.

atoms : Construct — Atom-set
atoms(c) 2 {atom € Atom | atom € subterms(c)}

Not exported.

Next, a brace of functions for finding the (expression and type) metavariable symbols in
a construct:

meSymbs : Construct — MESymb-set
meSymbs(c) 2 {met € MESymb | met € subterms(c)}

Not exported.

mtSymbs : Construct — MTSymb-set
mtSymbs(c) L {mitt € MTSymb | mtt € subterms(c)}

Not exported.

The ordinary terms in some construct are found in a depressingly similar way:

oTerms : Construct — OTerm-set
oTerms(c) £ {oterm € OTerm | oterm € subterms(c)}

Not exported.

An object’'sexpression aritys simply the largest of the set of the indices of its expression
placeholders:

eArity : Construct — N
eArity(c) 2
let eps = {INDEX (ep) | ep € subterms(c) A\ ep € EPHole} in
if eps ={}
then O
else max eps

Not exported.

And thetype arityis, of course, entirely analogous:

tArity : Construct — N
tArity(c) 2
let tps = {INDEX (tp) | tp € subterms(c) A tp € TPHole} in
if tps ={}
then 0
else max tps

Not exported.

The arity of an object is then just the pair of its expression and type arities. This pair of
integers thus says how many expression and type arguments the object expects.

arity : Construct — N x N
arity(c) 2 (eArity(c), tArity(c))

C.2 Subterm Access and Editing 327

Not exported.

C.1.8 Bound Variables and Free Variables

The invariants to do with nonclashing free and bound variables in the earlier sections
were introduced to make it easier to specify equivalence and operations which perform
substitution ‘without capture’. In this section we argue that our definition of the bound
variables of an expression or type agrees with the usual definition.

First, a function for extracting? Terms from some construct:

bTerms : Construct — BTerm-set
bTerms(c) £ {bterm € BTerm | bterm € subterms(c)}

Not exported.

Claim: For everyc € Construct, boundVars(c) is precisely the set
{VAR(bterm) | bterm € bTerms(c)}

(The proof is by structural induction ovéfonstruct.) Hence our definition agrees with
the usual one. It's also pretty clear thidd R(bterm) is different for each differeniterm
in bTerms(c).

C.1.9 Consistency and Completeness Checks
We can now give consistency and completeness tests for syntactic objects:

A construct iscompletdf it has no null parts:

1sComplete : Construct — B
isComplete(c) £ Vz € subterms(c) - x ¢ NullThings | NullSymbs

This shouldn’t be a function that the user has direct access to, though the interface
should make it clear that a construct is incomplete.

A construct idfull if it has no placeholders:

isFull : Construct — B
isFull(c) £ Vx € subterms(c) -z ¢ EPHole | TPHole

Not exported.

C.2 Subterm Access and Editing

C.2.1 The Class of a Term

The classof some object is the name of the basic abstract data type to which the object
belongs. Introducing an enumerated collection of tokens:

328

C The Specification of the Proof Assistant

Class = {VSYMB, QEXP, OEXP, EPHOLE, NULL EXP,

SUBTYPE, QTYPE, OTYPE, TPHOLE, NULLTYPE,
MESYmB, CESrMB, NULLOESrYmMB, QESvmB,
MTSymB, CTSYMB, NULLOTSYMB, QTSYMB,
BEXP, BTYPE, ELISTXTLIST, ELIST, TLIST}

theclassof a term is given by:

classOf : Term — Class

classOf (term)

Not exported.

The speciesf an object is the type of the most general object which can replace it (for
example in structure editing). Introducing another enumerated collection of tokens:

Species = {EXP, TYPE,VSYMB, OESrMB, QESrMB, OTSYMB, QTSYMB,
BEXP,BTYPE, ELISTXTLIST, ELIST, TLIST}

cases term of

VSymb — VSYMB
QFxp — QEXP
OFxp — OEXP

EPHole — EPHOLE
NullExp — NULLEXP
SubType — SUBTYPE
QType — QTYPE

OType — OTYPE
TPHole — TPHOLE
NullType — NULLTYPE
MESymb — MESYMB
CESymb — CESvmB
NullOESymb — NuULLOESvmB
QESymb — QESrmMB
MTSymb — MTSYMB
CTSymb — CTSymB
NullOTSymb — NULLOTSYMB
QTSymb — QTSymB

BEzxp — BEXP

BType — BTYPE
EListXTList — ELISTXTLIST
EList — ELIST

TList — TLIST

end

C.2 Subterm Access and Editing 329

species : Term — Species
species(term) £ cases term of

VSymb — EXP
QFExp — EXP
OFEzp — EXP
EPHole — EXP
NullEzxp — Exp
SubType — TYPE
QType — TYPE
OType — TYPE
TPHole — TYPE
NullType — TYPE
MESymb — OESrmB
CESymb — OESvmB
NullOESymb — OESrmMB
QESymb — QESvmB
MTSymb — OTSymB
CTSymb — OTSymMB
NullOTSymb — OTSYMB
QTSymb — QTSYmB

BEzxp — BEXP

BType — BTYPE
EListXTList — ELISTXTLIST
EList — ELIST

TList — TLIST

end

Not exported.

C.2.2 Indices

In the next couple of sections we introduce some machinery which, despite looking quite
formidable at first sight, is actually conceptually very easy and makes ‘editing-like’ oper-
ations much easier to specify by letting us ‘get our hands on’ the subterms of objects. An
indexwill be a record of the path through the abstract syntax tree leading to the desired
subterm, simply described as a list of positive integers:

Index = Ny*
Indez shouldn’t be visible.
Index is partially ordered by:
< :Indexr x Index — B

<(i,7) & leni<lenj AVn €domi-i(n)=j(n)

That is,: is betweery and the root.

330 C The Specification of the Proof Assistant

Not exported.

Anindex is ‘valid’ if it actually refers to some subterm of the object in question (note that
the subterm of some object at index the empty list is the object itself):

1sValidIndex : Fxp x Index — B
isValidIndez (e, i) 2

if i =]
then true
else let n = hd 1,
i =tli in
cases ¢ of

mk-QFEzp(qet, be) — i =[1]V n =2A isValidIndex(be, i)
mk-OFExp(oet, elztl) — i = [1] V n = 2 A isValidIndex(elztl, i)
others false

end

Not exported.

1sValidIndez : Type X Indexr — B
isValidIndex(t,1) 2

if i =]
then true
else let n = hd i,
i’ =1t in
cases t of

mk-Sub Type(be) — n = 1N isValidIndex(be, i)
mk-QType(qtt, bt) — i =[1] V n =2 AisValidIndez(bt, ")
mk-OType(ott, elxtl) — 1 = [1] V n = 2 A isValidIndez (elztl, i")
others false

end

Not exported.

1sValidIndex : BTerm x Index — B

isValidIndex (bterm,i) &
i=[]vi=[1]V
hd i = 2 A isValidIndex(UNIVERSE (bterm), tl i) V
hd i = 3 A isValidIndex(BODY (bterm), tl i)

Not exported.

1sValidIndez : EListXTList x Index — B

isValidIndex (elztl, i) 2
i =[]V hdi=1AisValidindex(ELIST (elztl),tli) V
hd i = 2 A isValidIndex(TLIST (elxtl), tl)

Not exported.

wsValidIndex : ArgList X Index — B
isValidIndex(al,i) £ =[]V hdi <lenal A isValidIndex(al(hdi),tl7)

C.2 Subterm Access and Editing 331

Not exported.
The set of valid indices of any construct is then simply given by the following function:

indices : Construct — Indez-set
indices(c) 2 {i € Index | isValidIndex(c, 1)}

Not exported.

C.2.3 Subterm Access

The subterm situated at some (valid) index in some object is then obtained via the follow-
ing functions:

termAtIndex (e: Exp, i: Index) term: Term
pre isValidIndex(e, 1)
post term = if i = []
then e
else cases e of
mk-QFExp(get,be) — if hdi =1
then get
else termAtIndex(be,tl7)
mk-OFEzp(oet, elxtl) — if hdi =1
then oet
else termAtIndex(elztl, tl i)
end

termAtIndex (t: Type, i: Index) term: Term
pre isValidIndex(t, i)
post term = if i =[]
then ¢
else cases ¢ of
mk-SubType(be) — termAtindez(be,tl7)
mk-QType(qtt,bt) —ifhdi=1
then qtt
else termAtIndex(bt,tl 1)
mk-OType(ott, elxtl) — if hdi =1
then ott
else termAtIndex(elztl, tl 1)
end

termAtIndex (bterm: BTerm, i: Index) term: Term
pre isValidIndex (bterm, i)
post term = if i = []
then bterm
else cases hd i of
1— VAR(bterm)
2 — termAtindex(UNIVERSE (bterm),tl 1)
3 — termAtindex(BODY (bterm),tl i)
end

332 C The Specification of the Proof Assistant

termAtindex (elztl: EListX TList, i: Index) term: Term
pre isValidIndex(elxtl, 1)
post term = if i =[]
then elxtl
else if hd7 =1
then termAtindex(ELIST (elxtl),tl 7)
else termAtindex(TLIST (elxtl), tl i)

termAtIndex (al: ArgList,i: Index) term: Term
pre isValidIndez(al, i)
post term = if i = []

then al

else termAtindex(al(hd i),tl)

None of the above functions should be exported, though some means of accessing
subterms is clearly necessary and the user interface should provide such.

The binding pointsof some construct are the indices, if any, corresponding to/thg
fields of the construct'® Terms:

bindingPoints : Construct — Index-set
bindingPoints(c) &
{i|i#][]NisValidIndex(c,i) N
termAtIndex(c, truncate(i)) € BTerm A last(i) = 1}
Not exported.

The two functiondast and truncate return respectively the last element of some index
and an index consisting of all but the last element of some index:

last (i: Index) n: Ny
pre i 7 []
post n = i(len i)

Not exported.

truncate (i: Index) i': Index

pre i 7# []

post ' =[i(n) |1 <n <leni—1]
Not exported.

The species at some index is given by:

speciesAtIndex (c: Construct, i: Index) spec: Species
pre isValidIndex(c, i)
post spec = if i € bindingPoints(c)

then VSYmB

else species(termAtindex(c, 1))

Not exported.

C.2 Subterm Access and Editing 333

C.2.4 Equivalence Testing

Constructs will be considered equivalent uphaes(i.e. NullThings and NullSymbs)

and renaming of bound variables-€onversion). Basically, two constructs are equivalent

if they are of the same class and if their component parts are equivalent. Symbols (other
than VSymbs) are equivalent iff they're equal. A hole is equivalent to any other hole of
the same class.

1sEquivalentTo : Construct x Construct — B
isEquivalentTo(c, ') 2
let is = indices(c),
is’ = indices(c") in
is = is' A
Im € VSymb <+~ VSymb -
dom m = boundVars(c) A rngm = boundVars(c') A
Vi€ is -
let term = termAtIndex(c, 1),
term’ = termAtindex(c’, 1) in
classOf (term) = classOf (term’) N
(term € boundVars(c) = m(term) = term') A
(term € leaves(c) — boundVars(c) = term = term’)

Exported.

C.2.5 Building

Some renaming of bound variables may be necessary when creating new objects of those
syntactic classes having invariants. For example, the invariaft/am is unlikely to be
satisfied by an arbitrary variable/type/expression triple. This means that you can't just
create an object with an invariant out of the requisite arbitrary componentsuilé-
function provides a means of doing so, however, by converting all the components to
equivalent components such that the equivalent components do satisfy the invariant, then
creating the desired object out of these new components. There is thus a build-function
for each syntactic class which has an invariant.

All functions in this section should be used by the system whenever creating new
objects of the relevant type. They don’t need to be accessible to the user otherwise,
though.

An EListXTList is therefore built out of al’List and aTList equivalent to the ones you
first thought of:

build-EListXTList (el: EList, tl: TList) elztl: EListX TList
post isEquivalent To(ELIST (elxtl), el) N isEquivalent To(TLIST (elxtl), t)

And similarly for anEList . ..

build-EList (el: Exp*) el’: EList
post len el = len el’ A Vi € dom el - isEquivalentTo(el(7), el’ (7))

... and aTList.

334 C The Specification of the Proof Assistant

build- T'List (tl: Type*) tl": T'List
post len tl = len tI' A Vi € dom tl - isEquivalentTo(tl(1), t'(i))

The situation for botBEzp and BType is somewhat different, however, due to the pres-
ence of the extra clause in the invariant forbidding the object’'s bound variable from oc-
curring free in the object’s universe. The current thinking here is that the bound variable
and all its occurrences in the prospective body get renamed in order to avoid this clash

build-BExp (vt: VSymb, t: Type, e: Exp) be: BExp
post isEquivalentTo(UNIVERSE (be), t) A
isEquivalentTo(renameFree Vars(BODY (be),{ VAR(be) — uvt}), e)

build-BType (vt: VSymb, t: Type, t': Type) bt: BType
post isEquivalentTo(UNIVERSE (bt), t) A
isEquivalent To(renameFree Vars(BODY (bt), { VAR(bt) — vt}), t')

It is perhaps worth noting at this point that, although these operations (and indeed many
others appearing later) look (and are!) decidedly non-deterministic, all possible results
are mutually equivalent. When it comes to implementing such operations, however, we
would hope that renaming should only be carried out when it's absolutely unavoidable,

and even then should be kept to the minimum necessary to ensure soundness.

C.2.6 Editing Subterms

This section contains functions for general editing of expressions, types and assertions.
The basic idea is that of structure editing: any subterm of any object can be replaced by
an object of the correct species; an index designates the subterm to be edited.

The first set of operations simply replaces the subterm at some given index by a given
term. A subterm can be so replaced if the replacement is of the correct species, though
if the subterm being replaced is actually a variable at a binding point the replacement
variable should not occur free in the associated uniferse

The structure-editing operations described by the functions in this section should be
available to the user as part of the general user interface.

5Contrast this with the previous treatment in which a pre-condition on the build-functions effectively
forbade creation of the object at all if the bound variable occurred free in the prospective universe

5This is the only case we can think of where it's not clear how to preserve the invariants by simple
renaming of bound variables, courtesy of the build-functions of the previous section. Disallowing such
replacements is not a problem in any of the places later in this specification where these term-replacing
functions are used , however (e.g. in the treatment of unfolding definitions), though if these operations were
to be thought of as simple operations for single-step structure editing it is clear that certain editing actions
would have to be ruled out.

C.2 Subterm Access and Editing 335

1sValidTermReplace : Construct x Index x Term — B
is Valid TermReplace(c, i, term) 2
let spec = speciesAtindex(c, i),
spec’ = if spec = VSYMB
then classOf (term)
else species(term)
in
isValidIndez(c, i) N\ spec = spec’ A
(i € bindingPoints(c) =
term & freeVars(UNIVERSE (termAtindex(c, truncate(i)))))

Variables free in the replacement term may get captured by bindersaid variables
bound in it may need to be renamed so that they don’t clash with variables bound in
c. In addition, variables bound in but whose scope does not include the replacement
term may need to be renamed to avoid clashes with free variables being introduced in the
replacement terf

replace TermAt (e: Ezp, i: Index, term: Term) €’: Exp
pre isValid TermReplace(e, i, term)
post ¢/ =if i =[]

then term
else let j = hd 7,
i =tli in
cases e of

mk-QFExp(get, be) —ifj=1
then mk-QFEzp(term, be)
else let be’ = replaceTermAt(be, ', term) in
mk-QFExp(qet, be’)
mk-OFEzp(oet, elxtl) — if j =1
then mk-OFEzxp(term, elxtl)
else let elztl’ = replace TermAt(elztl, ', term) in
mk-OFEzxp(oet, elxtl")
end

replace TermAt (t: Type, i: Index, term: Term) t": Type
pre isValid TermReplace(t, i, term)

"These contorted conditions on what needs to be renamed are the main reason behind our return to the
rather more concrete -description of the term-replacement operations. It was felt that, although a treatment
analogous to that used in the renaming of free variables (see later in this section) would be perfectly possible,
a series of auxiliary functions would be needed to define the scope of the renaming. In the more concrete
description this is all taken care of automatically by the build-functions.

336 C The Specification of the Proof Assistant

post t' = if i =[]
then term
else let j = hd 7,
i =tl7 in
cases t of

mk-Sub Type(be) — let be’ = replace TermAt(be, i, term) in
mk-Sub Type(be’)
mk-QType(qtt,bt) —ifj=1
then mk-Q Type(term, bt)
else let bt' = replaceTermAt(bt, ', term) in
mk-Q Type(qtt, bt")
mk-OType(ott, elxtl) — if j =1
then mk-OType(term, elxtl)
else let elztl’ = replace TermAt(elztl, ', term) in
mk-OType(ott, elxtl’)
end

replace TermAt (be: BExp, i: Index, term: Term) be': BEzp
pre isValid TermReplace(be, i, term)
post be’ =if i =[]
then term
else let 5 = hd 7,
i =tli,
vt =ifj =1
then term
else VAR(be),
t=ifj =2
then replace TermAt(UNIVERSE (be), ', term)
else UNIVERSE (be),
e=ifj =3
then replace TermAt(BODY (be), ', term)
else BODY (be)
in

build- BExp(vt, t, e)

replace TermAt (bt: BType, i: Index, term: Term) bt': BType
pre isValid TermReplace(bt, i, term)

C.2 Subterm Access and Editing 337

post bt' =if 1 =[]
then term
else let 5 = hd 7,
i =tli,
vt=if j =1
then term
else VAR(bt),
t=if j =2
then replace TermAt(UNIVERSE (bt), ', term)
else UNIVERSE (bt),
=ifj =3
then replace TermAt(BODY (bt), ', term)
else BODY (bt)
in
build- BType(vt, t,t")

replace TermAt (elztl: EListX TList, i: Index, term: Term) elatl’: EListX TList
pre isValid TermReplace(elxtl, i, term)
post elxtl’ = if i =[]
then term
else let j = hd 7,
i' =tli,
el=ifj =1
then replace TermAt(ELIST (elxtl), i, term)
else ELIST (elxtl),
f=if j =2
then replace TermAt(TLIST (elxtl), ', term)
else TLIST (elxtl)
in

build-EListX TList(el, tl)

replace TermAt (el: EList, i: Index, term: Term) el’: EList
pre isValid TermReplace(el, i, term)
post el =if i =[]

then term
else let j = hd 7,
i =tli,

e = replaceTermAt(el(j), ', term) in
build-EList(el T{j — e})

replace TermAt (tl: TList, i: Index, term: Term) tl': TList
pre isValid TermReplace(tl, i, term)
post tI' =if i =[]

then term
else let 5 = hd 1,
i =tli,

t = replace TermAt(tl(7), 4, term) in
build-TList(tl T {j — t})

338 C The Specification of the Proof Assistant

This next function renames metavariable symbols in some construct. Note that metavari-
able symbols may get ‘collapsed together’ in an inconsistent way as part of this process
(e.g. if m; — m andmy, — m wherem; andm, expect different numbers of arguments).

renameMSymbs (c: Contruct, mem: MESymb - MESymb,
mtm: MTSymb —~ MTSymb) c': Construct
post let is = indices(c) in
indices(c') = is A
Vi € is -
let term = termAtIndex(c, 1),
mm = mem U mitm in
classOf (termAtIndez(c', 1)) = classOf (term) A
(term € leaves(c) —dommm = termAtindex(c',i) = term) A
(term € dom mm = termAtindez(c’,i) = mm(term))

This one’s probably not very useful on its own. After all, it can be mimicked by
nstantiate.

Finally, there’s a similar operation for renaming free variables (note that it is perfectly

possible to rename two different free variables to the same thing with this operation.
The result of renaming the free variables in some construct yields a construct which is
therefore not necessarily equivalent to the original one):

renameFree Vars (c: Construct, m: VSymb — VSymb) ¢’: Construct
post let is = indices(c) in
indices(c') = is A
3¢” € Construct -
isEquivalentTo(c, ") A
boundVars(c") Ndomm = { } A boundVars(c")Nrgm = {} A
Vi € is -
let term = termAtIndex(c”, i) in
classOf (termAtIndex(c', 1)) = classOf (term) A
(term € leaves(c") —domm = termAtindex(c’, i) = term) A
(term € domm = termAtindex(c',i) = m(term))

Might be useful.

C.3 Sequents and Rules
C.3.1 Sequents

Sequent :: NFV . VSymb-set
PREMISES : Ezp-set
UPSHOT : Exp

Sequents should be visible.

Theexpsin a sequent are ifgremisePlus itsupshot

C.3 Sequents and Rules 339

exps : Sequent — Fxp-set
exps(s) £ PREMISES(s)U{UPSHOT(s)}

Not exported.

Its (apparery) free variables are simply those of its exps:

freeVars : Sequent — VSymb-set
freeVars(s) £ U{freeVars(e) | e € exps(s)}

Not exported.

A sequent igroperif its actual free variables and its apparent free variables are the same:

1sProper : Sequent — B
isProper(s) £ NFV(s) = freeVars(s)

Not exported.

And a sequent can be converted into a proper sequent by makiNg'itsfield the same
as its apparent free variables:

properSequent : Sequent — Sequent
properSequent(s) 2
mk-Sequent(free Vars(s), PREMISES(s), UPSHOT (s))

Not exported.

A sequent idrivially true if its upshot is amongst its premises (strictly if something equiv-
alent to its upshot is amongst its premises):

18 Trivially True : Sequent — B
isTriviallyTrue(s) 2
de € PREMISES(s) - isEquivalentTo(e, UPSHOT(s))

Not exported.

Renaming metavariable symbols in a sequent is achieved simply by doing the renaming
on each of its component expressions:

renameMSymbs : Sequent x MESymb —— MESymb x MTSymb - MTSymb
— Sequent
renameMSymbs(s, mem, mtm) £
let mk-Sequent(vts, prems, up) = s,
prems’ = {renameMSymbs(e, mem, mtm) | e € prems} in
mk-Sequent(vts, prems’, renameMSymbs(up, mem, mtm))

Should be possible, but covered by instantiation of sequents.

Renaming of free variables is pretty similar, but ‘variable capture’ (i.e. renaming some
actual free variable to some variable which is apparently, but not actually, free in the
sequent) is ruled out:

8As distinct fromactuali.e. the ones stated as being free in BV field

340 C The Specification of the Proof Assistant

renameFree Vars (s: Sequent, vm: VSymb — VSymb) s': Sequent
pre let ym' = NFV (s) < vm in
g om’ N (freeVars(s) — NFV (s)) ={}
post let mk-Sequent(vts, es, e) = s,
om’ = vts < vm,
es’ = {renameFreeVars(é,vm’) | é € es},
¢’ = renameFreeVars(e, vm'),
vts' = (vts — domvm) U rngvm' in
s" = mk-Sequent(vts', es’, €’)

Exported.
Note that the precondition on the above function is trivially true for proper sequents.

A sequent can be weakened by adding hypotheses and/or collapsing free variables. A
sequenestablishes second sequent if the second sequent is weaker than it:

establishesSequent : Sequent x Sequent — B
establishesSequent(s,s') 2
Im € VSymb = VSymb -
domm = NFV (s) Arngm C NFV(s)
A (freeVars(s) — NFV (s)) N NFV(s") ={}
N isEquivalent To(renameFree Vars(UPSHOT(s), m), UPSHOT (s"))
AVe € PREMISES(s) -3¢’ € PREMISES(s') -
isEquivalentTo(renameFreeVars(e, m), €')

Not exported.

An expression can also establish a sequent if its free variables are disjoint from the se-
guent’s new free variables and if it's equivalent to the sequent’s upshot.

establishesSequent : Exp x Sequent — B
establishesSequent (e, s) 2
NFV (s) N freeVars(e) = { } A isEquivalentTo(e, UPSHOT(s))

Not exported.

Claim: Ve € Ezp, s € Sequent -
establishesSequent (e, s) < establishesSequent(mk-Sequent({},{},e),s)

The following definition of equivalence of sequents is something of a cheat —it’s not really

a definition of equivalence of sequents at all, except in a very limited sense. As it stands,
it says that sequents can only be equivalent if they're proper, which is clearly nonsense.
However, this function is only used in the functiproperRuleStmt below, and its sole
purpose in life is to rename the free variables in the sequent hypotheses of a rule statement
in such a way that no two sequent hypotheses have (actual) free variables in common.
Coupled with the fact that sequent hypotheses appearing in proper rule statements have to
be proper, this means that, at least until someone comes up with a real need for a function
testing for general equivalence of sequents, this one is quite adequate for all purposes for
which it was designed!

isEquivalentTo (s: Sequent, s': Sequent) r: B
pre isProper(s) A isProper(s’)

C.3 Sequents and Rules 341

post r &
Im € VSymb «= VSymb, m' € Exp —~ Exp -
domm = NFV(s) Arngm = NFV(s") A
domm’ = PREMISES(s) A rngm’ = PREMISES(s") A
isEquivalentTo(UPSHOT(s"), renameFree Vars(UPSHOT (s), m)) A
Ve € domm’ -
isEquivalentTo(m/(e), renameFree Vars(e, m))

Not exported.

C.3.2 Rules
Rulemap = Rule-ref > Rule

Rule :: STMT : RuleStmt
THEORY : Theory-ref
PROOF : [Proof]

where

inv-Rule(r) 2 isProper(STMT(r)) A is-OK-RuleStmt(STMT(r))

Rules should be visible.

Note that rules now have an invariant to the effect that their statement should be proper
(i.e. its sequent hypotheses should be proper and shouldn’t share free vayiabtE®K

(i.e. it should contain no placeholders, its ordinary hypotheses and conclusion should
contain no free variables, ar@7erms appear consistently) (see below).

Rules with a nullPROOF field are calledaxioms the rest are callederived rules—

it's important not to confuse an axiom with a derived rule having an ‘empty’ proof. In
this treatment, a rule has a singbeoof but a Proof can contain multiplgproof attempts

One of these proof attempts is designated as the actual (or currently favoured) proof by
the ROOT field of Proof (see§C.8.9). Of course, different rules may have equivalent
statements. This makes the circularity check on consistency of the collection of derived
rules simple.

RuleStmt :: SEQHYPS . Sequent-set
ORDHYPS . Fxp-set
CONCL . Exp

A rule statement iproperif its sequent hypotheses are proper and don’t share free vari-
ables.

9This latter condition arose out of the recent Ul discussions where it was decided that these free variables
will be treated in much the same way as metavariable symbols, e.g. in the rule instantiator or whatever its
fancy name was. Any ‘instantiation’ thereof by the user should be restricted to a single sequent, hence the
invariant.

342 C The Specification of the Proof Assistant

1sProper : RuleStmt — B
isProper(rs) £
Vs € SEQHYPS(rs) -
isProper(s;) AVsy € SEQHYPS(rs) - 51 # 2
= NFV(s)) N NFV(sy) = {}

Not exported.

The expressions in a rule statement are naturally those in all its bits:

exps : RuleStmt — Fxp-set

exps(rs) 2
let es = U{ezps(s) | s € SEQHYPS(rs)} in
es U ORDHYPS(rs) U{CONCL(rs)}

Not exported.

The oTerms in a rule statement or a sequent are naturally those in all its exps:

oTerms : (Sequent | RuleStmt) — OTerm-set
oTerms(sr) £ U{oTerms(e) | e € exps(sr)}

Not exported.

The meSymbs in a rule statement are likewise those in all its exps:

meSymbs : RuleStmt — MESymb-set
meSymbs(rs) £ U{meSymbs(e) | e € exps(rs)}

Not exported.

As are the meSymbs.

mtSymbs : RuleStmt — MTSymb-set
mtSymbs(rs) £ U{mtSymbs(e) | e € exps(rs)}

Not exported.

The next function tests that th@Terms in a construct or a rule statement have consistent
argument sizes:

hasConsisArgSizes : (Construct | RuleStmt) — B
hasConsisArgSizes(cr) £
let ots = oTerms(cr) in
Yoterm, oterm’ € ots -
let symb = SYMBOL(oterm) in
symb ¢ NullSymbs N\ symb = SYMBOL(oterm’)
= argSize(oterm) = argSize(oterm')

Not exported.

A construct/sequent/rule stateme6tR) is consistent with some rule statement if it only
contains metavariable symbols which occur in that rule statement and if they have the
same argument sizes as those in the rule statement. Note that this function should probably
strictly have a pre-condition to ensure that both i and the rule statement themselves

C.3 Sequents and Rules 343

have consistent argument sizes. In the cases where this function is used, however, (see
§C.8.7) this is automatically the case.

isConsis WithRuleStmt : CSR x RuleStmt — B
isConsis WithRuleStmt(csr,rs) £
Yoterm € oTerms(csr) -
SYMBOL(oterm) € (MESymb | MTSymb) =
Jdoterm’ € oTerms(rs) -
SYMBOL(oterm) = SYMBOL(oterm')

A argSize(oterm) = argSize(oterm’)

A rule statement is OK if all its expressions are full, its ordinary hypotheses and conclu-
sion are closed, an@Terms appear consistently throughout (although it might still have
null parts):

15-OK-RuleStmt : RuleStmt — B
is-OK-RuleStmt(rs) &
hasConsisArgSizes(rs) A freeVars(CONCL(rs)) = { } A
Ve € exps(rs) - isFull(e) NYe € ORDHYPS(rs) - freeVars(e) = { }

Not exported.

A rule statement can be made proper by making its sequent hypotheses proper and renam-
ing free variables therein so as to avoid clashes.

properRuleStmt (rs: RuleStmt) rs’: RuleStmt
post isProper(rs’) N CONCL(rs") = CONCL(rs) A
ORDHYPS(rs') = ORDHYPS(rs) A
let ss = {properSequent(s) | s € SEQHYPS(rs)} in
Im € Sequent =~ Sequent -
domm = ss Arngm = SEQHYPS(rs") A
Vs € ss - isEquivalentTo(s, m(s))

Not exported.

Proper rule statements are equivalent (in the sense required above) if all their components
are equivalent:

isEquivalentTo (rs: RuleStmt, rs': RuleStmt) r: B
pre isProper(rs) A isProper(rs’)
post let mk-RuleStmt(ss, es, e) = s,
mk-RuleStmt(ss’, es’, ') = rs’ in
isEquivalentTo(e, €)
A3dem € Exp = Exp -
domem = es Arngem = es’ AVé € es - isEquivalentTo(é, em(é))
A dsm € Sequent - Sequent -
dom sm = ss A rng sm = ss' AV$S € ss - isEquivalentTo($, sm($))

A rule is OK if its statement is equivalent to the rule statement of its proof (if any):

344 C The Specification of the Proof Assistant

1s-OK-Rule : Rule — B
is-OK-Rule(mk-Rule(rs, th, p)) £
p # nil = isEquivalentTo(rs, properRuleStmt(ruleStmit(p)))

Background. Warning when violated.

For later convenience, we’ll define a function for renaming the free variables in the se-
guent hypotheses of a proper rule statement according to seiaap:

renameFreeVars (rs: RuleStmt, vm: VSymb <™~ VSymb) rs': RuleStmt
pre isProper(rs)
post let ss = {renameFreeVars(s,vm) | s € SEQHYPS(rs)} in

rs’ = mk-RuleStmt(ss, ORDHYPS(rs), CONCL(rs))

Not exported.

A rule statement can be weakened by collapsing metavariable symbols, adding hypothe-
ses, strengthening sequent hypotheses, converting sequent hypotheses to ordinary hy-
potheses which establish them, or any combination thereof. A rule statestabtishes

a weaker rule statement:

establishesRuleStmt : RuleStmt x RuleStmt — B
establishesRuleStmt(rs, rs') &
let mk-RuleStmt(shs, es, e) = rs,
mk-RuleStmt(shs', es’, ') = rs’ in
Imem: MESymb "~ MESymb, mtm: MTSymb " MTSymb -
isEquivalentTo(e', renameMSymbs(e, mem, mtm))
AYh € es- 30 € es’ - isEquivalentTo(h', renameMSymbs(h, mem, mtm))
AVs € shs -
ds" € shs’ - establishesSequent(s’, renameMSymbs(s, mem, mtm))
V 3h' € es’ - establishesSequent(h', renameMSymbs(s, mem, mtm))
V isTrivially True(s)

Not exported.

Intuitively, any use ofrs’ in a proof can be replaced by a useref(with metavariable
symbols renamed appropriately). A more sophisticated test might involve instantiating
the metavariable symbols of instead of merely renaming them; the main point about
the test given here, however, is that rules should be considered equivalent up to renam-
ing of metavariable symbols. This function will be used to check validations of theory
morphisms (cf§C.7.5 below), so it probably doesn’t matter very much if it can’t be im-
plemented very efficiently. On the other hand, if it is found to be too impractical a less
sophisticated test should perhaps be substituted.

C.4 Instantiation and Pattern-matching
Instantiation consists of replacing expression metavariable symbols with expressions and
type metavariable symbols with types.

Instantiation . MEMAP : MESymb "~ Exp
MTMAP : MTSymb = Type

C.4 Instantiation and Pattern-matching 345

Should be visible.

When the expressions or types introduced by the instantiation have placeholders these are
filled in with the appropriate elements of the arguments of the metavariables. For this to be
possible, the metavariables must have at least as many arguments as the arity of the object
replacing the metavariable symbol. In order to help test that this condition is satisfied, a
function testing whether an object is fillable’ by some EListXTList (the expression arity

of the object must be at most the number of elements in the ELIST of the EListXTList
and the type arity at most the number of elements in its TLIST) is needed.

1sFillableBy : Construct x EListXTList — B
isFillableBy(c, elxtl) 2
eArity(c) < len ELIST (elztl) A tArity(c) < len TLIST (elxtl)

Not exported.

1sInstantiable By : Construct x Instantiation — B
isInstantiableBy(c, inst) 2
let im = MEMAP (inst) U MTMAP (inst) in
Yoterm € oTerms(c) -
SYMBOL(oterm) € dom im
= isFillableBy(im(SYMBOL(oterm)), ARGS (oterm))

Not exported.

To avoid capture we’ll need to know what free variables can be introduced by an instanti-
ation:

freeVars : Instantiation — VSymb-set
freeVars(inst) &
U{freeVars(def) | def € rng MEMAP (inst) U g MTMAP (inst)}

Not exported.

Instantiation of objects is now straightforward. Metavariable symbols occurring in the
domain of the instantiation are replaced by their image under the instantiation, and any
placeholders in this image are filled in with the arguments of the metavariable so instanti-
ated. Other metavariable symbols are left unchanged. As part of the process, some bound
variables might need to be renamed in order to avoid clashes with and capture of free
variables introduced by the instantiation.

There follows a suite of functions for doing simple instantiation without capture of free
variables (assuming, of course, that said object is in fact instantiable!):

instantiate (e: Exp, inst: Instantiation) e': Exp
pre isInstantiable By(e, inst)

346 C The Specification of the Proof Assistant

post de” € Exp -
isEquivalentTo(e, ") A boundVars(e”) N freeVars(inst) = { } A
e = cases ¢ of
mk-QFEzxp(qet, be) — mk-QFEzp(qet, instantiate(be, inst))
mk-OFEzxp(oet, elutl) — let elstl’ = instantiate(elztl, inst) in
if oet € dom MEMAP (inst)
then fillPHoles(MEMAP (inst)(oet), elztl’)
else mk-OFEzp(oet, elztl’)
others ¢”
end

Exported.
The fillPHoles operations are specified below.

instantiate (t: Type, inst: Instantiation) t': Type
pre isInstantiable By(t, inst)
post 3t" € Type -
isEquivalentTo(t, t") A boundVars(t") N freeVars(inst) = { } A
t' = cases t” of
mk-Sub Type(be) — mk-Sub Type (instantiate(be, inst))
mk-QType(qtt, bt) — mk-QType(qtt, instantiate(bt, inst))
mk-OType(ott, elrtl) — let elatl’ = instantiate(elxtl, inst) in
if ott € dom MTMAP (inst)
then fillPHoles(MTMAP (inst)(ott), elztl")
else mk-OType(ott, elztl)
others ¢”
end

Exported.

instantiate (be: BExp, inst: Instantiation) be’: BExp
pre isInstantiable By (be, inst)
post dbe” € BExp -
isEquivalentTo(be, be") N VAR(be") & freeVars(inst) A
let ¢t = instantiate(UNIVERSE (be"), inst),
e = instantiate(BODY (be"), inst) in
be = build-BExp(VAR(be"), t, e)

Not exported.

instantiate (bt: BType, inst: Instantiation) bt': BType
pre isInstantiable By (bt, inst)
post 3bt” € BType -
isEquivalentTo(bt, bt") N VAR(bt") & freeVars(inst) A
let t = instantiate(UNIVERSE (bt"), inst),
t' = instantiate(BODY (bt"), inst) in
bt' = build-BType(VAR(bt"), t, ")

Not exported.

instantiate (elztl: EListX TList, inst: Instantiation) elztl’: EListX TList
pre isInstantiable By (elxtl, inst)

C.4 Instantiation and Pattern-matching 347

post let el = instantiate(ELIST (elztl), inst),
tl = instantiate(TLIST (elxtl), inst) in
eletl’ = build-EListX TList(el, tl)

Not exported.

instantiate (tl: TList, inst: Instantiation) tl': TList
pre isInstantiable By(tl, inst)
post tI' = build-TList([instantiate(tl(i), inst) | i € dom tl])

Not exported.

instantiate (el: EList, inst: Instantiation) el’: EList

pre isInstantiable By (el, inst)
post el’ = build-EList([instantiate(el(i), inst) | i € dom el])

Not exported.

The auxiliary functions for filling placeholders follow. They sometimes need to rename
bound variables to avoid variable capture.

fillPHoles (e: Exp, elxtl: EListXTList) e': Exp

pre isFillableBy(e, elxtl)

post ¢ = cases ¢ of
mk-EPHole(n) — FELIST (elxtl)(n)
mk-QFExp(qet, be) — mk-QFEzp(qet, fillPHoles(be, elxtl))
mk-OFExp(oet, elrtl’) — mk-OFExp(oet, fillPHoles(elztl’, elxtl))
others e
end

Not exported.

fillPHoles (t: Type, elatl: EListXTList) t": Type

pre isFillableBy(t, elxtl)

post ¢/ = cases t of
mk-TPHole(n) — TLIST (elxtl)(n)
mk-Sub Type(be) — mk-SubType(fillPHoles(be, elztl))
mk-QType(qtt, bt) — mk-QType(qtt, fillPHoles(bt, elxtl))
mk-OType(ott, elxtl’) — mk- O Type(ott, fillPHoles(elxtl’, elxtl))
others ¢
end

Not exported.

fillPHoles (be: BEzp, elxtl: EListXTList) be': BExp
pre isFillable By (be, elxtl)
post dbe” € BExp -
isEquivalentTo(be, be”) N VAR(be") & freeVars(elztl) N
let t = fillPHoles(UNIVERSE (be"), elxtl),
e = fillPHoles(BODY (be"), elxtl) in
be! = build-BExp(VAR(be"), t, €)

Not exported.
fillPHoles (bt: BType, elxtl: EListXTList) bt': BType

348 C The Specification of the Proof Assistant

pre isFillable By (bt, elztl)
post 3bt” € BType -
isEquivalentTo(bt, bt") N VAR(bt") ¢ freeVars(elztl) A
let t = fillPHoles(UNIVERSE (bt"), elxtl),
e = fillPHoles(BODY (bt"), elztl) in
bt' = build-BType(VAR(bt"), t, €)

Not exported.

fillPHoles (elztl: EListX TList, eletl’: EListXTList) elatl”: EListX TList
pre isFillableBy(elxtl, elztl")
post let el = fillPHoles(ELIST (elxtl), elxtl’),
tl = fillPHoles(TLIST (elxtl), elztl’) in
elztl” = build-EListXTList(el, tl)

Not exported.

fillPHoles (tl: TList, elxtl: EListXTList) tl': TList
pre isFillableBy(tl, elztl)
post tI' = build-TList([fillPHoles(tl(1), elztl) | i € dom tl])

Not exported.

fillPHoles (el: EList, elxtl: EListXTList) el’: EList
pre isFillableBy(el, elztl)
post el’ = build-EList([fillPHoles(el(7), elztl) | i € dom el])

Not exported.

A sequent or a rule statement is instantiable if each of its component expressions is sepa-
rately instantiable:

isInstantiableBy : (Sequent | RuleStmt) x Instantiation — B
isInstantiableBy(sr,inst) £ Ve € exps(sr) - isInstantiableBy(e, inst)

Not exported.

An instance of a sequent is built by instantiating its component expressions:

instantiate (s: Sequent, inst: Instantiation) s': Sequent
pre isInstantiableBy(s, inst)
post let es = {instantiate(e, inst) | e € PREMISES(s)},
¢/ = instantiate(UPSHOT (s), inst) in
s" = mk-Sequent(NFV (s), es, €)

Exported.
And arule statement is instantiated by instantiating each of its constituent parts separately:

instantiate (rs: RuleStmt, inst: Instantiation) rs’: RuleStmt
pre isInstantiable By(rs, inst)
post let ss = {instantiate(s,inst) | s € SEQHYPS(rs)},
es = {instantiate(e, inst) | e € ORDHYPS(rs)},
¢ = instantiate(CONCL(rs), inst) in
rs’ = mk-RuleStmt(ss, es, ')

C.5 Signatures 349

Exported.

Pattern-matching is now easy to specify:

matchAgainst (e: Exp, ¢': Ezp) insts: Instantiation-set
pre isFull(e) A isFull(e’)
post Vinst € insts-isInstantiableBy(e, inst) NisEquivalent To(instantiate(e, inst), e')

Exported.

It has been shown elsewhere (cf. “The return of the son of FSIP’ PAL021/1.2) that —

given the precondition above — this operation is fully implementable, in that all possible

‘relevant’ instantiations can be returned. The precondition should not bother the user
since, as noted earlier, placeholders only occur in a very limited classiaf objects,

and such objects would not usually be subject to pattern matching.

C.5 Signatures

Atoms are declared or defined irsgnature

Signature :: CONSTS : CESymb -~ CEDecl
TYPES : CTSymb =+ CTDecl
BINDERS : QESymb -~ QEDecl
DTYPES : QTSymb = QTDecl

where

inv-Signature(Y) £
Vodef € oDefs(X) - is-OK-ODef (odef) A
Vqedef € geDefs(X) - is-OK-QEDef (gedef)

Should be visible.

In the present treatment, the distinction between primitive and defined objects resides at
the level of the signature rather than at the level of expressions and types, as it was felt that
this was more natural (cf. ‘Proposed Unification of Primitive and Defined Fripse Things’,
rm010). A symbol is thus designated as being either primitive, defined, or ‘not sure which
yet’ according to whether its declaration is

e anarity (constants and types) arLcH (binders)
e an expression or a type

e a null declaration

CEDecl = Exp | N x N | NullCEDecl
CTDecl = Type | N x N | NullCTDecl

QFDecl = Exp | ZILCH | NullQEDecl

350 C The Specification of the Proof Assistant

QTDecl = zILCH

Decl = CEDecl | CTDecl | QEDecl | QTDecl

The declarations of all the defined constants and types in a signature is given by:

oDefs : Signature — Def-set
oDefs(X) £ {d € mg CONSTS(X)Urmg TYPES(X) |d € Def}

Not exported.

And the declarations of all the defined binders are:

qeDefs : Signature — FExp-set
geDefs(X) & {e € rng BINDERS(Y) | e € Ezp}

Not exported.

The declaration of a defined constant or type should contain no free variables, no metavari-
ables and should have no missing placeholders

15-OK-0ODef : Def — B

is-OK-ODef (odef) £
freeVars(odef) = { } A meSymbs(odef) ={} A
mtSymbs(odef) = { } N hasNoMissingPHoles(odef)

Not exported.

The declaration of a defined binder should contain no free variables, no placeholders,
a single expression metavariable of arity 0), and a single type metavariable of arity
(0,0).

15-OK-QEDef : Fxp — B
is-OK-QEDef(e) 2
freeVars(e) = { } N isFull(e)
A card meSymbs(e) = card mtSymbs(e) = 1
AYoterm € oTerms(e) -
(SYMBOL(oterm) € MESymb = argSize(oterm) = (1,0))
N (SYMBOL(oterm) € MTSymb = argSize(oterm) = (0,0))

Not exported.

The auxiliary function for checking that all placeholders are used:

hasNoMissingPHoles : Construct — B

hasNoMissingPHoles(c) 2
Vm € Ny - m < eArity(¢) = mk-EPHole(m) € subterms(c)
AVn € Ny - n < tArity(c) = mk-TPHole(n) € subterms(c)

10This last condition is to ensure preservation of information, i.e. that the operations of folding and
unfolding definitions are mutually inverse. It might be possible to relax it, but there doesn't actually seem
to be much to gain by doing so, apart from some additional potential for doing something idiotic (e.g.
defining a constant to take 42 arguments, and only ever using the one at position 42).

C.5 Signatures 351

Not exported.

C.5.1 Accessing Functions
A function to collect all the atoms in a signature:

atoms : Signature — Atom-set
atoms(Y) 2
dom CONSTS(X)Udom TYPES(X)udom BINDERS (X)Udom DTYPES(X)

Not exported.

Next, a function to collect all the primitiv€’Symbs declared in some signature (recall:
these are the ones who&& Decl or C'T'Decl is of typeN x N).

primitiveCSymbs : Signature — CSymb-set
primitiveCSymbs(X) £
let em = CONSTS(X)U TYPES(X) in
{ct € domem | em(ct) € N x N}

Not exported.

The definedCSymbs are obtained similarly, being those who§& Decl/ CT'Decl is an
Expl Type:

definedCSymbs : Signature — CSymb-set
definedCSymbs(X) 2
let cm = CONSTS(X)U TYPES(X) in
{ct € domem | em(ct) € Def}

Not exported.

Nothing much new in the case of the primitigSymbs either; they have declaration
ZILCH:

primitiveQQSymbs : Signature — QSymb-set
primitive@QSymbs(X) 2
let gm = BINDERS(X)U DTYPES(XY) in
{qt € dom gm | gm(qt) = zILCH}

Not exported.

Finally in this exciting mini-series of functions, the defin€dymbs are those with an
Ezp or a Type as their declaratioh.

definedQ)Symbs : Signature — QSymb-set
defined@QSymbs(X) £

let gm = BINDERS(XY) in

{qt € dom qm | gqm(qt) € Exp}

1 As yet, we've not managed to summon up sufficient strength to allow for defined dependent types (on
the grounds that we can’t actually think of any!) so there are only defip@slymbs so far. These actually
have anEzp as their declaration. It's pretty clear how defin@d’Symbs could be incorporated, though,
and if we suddenly become one with the Force we might add them at some later stage.

352 C The Specification of the Proof Assistant

Not exported.

The set of declared (i.e. having non-null declaration) ordinary symbols in some signature
is then simply the union of the primitive and the defingslymbs:

declaredCSymbs : Signature — CSymb-set
declaredCSymbs(X) £ primitiveCSymbs(X) U definedCSymbs(X)
Not exported.

Similarly for the declared)Symbs:

declared@QSymbs : Signature — QSymb-set
declared@QSymbs(X) 2 primitiveQSymbs(X) U definedQSymbs(X)

Not exported.

The particular declaration of some symbol can be found using the following function:

declAt (X: Signature, atom: Atom) decl: Decl
pre atom € atoms(X)
post decl = (CONSTS(E)UTYPES(S)UBINDERS(S)UDTYPES(X))(atom)

Not exported.

C.5.2 Consistency and Completeness Checks

A construct or a rule statement is consistent with a signature it&iyms in it have the
correct number of arguments as far as the signature is concerned:

isConsis WithSig : (Construct | RuleStmt) x Signature — B
isConsis WithSig(cr, 2) 2
let mk-Signature(cem, ctm, gem, gtm) = X in
hasConsisArgSizes(cr)
AYoterm € oTerms(cr) -
SYMBOL(oterm) € declaredCSymbs(X)
= size(ARGS(oterm)) = declaredCSymbSize(X, SYMBOL(oterm))

Not exported.

The auxiliary function for finding the size of some declargslymb is:

declaredCSymbSize (X: Signature, ct: CSymb) nn: N x N
pre ct € declaredCSymbs(X')
post let decl = declAt(X, ct) in

nn = cases decl of

N x N — decl
Def — arity(decl)
end

Not exported.

A signature is OK if all its declarations are consistent with it:

C.5 Signatures 353

15-OK-S1g : Signature — B
is-OK-Sig(X) £ Vdef € oDefs(X) U geDefs(X)-isConsis WithSig(def, X)

Not exported.

A construct is reasonable in the context of a signature if it is complete, consistent with the
signature, and all its atoms are declared in the signature:

1sReasonableWRTSig : Construct x Signature — B
isReasonable WRTSig(c, Y) 2

isComplete(c) N isConsis WithSig(c, X')
A atoms(c) C declaredCSymbs(X) U declared@QSymbs(X')

Not exported.

A signature is reasonable if all its declarations are reasonable constructs with respect to
itself:

isReasonableSig : Signature — B
isReasonableSig(X) £
Vdef € oDefs(X) U geDefs(X) - isReasonable WRTSig(def, X)

Not exported.

C.5.3 Equivalence Testing

Binder definitions are equivalent up to renaming of bound variables and metavariable
symbols:

areEquivalentQEDefs : Fxp X Fxp — B
areEquivalentQEDefs (e, e3) &
is-OK-QFEDef (e1) N is-OK-QFEDef (e3)
A Imem: MESymb =~ MESymb, mtm: MTSymb "~ MTSymb -

isEquivalent To(renameMSymbs (e, mem, mtm), ez)
Not exported.

The problem of collapse of metavariable symbols does not come in here because of course
e; has only one of each kind.

So binder declarations are equivalent if they’re both null, lzotkcH, or equivalent binder
definitions:

areFEquivalentQQEDecls : QEDecl x (QEDecl — B
areEquivalentQEDecls(qed, ged’) 2
cases ged of

Exp — qed’ € Exp N\ areEquivalentQEDefs(qed, ged")
NullQEDecl — qged’ € NullQQEDecl
ZILCH — qed’ = ZILCH

end

354 C The Specification of the Proof Assistant

Not exported.

Constant and type declarations are equivalent if they’re both null, equal arities, or equiv-
alent expressions or types:

areEquivalentCEDecls : CEDecl x CEDecl — B
areEquivalentCEDecls(ced, ced') £
cases ced of
Exp — ced' € Exp N isEquivalentTo(ced, ced’)
N x N — ced’ € N x N A ced = ced’
NullCEDecl — ced’ € NullCEDecl
end

Not exported.

areEquivalentCTDecls : C'TDecl x CTDecl — B
areEquivalentCTDecls(ctd, ctd') &
cases ctd of

Type — ctd" € Type N isEquivalentTo(ctd, ctd')
N x N — ctd' € N x N A ctd = ctd’
NullCTDecl — ctd’ € NullCTDecl

end

Not exported.

C.5.4 New Signatures for Old
Signatures are nonclashing if common declarations are equivalent:

areNonclashingSigs : Signature x Signature — B
areNonclashingSigs(X, X') &
let mk-Signature(cem, ctm, gem, qgtm) = X,
mk-Signature(cem’, ctm’, gem’, gtm') = X' in
Vet € dom cem N dom cem/-areEquivalentCEDecls(cem(cet), cem/(cet)) A
Vctt € dom ctm N dom ctm/- areEquivalentC'TDecls(ctm(ctt), ctm/(ctt))A
Vqet € dom gem N dom gem’-are EquivalentQEDecls(qgem(qet), gem’(qet))

Not exported.
Nonclashing signatures can be merged to form a single sigi&ture

mergeSigs (S: Signature-set) X: Signature
pre VX' X" € S - areNonclashingSigs(X', X')
post let cem = T{CONSTS (%) | % € S},
ctm = T{TYPES (%) | X € S},
gem = t{BINDERS(%,) | Xy € S},
gtm = T{DTYPES(%,) | Zo € S} in
X = mk-Signature(cem, ctm, gem, qgtm,)

12The use of the generalised map overwrite function is valid here because the pre-condition ensures that
any common declarations are equivalent. Its use does mean that this is another of those operations which is
in general underdetermined, of course, though again all possible results are clearly mutually equivalent.

C.5 Signatures 355

Not exported.

C.5.5 Unfolding Definitions

In this section we present functions for unfolding definitions. First, a check that a term is
unfoldable (the term should be @h7’erm or a QEzp and its symbol should be a defined
symbol. If the symbol is &Symb the size of the arguments expected by its declaration
should be the same as the size of the term’s arguments):

isUnfoldable : Term x Signature — B
isUnfoldable(term,) &
let symb = SYMBOL(term) in
term € OTerm A
symb € definedCSymbs(X)AargSize(term) = declaredCSymbSize(X, symb)
V term € QFExp N symb € defined@QSymbs(X')

Not exported.

The following function unfolds an occurrence of a definitiosidea construct:

unfoldDefAt (c: Construct, X: Signature, i: Index) ¢": Construct
pre isValidIndex(c, i) A isUnfoldable(termAtindex(c, i), X')
post let term = termAtIndex(c, i),
term’ = if term € OTerm
then unfoldOTerm(term, X)
else unfold@QFExp(term, X))
in
¢ = replaceTermAt(c, i, term’)
Exported.

OTerms are unfolded simply by filling the placeholders in the corresponding defienda
with the relevant arguments:

unfoldOTerm (oterm: OTerm, X Signature) def: Def
pre isUnfoldable(oterm, X)
post let decl = declAt(X, SYMBOL(oterm)) in

def = fillPHoles(decl, ARGS (oterm))

Not exported.

Unfortunately the same trick can’t be used for defined binders; instead we perform a few
contortions withEPHoles and ELists to ensure that#PHoles in the expression being
unfolded are preserved, then instantiate their metavariable symbols appropriately:

unfold@QFExp (qe: QExp, X: Signature) e: Exp
pre isUnfoldable(ge, X')

356 C The Specification of the Proof Assistant

post let decl = declAt(X, SYMBOL(qe)),
{60} = meSymbs(decl),
{¢} = mtSymbs(decl),
be = BODY (qe),
¢/ = bumpEPHoles((BODY (be), VAR(be)),
decl’ = growELists(decl, eArity(BODY (be))),
inst = mk-Instantiation({0 — €'},{¢ — UNIVERSE(be)}) in
e = instantiate(decl’, inst)

Not exported.

The auxiliary functions used in the above are:

bumpEPHoles (e: Exp, vt: VSymb) €': Exp
pre vt ¢ boundVars(e)
post let is = indices(e),
js = {i € is | termAtindex(e, 1) = vt},
ks = {i € is | termAtIndex(e, i) € EPHole},
Is ={i € is | termAtindex(e,i) € Leaf},
is' = is — js,
Is"=1s — ks in
indices(e') = is A
Vi € js - termAtindez(e’, 1) = mk-EPHole(1) A
Vi € is' -
let term = termAtindez(e, i) in
classOf (termAtIndez(e', 1)) = classOf (term) A
(i € ls’ = termAtindex(e',i) = term) A
(i € ks = termAtIndex (€', 1) = mk-EPHole(INDEX (term) + 1))

Not exported.

growELists (e: Exp,n:N) e': Exp
post let is = indices(e),
gs ={i €is|leni > 2 A termAtindex(e,i) € EList N
SYMBOL(termAtindex (e, truncate(truncate(i)))) € MESymb},
ks = {i"[k] | i € jsAlentermAtindex(e,i)+1 < k < lentermAtindez(e,i)+n} in
indices(e') = is U ks A
Vi€ ks -
termAtindex (e, i) = mk-EPHole(last(i)—len termAtindex (e, truncate(i)))
Vi€ is-
let term = termAtindex(e,i) in
classOf (termAtindex (e’ i)) = classOf (term) A
(term € leaves(e) = termAtindex(e’,1) = term)

Not exported.
Claim: Ve € Exp - growELists(e,0) = e

Finally, a function which tests whether a constrdtts equivalent to the construct ob-
tained as a result of unfolding a definition at some given index in

C.6 Theories 357

1sValidUnfold : Construct x Construct x Signature x Index — B
isValidUnfold(c, ¢/, X ,i) £
pre-unfoldDefAt(c, X, i) A isEquivalent To(unfoldDefAt(c, X, 1), ')

Not exported.

C.6 Theories

Theory :» PARENTS : Theory-ref-set
EXSIG . Signature
Visible.
Theorymap = Theory-ref — Theory
where

inv-Theorymap(m) 2 hasNoClashingAncestors(m) A isNoncircular(m)

inheritsFrom Theory : Theory-ref x Theory-ref x Theory-ref — Theory — B
inheritsFrom Theory(thy, thy, m) 2

let ths = PARENTS(m(thy)) in

thy € domm A (thy € ths V 3th € ths - inheritsFromTheory(th, the, m))

Not exported.

isNoncircular : Theory-ref — Theory — B
isNoncircular(m) £ Vth € domm - — inheritsFromTheory(th, th, m)

Not exported.

ancestors : Theory-ref x Theory-ref —— Theory — Theory-ref-set

ancestors(th,m) £
{th} U{th’ € Theory-ref | inheritsFromTheory(th, th’, m)}

Exported.

definedAncestors : Theory-ref x Theory-ref — Theory — Theory-ref-set
definedAncestors(th,m) £ ancestors(th, m) N domm

Not exported.

hasNoClashingAncestors : Theory-ref —— Theory — B
hasNoClashingAncestors(m) £
Vth € domm - Vthy, thy € definedAncestors(th, m) -
areNonclashingSigs(EXSIG(m(thy)), EXSIG(m(ths)))

Not exported.

358 C The Specification of the Proof Assistant

C.6.1 Accessing functions

Thefull signatureof a theory is obtained by merging the signatures of all the defined an-
cestors of the theory. This is well-defined because the invariant on the theorymap ensures
that the ancestors are non-clashing.

fullSig : Theory-ref x Theorymap — Signature
fullSig(th, thm) &
let S = {EXSIG(thm(th')) | th' € definedAncestors(th,thm)} in
mergeSigs(S)
Not sure.

The atoms available in a theory are those of its full signature:

atoms : Theory-ref x Theorymap — Atom-set
atoms(th, thm) 2 atoms(fullSig(th, thm))

Not exported.

The rules in a theory are all those whoBEEFORY field is that theory:

rules : Theory-ref x Rulemap X Theorymap — Rule-ref-set
rules(th, rm, thm) 2
{r € domrm | THEORY (rm(r)) € ancestors(th, thm)}
Exported.
Claim: rules(th, rm, thm) C dom rm
And the axioms in a theory are those of its rules which have a null proof:
axioms : Theory-ref x Rulemap x Theorymap — Rule-ref-set

azioms(th, rm, thm) 2 {r € rules(th, rm, thm) | PROOF (rm(r)) = nil}

Not exported.

C.6.2 Consistency and completeness checks

A rule statement is reasonable with respect to a theory if it's OK as a rule statement and
all its component expressions are reasonable with respect to the theory’s full signature:

isReasonableWRT Theory : RuleStmt x Theory-ref x Theorymap — B
isReasonable WRT Theory(rs, th, thm) £

let X = fullSig(th, thm) in

is-OK-RuleStmt(rs) ANVe € exps(rs) - isReasonable WRTSig(e, X)

Background. System should warn if violated.

A theory is reasonable if its full signature is reasonable and all its rules have reasonable
statements:

C.7 Morphisms and Theory Morphisms 359

1sReasonableTheory : Theory-ref x Rulemap X Theorymap — B
isReasonable Theory(th, rm, thm) 2
th € dom thm A isReasonableSig(fullSig(th, thm)) A
Vr € rules(th, rm, thm)-isReasonable WRT Theory(STMT (rm(r)), th, thm)

Background. System should warn if violated.

C.7 Morphisms and Theory Morphisms
C.7.1 Morphisms

SigMorph . CEMAP : CESymb =+ CEMDecl
CTMAP : CTSymb ™ CTMDecl
QEMAP : QESymb = QESymb
QTMAP : QTSymb "~ QTSymb

where

inv-SigMorph(a) &
Vomdef € oMDefs(o) -
freeVars(omdef) = { }AmeSymbs(omdef) = { }AmtSymbs(omdef) = { }

Probably only need to be visible as a part of theory morphisms.
CEMDecl = Exp | CESymb | NullCEMDecl

CTMDecl = Type | CTSymb | NullCTMDecl

MDecl = CEMDecl | CTMDecl

Here, primitive constants and types will be mapped respectivelype and Types whilst
defined ones will be mapped to defined ones. The possibility that a user hasn’t yet decided
which category a particulaf'Symb falls into is catered for in the usual way by the two
null declarations.

The auxiliary functionoMDefs which extracts all objects of claggrp or classType
from the ranges of the signature morphism’s mappings is given by:

oMDefs : SigMorph — Def-set

oMDefs(o) &
let em = CEMAP (o) U CTMAP(o) in
{d € mgem | d € Def}

Not exported.
C.7.2 Accessing Functions

First, a function for finding the set af'Symbs for which morphisms are actually defined
(that is the ones that don’t map to null declarations).

360 C The Specification of the Proof Assistant

morphedCSymbs : SigMorph — CSymb-set
morphedCSymbs(o) 2
let em = CEMAP(o)U CTMAP(o) in
{ct € dom em | em(ct) ¢ (NullCEMDecl | NullCTMDecl)}

Not exported.

Hotly pursued by one for finding th@Symbs for which morphisms are defined, though
this one’s pretty unexciting as there aren’t any null declarations in this case. Thus, these
are just the domains of the relevant two maps:

morphedQSymbs : SigMorph — QSymb-set
morphed@QSymbs(c) £ dom QEMAP(c)Udom QTMAP(o)

Not exported.

ThedefinedC'Symbs of a signature morphism are those which mag’&ymbs under the
mappings in its first two fields:

definedCSymbs : SigMorph — CSymb-set
definedCSymbs(c) £
let em = CEMAP (o) U CTMAP(0) in
{ct € domem | em(ct) € CSymb}

Not exported.

And theprimitive CSymbs are those which are mapped to &gp or a Type:

primitiveCSymbs : SigMorph — CSymb-set
primitiveCSymbs(a) 2
let em = CEMAP (o) U CTMAP(o) in
{ct € domem | em(ct) € Def}

Not exported.

All atoms translated by a signature morphism are simply given by the union of the do-
mains of all its fields:

translatedAtoms : SigMorph — Atom-set
translatedAtoms(o) 2
dom CEMAP(c)Udom CTMAP(c)Udom QEMAP (o)Udom QTMAP (o)

Not exported.

Finally, the thing that some translated atom translates to under a signature morphism is
given by its image under the relevant mapping:

mDeclAt (o: SigMorph, atom: Atom) mdecl: MDecl
pre atom € translatedAtoms(o)

post mdecl = (CEMAP(o)UCTMAP(0)UQEMAP(c)UQTMAP(0))(atom)

Not exported.

C.7 Morphisms and Theory Morphisms 361
C.7.3 Translations

Generally speaking, an objecttisnslatableacross a signature morphism if the transla-
tions of all its atoms are defined, though the situation is somewhat more complicated in the
case ofOTerms, however — when it$' YMBOL is translated to an expression or a type,
that expression or type should in addition be fillable by the translateds. Note that

free variables, placeholders and metavariable symbols do not change under translation,
though bound variables may change in order to avoid clashes and variable capture.

isTranslatableOTerm : OTerm x SigMorph — B
is TranslatableO Term(oterm, o) £
let ot = SYMBOL(oterm),

elrtl = ARGS (oterm) in
isTranslatable(elztl, o) N
(ot € CSymb =
ot € morphedCSymbs(a) A
(mDeclAt (o, ot) € Def
= isFillableBy(mDeclAt(o, ot), translate(elztl, 0))))

Not exported.

1sTranslatable : Exp x SigMorph — B
is Translatable(e, o) £

cases e of

mk-QFExp(get, be) — qet € dom QEMAP (o) A isTranslatable(be, o)
OFEzp — isTranslatableOTerm(e, o)

others true

end

Not exported.

1sTranslatable : Type x SigMorph — B
is Translatable(t, o) &
cases t of
mk-SubType(be) — isTranslatable(be, o)
mk-QType(qtt, bt) — qtt € dom QTMAP (o) A isTranslatable(bt, o)
OType — isTranslatableOTerm(t, o)
others true
end

Not exported.

1sTranslatable : BTerm x SigMorph — B
is Translatable(bterm, o) &
isTranslatable(UNIVERSE (bterm), o) ANis Translatable(BODY (bterm), o)

Not exported.

362 C The Specification of the Proof Assistant

1sTranslatable : EListXTList x SigMorph — B
is Translatable(elxtl, o) 2

isTranslatable(ELIST (elxtl), o) A isTranslatable(TLIST (elxtl), o)

Not exported.

1sTranslatable : ArgList x SigMorph — B
isTranslatable(al,0) & Vdef € mgal - isTranslatable(def , o)

Not exported.

Now the functions for translation. Each naturally has a precondition that the object to be
translated actually be translatable.

translate (e: Exp,o: SigMorph) e': Exp
pre isTranslatable(e, o)
post ¢/ = cases e of
mk-QFEzp(get, be) — let get’ = mDeclAt(o, get),
be’ = translate(be, o) in
mk-QFEzp(qget’, be’)
mk-OFEzxp(oet, elztl) — let elztl’ = translate(elztl, o) in
if oet € CESymb
then let md = mDeclAt(o, oet) in
if md € Fxp
then fillPHoles(md, elxtl’)
else mk-OFEzp(md, elztl’)
else mk-OFEzp(oet, elxtl’)
others e
end

Not exported.

translate (t: Type, o: SigMorph) t': Type
pre isTranslatable(t, o)
post ¢/ = cases t of
mk-Sub Type(be) — mk-Subtype(translate(be, o))
mk-QType(qtt, bt) — let bt’ = translate(bt, o),
qtt" = mDeclAt(o, gtt) in
mk-Q Type(qtt’, bt")
mk-OType(ott, elxtl) — let elztl’ = translate(elxtl, o) in
if ott € CT'Symb
then let md = mDeclAt(o, ott) in
if md € Type
then fillPHoles(md, elxztl")
else mk-OType(md, elxtl’)
else mk-OType(ott, elxtl’)
others ¢
end

C.7 Morphisms and Theory Morphisms 363

Not exported.

translate (be: BEzp, o: SigMorph) be': BExp
pre isTranslatable(be, o)
post let vt = VAR(be),
t = translate(UNIVERSE (be), o),
e = translate(BODY (be), o) in
be’ = build-BExp(vt, t, e)

Not exported.

translate (bt: BType, o: SigMorph) bt': BType
pre isTranslatable(bt, o)
post let vt = VAR(bt),
t = translate(UNIVERSE(bt), o),
t' = translate(BODY (bt), o) in
bt" = build-BType(vt, t,t")

Not exported.

translate (elztl: EListX TList, o: SigMorph) elztl’: EListX TList
pre isTranslatable(elxtl, o)
post let el = translate(ELIST (elxtl), o),
tl = translate(TLIST (elxtl), o) in
elztl’ = build-EListX TList(el, tl)

Not exported.

translate (el: EList,o: SigMorph) el’: EList
pre isTranslatable(el, o)
post el’ = build-EList([translate(el(i), o) | i € dom el])

Not exported.

translate (tl: TList,o: SigMorph) tl': TList
pre isTranslatable(tl, o)
post tI' = build-TList([translate(tl(i), o) | i € dom tl])

Not exported.

Similar functions for translating sequents and rule statements:

isTranslatable : (Sequent | RuleStmt) x SigMorph — B
is Translatable(srs,0) £ Ve € exps(srs) - isTranslatable(e, o)

Not exported.

translate (s: Sequent, o: SigMorph) s': Sequent
pre isTranslatable(s, o)

364 C The Specification of the Proof Assistant

post let prems = {translate(e,o) | e € PREMISES(s)},
upshot = translate(UPSHOT (s),0) in
s" = mk-Sequent(NFV (s), prems, upshot)

Not exported.

translate (rs: RuleStmt, o: SigMorph) rs": RuleStmt
pre isTranslatable(rs, o)
post let shyps = {translate(s,o) | s € SEQHYPS(rs)},
ohyps = {translate(e,o) | e € ORDHYPS(rs)},
con = translate(CONCL(rs), o) in
rs’ = mk- RuleStmt(shyps, ohyps, con)

Not exported.

Next, we need to be able to translate a construct over a sequence of signature morphisms.
In order to save writingConstruct | Sequent | RuleStmt more than twice, we'll intro-
duce a shorthand for it:

CSR = Construct | Sequent | RuleStmt

The first function checks that it is actually possible to translate something over a sequence
of signature morphisms:

1sTranslatablex : CRS x SigMorph* — B
isTranslatablex(crs, sml) 2
if sml =]
then true
else let 0 = hd sml,
sml" = tlsml in
isTranslatable(crs, o) A isTranslatable x (translate(crs, o), sml’)

Not exported.

The next group do the translation:

translatex (c: Construct, sml: SigMorph*) ¢’ Construct
pre isTranslatable (¢, sml)
post ¢’ = if sml =[]
then ¢
else let 0 = hd sml,
sml" = tlsml in
translate * (translate(c, o), sml’)

Not exported.

translatex (s: Sequent, sml: SigMorph*) s': Sequent
pre isTranslatable * (s, sml)
post let prems = {translate x (e, sml) | e € PREMISES(s)},
upshot = translate x (UPSHOT (s), sml) in
s" = mk-Sequent(NFV (s), prems, upshot)

C.7 Morphisms and Theory Morphisms 365

Not exported.

translatex (rs: RuleStmt, sml: SigMorph*) rs': RuleStmt
pre isTranslatable (rs, sml)
post let shyps = {translate x (s,sml) | s € SEQHYPS(rs)},
ohyps = {translate x (e, sml) | e € ORDHYPS(rs)},
con = translate * (CONCL(rs), sml) in
rs’ = mk-RuleStmt(shyps, ohyps, con)

Not exported.

C.7.4 Consistency and Completeness Checks

A signature morphism is consistent with two signatures if it translates things that are
consistent with the first to things that are consistent with the second:

1sConsis WithSigs : SigMorph x Signature X Signature — B
isConsis WithSigs(o, X, ') &
let pcs = primitiveCSymbs(X),
des = definedCSymbs(X),
dgqs = defined@Symbs(X),
pem = primitiveCSymbs (o),
dem = definedCSymbs(o),
gm = morphed@Symbs (o),
pgs’ = primitiveQSymbs(X'),
des’ = definedCSymbs(X'),
dgqs’ = defined@Symbs(X’) in
desNpem = { } ApesNdem = { } A
Vet € pes N pem -
isConsis WithSig(mDeclAt(o, ct), X')
A declAt(X, ct) = arity(mDeclAt(o, ct))
AVct € des N dem, -
mDeclAt(o, ct) € des’ =
arity(declAt(X', mDeclAt(o, ct))) = arity(declAt(X, ct)) A
(isTranslatable(declAt(X, ct), o)
= isEquivalentTo(translate(declAt(X, ct), o),
declAt(X', mDeclAt(o, ct))))
AVqt € dgs N gm -
mDeclAt(o, qt) ¢ pgs’ A
(isTranslatable(declAt(X, qt),) N mDeclAt(o, qt) € dgs’
= areEquivalentQEDefs(translate(declAt(X, qt), o),
declAt(X', mDeclAt(o, qt))))

Not exported.

Claim:

366 C The Specification of the Proof Assistant

Ve € Construct -
isConsis WithSigs(o, X, X")NisConsis WithSig(c, X)Nis Translatable(c, o)
= isConsisWithSig(translate(c, o), X')

A signature morphism is reasonable with respect to two signatures if it translates things
which are reasonable with respect to the first signature to things which are reasonable
with respect to the second, and it preserves definitions:

1sReasonable WRTSigs : StgMorph x Signature x Signature — B
isReasonable WRTSigs(o, X, %) &
atoms(X) C morphedCSymbs(o) U morphedQSymbs(o) A
isConsis WithSigs(o, X, X') A
Vet € primitiveCSymbs(X) -
isReasonable WRTSig(mDeclAt(o, ct), X')
AYct € definedCSymbs(X) -
isTranslatable(declAt(X, ct), o) AmDeclAt(o, ct) € definedCSymbs(X")
AV qt € primitive@QSymbs (X)) -
mDeclAt(co, qt) € defined@Symbs(X") U primitiveQSymbs (L")
AV qt € defined@QSymbs(X) -
isTranslatable(declAt(X, qt),c)AmDeclAt(o, qt) € defined@QSymbs(X")

Not exported.

Claim:

Ve € Construct -
isReasonable WRTSigs(o, X, X') N
isReasonable WRTSig(c, X) A isTranslatable(c, o) =
isReasonable WRTSig(translate(c, o), X’)

C.7.5 Theory Morphisms

ThMorph = FROM : Theory-ref
TO . Theory-ref
VIA . SigMorph
JUSTIF : Rule-ref =~ Rule-ref
Should be visible.

ThMorphmap = ThMorph-ref - ThMorph

Some accessing functions:

C.7 Morphisms and Theory Morphisms 367

rulesUsed : ThMorph-ref x Rulemap x Theorymap x ThMorphmap
— Rule-ref-set
rulesUsed (T, rm, thm, tmm) 2
let mk- ThMorph(thy, thy, o, jm) = tmm(7) in
if 7 € domtmm
then {ym(az) | az € azioms(thy, rm, thm) N dom jm}

else { }

Not exported.

rules YetToBeJustified (1: ThMorph-ref , rm: Rulemap, thm: Theorymap,
tmm: ThMorphmap) rs: Rule-ref-set
pre 7 € dom tmm
post let mk-ThMorph(thy, thy, o, jm) = tmm(T) in
rs = axioms(thy, rm, thm) — dom jm

Exported.

A theory morphism is consistent if its signature morphism is consistent and translates

axioms from the source theory to rules in the target theory:

1sConsis ThMorph : ThMorph-ref x Rulemap x Theorymap x ThMorphmap
— B
isConsis ThMorph(t, rm, thm, tmm) &
let mk-ThMorph(thy, thy, o, jm) = tmm(7) in
T € domtmm =
isConsis WithSigs(o, fullSig(thy, thm), fullSig(ths, thm))
AYaz € axioms(thy, rm, thm) N dom jm -
gm(az) € domrm =
gm(az) € rules(the, rm, thm)
A (isTranslatable(STMT (rm(az)),0) =
establishesRuleStmt(STMT (rm(jm(ax))), translate(STMT (rm(ax)),0)))

Background. Warning when violated.

A theory morphism is reasonable if its signature morphism is reasonable and translates

all axioms of the source theory to defined rules in the target theory:

isReasonable ThMorph : ThMorph-ref X Rulemap x Theorymap x ThMorphmap
— B
isReasonable ThMorph(T, rm, thm, tmm) £
let mk-ThMorph(thy, the, o, jm) = tmm(7) in
T € dom tmm A
isReasonable WRTSigs(o, fullSig(thy, thm), fullSig(thy, thm))
A azioms(thy, rm, thm) C dom jm
A rulesUsed (T, rm, thm, tmm) C dom rm
A isConsis ThMorph (T, rm, thm, tmm)

368 C The Specification of the Proof Assistant

Exported, or maybe background.
Claim:

isReasonable ThMorph (T, rm, thm, tmm) A T € dom tmm
= rulesUsed (T, rm, thm, tmm) C rules(TO(tmm(7)), rm, thm)

Note: A reasonable theory morphism translates derived rules from the source theory into
derivable rules in the target theory, provided axioms translatalid rules. This is the
metarule about our system which justifies the use of theory morphisislayustif in
§C.8.9.

A sequence of theory morphisms links up correctly if thi@ field of an element in the
sequence is in the ancestors of theO M field of the next element for every element but
the last:

linkUp : (ThMorph-ref*) x Theorymap x ThMorphmap — B
linkUp(tml, thm, tmm) &
Vn € inds tml - tml(n) € dom tmm A
Vn € inds tml- TO(tmm(tml(n))) € ancestors(FROM (tmm(tml(n+1))), thm)

Not exported.
C.7.6 More Translations

Translations over a sequence of theory morphisms:

1sTranslatable x x : CSR X ThMorph-ref* x ThMorphmap — B
isTranslatable * x(csr, tml, tmm) 2
rng tml C dom tmmAis Translatablex(csr, [VIA(tmm(tml(i))) | ¢« € dom tml])

Not exported.

translate x x (csr: CSR, tml: ThMorph-ref*, tmm: ThMorphmap) csr’: CSR
pre isTranslatable * x(csr, tml, tmm)
post let sml = [VIA(tmm(tml(7))) | i € dom tml] in

csr’ = translate x (csr, sml)

Exported.

C.8 Proofs

Proof . SEQHYPS : Sequent-ref — Sequent
BOXMAP . Boxmap
ROOT . Box-ref
NFV . VSymb = Box-ref

where

C.8 Proofs 369

inv-Proof (p) 2
let mk-Proof (sm, bm, b, vm) = p in
b € roots(p) A hasClosedJustifs(p)
AVs € g sm - isProper(s) N NFV(s) Ndomwvm = { }
AV € roots(p) - newFreeVarsOfBoxz(p,b') = { }

The invariant insists that the root of a proof should actually be one of the proof’s roots
(see below), that all sequent hypotheses should be proper, that lines, boxes and sequents
used in justifications in the proof should themselves be in the same proof attempt as the
line they're justifying, and that no root box should introduce new free variables.

C.8.1 Boxes

Box :: HYPS : Hypline-ref —~ Exp
LINES : Ordline-ref - Ordline
BOXES : Box-ref-set
CON . Ordline-ref

where

inv-Boz(b) & CON(b) € dom LINES(b)

The invariant on boxes forces the conclusion of a box to be one of the lines of that box.

Ordline :: BODY . FExp
JUST : Justification

Boxmap = Boz-ref — Box

where

inv-Bormap(m) O

isNoncircular(m) A isClosed(m) A hasNoOverlappingBozes(m)

The invariant says that no box should be a subbox of itself, all subboxes of any box in the
boxmap are themselves in the boxmap, and no boxes are overlapping.

A box is asubboxof another box if it is one of tfBOXES or is a subbox of one of its
BOXES:"

isSubbox : Box-ref x Box-ref x Boz-ref -~ Box — B
isSubbox (by, by, m) 2

by € domm A

let bs = BOXES(m(bs)) in

(by € bs V 3b € bs - isSubboz(by, b, m))

Not exported.
A boxmap isnoncircularif no box in it is a subbox of itself:

isNoncircular : Box-ref -~ Box — B
isNoncircular(m) £ Vb € domm - — isSubbox (b, b, m)

370 C The Specification of the Proof Assistant

Not exported.
A boxmap isclosedif it contains theBOXES of any box in it:

isClosed : Box-ref - Box — B
isClosed(m) £ Vb€ rmgm - BOXES(b) C domm

Not exported.

A boxmaphas no overlapping boxes distinct boxes don’t have hypotheses, lines or
boxes in common:

hasNoQuverlappingBozes : Box-ref — Box — B
hasNoOQuverlappingBoxes(m) £
Vbl, bQ € domm -
by # by =
dom HYPS(m(by)) Ndom HYPS(m(be)) = { }
A dom LINES(m(by)) Ndom LINES (m(be)) = { }
A BOXES(m(by)) N BOXES(m(by)) =1}

Not exported.

The Boxmap is roughly a forest of trees representing potentially different attempts at
a single proof. TheROOT field of the proof records the outermost proof box of that
proof attempt currently of interest. Switching between proof attempts can be achieved
simply by changing the proof’s root. Unused trees, as well as unused lines in the relevant
tree could be removed from a completed proof by means of some sort of proof ‘garbage
collector’.

C.8.2 Accessing Functions (Proofs and Boxes)

The roots of a proof are those boxes which are not subboxes of any box in the proof’s
boxmap, that is they are the root boxes of all the separate attempts at the proof. Note that
the invariant on proof implies that the roots must have at least one member.

roots : Proof — Box-ref-set
roots(p) £
let bm = BOXMAP(p) in
dom bm — U{BOXES(b) | b € rng bm}

The hypotheses of a box in some proof are precisely the hypotheses of that box!

hypsOfBozx (p: Proof , b: Box-ref) es: Exp-set
pre b € dom BOXMAP(p)
post let bm = BOXMAP(p) in

es =g HYPS(bm(b))

Clear from user interface.
The function to find the conclusion of a box holds equally few surprises:

conOfBox (p: Proof , b: Box-ref) e: Exp
pre b € dom BOXMAP(p)

C.8 Proofs 371

post let bm = BOXMAP(p),
Im = LINES(bm(b)) in
e = BODY (Im(CON (bm(b))))

Clear from user interface.
The rule statement (not necessarily proper) implicit in a proof has the proof's sequent

hypotheses as its sequent hypotheses and the hypotheses and conclusion of the root box
as its ordinary hypotheses and conclusion:

ruleStmt : Proof — RuleStmt
ruleStmt(p) 2
let ss = rng SEQHYPS(p),
es = hypsOfBox(p, ROOT (p)),
e = conOfBox(p, ROOT(p)) in
mk-RuleStmt(ss, es, e)

Clear from user interface.

The new free variables introduced by a box are the ones which map to that box under the
NF'V field of the proof:

newkFreeVarsOfBox : Proof x Boz-ref — VSymb-set
newFree VarsOfBox(p, b) &

let vm = NF'V(p) in

{v edomuvm | vm(v) = b}

Clear from user interface.
The subboxes of a box are the box itself plus all those which are a subbox of it:

subboxesOfBoz (p: Proof , b: Box-ref) bs: Box-ref-set
pre b € dom BOXMAP(p)
post bs = {b' € Boz-ref | b' = bV isSubboz(b', b, BOXMAP(p))}

Not exported.

All the ordinary lines in a proof are given by the union of the domains of thér'S fields
of all the proof’s boxes:

ordlines : Proof — Ordline-ref-set
ordlines(p) 2

let bm = BOXMAP(p) in

U{dom LINES(bm(b)) | b € dom bm}

Not exported.

For convenience, we’'ll call ordinary lines and (ordinary) hypothesis lines

Line-ref = Ordline-ref | Hypline-ref

Thelinesin a box (not including its subboxes) are its hypotheses plus its ordinary lines:

lines : Box — Line-ref-set

lines(b) £ dom HYPS(b)Udom LINES(b)

372 C The Specification of the Proof Assistant

Not exported.

The lines in a box plus all its subboxes are precisely that:

linesOfBox (p: Proof , b: Boz-ref) ls: Line-ref-set
pre b € dom BOXMAP(p)
post let bm = BOXMAP(p) in
Is = U{lines(bm(b")) | b’ € subbozesOfBox(p,b)}

Not exported.
Note that this is a disjoint union since boxes are non-overlapping.

The lines in a proof are simply the lines in all its boxes:

lines : Proof — Line-ref-set
lines(p) £
let bm = BOXMAP(p) in
U{lines(bm(b)) | b € dom bm}

Not exported.
Claim: ordlines(p) = lines(p) N Ordline-ref
The innermost box in which a line lies is that box whose lines includes the desired line:

boxOfLine (p: Proof , l: Line-ref) b: Boz-ref
pre [€ lines(p)
post b € dom BOXMAP(p) Al € lines(BOXMAP (p)(b))

Not exported.

Of course, for eachandp satifying the preconditiomozOfLine(p,) is uniquely deter-
mined.

Claim: [€ linesOfBoz(p,b) < boxOfLine(p,l) € subboresOfBox(p, b)

Theexpression labellingf a box is a map from lines to their bodies:

expLabelling : Box — Line-ref —— Exp
expLabelling(b) £
HYPS(b) {0l — BODY (LINES(b)(ol)) | ol € dom LINES(b)}

Not exported.

Whilst that of a proof is just the overwrite of those of all the proof’s boxes. Note that
the use of the distributive map overwrite function is valid here because the invariant on
Bozmap says that boxes do not overlap.

expLabelling : Proof — Line-ref — Exp
expLabelling(p) 2
T {expLabelling(BOXMAP(p)(b)) | b € dom BOXMAP(p)}

C.8 Proofs 373

Not exported.

Claim: dom expLabelling(p) = lines(p)

Thejustification labellingof a proof is similar to its expression labelling but is instead

a mapping from lines to the justifications appearing thereon. The other slight difference
is that there is no contribution from any ordinary hypothesis lines as they don’'t have
justifications.

justifLabelling : Proof — Ordline-ref - Justification
justifLabelling(p) 2
let bm = BOXMAP(p) in
T{{ol — JUST(LINES(bm(b))(ol)) | ol € dom LINES(bm(b))} | b € dom bm}

Not exported.
Claim: dom justifLabelling(p) = ordlines(p)

A proof hasclosed justificationsf, for each possible root of the proof, the lines, boxes
and sequents (see below) of the justifications in the tree starting from that root are all in
that tree:

hasClosedJustifs : Proof — B
hasClosedJustifs(p) £
Vb € roots(p) -
let Is = linesOfBoz(p, b),
bs = subboresOfBox(p, b),
ss =dom SEQHYPS(p),
glab = ls < justifLabelling(p)
in
Vj € rngjlab -
lines(j) C s
A bozes(j) C bs
A sequents(j) C ss

C.8.3 Justifications
The (as yet incomplete) collection of justification kiftls

Justification = RuleJustif | SeqHypJustif | UnfoldDefJustif |
FoldDefJustif | NullJustif | ...

13As has become common practice, functions actingJastification in general will be written as
identically-named functions on each of the different kinds of justification separately in order to avoid partic-
ularly horrendous case statements (Isn't VDM wonderful?). It should be clear to those few not yet suffering
from a complete mental breakdown what is meant! It is claimed that the modularity of (this version of) the
specification is such that, in order to add a new kind of justification, all that is necessary is to define both
it and the functionsestablishesExp, establishesSequent, isReasonableAtLine, relevantJustif, justifs,
lines, boxes, sequents, rules, andthMorphs on it.

374 C The Specification of the Proof Assistant

Each of the basic kinds of justification will be dealt with in turn below. But first, some
general support functions which will be needed later.

General Support Functions for Justifications

In general, the justification of some line in a proof will consist of some particular kind of
justification together with a set alependentsThese dependents will point off to (other)
lines, boxes, or sequent hypotheses in the proof, or may themselves be justifications. In
general, expression dependents can be justified by appeal to either lines in the proof or to
other justificationsdrdinary dependenjswhilst sequent dependents can be justified by
appeal either to lines, boxes or sequent hypotheses in the proof or to other justifications
(sequent dependeits

OrdDependent = Line-ref | Justification
SeqDependent = Line-ref | Box-ref | Sequent-ref | Justification

The functions below state the conditions that an expression be established by an ordinary
dependent and that a sequent be established by a sequent demoeptibr the case
Justification. This is dealt with below for each kind of justification in turn.

An easy one for starters — a lin@stablishes an expression at lislaf the expression on
line [is equivalent to it.

establishesExp (I: Line-ref | e: Exp, ol: Ordline-ref , p: Proof , th: Theory-ref
rm: Rulemap, thm: Theorymap, tmm: ThMorphmap) a: B
pre ol € ordlines(p)
post let elab = expLabelling(p) in
a < 1 €dom elab A isEquivalentTo(elab(l), e)

Not exported.

Similarly, a linel establishes a sequent at lingif the expression on it establishes the
sequent.

establishesSequent (I: Line-ref | s: Sequent, ol: Ordline-ref , p: Proof , th: Theory-ref
rm: Rulemap, thm: Theorymap, tmm: ThMorphmap) a: B
pre ol € ordlines(p)
post let elab = expLabelling(p) in
a < | €dom elab A establishesSequent(elab(l), s)

Not exported.

A box b establishes a sequent at linkif the sequent made out of the free variables, the
hypotheses and the conclusion of the box establishes that sequent.

establishesSequent (b: Bozx-ref | s: Sequent, ol: Ordline-ref , p: Proof , th: Theory-ref
rm: Rulemap, thm: Theorymap, tmm: ThMorphmap) a: B
pre ol € ordlines(p)

C.8 Proofs 375

post b € dom BOXMAP(p) A
let vsb = newFreeVarsOfBox(p, b),
con = conOfBoz(p, b),
hyps = hypsOfBox(p, b),
s" = mk-Sequent(vsb, hyps, con) in
a & establishesSequent(s', s)

Not exported.

Lastly, a sequent hypothesis establishes a sequent ailihi does!

establishesSequent (s: Sequent-ref, s': Sequent, ol: Ordline-ref , p: Proof,
th: Theory-ref , rm: Rulemap, thm: Theorymap,
tmm: ThMorphmap) a: B
pre ol € ordlines(p)
post a < s € dom SEQHYPS(p) A establishesSequent(SEQHYPS(p)(s), s’)

Not exported.

Rule Justifications

RuleJustif :» RULE . Rule-ref
VIA . ThMorph-ref*
INST . Instantiation
VMAP : VSymb <= VSymb

ORDDEPS : Exp ™ OrdDependent
SEQDEPS : Sequent - SeqDependent

Roughly, arule justificationtranslates the statement of a given rule across some sequence
of theory morphisms and instantiates the metavariable symbols and the free variables in
the sequent hypotheses of the translated rule statement accordingdstheand VMA P

fields respectively. The remaining fields link hypotheses of the instantiated, translated rule
statement to dependents which should establish them.

A rule justification’s rule statement is instantiable if it's translatable oveYits field and
if the result of the translation is instantiable by if8S7T field:

hasInstantiable Rule : RuleJustif x Rulemap x ThMorphmap — B
hasInstantiableRule(j, rm, tmm) 2

RULE(j) € dom rm

A

let 7s = STMT (rm(RULE(j))) in

isTranslatable x x(rs, VIA(j), tmm)

A

let rs" = translate * x(rs, VIA(j), tmm) in

isInstantiableBy(rs’', INST(j))

Not exported.

A rule justification isOK if:
1. The rule is in the correct theory;

376 C The Specification of the Proof Assistant

2. The theory morphisms link up properly;

3. It has an instantiable rule (as defined above).

1sOK : RuleJustif X Proof x Theory-ref x Rulemap x Theorymap x ThMorphmap
— B
isOK (4, p, th, rm, thm, tmm) &
let = RULE(j),
tml = VIA(j),
n = len tml,
thy = if n =0 then th else FROM (tmm(tmi(1)))
in
r € rules(thy, rm, thm)
AN(n#0 = TO(tmm(tml(n))) € ancestors(th, thm))
A linkUp(tml, tmm, thm) A hasInstantiableRule(j, rm, tmm)

Not exported.
A rule justificationestablishes an expressiahsome (ordinary) line! if:
1. The rule justification is OK;

2. The conclusion of the instantiated, translated rule statement is equivalent to the
given expression;

3. Each ordinary hypothesis of the instantiated, translated rule statement is established
by its dependent i RDDEPS;

4. Each sequent hypothesis of the instantiated, translated rule statement is either triv-
ially true or is established by its dependentSiEQ DEPS.

establishesEzxp (j: RuleJustif , e: Exp, ol: Ordline-ref , p: Proof
th: Theory-ref , rm: Rulemap, thm: Theorymap,
tmm: ThMorphmap) a: B
pre ol € ordlines(p)
post a <
isOK (7, p, th, rm, thm, tmm)
AN
let s = rulelnstance(j, rm, tmm),
mk-RuleJustif (r, tml, inst, vm, odm, sdm) = j in
isEquivalentTo(e, CONCL(rs))
AYé € ORDHYPS(rs) -
é € dom odm A establishesExp(odm(é€), ¢, ol, p, th, rm, thm, tmm)
AVS € SEQHYPS(rs) -
is Trivially True($)
V § € dom sdmAestablishesSequent(sdm($), §, ol, p, th, rm, thm, tmm)

Not exported.

A rule justificationestablishes a sequeat some (ordinary) line! if:

1. The rule justification is OK;

C.8 Proofs 377

2. Each sequent hypothesis of the instantiated, translated rule statement is either triv-
ially true or is established by its dependentSiEQDEPS.

3. Each ordinary hypothesis of the instantiated, translated rule statement which has a
dependent iTORDDEPS is established by that dependent;

4. The sequentto be established is established by the sequent whose upshot and premises
are respectively the conclusion and the ordinary hypotheses with no dependent of
the instantiated, translated rule statement, and whose new free variables are those
which are apparently free in its premises and upshot but which are not free in either
the proof at lineol or the established (ordinary and sequent) hypotheses.

establishesSequent (j: RuleJustif , s: Sequent, ol: Ordline-ref , p: Proof,
th: Theory-ref , rm: Rulemap, thm: Theorymap,
tmm: ThMorphmap) a: B
pre ol € ordlines(p)
post ¢ <
isOK (4, p, th, rm, thm, tmm)
VAN
let s = rulelnstance(j, rm, tmm),
odm = ORDDEPS(j),
sdm = SEQDEPS(j),
es = ORDHYPS(rs) — dom odm,
es’ = ORDHYPS(rs) Ndom odm in
Vs € SEQHYPS(rs) -
isTrivially True($)
V § € dom sdmAestablishesSequent(sdm($), §, ol, p, th, rm, thm, tmm)
AVE € es -
establishesExp(odm(é), é, ol, p, th, rm, thm, tmm)
VAN
let sus = U{freeVars(s) — NFV(s) | s € SEQHYPS(rs)},
pus = freeVarsAtLine(p, ol),
evs = U{freeVars(e') | ¢ € es'},
vs = U{freeVars(e) | e € es V e = CONCL(rs)} — (svs U pvs U evs),
s" = mk-Sequent(vs, es, CONCL(rs)) in
establishesSequent(s', s)

Not exported.

The auxiliary functionrulelnstance used in both of the above returns the relevant in-
stantiation of theRuleJustif’s translated rule statement (assuming, of course, that such a
thing actually exists!):

rulelnstance (j: RuleJustif , rm: Rulemap, tmm: ThMorphmap) rs: RuleStmt
pre hasInstantiableRule(j, rm, tmm)
post let rs' = STMT (rm(RULE(j))),
rs" = translate x x(rs', VIA(j), tmm),
rs" = renameFreeVars(rs"”, VMAP(j)) in
rs = instantiate(rs” , INST(j))

378 C The Specification of the Proof Assistant

Not exported.

Thejustifsof a rule justification are those dependents which are justifications:

justifs : RuleJustif — Justification-set

justifs(j) 2
let dm = SEQDEPS(j) U ORDDEPS(j) in
{j" € rngdm | j’ € Justification}

Not exported.

Thelinesof a rule justification are those dependents which are lines plus the lines of all
of its justifs:

lines : RuleJustif — Line-ref-set
lines(j) 2
let dm = SEQDEPS(j) U ORDDEPS(j) in
U{lines(j") | ' € justifs(j)} U{l € rngdm | | € Line-ref }

Not exported.

Theboxesof a rule justification are those (sequent) dependents which are boxes plus the
boxes of all of its justifs:

boxes : RuleJustif — Boz-ref-set
bozes(j) £
U{bozes(j') | j' € justifs(j)} U{b € rng SEQDEPS(j) | b € Bozx-ref}

Not exported.

Thesequentsf a rule justification are those (sequent) dependents which are sequents plus
the sequents of all of its justifs:

sequents : RuleJustif — Sequent-ref-set
sequents(j) 2

U{sequents(j') | ' € justifs(j)}U{s € mg SEQDEPS(j) | s € Sequent-ref}
Not exported.
Therulesof a rule justification are it® ULFE field plus the rules of each of its justifs.

rules : RuleJustif — Rule-ref-set
rules(j) & U{rules(j') | i’ € justifs(j)} U{RULE(j)}

Not exported.

Thetheory morphismsf a rule justification are the range of itd A field plus the theory
morphisms of each of its justifs.

thMorphs : RuleJustif — ThMorph-ref-set
thMorphs(j) & U{thMorphs(j') | j' € justifs(j)} U rng VIA(j)

Not exported.

The relevantpart of a rule justification is obtained by removing unused parts from the
INST, VMAP, ORDDEPS and SEQDEPS fields (e.g. instantiations of metavariable

C.8 Proofs 379

symbols which don't appear in the translated rule, or dependents of expressions or se-
guents which aren't in the hypotheses of the instantiated, translated rule) and replacing
all justification dependents in the resulting rule justification with their relevant part. If
the justification doesn’t have an instantiable rule, it's all considered to be relevant (in the
absence of any evidence to the contrary!).

relevantJustif : RuleJustif X Proof x Rulemap x ThMorphmap — RuleJustif
relevantJustif (5, p, rm, tmm) 2
if hasInstantiableRule(j, rm, tmm)

then
let s = rulelnstance(j, rm, tmm),
mk-RuleJustif (r, tml, inst, vm, odm, sdm) = j,
rs' = STMT (rm(r)),
om' = U{NFV (s) | s € SEQHYPS(rs')} < vm,
inst’ = mk-Instantiation(meSymbs(rs’) < MEMAP (inst),
mtSymbs(rs') < MTMAP (inst)),
odm’ = {é — relevantJustif (odm(é), p, rm, tmm) |
é € dom odm A odm(é) € Justification},
sdm' = {§ — relevantJustif (sdm(3), p, rm, tmm) |
§ € dom sdm A sdm($) € Justification},
odm” = ORDHYPS(rs) < (odm t odm’),
sdm” = SEQHYPS(rs) < (sdm T sdm’) in
mk-RuleJustif (r, tml, inst’, vm', odm”, sdm'")
else j

Not exported.

A rule justification isreasonable at some ordinary line of a prabit’'s OK, if its rule
instance is reasonable at that line, and if all the justifications usedCs8e! below) in it
are reasonable at that line:

isReasonableAtLine (j: RuleJustif , ol: Ordline-ref , p: Proof , th: Theory-ref
rm: Rulemap, thm: Theorymap, tmm: ThMorphmap) a: B

pre ol € ordlines(p) N isConsis WithSig(ruleStmt(p), fullSig(th, thm))
post ¢ <

isOK (g, p, th, rm, thm, tmm)

A isReasonableAtLine(rulelnstance(j, rm, tmm), ol, p, th, thm)

AYj € justifsUsed(j, p, rm, tmm) -

isReasonableAtLine(j, ol, p, th, rm, thm, tmm)

Not exported.

Sequent Hypothesis Justifications

SeqHypJustif :: SEQUENT . Sequent-ref
VMAP : VSymb = VSymb
ORDDEPS : Exp = OrdDependent

380 C The Specification of the Proof Assistant

Roughly, the sequent hypotheSIEQUENT has its free variables renamed according to
VMAP. The remaining field links premises of the resulting sequent to dependents which
should establish them.

A sequent hypothesis justification is OK if iIF#QUFENT is among the proof’s sequent
hypotheses.

1sSOK : SeqHypJustif x Proof x Theory-ref x Rulemap X
Theorymap x ThMorphmap — B

isOK (4, p, th,rm, thm,tmm) £ SEQUENT(j) € dom SEQHYPS(p)

A sequent hypothesis justification establishes an expression if:
1. The justification is OK;

2. The upshot of the sequent obtained by renaming free variables Sw{(ps/ENT
field according to the (free) variable instantiation map inWt& A P field is equiv-
alent to the expression;

3. Each premise of that sequent is established by its dependé®DEPS.

establishesExp (j: SeqHypJustif , e: Exp, ol: Ordline-ref , p: Proof,
th: Theory-ref , rm: Rulemap, thm: Theorymap,
tmm: ThMorphmap) a: B

pre ol € ordlines(p)
post ¢ <

isOK (j, p, th, rm, thm, tmm)

A

let mk-SeqHypJustif (s, vm, odm) = j,

§ = renameFree Vars(SEQHYPS(p)(s),vm) in
isEquivalentTo(e, UPSHOT($))
AVé € PREMISES(3) -
é € dom odm A establishesExp(odm(é), ¢, ol, p, th, rm, thm, tmm)

Not exported.

Claim As a proof’s sequent hypotheses are proper, the preconditicitnofne Free Vars
as used in the above (and, by an amazing coincidence, in the below!) is automatically
satisfied.

A sequent hypothesis justification establishes a sequent if:
1. The justification is OK;

2. Each premise of the renamed sequent which has a depend@RIMDEPS is
established by that dependent;

3. The sequentto be established is established by the sequent whose upshot and premises
are respectively the upshot and the premises with no dependent of the renamed
sequent, and whose new free variables are those which are apparently free in its
premises and upshot but which are not free in either the proof awlire the
established premises.

C.8 Proofs 381

establishesSequent (j: SeqHypJustif , s: Sequent, ol: Ordline-ref , p: Proof ,
th: Theory-ref , rm: Rulemap, thm: Theorymap,
tmm: ThMorphmap) a: B
pre ol € ordlines(p)
post a <
isOK (j, p, th, rm, thm, tmm)
VAN
let mk-SeqHypJustif (s', vm, odm) = j,
s" = renameFreeVars(SEQHYPS(p)(s'), vm),
es = PREMISES(s") — dom odm,
es’ = PREMISES(s") N dom odm,
pus = freeVarsAtLine(p, ol),
evs = U{freeVars(e’) | ¢ € es'},
vs = U{freeVars(e) | e € es V e = UPSHOT(s")} — (puvs U evs),
§ = mk-Sequent(vs, es, UPSHOT(s")) in
Vé € es-
establishesExp(odm(é), é, ol, p, th, rm, thm, tmm)
A establishesSequent (s, s)

Not exported.

The justifs in a sequent hypothesis justification are those (ordinary) dependents which are
justifications:

gustifs : SeqHypJustif — Justification-set
justifs(j) & {j' € rng ORDDEPS(5) | i’ € Justification}

Not exported.

The lines in a sequent hypothesis justification are the lines of all of its justifs plus those
dependents which are lines:

lines : SeqHypJustif — Line-ref-set
lines(j) &
U{lines(y") | 5" € justifs(j)} U{l € rng ORDDEPS(j) | | € Line-ref }

Not exported.

The boxes in a sequent hypothesis justification are just those in all of its justifs:

boxes : SeqHypJustif — Box-ref-set
bores(j) 2L U{bozes(j') | j' € justifs(j)}

Not exported.
The sequents in a sequent hypothesis justification are those in all its justifs HBSISEN T

sequents : SeqHypJustif — Sequent-ref-set
sequents(j) £ U{sequents(j’) | 7 € justifs(j)} U{SEQUENT(j)}

Not exported.

The rules in a sequent hypothesis justification are just those in all of its justifs:

382 C The Specification of the Proof Assistant

rules : SeqHypJustif — Rule-ref-set
rules(j) 2 U{rules(') | j' € justifs(j)}

Not exported.

The thMorphs in a sequent hypothesis justification are just those in all of its justifs:

thMorphs : SeqHypJustif — ThMorph-ref-set
thMorphs(j) 2 U{thMorphs(j') | i’ € justifs(j)}

Not exported.

The relevant part of a sequent hypothesis justification is obtained by removing unused
parts from theVMAP and ORDDEPS fields and replacing all justification dependents

in the resulting sequent hypothesis justification with their relevant part. If the justifica-
tion's SEQUENT isn’t amongst the proof’s sequent hypotheses, it's all considered to be
relevant.

relevantJustif : SeqHypJustif X Proof x Rulemap x ThMorphmap
— SeqHypJustif
relevantJustif (5, p, rm, tmm) 2
if SEQUENT(j) € dom SEQHYPS(p)
then
let mk-SeqHyp Justif (s, vm, odm) = j,
s' = SEQHYPS(p)(s),
om' = NFV (s") < vm,
odm' = {é > relevantJustif (odm(é), p, rm, tmm) |
é € dom odm A odm(é) € Justification},
odm” = PREMISES(s") < (odm T odm/),
in
mk-SeqHypJustif (s, vm', odm”)
else j

Not exported.

A sequent hypothesis justification is reasonable at some ordinary line of a proof if it's OK
and if all the justifications used in it are reasonable at that line:

isReasonableAtLine (j: SeqHypJustif , ol: Ordline-ref , p: Proof , th: Theory-ref,
rm: Rulemap, thm: Theorymap, tmm: ThMorphmap) a: B
pre ol € ordlines(p) N isConsis WithSig(ruleStmt(p), fullSig(th, thm))
post ¢ <
isOK (7, p, th, rm, thm, tmm)
AY] € gustifsUsed(j, p, rm, tmm) -
isReasonableAtLine(j, ol, p, th, rm, thm, tmm)

Not exported.

Unfold Definition Justifications

UnfoldDefJustif :: TOLINE . Line-ref
SUBTERM : Index

C.8 Proofs 383

Roughly, the subterm of the expression on IIR@LINE designated by NDEX is re-
placed by whatever it's defined to Be

An unfold definition justification is OK if:
1. TheTOLINE is one of the proof’s lines;

2. The index given points to a valid subterm of the expression on that line;

3. The subterm at that index is unfoldable.

1sOK : UnfoldDefJustif X Proof x Theory-ref x Rulemap x Theorymap x ThMorphmap
— B
isOK (4, p, th, rm, thm, tmm) 2
let mk- UnfoldDefJustif (1,1) = 7,
elab = expLabelling(p),
X = fullSig(th, thm) in
[€ dom elab A isValidIndex(elab(l), i) N
isUnfoldable(termAtindex(elab(l), 1),)

Not exported.

An unfold definition justification establishes some expression if it is OK and if the result
of unfolding the definition at the appropriate index in the expression on the given line
yields (some expression equivalent to) that expression:

establishesExp (j: UnfoldDefJustif , e: Exp, ol: Ordline-ref , p: Proof
th: Theory-ref , rm: Rulemap, thm: Theorymap,
tmm: ThMorphmap) a: B
pre ol € ordlines(p)
post ¢ <
isOK (j, p, th, rm, thm, tmm)
A\
let mk- UnfoldDefJustif (1,1) = 7,
elab = expLabelling(p),
Y = fullSig(th, thm) in
isEquivalent To(unfoldDefAt(elab(l), X, i),)

Not exported.

An unfold definition justification establishes a sequent if it's OK and if the expression
resulting from unfolding the definition at the appropriate index in the expression on the
given line establishes the required sequent:

establishesSequent (j: UnfoldDefJustif , s: Sequent, ol: Ordline-ref , p: Proof,
th: Theory-ref , rm: Rulemap, thm: Theorymap,
tmm: ThMorphmap) a: B

pre ol € ordlines(p)

“Note that this makes no provision for unfolding definitions in sequent hypotheses. This is probably not
an important omission, and, as the proof model stands, there’s no easy way to accommodate such unfolding.
It is therefore being ignored.

384 C The Specification of the Proof Assistant

post ¢ <
isOK (3, p, th, rm, thm, tmm)
VAN
let mk- UnfoldDefJustif (1,1) = 7,
elab = expLabelling(p),
X = fullSig(th, thm) in
establishesSequent(unfoldDefAt(elab(l), X, 1), s)

Not exported.
An unfold definition justification has no justifs:

gustifs : UnfoldDefJustif — Justification-set
Justifs(7) 2 {}

Not exported.

The lines (actually, there’s only one!) of an unfold definition justification are simply its
TOLINE.

lines : UnfoldDefJustif — Line-ref-set
lines(j) & {TOLINE(j)}

Not exported.

An unfold definition justification has no boxes ...

boxes : UnfoldDefJustif — Box-ref-set
bozes(j) 2 {}

Not exported.
... and no sequents...

sequents : UnfoldDefJustif — Sequent-ref-set
sequents(j) & {}

Not exported.

...andnorules ...

rules : UnfoldDefJustif — Rule-ref-set
rules(j) & {}

Not exported.
... and no theory morphisms.

thMorphs : UnfoldDefJustif — ThMorph-ref-set
thMorphs(j) & {}

Not exported.

The relevant part of an unfold definition justification is the whole thing.

C.8 Proofs 385

relevantJustif : UnfoldDefJustif x Proof x Rulemap x ThMorphmap
— UnfoldDefJustif
relevantJustif (5, p, rm, tmm) 2

Not exported.
An unfold definition justification is reasonable at an ordinary line if it's OK:

isReasonableAtLine (j: UnfoldDefJustif , ol: Ordline-ref , p: Proof , th: Theory-ref
rm: Rulemap, thm: Theorymap, tmm: ThMorphmap) a: B

pre ol € ordlines(p) A isConsis WithSig(ruleStmt(p), fullSig(th, thm))

post a < isOK(j,p, th, rm, thm, tmm)

Not exported.

Fold Definition Justifications
This is just like unfolding definitions, only backwards.

FoldDefJustif :: TOLINE . Line-ref
SUBTERM : Index

A fold definition justtification is OK if it's TOLINE is one of the lines of the proof.

1sOK : FoldDefJustif x Proof x Theory-ref x Rulemap x Theorymap x ThMorphmap
— B
isOK (5, p, th, rm, thm, tmm) 2 TOLINE(j) € lines(p)

Not exported.
A fold definition justification establishes an expression if:
1. The justification is OK;
. Theindex in itsSUBTERM field is a valid index of that expression;

2
3. The subterm at that index is unfoldable;
4

. The result of unfolding the definition at that subterm yields (some expression equiv-

alent to) the expression on the justificatio§ LINE.

establishesExp (j: FoldDefJustif , e: Exp, ol: Ordline-ref , p: Proof,
th: Theory-ref , rm: Rulemap, thm: Theorymap,
tmm: ThMorphmap) a: B
pre ol € ordlines(p)
post a <
isOK (g, p, th, rm, thm, tmm)
VAN
let mk-FoldDefJustif (1,i) = j,
elab = expLabelling(p),
X = fullSig(th, thm) in
isValidIndez (e, i) A isUnfoldable(termAtindex (e, i), X))
A isEquivalentTo(unfoldDefAt(e, X, i), elab(l))

386 C The Specification of the Proof Assistant

Not exported.

A fold definition justification establishes a sequent if:
1. The justification is OK;

2. The free variables in the expression on theL/NFE and the sequent’'s new free
variables are disjoint;

3. Theindex initsSUBTERM field is a valid index of the upshot of the sequent;
4. The subterm at that index is unfoldable;

5. The expression resulting from unfolding the definition at that subterm is equivalent
to the expression on thEOLINE.

establishesSequent (j: FoldDefJustif , s: Sequent, ol: Ordline-ref , p: Proof
th: Theory-ref , rm: Rulemap, thm: Theorymap,
tmm: ThMorphmap) a: B
pre ol € ordlines(p)
post ¢ <
isOK (3, p, th, rm, thm, tmm)
VAN
let mk-FoldDefJustif (1,1) = 7,
elab = expLabelling(p),
X = fullSig(th, thm),
e = UPSHOT(s) in
isValidIndez (e, i) A isUnfoldable(termAtindex (e, i), X))
A NFV (s) N freeVars(elab(l)) = { }
N isEquivalent To(unfoldDefAt(e, X, 1), elab(l))

Not exported.
A fold definition justification has no justifs:

justifs : FoldDefJustif — Justification-set
justifs(j) & {}

Not exported.
The lines (again, there’s only one!) of a fold definition justification are simply@4./NE.

lines : FoldDefJustif — Line-ref-set
lines(j) & {TOLINE(j)}

Not exported.

A fold definition justification has no boxes ...

boxes : FoldDefJustif — Box-ref-set
bozes(j) & {}

C.8 Proofs 387

Not exported.

... and no sequents....

sequents : FoldDefJustif — Sequent-ref-set
sequents(j) £ {}

Not exported.

...andnorules...

rules : FoldDefJustif — Rule-ref-set
rules(j) 2 {}

Not exported.

... and no theory morphisms.
thMorphs : FoldDefJustif — ThMorph-ref-set
thMorphs(j) 2 {}

Not exported.

The relevant part of a fold definition justification is the whole thing.

relevantJustif : FoldDefJustif x Proof x Rulemap x ThMorphmap
— FoldDefJustif
relevantJustif (5, p, rm, tmm) 2

Not exported.

A fold definition justification is reasonable at an ordinary line if it's OK:

isReasonableAtLine (j: FoldDefJustif , ol: Ordline-ref , p: Proof , th: Theory-ref
rm: Rulemap, thm: Theorymap, tmm: ThMorphmap) a: B

pre ol € ordlines(p) A isConsis WithSig(ruleStmt(p), fullSig(th, thm))

post a < isOK(j,p, th, rm, thm, tmm)

Not exported.

Null Justifications

These beasts cover the case when no decision has yet been made on the type of justifica-
tion to be used at some given point.

A null justification doesn’t establish an expression:

establishesEzxp (j: NullJustif , e: Ezp, ol: Ordline-ref , p: Proof,
th: Theory-ref , rm: Rulemap, thm: Theorymap,
tmm: ThMorphmap) a: B
pre ol € ordlines(p)
post a <« false

Not exported.

A null justification doesn’t establishes a sequent either:

388 C The Specification of the Proof Assistant

establishesSequent (j: FoldDefJustif , s: Sequent, ol: Ordline-ref , p: Proof
th: Theory-ref , rm: Rulemap, thm: Theorymap,
tmm: ThMorphmap) a: B
pre ol € ordlines(p)
post a <« false

Not exported.
A null justification has no justifs ...

justifs : NullJustif — Justification-set
justifs(j) 2 {}

Not exported.
...andnolines...

lines : NullJustif — Line-ref-set
lines(j) & {}

Not exported.

... and no boxes ...

bozes : NullJustif — Boz-ref-set
bozes(j) 2 {}

Not exported.
... and no sequents ...

sequents : NullJustif — Sequent-ref-set
sequents(j) £ {}

Not exported.

...andnorules...

rules : NullJustif — Rule-ref-set
rules(j) £ {}

Not exported.

... and no theory morphisms.

thMorphs : NullJustif — ThMorph-ref-set
thMorphs(j) & {}

Not exported.

The relevant part of a null justification is the whole thing.

relevantJustif : NullJustif x Proof x Rulemap x ThMorphmap — NullJustif
relevantJustif (5, p, rm, tmm) 2§

Not exported.

A null justification is reasonable at any ordinary line.

C.8 Proofs 389

isReasonableAtLine (j: NullJustif , ol: Ordline-ref , p: Proof , th: Theory-ref,
rm: Rulemap, thm: Theorymap, tmm: ThMorphmap) a: B

pre ol € ordlines(p) A isConsis WithSig(ruleStmt(p), fullSig(th, thm))

post a < true

Not exported.

C.8.4 Accessing Functions (Justifications)

The justifications usedn some justification are the justifs of the relevant part of that
justification.

gustifsUsed : Justification x Proof x RuleMap x ThMorphmap
— Justification-set
justifsUsed(j, p, rm,tmm) 2 justifs(relevantJustif (j, p, rm, tmm)

Not exported.

Thelines usedn some justification are the lines of the relevant part of that justification.

linesUsed : Justification X Proof x RuleMap x ThMorphmap — Line-ref-set
linesUsed(j, p, rm, tmm) 2 lines(relevantJustif (j, p, rm, tmm)

Not exported.
Theboxes useth some justification are the boxes of the relevant part of that justification.

boxesUsed : Justification X Proof x RuleMap x ThMorphmap — Box-ref-set
bozesUsed(j, p, rm,tmm) 2 boxes(relevantJustif (j, p, rm, tmm)

Not exported.

Therules usedn some justification are the rules of the relevant part of that justification.

rulesUsed : Justification X Proof x RuleMap x ThMorphmap — Rule-ref-set
rulesUsed(j, p, rm, tmm) 2 rules(relevantJustif (§, p, rm, tmm)

Not exported.

And the theory morphisms useid some justification are the theory morphisms of the
relevant part of that justification.

thMorphsUsed : Justification X Proof x RuleMap x ThMorphmap
— ThMorph-ref-set
thMorphsUsed(j, p, rm, tmm) 2 thMorphs(relevantJustif (4, p, rm, tmm)

Not exported.

C.8.5 Dependencies

A line | depends on some other liiien a proof if [is an ordinary line and if’ is one of
the lines used in justifying or is the conclusion of some box used in justifyihgr if it

390 C The Specification of the Proof Assistant

depends on such a line/conclusion of a box:

dependsOnlLine (I: Line-ref I": Line-ref , p: Proof,

rm: Rulemap, tmm: ThMorphmap) a: B
pre [, I € lines(p)
post let jlab = justifLabelling(p),

bm = BOXMAP(p) in
a <=

[€ dom jlab A

let 7 = jlab(1),
cons = {CON (bm(b)) | b € boxesUsed(j, p, rm, tmm)},
ls = linesUsed(j, p, rm, tmm) U cons in

(I' e Is v 3l € Is - dependsOnLine(l, I, p, rm, tmm))

Not exported.

The lines used in a proof are those on which the proof’s conclusion depends:

linesUsed : Proof X Rulemap x ThMorphmap — Line-ref-set
linesUsed(p, rm, tmm) 2
let bm = BOXMAP(p),
ls = linesOfBox(p, ROOT (p)),
con = CON (bm(ROOT(p))) in
{con} U{l € Is | dependsOnLine(con,l, p, rm, tmm)}

Not exported.

This function is intended to be applied to completed proofs to determine which lines are
actually needed in the proof, i.e. as part of the proof garbage collector.

The rules used in justifying some set of lines in a proof are the rules used in the justifica-
tions of those lines!

rulesUsedInLines : Proof x Line-ref-set X Rulemap x ThMorphmap
— Rule-ref-set
rulesUsedInLines(p, Is, rm, tmm) 2
let jlab = Is < justifLabelling(p) in
U{rulesUsed(j, p, rm, tmm) | j € rngjlab}

Not exported.

The rules used in a proof are those used in the justifications of the lines used therein:

rulesUsed : Proof x Rulemap x ThMorphmap — Rule-ref-set
rulesUsed(p, rm, tmm) 2

let Is = linesUsed(p, rm, tmm) in

rulesUsedInLines(p, ls, rm, tmm,)

Exported for complete proofs.

And the theory morphisms used in a proof are those used in the justifications of the lines
used:

C.8 Proofs 391

thMorphsUsed : Proof x Rulemap x ThMorphmap — ThMorph-ref-set
thMorphsUsed(p, rm, tmm) 2
let Is = linesUsed(p, rm, tmm),
glab = Is < justifLabelling(p) in
U{thMorphsUsed(j, p, rm,tmm) | j € rngjlab}

Exported for complete proofs.

A proof is well-formed if it has no circular dependencies and has no dependencies which
reach into boxes:

1sWfdProof : Proof x Rulemap x ThMorphmap — B
isWfdProof (p, rm, tmm) 2
Vb € roots(p) -
let Is = linesOfBoz(p, b),
bs = subboresOfBox(p, b),
glab = ls < justifLabelling(p) in
VI € dom jlab -
— dependsOnLine(l, 1, p, rm, tmm)
NbozesUsed(jlab(l), p, rm, tmm)N{b" € bs | | € linesOfBoz(p, b")}

AV € bs -
I ¢ linesOfBox(p, b) =
linesUsed (jlab(1), p, rm, tmm) N lines(bm (b)) = {}
A bozesUsed(jlab(l), p, rm, tmm) N BOXES(bm(b)) = { }

Background. Warning when violated.
Claim:

isWfdProof (p, rm, tmm) A Iy € lines(p) A dependsOnLine(l, b, p, rm, tmm)
= b € lines(p) N boxOfLine(p, ly) € subboxresOfBox(p, boxOf (s, p))

Claim:

VI, I € Line-ref, b € Box-ref -
(dependsOnLine(l,l', p, rm, tmm) A
[& linesOfBox(p,b) N1 € linesOfBox(p, b))
= let con = CON(BOXMAP(p)(b)) in
(dependsOnLine(l, con, p, rm, tmm)AdependsOnLine(con,l’, p, rm, tmm))

C.8.6 When s a Proof Finished?

A function for finding the assumptions on which a line depends, by tracing back along
dependencies:

assumptionsOfLine (p: Proof , l: Line-ref , rm: Rulemap,
tmm: ThMorphmap) ls: Line-ref-set
pre isWfdProof (p, rm, tmm) A I € lines(p)

392 C The Specification of the Proof Assistant

post let jlab = justifLabelling(p) in
Is = if | € dom jlab
then
let 5 = jlab(l),
Is; = U{assumptionsOfLine(p, ', rm, tmm) |
' € linesUsed(j, p, rm, tmm)},
lsy = U{ assumptionsOfBoz(p, b, rm, tmm) |
b € boxesUsed(j, p, rm,tmm)} in
lSl U ZSQ
else {/}

Exported.

assumptionsOfBox (p: Proof , b: Boz-ref , rm: Rulemap,
tmm: ThMorphmap) ls: Line-ref-set
pre isWfdProof (p, rm,tmm) A b € dom BOXMAP(p)
post let b = BOXMAP(p)(b) in
Is = assumptionsOfLine(p, CON(b'), rm, tmm) — dom HYPS(b')

Not exported.
Note how hypotheses of boxes are discharged.
Claim:

isWfdProof (p, rm, tmm) A ol € ordlines(p) =
assumptionsOfLine(p, ol, rm, tmm) C
{l € Line-ref | dependsOnLine(ol, 1, p, rm, tmm)}

A proof is finished if it is well-formed and the only assumptions on which its conclusion
depends are hypotheses of ROOT"

isFinished : Proof x Rulemap x ThMorphmap — B
isFinished(p, rm, tmm) 2
let brn = BOXMAP(p),
root = bm(ROOT(p)) in
isWfdProof (p, rm, tmm)
A assumptionsOfLine(p, CON (root), rm, tmm) C dom HYPS(root)

Not exported.

Of course, just because a proof is finished doesn’'t mean that it's valid: its expression
labellings must also be reasonable and complete, and its justifications must all be valid.

C.8.7 General Support Functions for Proofs

First, a function to extract the free variables available at a given line in a proof by collect-
ing all the new free variables of boxes containing the line:

freeVarsAtLine (p: Proof, l: Line-ref) vs: VSymb-set
pre [€ lines(p)

C.8 Proofs 393

post vs = U{newFreeVarsOfBox(p, b) |
[€ linesOfBox(p, b) A b € dom BOXMAP (p)}

Not exported.

Claims:
s € mg SEQHYPS(p) = NFV(s)N freeVarsAtLine(p,l) = { }

[¢ linesOfBox(p, b)
= newFreeVarsOfBox(p, b) N free VarsAtLine(p,l) = { }

let bm = BOXMAP(p), box = bm(b) in

(isWfdProof (p, rm, tmm) A b € dom bm

A dependsOnLine(CON (box), l, p, rm, tmm) A | & lines(box))
= newFreeVarsOfBox(p, b) N free VarsAtLine(p,l) = { }

It's as a result of this third property that the usual variable occurrence side-conditions will
be inforced.

An expression iseasonable at some line in a proibfits free variables are all available

at that line, if it's reasonable with respect to the relevant signature, if it contains no place-
holders, and if metavariables appear consistently in the expression and the proof’s rule
statement:

isReasonableAtLine (e: Exp, l: Line-ref , p: Proof , th: Theory-ref
thm: Theorymap) a: B

pre | € lines(p) A isConsis WithSig(ruleStmt(p), fullSig(th, thm))
post ¢ <

freeVars(e) C freeVarsAtLine(p, 1)

A isReasonable WRTSig(e, fullSig(th, thm))

A isFull(e)

N 1sConsis WithRuleStmt (e, ruleStmt(p))

Not exported.

A sequent is reasonable at some line in a proof if its apparent free variables are actually
free or are available at that line, if all its exps are reasonable with respect to the relevant
signature and contain no placeholders, and if metavariables appear consistently in the
sequent and the proof’s rule statement:

isReasonableAtLine (s: Sequent, l: Line-ref , p: Proof , th: Theory-ref,
thm: Theorymap) a: B

pre [€ lines(p) A isConsis WithSig(ruleStmt(p), fullSig(th, thm))
post ¢ <

freeVars(s) € NFV (s) U freeVarsAtLine(p, ()

AVe € exps(s) -

isReasonable WRTSig(e, fullSig(th, thm)) A isFull(e)
A isConsis WithRuleStmt(s, ruleStmt(p))

394 C The Specification of the Proof Assistant

Not exported.

A rule statement is reasonable at some line in a proof if its conclusion, its ordinary hy-
potheses and its sequent hypotheses are all reasonable at that line:

isReasonableAtLine (rs: RuleStmt, I: Line-ref , p: Proof , th: Theory-ref,
thm: Theorymap) a: B
pre [€ lines(p) A isConsis WithSig(ruleStmt(p), fullSig(th, thm))
post ¢ <
isReasonableAtLine(CONCL(rs), [, p, th, thm)
ANVe € ORDHYPS(rs) -
isReasonableAtLine(e, [, p, th, thm)
AVs € SEQHYPS(rs) -
isReasonableAtLine(s,l, p, th, thm)

Not exported.

C.8.8 Consistency Checks on the Expressions and Justifications in a
Proof

A line has a reasonable body if the expression on it is reasonable at that line:

hasReasonableBody (I: Line-ref , p: Proof , th: Theory-ref , thm: Theorymap) a: B
pre [€ lines(p) N isConsis WithSig(ruleStmt(p), fullSig(th, thm))
post let e = expLabelling(p)(l) in

a < isReasonableAtLine(e, , p, th, thm)

Background. Warning when violated.

Aline has a reasonable justification if it's a hypothesis line or if it's an ordinary line whose
justification is reasonable at that line:

hasReasonableJustif (1: Line-ref , p: Proof , th: Theory-ref, rm: Rulemap,
thm: Theorymap, tmm: ThMorphmap) a: B
pre [€ lines(p) N isConsis WithSig(ruleStmt(p), fullSig(th, thm))
post let jlab = justifLabelling(p) in
a
& | €domjlab = isReasonableAtLine(jlab(l),l, p, th, rm, thm, tmm)

Background. Warning when violated.

C.8.9 Completeness Checks

A line in a proof is completely justified (with redundancies allowed) if it's a hypothesis
line or if it's an ordinary line whose body is established by its justification:

isJustifiedLine (p: Proof , l: Line-ref , th: Theory-ref,
rm: Rulemap, thm: Theorymap, tmm: ThMorphmap) a: B
pre [€ lines(p)

C.9 The Store 395

post let elab = expLabelling(p),
jlab = justifLabelling(p) in
a

& |l €domjlab = establishesExp(jlab(l), elab(l), p, th, rm, thm, tmm)
Exported.

A proof conducted in a given theory is complete if it is finished and all the lines used
to establish the conclusion have complete and reasonable bodies and justifications (if
appropriate):

isComplete (p: Proof , th: Theory-ref , rm: Rulemap, thm: Theorymap,
tmm: ThMorphmap) a: B
pre isReasonable WRT Theory(ruleStmt(p), th, thm)
post ¢ <
isFinished(p)
AV € linesUsed(p) -
hasReasonableBody(l, p, th, thm)
A hasReasonableJustif (1, p, th, rm, thm, tmm)
A isJustifiedLine(p, L, th, rm, thm, tmm)

Exported.

C.9 The Store

Store :: RULES : Rulemap
THS . Theorymap
THMORPHS . ThMorphmap

C.9.1 Completeness checks

The set of rules on which a proof seems to depend:

antecedents : Proof x Rulemap x Theorymap X ThMorphmap — Rule-ref-set
antecedents(p, rm, thm, tmm) 2
rulesUsed(p) U
U{rulesUsed (T, rm, thm, tmm) | T € thMorphsUsed(p, rm, tmm)}

Not exported.
(Actually, the proof also depends on any other rules which might be needed to complete
the justifications of the relevant theory morphisms.)

A function to test whether a derived rule depends on another:

dependsOnRule : Rule-ref X Rule-ref X Rulemap x Theorymap x ThMorphmap
—B
dependsOnRule(ry, ro, rm, thm, tmm) 2
let p = PROOF (rm(m)),
rs = antecedents(p, rm, thm, tmm) in
r1 € dom rmAp # nilA(re € rs V Ir € rs-dependsOnRule(r, ry, rm, thm, tmm))

396 C The Specification of the Proof Assistant

Exported.

isNoncircular : Rulemap x Theorymap X ThMorphmap — B
isNoncircular(rm, thm, tmm) 2
Vr € dom rm - = dependsOnRule(r, r, rm, thm, tmm)

Background. Warning when violated.

Although this has been relegated to the status of a consistency check, it's probably impor-
tant enough that the user should be warned whenever a circularity is introduced. Similarly,
when searching for rules to apply in a proof, rules which depend on the rule being proven
should be rejected (remembering that there might be other rules with the same statement
which need not be rejected!)

An operation to check whether a rule is establishextluloa set of rules:

isEstablishedModRules : Rule-ref x Rule-ref-set
X Rulemap x Theorymap x ThMorphmap — B
isEstablishedModRules(r, rules, rm, thm, tmm) 2
r € domrm A is-OK-Rule(rm(r)) A
let p = PROOF (rm(r)) in
(r € rules
V p =nil
V p # nil AisComplete(p, THEORY (rm(r)), rm, thm, tmm)
AT € rulesUsed(p, rm, tmm) -
isEstablishedModRules(r', rules, rm, thm, tmm)
AT € thMorphsUsed(p, rm, tmm) -
isEstablishedModRules(, rules, rm, thm, tmm))

Exported.

1sEstablishedModRules : ThMorph-ref X Rule-ref-set
X Rulemap x Theorymap x ThMorphmap — B
isEstablishedModRules (T, rules, rm, thm, tmm) 2 7 € dom tmm
A isReasonable ThMorph (T, rm, thm, tmm)
AN € rulesUsed (T, rm, thm, tmm) -
isEstablishedModRules(r, rules, rm, thm, tmm)

Exported.
A valid derived rule is one which is establishewdulothe empty set.

An operation which extracts a set of incompletely-proven rules on which a rule depends:

C.9 The Store 397

rulesYetToBeProven : Rule-ref x Rulemap x Theorymap x ThMorphmap
— Rule-ref-set
rulesYetToBeProven(r, rm, thm, tmm) £ let p = PROOF (rm(r)) in
if r € domrm
then if p = nil
then { }
else if isComplete(p, THEORY (rm(r)), rm, thm, tmm)
then U{rulesYetToBeProven(r', rm, thm, tmm) |
r’ € rulesUsed(p, rm, tmm)}
else {r}
else {r}

Exported.
The function is called recursively, bottoming out at undefined rules and rules with incom-
plete proofs.

Claim: The rules returned byules Yet To Be Proven are necessary to establish the rule in
guestion (at least, according to the proofs currently stored): i.e.

isEstablishedModRules(r, rules, rm, thm, tmm) A v & rules
= rulesYetToBeProven(r, rm, thm, tmm) C rules

The set is not necessarily sufficient to establish the rule, however, since some of the theory
morphisms involved may not be completely justified.

398 C The Specification of the Proof Assistant

Appendix D

The specification of the animation tool

This specification makes heavy use of other work withiral . A simple prototype of the
system §SMB EX as specified here has been built, which contains most of the functionality
specified except for recursion and simplification. This implies that it is only suitable to
demonstrate some of the ideas; it is not a usable system. Because of a shortage of time it
was then decided to concentrate all efforts on building the proof tool, rather than continue
implementing SMB EX.

D.1 Data structure and some auxiliary functions

SEStateOp
Define
Index = Nj

A state as used for describing the operational semantics of a language for symbolic exe-
cution is defined recursively by

SE-map = Name — PredS-set
SE-elem = SE-map | SEStateOp

SEStateOp » SEQ . SE-elem*
INDEX : Index

where

inv-SEStateOp(mk-SEStateOp(Seq, ix)) £
Seq # []
A hd Seq: SE-map
A Yk < len Seq - Seq[k]: SEStateOp = INDEX (Seq[k]) = cons(k, ix)

This is the same definition as in the definition of the operational semantics of sym-
bolic execution in Section 9.3.1, repeated in the the®dhpSem (described in Sec-
tion 9.4.1). However, it is now considered as a part of H&//BEXSTATE, while
before it was a type defined within the operational semantics (Section 9.3.IhanA
theory (Section 9.4.1). Similarly, some of the functions defined below have been defined
before in Sections 9.3 and 9.4. In the implementation v#18EX, a translation mech-

400 D The specification of the animation tool

anism is needed that translates between these different versions, in particular between
an SEStateOp in the SYMBEXSTATE and the equivalent one ifhOpSem. This is
necessary so that symbolic execution on #€5tateOp in SYMBEXSTATE can be
performed according to the rules of the thediyOpSem.

Auxiliary functions

The functionget-element gets a particular element of the sequence irb&StateOp or
one of its sub-sequences, as selected by its argument

get-element : SEStateOp x Index — SE-elem
get-element (S, ix) &
if front iz = []
then SEQ(S)][last iz]
else get-element(SEQ(S)[last iz], front ix)
pre iz 7 []
A if front iz # []
then SEQ(S)][last iz]: SEStateOp
A pre-get-element(SEQ(S)[last iz], front ix)
else true
The functioncurrent-indez finds the current or last index in &fEStateOp:

current-index : SEStateOp — Index
current-index(S) 2 if last SEQ(S): SE-map
then [len SEQ(S)]
else current-index(last SEQ(S)) @ len SEQ(S)

current-index(S) is always the index of &E-map:
LemmaD.1.1
VS: SEStateOp -

pre-get-element(S, current-indez(S))
A get-element (S, current-index(S)): SE-map

Proof By induction oveten front current-index(S). O

The functionprevious, given the index of an element i§&StateOp, finds the index of
the previous element:

previous : Index — Index
previous(iz) £ if hdiz =1
then tl iz
else cons(hd iz — 1, tliz)
pre iz # []
We now introduce the functiormollect-preds, which collects into a set all thEredS
in a givenSEStateOp S, up to a certain element (given as argumantin the execution
sequence of. If iz is empty, therall PredS in S are collected:

D.1 Data structure and some auxiliary functions 401

collect-preds : SEStateOp X Index — PredS-set
collect-preds(S,iz) 2
let iz’ = if iz =[] then [len SEQ(S)] else iz in
last«' (it SEQ(S)[i): SE-map
then U,,cdom seq(s)u SEQ(S)[(n)
else if i = last iz’
then collect-preds(SEQ(S)[i], front iz’)
else collect-preds(SEQ(S)[1], []))
pre if iz # []
then lastiz < len SEQ(S)
N if SEQ(S)]last ix]: SEStateOp
then pre-collect-preds(SEQ(S)|[last iz], front iz)
else front iz = []
else true

Assumptions and Beliefs

Assump :: index : Index
stmt . PredS

Assumptions are used for recordiagsumel predicates. They consist of an index which
recordswhenan assumption was made, and the assumed statement itself. The following
function extracts the statements from a setl@fumyp.

statements : Assump-set — PredS-set
statements(as) £ {stmt(a) | a € as}

A Belief, which is used to storelzelieved predicate, is similar to ad ssump, except
that it also stores the description values in the current element diAlSénteOp. This
IS necessary since Belief represents a proof obligation that should later be discharged.
To do so, one needs to know the hypotheses that are allowed to be used in the proof,
namely all thePredS that are known to hold at the time when tBelief is stated (cf. the
specifications of the operatiodL/IEVE and DISCHARGE in Appendix D.2).

Belief :: index : Index
current . PredS-set
stmt . PredS

The function namestatements is now overloaded to extract the statements from
Beliefs as well asd ssumps:

statements : Belief-set — PredS-set
statements(bs) & {stmt(b) | b € bs}

Proven and provable rule statements

The following function checks whether a givétuleStmt is established by a given rule
under a given instantiation, using various functions from the specificatiomofl :

402 D The specification of the animation tool

1sProvenRuleStmt : RuleStmt X Rule-ref x Theory-ref x Instantiation
X Rulemap x Theorymap x ThMorphmap — B
isProvenRuleStmt(rs, rr, thr, i, rm, thm, thmm) 2
let rule = rm(rr) in
let 75" = mk- RuleStmt(
{Instantiate(s,i) | s € SEQHYPS(STMT (rule))}
{Instantiate(a,i) | a € ORDHYPS(STMT (rule))

Instantiate(CONCL(STMT (rule)),)) in
FEstablishes(rs’, rs)

A Is-Complete- Proof (PROOF (rule), thr, rm, thm, thmm)

b

The operationPROVABLE checks whether a rule statement is provable in a theory
and, if it is, adds it (including its proof) to the theory as a new rule. This operation is to
be provided bymural .

PROVABLE (rs: RuleStmt, th: Theory-ref) r:{YES, DONTKNOW}
ext wr mural . Store
post r = YES = rsis provable inth
A the rule with statements and a (complete) proof is
added tath in mural

Of course there exists a trivial implementation/®ROVABLE that always returns the
value DONTKNOW. Although this implementation would be correct with respect to the
specification, obviously one would hope for something more intelligent, probably imple-
mented by proof tactics and/or using decision procedures for decidable classes of prob-
lems. In different contexts, one should presumably use different proof tactics and decision
procedures, even though they implement the same oper8fkéhWABLE. An example

of such a proof tactic is the algorithtmansform given in Section 9.3.6.

D.1 Data structure and some auxiliary functions 403

The state

The state of a symbolic execution system has the following structure:

SYMBEXSTATE :: S . SEStateOp
history : SpecName*
assume . Assump-set

beliefs . Belief-set
module . Theory-ref
wmodule . Theory-ref
wflag - B

mural : Store

where

inv-SYMBEXSTATE (mk-SYMBEXSTATE (s, h, ass, b, m, wm, wf, f)) 2
m € dom THS(f)
A wm € dom THS(f)
N inv-ThModule(THS(f)(m)
N inv- WThModule(THS(f)(wm))
Am € PARENTS(THS(f)(wm))
Alen SEQ(s) =lenh + 1
Amgh C specs(m)
ANh =[] = wf="false
A INDEX (s) = []

The invariant expresses that the theomesiule and wmodule should be the names (in
mural) Of the theory and weak theory of the same module. The leng$t&f(.S) should

be one more than the length of thé&tory to allow for the initial starting state. All the
SpecNames in thehistory should be defined in thewodule. The wflag should initially

be set tofalse to show that so far no weak symbolic execution has taken place. The
SEStateOp should not be an element inside some othB6tate Op.

Copying the state

The following function copies an existingYMBEXSTATE, up to a given element in
the execution sequence.

404 D The specification of the animation tool

copy-SESTATE : SYMBEXSTATE x Ny — SYMBEXSTATE
copy-SESTATE (mk-SYMBEXSTATE((s, h, ass, bel, m, wm, wf, f),i) 2
mk-SYMBEXSTATE(

mk-SEStateOp(SEQ(s)(1,...,1), INDEX (s)),

h(l,....i—1),

{a: Assump | a € ass A lastindex(a) < i},

{b: Belief | b € bel A lastindex(b) < i},

m,

wm,

wf,

f)

Initial states
A SYMBEXSTATE is initial, if it satisfies

1s-initial-SESTATE : SYMBEXSTATE — B

is-initial-SESTATE (mk-SYMBEXSTATE (s, h, ass, b, m, wm, wf, f)) &
len SEQ(s) =1
Adomhd SEQ(s) ={}
Aass =1}

Ao ={}

The invariant onSYMBEXSTATE implies, for an initial SYMBEXSTATE, that
history = [] andwflag = false. Different initial SYMBEXSTATES at most differ in
their module, wmodule and mural. Given any particular values fonodule, wmodule
andmural, the initial SYMBEXSTATE will be called ARBITRARY.

D.2 Operations

All the operations specified in the following should be accessible to the user. Their user
interface is discussed in [Kne8%5.2].

Symbolic execution

OperationSYMB_EXECUTE symbolically executes a sequence of specifications. The
pre-condition checks that there is a rule or axiom that holdsddule and has the shape

hyp-set = (sn-seq, S) — ([], S")

for somehyp-set C collect-preds(S, []) and some’: SEStateOp. The post-condition
then applies this transition t.

SYMB_EXECUTE (sn-seq: SpecName*)
ext wr S : SEStateOp
wr history : SpecName*
rd module . Theory-ref
rd wflag . B
rd mural @ Store

D.2 Operations 405

pre wflag = false
A rng sn-seq C specs(module)
A 38" SEStateOp - Fhyp-set C collect-preds (S, []) -
let rs = mk-RuleStmt({ },
hyp-set,
(sn-seq, §) < {[], 57 in
PROVABLE(rs, module) = YES
Alen SEQ(S’) = len SEQ(S) + len sn-seq
post Jhyp-set C collect-preds(S,[]) -
let 7s = mk-RuleStmt({ },
hyp—set,;
(sn-seq, §) = ([1.)) in
PROVABLE((rs, module) = YES

A history = history @ sn-seq

In the special case BfYMB_EXECUTE, one should use the “tacticransform
introduced in Section 9.3.6 to implement the operattdtO VABLE and find a proof of
the RuleStmdt.

The theory of the operational semantics of a language is expected to be such that
at any stage in the symbolic execution, usually (but not necessarily) only one rule will
be applicable. In this case the tactic is fully automatic, no user interaction is required.
Note however that this remaxnly applies to symbolic execution itself; simplification
is a separate step and should certainly be user-guided. Although the opé&r&fiaB.
EXECUTE allows the user to symbolically execute a whetgjuencef specifications,
he will often only want to execute one at a time and then execute the next specification on
the result of the previous symbolic execution.

The reason for the pre-conditianfiag = false is that once weak symbolic execution
has been used on &i¥'StateOp, any further symbolic execution can only lead to a weak
result and therefore has to be dealt with using the operdtiart YMB_-EXECUTE
specified below.

Weak symbolic execution

W_SYMB_EXECUTE behaves just likessYMB_EXECUTE, except that it uses the
‘weak’ theorywmodule instead ofmodule, and sets theyflag to show that the result has
been derived usingieaksymbolic execution.

W_SYMB_EXECUTE (sn-seq: SpecName™)
ext wr S : SEStateOp
wr history : SpecName*
rd wmodule : Theory-ref
wr wflag . B
rd mural . Store

406 D The specification of the animation tool

pre rng sn-seq C specs(wmodule)
A 38" SEStateOp - Ihyp-set C collect-preds (S, []) -
let rs = mk-RuleStmt({ },
hyp-set,
(sn-seq, 8) = (], $7) in
PROVABLE((rs, wmodule) = YES
Alen SEQ(S") = len SEQ(S) + len sn-seq

4L L

post post-SYMB.EXECUTE (sn-seq, S , history,

wmodule, mural, wflag, S, history)

A wflag = true

Showing the results

SHOW shows the value of a program variableme after execution of a number of
operations given by the index.

SHOW (name: Name, iz: Index) ps-set: PredS-set
ext rd S . SEStateOp
pre pre-get-element(S, iz)
A get-element (S, ix): SE-map
A name € dom get-element(S, ix)
post ps-set = get-element (S, ix)(name)

To see the value of a program variable in terms of the values afbg@erations (with
n < m), unSHOW and thenSIMPLIFY the result.

Simplification

SIMPLIFY simplifies an expression by applying a rule to it (but or@jurnsthe result
and doesiot change the state).

To specifySIMPLIFY , we need the auxiliary functiofimp-hypotheses. This func-
tion collects all thePredS in an SEStateOp S up to an indexiz, except for a giverps
which is a current description value of the given nameThis is exactly the set of hy-
potheses allowed to be used for proving a simplificatiop«fNote that this definition
does not exclude the possibility thatitself is in the resulting set, since it may also be the
description value of identifietm # n. In this case itis trivial to prove thats < true and
ps may be deleted from the description valueno$ince it does not affect the denotation
of the SEStateOp.

simp-hypotheses : SEStateOp x PredS x Name x Index — PredS-set
simp-hypotheses(S, ps, n,iz) -2

let nmset = dom get-element(S,iz) — {n} in

collect-preds (S, previous(ix))

U Unmenmset get-element (S, iz)(nm)

U get-element (S, ix)(n) — {ps}

D.2 Operations 407

pre pre-get-element (S, iz)
A get-element (S, ix): SE-map
A n € dom get-element (S, ix)
A ps € get-element (S, ix)(n)
N pre-collect-preds(S, previous(iz))

Now SIMPLIFY is defined as below. The pre-condition checks that$hgtateOp
containsps in the right place (as given hi) and thatps can be simplified to somes’ by
rule rr. The post-condition then states that this rule should be appligsl tim get output

!/

ps'.

SIMPLIFY (ps: PredS, rr: Rule-ref , inst: Instantiation, ix: Indez,
n: Name) ps’: PredS
ext rd S : SEStateOp
rd module . Theory-ref
rd wflag : B
rd mural . Store
pre wflag = false

A pre-simp-hypotheses(S, ps, n, ix)

A ps”: PredS - 3hyp-set C simp-hypotheses(S, ps, n, ix) -
let s = mk-RuleStmt({ }, hyp-set, ps < ps”) in
isProvenRuleStmt(rs, rr, module, inst, RULES (mural),

THS (mural), THMORPHS (mural))

post Jhyp-set C simp-hypotheses(S | ps,n, i) -
let s = mk-RuleStmt({ }, hyp-set, ps < ps’) in
isProvenRuleStmt(rs, rr, module, inst, RULES (mural),
THS (mural), THMORPHS (mural))

Weak simplification

The operationW _SIMPLIFY is specified just likeSIMPLIFY , except that it uses the
weak theorywmodule instead ofmodule, and the conclusion of the rule is an implication
rather than an equivalence. Weak simplification is not possible in the initial state when all
the PredS that could be simplified have been introduceddySUME or BELIEVE.

W_SIMPLIFY (ps: PredS, rr: Rule-ref , inst: Instantiation, ix: Indez,
n: Name) ps': PredS
ext rd S . SEStateOp
rd wmodule : Theory-ref
rd mural . Store
prelenS > 2
A pre-simp-hypotheses(S, ps, n, iz)
A dps”: PredS - Ihyp-set C simp-hypotheses(S, ps, n, ix) -
let 7s = mk-RuleStmt({ }, hyp-set, ps = ps”) in
isProvenRuleStmt(rs, rr, wmodule, inst, RULES (mural),
THS (mural), THMORPHS (mural))

408 D The specification of the animation tool

post Jhyp-set C simp-hypotheses(S , ps, n, ix) -
let s = mk-RuleStmt({ }, hyp-set, ps = ps’) in
isProvenRuleStmt(rs, rr, wmodule, inst, RULES (mural),
THS (mural), THMORPHS (mural))

Storing results of simplification

When an expression has been simplifi@&M/EMBER saves the simplified value in the
state by replacing the olgs;: PredS with the newps,: PredS. This is done using the
auxiliary functionreplace:

replace : PredS x PredS x SEStateOp x Index X Name — SEStateOp
replace(psi, psy, S, iz, n) &
mk-SEState Op(
{t—if i =hdiz
then if SEQ(S)[i]: SE-map
SEQ(S)|i](n) — {psi} U{pss} if nm=n
then {nm H{ SEQES%AEnin) o) s otherwise }
| nm € dom SEQ(S)[:]}
else replace(psy, psa, SEQ(S)[i], tl iz, n)
else SEQ(S5)]]
|1 e€{1,...,len SEQ(S)}},
INDEX (S))
pre pre-get-element (S, iz)
A get-element (S, iz): SE-map
A psy € get-element (S, ix)(n)

ThenREMEMBER is specified as

REMEMBER (psy, psy: PredS, rr: Rule-ref , inst: Instantiation, ix: Indez,
name: Name)
ext wr S SEStateOp
rd module : Theory-ref
rd wflag : B
rd mural . Store
pre pre-SIMPLIFY (psy, rr,inst, iz, n, S, module, wflag, mural)
A post-SIMPLIFY (psy, rr, inst, iz, n, pss, S, module, wflag, mural)

post S = replace(psi, psa, S, 1z, n)

Storing results of weak simplification
W_REMEMBER stores the results of _SIMPLIFY . It is specified as

W_REMEMBER (psy, psy: PredS, rr: Rule-ref | inst: Instantiation, iz: Index,
name: Name)
ext wr S SEStateOp
rd module . Theory-ref
wr wflag : B
rd mural . Store

D.2 Operations 409

pre pre- W_SIMPLIFY (psy, rr,inst, iz, n, S, module, mural)
A post-W _SIMPLIFY (psy, rr, inst, iz, n, pss, S, module, mural)

post S = replace(psy, psa, S , iz, n)
A wflag = true

Checking logical expressions

CHECK checks whether a giveRredS ps is provable in the theonyodule, given all the
description values in the currefiEState Op up to indexiz. Of course, this will in general
be undecidable, therefol@HECK will answer either s, it has found a proof, or N,

it has found a proof of-ps, or DONTKNOW, it has not found a proof and therefore does
not know whether the expression is provable or not.

CHECK (ps: PredS, iz: Index) r: {YES, NO, DONTKNOW}
ext rd S . SEStateOp
rd module . Theory-ref
wr mural : Store
post (r = YES = Jhyp-set C collect-preds(S, ix) -
PROVABLE (mk-RuleStmt({ }, hyp-set, ps), module) = YES)
A (r = NO = Jhyp-set C collect-preds(S, iz) -
PROVABLE (mk-RuleStmt({ }, hyp-set, —ps), module) = YES)

Assuming a logical expression
Define the auxiliary function

add-restriction : SEStateOp x PredS — SEStateOp
add-restriction(S, ps) 2
if last SEQ(S): SE-map
then let new = {n — if n € domlast SEQ(S)
then last SEQ(S)(n) U {ps}
else {ps}
| n € mentions(ps)} in
front SEQ(S) @ last SEQ(S) t new
else front SEQ(S) & add-restriction(last SEQ(S), ps)

pre mentions(ps) # { }

ASSUME adds a giverPredS ps to assume, i.e. assumes that this expressiorrig.
This is mainly useful for simplifying expressions, in particular conditionals. In many
cases, the user will first want to make a copy of the starting state, and come back to it later
to assume-ps in order to cover all cases.

The pre-condition oA SSUME only checks thaps does actually use a variable, since
assuming a ground term would not make much sense.

ASSUME (ps: PredS)
ext wr S SEStateOp
wr assume : Assump-set

pre mentions(ps) # { }

410 D The specification of the animation tool

post assume = assume U {mk-Assump(current-index(S), ps)}

NS = add—restm'ction(?, ps)

Believing a logical expression

BELIEVE also assumes that a given logical expressioruis The difference tod SSUME
is that this leads to a proof obligation that should later be discharged — the belief has to
be justified. ABelief thus plays thedle of a lemma that is used before it is proven. One
special case when this can be particularly useful is in symbolic executimtaiplete
specifications, where one may use a property of some component that cannot be proven
yet because the component itself has not been specified yet.

Since it does make senselielievea ground term, a new auxiliary function is needed
to handle this case. lfs is a ground term, then the user has to provide Magne that
ps gets associated with, since one can no longer automatically asspeiati¢gh those
n: Name that are mentioned ips.

add-restriction-g : SEStateOp x PredS x Name — SEStateOp
add-restriction-g(S, ps,n) £
if last SEQ(S): SE-map
then let new = {n +— if n € domlast SEQ(S)
then last SEQ(S)(n) U {ps}
else {ps}} in
front SEQ(S) @ last SEQ(S) T new
else front SEQ(S) & add-restriction-g(last SEQ(S), ps, n)

BELIEVE (ps: PredS, n: [Name])
ext wr S : SEStateOp
wr beliefs . Belief-set
pre mentions(ps) = { } = n # nil
post let elem = get-element(S , current-index(S)) in
let current = U, dom eiem €lem(n) in
beliefs = beliefs U {mk-Belief (current-index(S), current, ps)}
A if mentions(ps) = { }
then S = add-restriction-g(S, ps,n)

else S = add-restriction(S , ps)

Discharging BELIEVEd proof obligations

DISCHARGE discharges &#FELIEVEd proof obligation. The pre-condition checks that
there exists a rule or axiom that holds in the theory, and whose statement expresses the
assumption.

DISCHARGE (b: Belief)

ext wr S SEStateOp
rd module : Theory-ref
wr beliefs . Belief-set
rd mural . Store

D.2 Operations 411

pre let hyp-set’ = collect-preds(S, previous(index(b))) U current(b) in
Jhyp-set C hyp-set’ -
let rs = mk-RuleStmt({ }, hyp-set, stmt(b)) in
PROVABLE(rs, module)

post beliefs = beliefs — {b}

412 D The specification of the animation tool

Appendix E

The Theorem Prover’'s House

The Theorem Prover’'s house on a high headland, above the seagulls’ nests in steep
cliffs above a pebbly seashore. The Theorem Prover wakes soon after the sun has appeared
over the mountains behind the few miles of pasture inland, and sits up in his bed. He stares
out to sea, of which he takes pleasure in observing the variations from one day to the next.
To the north, only fields and mountains touch the coastline. Some distance down the coast
to the south, he can see the little town where he goes, every Thursday, to pick up groceries
and to spend an hour or two with the vet’s wife while the vet is out on his rounds.

He descends from the transparent dome enclosing his bed, to the central space of his
house. He makes a mug of tea in the peripheral alcove he calls his kitchen; thinks about
shaving, but does not because it is not Monday — the vet’s wife, somewh#, fikes
a three-day stubble — not Monday, he reasons (in his head), because it is Tuesday, as he
determines from the calendar on the wall in his workspace under the bed.

The calendar is functional but unaesthetic, so he touches it, slides his finger down
the resulting menu to the ‘today’s picture’ slot, and stands back to admire the result. It
is Turner'sThe Fighting Temeraire He has been pleased with his subscription to this
service, even if it is a shade pricey; anyway, he has few worries about money. He drags
one corner with his finger, until the picture fills much of the wall; but he takes a cursory
glance at the noticeboard before covering it: one or two new results advertised in the
category theory section, and some ongoing political wranglings in the board of the Royal
Logical Society.

He has had some ideas overnight for the problem, bits of whose proof are still littered
all over the opposite wall; but before pulling it down to his desk, at which he now kneels,
he will see what has arrived to be done today. Once yesterday’s clutter has been moved
to the wall, the desk is relatively tidy. A touch at a clear space pops uplEganel,
and he chooses to unfurl theuBINESSADMIN cartouche. In it, the informal mailbox
is glowing red: he presses at it and reveals a letter from his agent, who must have been
up early. He listens to the message: would he review a new hyperbook? He drafts a
brief acceptance, signs and despatches it, watching the route indicator show its arrival
at the agent’s wristerminal. The otheD/MIN cartouches he ignores: they mostly give
access to tax and VAT stuff, which he is content to leave to his accountant, as he is unable
to comprehend such complexities. (Which was a considerable problem for himself and
many others, when a date-dependent bug appeared in the accountant last April. Since
then, he has changed to a formally-certified accountant; the old one was later convicted
of unverified behaviour, and descheduled).

1See alsd he Verifierby Mike Shields (Newcastle University).

414 E The Theorem Prover’s House

Collapsing the Business Admin browser back into its cartouche, he chooses instead the
Theorem Provingale. The summary of the Incoming Jobs Channel shows the originators,
subject matter and fees of a couple of small jobs and one big one: “STL, Group Theory,
4000kW; Jones, prog transformation, 3500kW; Praxis, spec lang consistency, 32000kW”.
He fingers the last, getting the details showing deadline, originator’s informal description,
originator id and reference, agent’s id and reference, expenses incurred (initialized to 0),
sundry other administrative and commercial details, and of course the formal description
of the problem itself. This he expands to a long scroll over the desk, then splits off some
interesting bits into separate windows. He spends an hour or so just reading it, crawling
over it on his hands and knees, often juxtaposing various parts, or revealing elided detail
(and sometimes getting irritated when a window gets ‘stuck’ to his knee as he moves
around).

Going back to the Theorem ProvingoR, he opens the Resources cartouche, and
within that the NCC Theorem Proving Library access, which first reveals a welcoming
green and yellow logo and a money socket (female), which is flashing because it isn't
connected to anything. He prods at the Praxis job’s expenses cartouche, revealing the
empty ‘outputs’ list and a picture of a stack of money plugs (male). He drags one over
towards the Library’s socket and as soon as they are brought together, they recognize
their type-compatibility and the connection is made with a flash and a beep: the Library’s
socket shows the Praxis job’s logo and name, and the job’s expense supplies list shows the
NCC library logo, together with the charges as they clock up. The NCC Library has now
interrogated the TP’s personal environment to find out where he likes to start navigating
from, and the Library window shows this position. He navigates through, spawning off a
few useful theorems and tactics in their own windows and comparing them with parts of
the job’s formal statement. The expenses clock up as he goes.

Finally, he sets up some short propositions to do some preliminary checks. These are
very boring: he decides to set an automatic theorem prover at them while he has some tea.
The Theorem Proving Library contains an Automatic TP section, to which he navigates;
a number of whimsically-named ATPs are offered by various commercial concerns. They
have various strengths and weaknesses, some listed in the blurb attached to each, and
some which he knows from experience or reputation. He selects a couple which advertize
‘no fee without termination’ and applies them to his propositions, setting an audio alarm
triggered by termination before making his tea and going to sit on his bed to watch the
seagulls.

Variations Various reviewers have suggested alternatives to this basic scenario. Mark
van Harmelen suggests a cordless keyboard is an essential accessory, hanging from a
long shoulder-strap like those used by rock musicians; objects displayed on the floor are
pointed to with the toes. Rather than crawling all over the theorems, Peter Lindsay would
use a remote control for armchair theorem-proving, using a light-gun to zap propositions
from a distance. Ursula Martin envisages the even more remote cellphone model, in which
the TP works whilst jogging along the clifftops.

Bibliography

[AHM87] A. Avron, F. Honsell, and I. Mason. Using typedcalculus to implement
formal systems on a machine. Technical Report 87-31, University of Edinburgh
LFCS, 1987.

[AlIB6] J. Allen. An investigation into the IOTA project support environment. Master’s
thesis, Department of Computer Science, University of Manchester, 1986.

[And88] Derek Andrews. Report from the BSI panel for the standardisation of VDM
(IST/5/50). In[BIM88], pages 74-78, 1988.

[B*87] F.L.Bauer etalThe Munich Project CIP, Vol. Jivolume 292 oL ecture Notes
in Computer ScienceSpringer-Verlag, 1987.

[Bar77] J.Barwise, editotHandbook of Mathematical LogidNorth Holland, 1977.

[Bar84] H.P. Barendregt.The Lambda Calculus — Its Syntax and Semantis®rth
Holland, second edition, 1984.

[BCJ84] H. Barringer, J.H. Cheng, and C. B. Jones. A logic covering undefinedness in
program proofsActa Informatica21:251-269, 1984.

[Bee85] M. J. Beeson.Foundations of Constructive Mathematic$Springer-Verlag,
1985.

[BF86] R. E. Bloomfield and P.K.D. Froome. The application of formal methods to the
development of high integrity softwaréEEE Trans. on Software Engineering
12(9):988—-993, 1986.

[BFM89] R. Bloomfield, P. Froome, and B. Monahan. Specbox: A toolkit for BSI-VDM.
SafetyNet5:4—7, 19809.

[BG81] R. M. Burstall and J. Goguen. An informal introduction to specifications using
Clear. In R.S. Boyer and J S. Moore, editoi$ie Correctness Problem in
Computer Sciencécademic Press, 1981.

[BG90] S. Brock and C. George. RAISE method manual. Technical Report LA-
COS/CRI/DOC/3/V1, Computer Resources International, August 1990.

[BHL90] D. Bjgrner, C. A. R. Hoare, and H. Langmaack, editovdM'90: VDM and
Z — Formal Methods in Software Developmeriume 428 oflLecture Notes in
Computer Sciencespringer-Verlag, 1990.

416 Bibliography

[BJ78] D. Bjgrner and C. B. Jones, editor$he Vienna Development Method: The
Meta-Languagevolume 61 ofLecture Notes in Computer Scienc8pringer-
Verlag, 1978.

[BJ82] D. Bjgrner and C. B. Jonesormal Specification and Software Development
Prentice Hall International, 1982. ISBN 0-13-329003-4.

[BJ90] M. Broy and C. B. Jones, editofBrogramming Concepts and Methodsorth-
Holland, 1990.

[BIJM88] R. Bloomfield, R. B. Jones, and L. S. Marshall, editosdDM’88: VDM —
The Way Aheadsolume 328 ofLecture Notes in Computer Sciencgpringer-
Verlag, 1988.

[BIJMN87] D. Bjgrner, C. B. Jones, M. Mac an Airchinnigh, and E. J. Neuhold, editors.
VDM — A Formal Definition at Workvolume 252 of_ecture Notes in Computer
Science Springer-Verlag, 1987.

[BSI90] BSI. VDM specification language protostandard. Technical Report BSI
IST/5/50, BSI, 1990.

[CT86] R.L. Constable et allmplementing Mathematics with the Nuprl Proof Devel-
opment SystenPrentice-Hall, 1986.

[CHJ86] B. Cohen, W.T. Harwood, and M.I. Jackson, editditse Specification of Com-
plex SystemsAddison-Wesley, 1986.

[Chu40] A. Church. A formulation of the simple theory of types.Symb. Logic5:56—
68, 1940.

[CIP85] CIP Language Groug.he Munich Project CIP—Volume |: The Wide Spectrum
Language CIP-l.volume 183 oL ecture Notes in Computer Scien&pringer-
Verlag, 1985.

[CJ91] J. H. Cheng and C. B. Jones. On the usability of logics which handle partial
functions. In C. Morgan and J. C. P. Woodcock, edit8rd, Refinement Work-
shop pages 51-69. Springer-Verlag, 1991.

[CINT85] I. D. Cottam, C. B. Jones, T. Nipkow, A. C. Wills, M. I. Wolczko, and
A. Yaghi. Project support environments for formal methods. In J. McDermid,
editor, Integrated Project Support Environmentshapter 3. Peter Peregrinus
Ltd., 1985.

[CIN'86] I. D. Cottam, C. B. Jones, T. N. Nipkow, A. C. Wills, M. Wolczko, and
A. Yaghi. Mule — an environment for rigorous software development (final
report to SERC on grant number GR/C/05762). Technical report, Department
of Computer Science, University of Manchester, 1986.

[CINW83] I. D. Cottam, C. B. Jones, T. Nipkow, and A. C. Wills. Mule: A support sys-
tem for formal specification and rigorous software development, March 1983.
BCS-FACS/SERC Conference on Program Specification and Verification, Uni-
versity of York, (Proceedings not published).

Bibliography 417

[Coh83] Donald Cohen. Symbolic execution of thesT specification language. Froc.
8th Int. Joint Conference on Artificial Intelligence '83 (IJCAI-8Bages 17-20,
1983.

[Cra85] D. Craigen. A technical review of four verification systems: Gypsy, Affirm,
FDM and Revised Special. Technical report, I.P. Sharp Associates Ltd, August
1985.

[Dah77] O-J. Dahl. Can program proving be made practical? In M. Amirchahy and
D. Neel, editorsEEC-Crest Course on Programming Foundatippages 57—
115. IRIA, 1977.

[Daw88] Mark Dawson. Using thep generic logic environment. Technical report,
Imperial College, Dept of Computer Science, September 1988.

[dBB0] N.G. de Bruijn. A survey of the project Automath. To H.B. Curry: Es-
says in Combinatory Logic, Lambda Calculus, and Formaligages 579-606.
Academic Press, 1980.

[DDJ*85] B. T. Denvir, V. A. Downes, C. B. Jones, R. A. Snowdon, and M. K. Tordoff.
IPSE 2.5 project proposal. Technical report, ICL/STC-IDEC/STL/University
of Manchester, February 1985.

[Dyb82] P. Dybjer. Mathematical proofs in natural language. Technical Report 5, Pro-
gramming Methodology Group, University ofd@&borg, 1982.

[EB89] M. Elvang-Ggransson and D. Bjgrner. TopSort: a formal software development
in VDM. July, 1989.

[EvO0] M. Elvang-Ggransson. Howfliral’ed TopSort. April, 1990.

[EM85] H. Ehrig and B. Mahr.Fundamentals of Algebraic Specification 1: Equations
and Initial SemanticsEATCS Monographs on Theoretical Computer Science.
Springer-Verlag, 1985.

[EM90] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 2: Module
Specifications and ConstraintE ATCS Monographs on Theoretical Computer
Science. Springer-Verlag, 1990.

[End72] H. B. EndertonA Mathematical Introduction to LogicAcademic Press, 1972.

[FE91] R.Fields and M. Elvang-Ggransson. A VDM case studiliral. IEEE Trans.
on Software Engineerin@ccepted for publication, 1991.

[Fit89a] J. S. Fitzgerald. mural — a preliminary wishlist. IPSE Document 060/jsf01, June
1989. University of Manchester.

[Fit89b] J. S. Fitzgerald. The mural model — preliminary evaluation. IPSE Document
060/sf02, September 1989. University of Manchester.

[Fit89c] J. S. Fitzgerald. Some aspects of the spectool/theory store interface. IPSE
Document 060/jsf04/0.1, September 1989. University of Manchester.

418 Bibliography
[Fit89d] J. S. Fitzgerald. Tactics imural — an initial review. [IPSE Document
060/jsf05/0.1, October 1989. University of Manchester.

[Fit89e] J. S. Fitzgerald. VDM theory store population review. [IPSE Document
060/jsf03/0.1, September 1989. University of Manchester.

[Flo84] Christiane Floyd. A systematic look at prototyping. In Budde, editqy
proaches to Prototypingrages 1-18. Springer-Verlag, 1984.

[GB83] J.A.Goguen and R.M. Burstall. Institutions: Abstract model theory for program
specification. Unpublished Draft, January 1983.

[GB84] J.A. Goguen and R.M. Burstall. Introducing institutions. Licture Notes in
Computer Science, Vol. 16dages 221-256. Springer-Verlag, 1984.

[GG83] D. Gabbay and F. Guenthner, editdisndbook of Philosophical Logic Volume
1. Elements of Classical Logi®. Reidel Publishing Company, 1983.

[GH85] A. Geser and H. Hussmann. Rapid prototyping for algebraic specifications —
examples for the use of the RAP system. Techn. Report MIP-8517, Bakult
Mathematik und Informatik, Univ. Passau, December 1985.

[GM82] J. Goguen and J. Meseguer. Rapid prototyping in the OBJ executable specifica-
tion language ACM, Sigsoft7(5):75—-84, December 1982.

[GMW79] M. Gordon, R. Milner, and C. WadsworthEdinburgh LCF, volume 78 of
Lecture Notes in Computer Scien&pringer-Verlag, 1979.

[Gor85] M.J. Gordon. HOL: a machine oriented formulation of higher order logic. Tech-
nical Report 68, University of Cambridge Comp. Lab., 1985.

[Gri81] D. Gries.The Science of Programmin@pringer-Verlag, 1981.

[Han83] F.K. Hanna. Overview of the Veritas project. Technical report, University of
Kent, Electronics Lab, June 1983.

[Hay87] |. Hayes, editorSpecification Case StudieBrentice-Hall International, 1987.
[Hay89] I. Hayes. A generalisation of bags in Z. Draft, October 1989.

[HD86] F. K. Hanna and N. Daeche. A purely functional implementation of a logic. In
8th Internat. Conf. on Automated Deductid®86.

[Hen84] Peter Hendersonme too— a language for software specification and model
building — preliminary report. Technical Report FPN-9, Dept. of Computer
Science, Univ. of Stirling, December 1984. Second dratft.

[HH90] K. Havelund and A. Haxthausen. RSL reference manual. Technical Report
LACOS/CRI/DOC/2/V1, Computer Resources International, August 1990.

[HHP87] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. In
Proc. 2nd Symposium on Logic in Computer Sciepages 194—-204. Computer
Society Press, 1987.

Bibliography 419

[HI88]

[HJ89]

[HJ99]

[HM85]

[Hue75]

[Hus85]

[OL71]

[JL8S]

[JLW86]

[IM88]

Sharam Hekmatpour and Darrel Inc8oftware Prototyping, Formal Methods
and VDM Addison-Wesley, 1988.

I. J. Hayes and C. B. Jones. Specifications are not (necessarily) executable.
IEE, Software Engineering Journa}(6):320-338, November 1989. re-printed
as [HJ99].

I. J. Hayes and C. B. Jones. Specifications are not (necessarily) executable.
In High-Integrity System Specification and DesigiACIT, pages 563-581.
Springer-Verlag, 1999.

Peter Henderson and Cydney Minkowitz. Time toomethod of software de-
sign. Technical Report FPN-10, Dept. of Computer Science, Univ. of Stirling,
October 1985. Revised draft.

G.P. Huet. A unification algorithm for typedcalculus.Theoretical Computer
Sciencel:27-57, 1975.

H. Hussmann. Rapid prototyping for algebraic specifications — RAP-system
user’s manual. Techn. Report MIP-8504, Univ. Passau, FatultMathematik
und Informatik, March 1985.

C. B. Jones and P. Lucas. Proving correctness of implementation techniques.
In E. Engeler, editorA Symposium on Algorithmic Languageslume 188 of
Lecture Notes in Mathematicgages 178—-211. Springer-Verlag, 1971.

C. B. Jones and P. A. Lindsay. A support system for formal reasoning: Re-
quirements and status. In R. Bloomfield, L. Marshall, and R. Jones, editors,
VDM’88: VDM — The Way Aheadolume 328 ofLecture Notes in Computer
Sciencepages 139-152. Springer-Verlag, 1988.

C. B. Jones, P. Lindsay, and C. Wadsworth. IPSE 2.5 theorem proving concepts
paper. Technical Report 060/00021/1.5, Manchester University and Rutherford
Appleton Laboratory, June 1986.

C. B. Jones and R. Moore. Muffin: A user interface design experiment for a
theorem proving assistant. In R. Bloomfield, L. Marshall, and R. Jones, editors,
VDM’'88: VDM — The Way Aheadolume 328 ofLecture Notes in Computer
Sciencepages 337-375. Springer-Verlag, 1988.

[Jon79a] C. B. Jones. Constructing a theory of a data structure as an aid to program

developmentActa Informatica11:119-137, 1979.

[Jon79b] C. B. Jones. The Vienna Development Method: Examples of compiler devel-

[Jon80]

[Jon86]

opment. In M. Amirchahy and D. Neel, editoise Point sur la Compilation
pages 89-114. IRIA-SEFI, 1979.

C. B. JonesSoftware Development: A Rigorous ApproaBhentice Hall Inter-
national, 1980. ISBN 0-13-821884-6.

C. B. Jones.Systematic Software Development Using VDMrentice Hall
International, 1986. ISBN 0-13-880717-5.

420 Bibliography

[Jon87a] K. D. Jones. The Muffin prototype: Experiences with Smalltalk-80. IPSE
Document 060/00066/1.1, August 1987. University of Manchester.

[Jon87b] K. D. Jones. The preliminary specification of FRIPSE. IPSE Document
060/00114/2.1, December 1987. University of Manchester.

[Jon87c] S. Peyton Jone$he Implementation of Functional Programming Languages
Prentice-Hall International, 1987.

[Jon88] H.B.M. Jonkers. An introduction to COLD-K. Technical Report ME-
TEOR/t8/PRLE/8, Philips Research Labs, Eindhoven, July 1988.

[Jon90a] C. B. Jones. ConsequencesBéauty is Our Businesshapter 25. Springer-
Verlag, 1990.

[Jon90b] C. B. Jones. Final report on SERC Grant No. GR/D/60294: IPSE 2.5. internal
communication, July 1990.

[Jon90c] C. B. JonesSystematic Software Development using VORMentice Hall In-
ternational, second edition, 1990. ISBN 0-13-880733-7.

[Kem85] Richard A. Kemmerer. Testing formal specifications to detect design errors.
IEEE Transactions on Software Engineerii8E-11(1):32—-43, January 1985.

[Kem86] R. A. Kemmerer. Verification assessment study: Final report. Technical Re-
port C3-CR01-86, Library No. S-228,204, National Computer Security Center,
March 1986.

[Kin76] J.C. King. Symbolic execution and program testir@gommunications of the
ACM, 19:385-394, July 1976.

[Kle52] S. Kleene.ntroduction to Metamathematic®orth Holland, 1952.

[Kne89] Ralf Kneuper.Symbolic Execution as a Tool for Validation of Specifications
PhD thesis, University of Manchester, 1989.

[Kne91] R. Kneuper. Symbolic execution: a semantic appro&tience of Computer
Programming 15(3):207-250, 1991.

[KS69] K. Koch and F. Schwarzenberger. Introduction to formula 360. Technical Re-
port TR 25.101, IBM Lab Vienna, 12th December 1969.

[Laf90] C. Lafontaine. Formalization of the VDM reification in the DEVA meta-
calculus. In[BJ90]. North-Holland, 1990.

[Leh89] M.M. Lehman. Uncertainty in computer application and its control through
the engineering of softwareSoftware Maintenance: Research and Practice
1:3-27, 1989.

[Lin87a] P. A. Lindsay. A formal system for interactive proofs. IPSE Document
060/pal011/2.4, August 1987. University of Manchester.

[Lin87b] P. A. Lindsay. A formal system with inclusion polymorphism. IPSE Document
060/pal014/2.3, December 1987. University of Manchester.

Bibliography 421

[Lin87c] P.A. Lindsay. Logical frames for interactive theorem proving. Technical Report
UMCS 87-12-7, University of Manchester Computer Science Dept, 1987.

[Lin88] P.A. Lindsay. A survey of mechanical support for formal reasonifgftware
Engineering Journal3(1), January 1988.

[LM89] P. A. Lindsay and R.C. Moore. The specification of the mural proof assistant.
IPSE Document 060/00148/2.4, June 1989. University of Manchester.

[Lov78] D.W. Loveland.Automated Theorem Proving: a Logical Badworth Holland,
1978.

[Mar75] P. Martin-Lof. An intuitionistic theory of types: Predicative part. In H.E. Rose
and J.C. Shepherdson, editdregic Colloquium 73 North Holland, 1975.

[Mar85] P. Martin-Lof. Constructive mathematics and computer programming. In
C.A.R.Hoare and J.C.Shepherdson, editbtathematical Logic and Program-
ming Languagegages 167-184, 1985.

[McC66] J. McCarthy. A formal description of a subset of ALGOL. [Bte66] pages
1-12, 1966.

[Mid90] C. A. Middelburg. Syntax and Semantics of VVSL A Language for Structured
VDM SpecificationsPhD thesis, PTT Research, Department of Applied Com-
puter Science, September 1990.

[Mil72] R. Milner. Implementation and application of Scott’s logic of continuous func-
tions. InConf. on Proving Assertions About Progranpsiges 1-6. SIGPLAN
Notices 7:1, 1972.

[Mil84] R. Milner. The use of machines to assist in rigorous proof. In C.A.R.Hoare and
J.C.Shepherdson, editofglathematical Logic and Programming Languages
pages 77—-88. Prentice-Hall, 1984.

[MN89] M. A. McMorran and J. E. Nicholls. Z user manual. Technical Report 12.274,
IBM UK Laboratories, Winchester, July 1989.

[Mon87] B.Q. Monahan. A type model for VDM. IIBJMN87], pages 210-236, 1987.

[Mo088] R. C. Moore. The bumper FRIPSE spec. IPSE Document 060/00143/2.1, July
1988. University of Manchester.

[Mor88a] F. L. Morris. A data structure for representing sets of terms and some asso-
ciated algorithms. IPSE Document 060/flm002, February 1988. University of
Manchester.

[Mor88b] F. L. Morris. Some low-level suggestions for expression representations. IPSE
Document 060/flm003, March 1988. University of Manchester.

[New75] M. Newey.Formal semantics of LISP with applications to program correctness
PhD thesis, Stanford, 1975.

[Nip86] T. Nipkow. Non-deterministic data types: Models and implementatidtda
Informaticg 22:629-661, 1986.

422 Bibliography

[Nip87] T. Nipkow. Behavioural Implementation Concepts for Nondeterministic Data
Types PhD thesis, University of Manchester, May 1987.

[Nip89] Tobias Nipkow. Equational reasoning in Isabel®&cience of Computer Pro-
gramming 12:123-150, 1989.

[NPS90] B. Nordstrom, K. Petersson, and J. M. SmiBrogramming in Martin-lof’s
Type Theory: An IntroductiorOxford University Press, 1990.

[Pau85a] L. C. Paulson. Interactive theorem proving with Cambridge LCF — a user’s
manual. Technical Report 80, University of Cambridge Comp. Lab., November
1985.

[Pau85b] L. C. Paulson. Lessons learned from LCF: a survey of natural deduction proofs.
Computer Journal28(5):474-479, November 1985.

[Pau86] L. C. Paulson. Natural deduction as higher order resolutidrogic Program-
ming, 3:237-258, 1986.

[Ped87] J.S. Pedersen. VDM in three generations of Ada formal descriptions. In
[BJMNB87], pages 33-48, 1987.

[Pet82] K. Petersson. A programming system for type theory. Technical Report 21,
Comp. Sciences Dept, Chalmers Universityt€borg, Sweden, 1982.

[Plo81] Gordon D. Plotkin. A structural approach to operational semantics. Technical
Report DAIMI FN-19, Computer Science Dept., Aarhus University, September
1981.

[Pra65] D. PrawitzNatural Deduction Almgvist and Wisell, Stockholm, 1965.

[Pra71l] D. Prawitz.Natural Deduction Proceedings 2nd Scandinavian Logic Sympo-
sium, 1971.

[PRL86] PRL Staff. Implementing mathematics with the Nuprl proof development sys-
tem. Technical report, Cornell University, 1986.

[Ram88] A. RamsayFormal Methods in Artificial IntelligenceCambridge University
Press, 1988.

[RvH89] J. Rushby and F von Henke. Formal verification of the interactive convergence
clock synchronization algorithm. Technical Report SRI-CSL-89-3, SRI Inter-
national, February 1989.

[ST89] M. Sintzoff et al. Definition 1.1 of the generic development language DEVA.
Technical Report RR89-35, UnivessiCatholique de Louvain, 1989.

[San82] D.T. Sannell&Semantics, Implementation and Pragmatics of Clear, A Program
Specification Languagé’hD thesis, Department of Computer Science, Univer-
sity of Edinburgh, July 1982. Available as a Technical Report —no. CST-17-82.

[Sch84] P. Schroeder-Heister. A natural extension of natural deductionrnal of
Symbolic Logic49:1284-1299, 1984.

Bibliography 423

[Sch86] D.A. Schmidt.Denotational Semantics: a Methodology for Language Devel-
opment Allyn & Bacon, 1986.

[Scu90] G.T. Scullard. Mural evaluation, March 1990.

[Smu6l] R.M. SmullyanTheory of Formal System®rinceton University Press, 1961.

[Sno89] R. A. Snowdon. An Introduction to the IPSE 2.5 ProjEcL Technical Journal
6(3), May 1989.

[Sok83] Stefan Sokotowski. A note on tactics in LCF. Internal Report CSR-140-83,
University of Edinburgh, Dept of Computer Science., August 1983.

[Spi89] J.M. Spivey.The Z Notation Prentice-Hall International, 1989.

[Ste66] T. B. SteelFormal Language Description Languages for Computer Program-
ming North-Holland, 1966.

[TW83] D. Talbot and R.W. Witty. Alvey programme for software engineering. Pub-
lished by the Alvey Directorate, November 1983.

[War90] B. Warboys. The IPSE 2.5 project: Process modelling as the basis for a support
environment. In N. Madhavji, W. Schafer, and H. Weber, editBreceedings
of the First International Conference on System Development Environments and
Factories pages 59-74. Pitman, 1990.

[WD88] J. C. P. Woodcock and B. Dickinson. Using VDM with rely and guarantee-
conditions: Experiences of a real project.[BUM88], pages 434-458, 1988.

[Web90] M. Weber. Formalization of the Bird-Meertens algorithmic calculus in the Deva
meta-calculus. 1fiBJ90]. North-Holland, 1990.

[Wey80] R.W. Weyhrauch. Prolegomena to a theory of mechanized formal reasoning.
Artificial Intelligence 13:133-170, 1980.

[WieB9] Morten Wieth. Loose specification and its semanticéniormation Processing
89. IFIP, North-Holland, 1989.

[WL88] J. Woodcock and M. LoomesSoftware Engineering Mathematicditman,
1988.

