94

Chapter 4

The Specification and Proof of an
EXPRESS to SQL “Compiler”

Juan Bicarregui and Brian Matthews

Summary

EXPRESS and SQL are two [SO standard languages for modelling data.
However, EXPRESS is abstract in the sense that it is intended to be
used to define application-oriented data types, whereas SQL is concrete
in that all data must be modelled using relation tables. In this chapter,
we specify and prove some properties of an EXPRESS to SQL “compiler”
which implements the ISO standard STEP Data Access Interface (SDAI)
for the storage and retreval of EXPRESS instance data.

The “compiler” is formalised as a refinement: an abstract model of the
EXPRESS database is given which defines operations for the storage and
retreval based on a model of the EXPRESS data types on VDM; then a
specification of a relational database is given as a basis for a refinement
of the EXPRESS database; and then concrete versions of the operations
are defined on top of the relational model. These operations are, in
effect, the semantic functions of the compiler. The equivalence of the
abstract and concrete specifications is the justification of the correctness
of the compiler.

We outline the specifications and prove an obligation concerning the
refinement. A number of issues concerning modelling style arise in com-
paring the EXPRESS data types with those of VDM and concerning the
structuring of the development to facilitate proofs. The specification was
developed using the IFAD VDM-SL Toolbox and the proofs constructed
by hand.

96 CHAPTER 4. AN EXPRESS TO SQL “COMPILER”

4.1 STEP and EXPRESS

EXPRESS is an “information modelling” language developed within the ISO Stan-
dard for the Exchange of Product model data (STEP) [1]. By defining standard
languages for the representation of data models and data compliant with those
models, and by standardising particular data models for specific application areas,
STEP provides a vendor-neutral mechanism for the representation of product data
and hence facilitates the open exchange of data between applications.

The STEP standard is divided into a number of parts. Some parts define “generic
technologies” for the definition of models and data, others give particular data mod-
els (Application Protocols) for representation of data in specific application areas.
For example the application protocol for geometric and topological representation,
defines that a circle should be represented by its centre and radius, rather than say
by a diameter or by three points on the circumference.

The generic technologies include EXPRESS (Part 11) which is a language for the
definition of data models and EXPRESS-1 (Part 12) for representation of data.
Part 21 gives a syntax for a condensed form of EXPRESS-I and Parts 22-26 give a
standard API for accessing an EXPRESS-based database, the SDAI (STEP Data
Access Interface). An abstract definition of the SDAI is given based on a partial
model of EXPRESS in EXPRESS and an informal definition of the operations to
manipulate this model. Concrete versions of the SDAI are defined in a number of
“language bindings” giving the data structures for implementations in particular
languages.

4.1.1 The Context

The work described in the chapter was undertaken in the context of the Process-
Base project! which concerns the development of an Application Protocol for Pro-
cess Plants (AP221 and AP227) and is also developing software supporting transla-
tion between the APs and some native CAD formats (AutoCAD and PID) for 2D

schematics, 3D models and functional data.

The translation between native and STEP data formats is achieved by some appli-
cation specific conversion software. Because data is structured radically differently
in the standard and native models this software requires intensive access to all parts
of the data and data models.

The implementation is achieved by interrogation of an SDAT database built on top
of relational technology. Effectively two separate repositories are created, one loaded
with each data model. Translation takes place by selecting from the source database
the components required to construct each data item in the target database. The

EXPRESS “shell” built on top of the relational database is the EXPRESS to SQL

“compiler” referred to in the title of this chapter.

'ESPRIT Project 6212, ProcessBase

4.1. STEP AND EXPRESS 97

Srep Daanod

Express
‘Compiler’

Express
‘Compiler’

S - S
D
A Conversion D
| Software A
[
~Teeee —
— C

e

Figure 4.1: The conversion takes place between 2 virtual SDATs.

Abstract Concrete
Operations S Operations
T TTTTTTT | ?
1 Expressin Relational
| Express || = Database
o _____ a

Figure 4.2: The compiler is formalised as a refinement

4.1.2 The Specifications

The abstract specification is conceptually a single module. Its major datatypes are
an abstract syntax for the EXPRESS language itself. These are based on the defi-
nition of EXPRESS in EXPRESS given in the SDAT but are remodelled to account
for some differences between the VDM and EXPRESS. The concrete specification
is conceptually two modules. modules The first follows the definition of SQL in
VDM given in [5]. This should be simple enough to be implemented on top of any
relational database. The second builds on this to give an implementation of the
SDATL (In fact, some datatypes common to abstract and concrete specifications are
given as a separate module.) The refinement relation between specifications is the
justification of the correctness of the compiler (Figure 4.2).

98 CHAPTER 4. AN EXPRESS TO SQL “COMPILER”

4.1.3 Related Work

EXPRESS is independent of any particular database technology, however, several
implementations of EXPRESS tools founded on relation database technology exist,
for example, [15, 16, 18, 13, 17]. These were compared in a preliminary study to this
work [9]. One implementation of EXPRESS in SQL was reverse engineered to define
the translation and the compiler formalised as a refinement between specifications
based upon an existing VDM definition of the semantics of SQL and the definition
of EXPRESS in EXPRESS given in ISO 10303 Part 22.

Formal definitions exist for several aspects of this development including a VDM

formalisation of the semantic of SQL [5], two EXPRESS models of EXPRESS it-
self [3, 7], and a VDM definition of part of the SDAT [8]. An interesting development

which is trying to define a unifying semantic model for several languages is [4].

VDM is a mature notation for the definition of formal languages. (e.g. [20, 21, 22, 23,
24, 25]). It is undergoing standardisation by BSI and ISO[11]. Several support tools
for VDM are available, the present work was undertaken using the IFAD VDM-SL
Toolbox [19]

4.1.4 Overview

Section 2 gives an outline of some key concepts of the EXPRESS language and
Section 3 the abstract specification of the EXPRESS database. Section 4 gives a
simplified relational database and Section 5 defines the EXPRESS database opera-

tions on top of this. Section 6 discusses the approach taken.

4.2 An Outline of EXPRESS

EXPRESS is a language for defining data models. It has three levels of granularity.
The coarsest level components are Schema which are akin to modules; modules the
second and third are Entities and Attributes which loosely correspond to datatypes
(or object classes) and fields (or instance variables) respectively.

We present some of the most important features of the EXPRESS language through
a simple example based on one given in [6].

4.2.1 Entities

The EXPRESS entity car describes the components of a car. As in a VDM record
type, each component is given a name and a type.

4.2. AN OUTLINE OF EXPRESS 99

ENTITY car ;
model _type : car_model ;
made_by : manufacturer ;
mnfg_no : STRING ;
registration_no : STRING ;
production_year : INTEGER
owned_by : owner ;
END-ENTITY

ENTITY car_model ;

name : STRING ;

made_by : manufacturer ;

consumption : REAL ;
END-ENTITY

Where Rules.

It is clear that the made_by attribute should be the same for a car and for the model
of that car. This can be formalised as a “where rule” given in the definition of car,
for example

WHERE made_by :=: model_type.made_by

This constraint is akin to an invariant in VDM. Note that :=: is object identity (see
later).

Derived Attributes.

An alternative way to model this constraint would be to give the made_by attribute
as a derived attribute of car.i.e.

DERIVE made_by := model_type.made_by

This indicates that the maker of a car can be derived (in this case trivially) from
the maker of the model of the car.

In VDM, the same information could be extracted by use of an auxiliary function.

Object Identifiers.

A fundamental difference between an EXPRESS entities and record types in say
VDM, is that an EXPRESS entity declaration indicates an implicit indirection in
the data. Following the object-oriented style, each instance of an entity corresponds
to a identified object and an environment is assumed which dereferences object
identifiers. For example, an instance of a car might be

H#1 = car(#2,#3,“VW233//57, “N123PQR”, 1995, #/)

100 CHAPTER 4. AN EXPRESS TO SQL “COMPILER”

#2 = car_model(“GOLF”, #3, 2.6)
#3 = manufacturer(...)

where the #i represent the object identifiers. Note that the same manufacturer
appear in both the car and car_model instances.

Uniqueness Constraints.

A number of constraints can be given which restrict the universe of instances.
Uniqueness of attributes or combinations of attributes can be specified across all
instances of an entity. For example, the rule single states that the registration
number should be globally unique over all cars and joint states that, together, the
made_by and mnfg_no fields are also globally unique.

UNIQUE single : registration_no ;
joint : made_by, mnfg_no ;

Existence Constraints.

It is also possible to give constraints which describe the necessity of the existence of
some instance. For example, if owner is defined by

ENTITY owner ;
owns : SET OF car ;
END-ENTITY

then, in the entity definition for cars, one can state that every car must have an
owner by giving owned_by as an “inverse attribute” as follows:

INVERSE owned_by : owner FOR owns

This stipulates that every car must appear uniquely in the set of cars owned by
some owner. This is equivalent to a clause in the invariant

inv-car(c) 2 ¢ € c.owned_by.owns

By defining specific pieces of syntax for many common modelling situations, EX-
PRESS entities give a means to specify certain types of relational constraints con-
cisely. This approach can be more “engineer friendly” than the explicit formalisation
of such constraints in the general logic of invariant predicates. However the inter-
pretation of these constructs can be somewhat confusing to the newcomer.

4.2.2 Other Type Constructors

EXPRESS also includes a number of other type constructors which can be used
without the overhead of object indirection. Type expressions using these construc-

4.2. AN OUTLINE OF EXPRESS 101

tors are named in defined types. For example there are arrays, lists, sets, bags,
enumerated types and select types (unions). However, there are no map or function
types and tuples can only be constructed through the use of entities.

4.2.3 Subtypes

The object-flavoured nature of EXPRESS is reinforced by its use of subtypes. A
subtype inherits and extends the set of attributes of its supertype. There are three
ways in which inheritance can be employed.

Simple inheritance is declared in both supertype and subtype, for example by the
combination

ENTITY C SUPERTYPE OF ONEOF (A,B)
and

ENTITY A SUBTYPE of C
ENTITY B SUBTYPE of C'

Here A inherits from C and so does B.

A form of multiple inheritance is declared by

ENTITY C SUPERTYPE OF AND (A,B)

which allows instances with the fields of A and B and C
The third form ANDOR(A,B) is equivalent to ONEOF(A, B, AND(A,B)).

A supertype can be declared as abstract in which case it can only be instantiated
through its subtypes.

The SUPERTYPE clause can be omitted and inferred from the subtypes declara-
tions. However, the use of ANDOR as the default combinator for the subtypes when
no supertype clause is given makes its omission highly non-compositional. explicitly.

Subtyping provides a way to condense a data model definition by avoiding repeti-
tion of combinations of attributes which are common to several entity definitions.
However, it is possible to expand out the subtype hierarchy to give a model with an
equivalent set of valid instances. For present purposes, we assume that all subtyping
has been expanded out.

Thus EXPRESS provides many (though not all) of the forms of type construction
available in VDM and includes a form of subtyping and object identity not available
there.

102 CHAPTER 4. AN EXPRESS TO SQL “COMPILER”

4.3 The Abstract EXPRESS Database

The SDAI standard defines three components in the abstract definition of the in-
terface. Firstly, the “data dictionary” defines the types used. This is the abstract
syntax for the data models written in EXPRESS (the meta-data) the instance data
written in EXPRESS-I (the actual data). The second component is the “session”
which represents the components manipulated during execution (the state). These
two components are given as formal models in EXPRESS. Thirdly, there are the
operations which, although described in terms of the formal models are given infor-
mally in the standard.

The abstract VDM specification is built from two modules. modules One module
defines the types used as parameters to the operations, the other defines the abstract
state and operations.

Rather than give a VDM model which is as close as possible to the EXPRESS model
in the standard (the approach which is followed in [8]), we make certain modelling
decisions in “translating” from EXPRESS to VDM. The new model makes use of
the facilities available in VDM to replace some of the features of the EXPRESS
model which could not be modelled directly.

In an informal translation such as this, there remains a danger that the model
we construct does not correspond to that in the standard. However, this approach
was adopted after early attempts to follow the EXPRESS style in VDM encountered
difficulties with handling object identifiers and the environment to dereference them.
This confirmed previous experience [10] that trying to translate directly from one
language to an apparently similar one can lead to problems.

4.3.1 The EXPRESS and EXPRESS-I Abstract Syntax

The first module modules defines the abstract syntax for the EXPRESS Types,
that is, the meta-data and instance data stored by the database. This follows the
structure of the data dictionary in the SDAI. It will be shared by both abstract and
concrete specifications.

module £'T

exports all

The following sections do not attempt to be comprehensive in their coverage of the
EXPRESS language, but rather describe those aspects which lead to interesting
modelling issues.

Schema Definitions.

We begin by giving a model for schemas. A schema definition has a set of entities
which it declares, a set of types it declares, and some global rules.

4.3. THE ABSTRACT EXPRESS DATABASE 103

schema-def :: exp-types : type-name - type-def
entities : entity-name — entity-def
global-rules : global-rule-set;

In keeping with VDM style, we exploit the fact that the type-names and entity-names
are unique and use these as the indices in map types.

In the EXPRESS model, these names are given as components of the entity and
type definitions, sets of which are components of schema definitions. Constraints
are then given which state that the names are unique within the parent object. For
example, the model of entity definition ensures that the entity names are unique
within the parent schema by the following combination of an inverse attribute and
a uniqueness rule:

INVERSE parent-schema : schema-definition FOR entities
UNIQUE URI1: entity-name, parent-schema

This construction is rather common in EXPRESS.

Type Definitions.

Entity names and a number of other type constructors can be used in type defini-
tions. For brevity we do not go into this further here.

type-def = entity-name | ...;

Entity Definitions.

Freed from its name, an entity definition is simply a map from attribute names to
attribute definitions.

entity-def = attribute-name > attribute-def;

Attribute Definitions.

Attribute definitions can be of one of three forms, defined in EXPRESS using a
subtype/supertype relationship:

ENTITY attribute ABSTRACT SUPERTYPE OF (
ONEOF (derived_attribute, explicit_attribute, inverse_attribute))

For brevity, we only model explicit attributes here?.

20ne way in which it is possible to model the subtype/supertypes relationship in VDM is to
expand out the supertype’s attributes into each subtype. Another is to define the supertype’s
attributes as a composit type and explicitly include this an attribute in the subtypes. Note that
this latter approach can be taken without the cost in complexity that the extra level of indirection
would have introduced if using EXPRESS entities.

104 CHAPTER 4. AN EXPRESS TO SQL “COMPILER”

attribute-def = entity-name |
type-name |
aggregate-def |

ey

An attribute definition is the type of the attribute. It can either be an entity type,
indicated by the entity name, or any named type, or some particular forms of type
expressions, such as aggregate types which generalise sets, bags, lists and arrays.
It is unclear why not all forms of type expression are permitted as the types of
attributes.

Models.

A model is the set of instances of the entities of a schema. For consistency with the
use of “schema definition” above, here we call it a “data definition”

data-def = instance-ref = instance-def;

The SDAI states that “the underlying-schema of the model must be the schema that
defines the structure of the data that appears in the model”, but does not formalise
this. Formalising this requirement includes ensuring that each instance in the model
is an instance of an entity in the underlying schema. This constraint emerges here
as part of the invariant when instance data and meta data are brought together.

Instances.

The SDATI defines a hierarchy of kinds of instance: an application-instance is an
instance of an entity defined in an application schema and an sdai-instance is an
instance of an entity defined in one of the schemas of the SDAIT definition itself.
The latter are divided into dictionary-instances and session_instances. The different
classes are then used to distinguish types of instances when required. However, all
of these instances have the same attributes so here we do not need to model them
separately but rather can define functions that distinguish them if necessary.

instance-def :: entity : entity-name
attributes : attribute-name - attribute-value;

attribute-value = instance-ref |
expression |
aggregate-value |

ey

The entity field of an instance definition is the entity-definition of which this is an
instance. This “cross-linking” is required because this schema-centered model does
not tie instances to entities in any other way. (Some alternative approaches are

4.3. THE ABSTRACT EXPRESS DATABASE 105

discussed in 4.3.3.) In general, this form of duplication is undesirable as it leads to
many consistency checks in invariants and operations. belongs”

4.3.2 The State and Operations

The second module modules of the abstract specification defines the state and op-
erations. It imports the EXPRESS types from the last module.

module AKDB
imports

from E'T all

In an SDAI “session”®. a database has a number of dbs indexed by schema names
Also, if there are several models for the same schema, these appear as separate dbs,
each with its own copy of the schema definition. (The alternative of composing each
schema definition with a set of models is also discussed in Section 4.3.3.)

However, for simplicity, we specify a database described by a single schema. The
state brings together the schema and data in a database segment (a real database
may incorporate a number of these). The database is initially empty®.

state db of
schema : schema-def

model : data-def

inv mk-db (s, im) &
Y ir € dom im -
den € dom s.entities -
isa-instance-of (ir, en, mk-db (s, im));

init db & db = mk-db (mk-schema-def ({—1},{—},{}), {—1})

end

The instance and meta data are tied together via the entity field in the instance
definitions. The invariant states that all the instances must be instances of some
entity definition in the schema by using the function isa-instance-of . This function
takes as arguments the instance reference, the entity name, and the whole database.
The last is required in order that the first two can be dereferenced.

3In the SDALI, a session supports a number of repositories, here (like most of the implementa-
tions) we assume the EXPRESS database contains a single repository.
4The syntax ET° is used for referring to constructs from the imported module.

106 CHAPTER 4. AN EXPRESS TO SQL “COMPILER”

isa-instance-of : instance-ref X entity-name x db — B

isa-instance-of (ir,en,d) &
let id = d.instance-map (ir),
em = d.schema.entities in
names-match (id.entity, en) A
doms-equal (id.attributes, em (en)) A
Y an € dom id.attributes -
isa (id.attributes (an), em (en) (an), d);

Three conditions are required to be satisfied for an instance to be a valid instance
of an entity. Firstly, the names of the instance and the entity must match, secondly,
the attributes must have the same names in instance and entity definition, and lastly
each attribute value must be of type of the corresponding attribute definition. This
last condition is formalised by the function isa which is a general type checking
function which can be applied to any value/type pair and recursively recursively
calls isa-instance-of in the case that the pair is an instance/entity.

names-match : entity-name X entity-name — B

names-match (enl, en2) &
enl = en?;

doms-equal : (@A 5 QB) x (@4 5 @C) — B

doms-equal (m1, m2) &
dom m1l = dom m2;

isa : attribute-value X attribute-def x db — B

isa (av,ad,d) &
cases mk- (av, ad) :
mk- (mk-instance-ref (-), mk-entity-name (-)) —
isa-instance-of (av,ad, d),
mk- (mk-expression (-), mk-type-name (-)) —

A number of auxiliary function are also provided for convenience in the operation
definitions that follow. For example:

delete-instance : db x instance-ref — db

delete-instance (d,ir) &
o (d, instance-map — {ir} < d.instance-map)

pre ir € dom d.instance-map ;

4.3.

THE ABSTRACT EXPRESS DATABASE 107

add-instance : instance-def x db — db x instance-ref

add-instance (i,d) &
let nir = new-ir (d),
ndb = p (d, instance-map — d.instance-map k& {nir — i}) in
mk- (ndb, nir)
pre t¢.entity € dom d.schema.entities N
dom i.attributes = dom d.schema.entities (i.entity) A
Y an € dom i.attributes -
isof -type (i.attributes (an), d.schema.entities (i.entity) (an), d);

new-ir : db — instance-ref

new-ir (d) &
let ir : instance-ref be st ir ¢ dom d.instance-map in
ir

The Operations.

The SDAT defines some 50 operations, not all of which were formalised in VDM.
There are also some operations required to complete the description of the EX-
PRESS database which are not defined in the SDAI. These concern instantiating
the database by reading EXPRESS data models and instances from file.

Here we give a few example a pair of operations which add and delete entities within
the database and a pair which add and delete instances.

add-entity (en : ET entity-name, ed : ET" entity-def)
ext wr schema : KT schema-def

pre en ¢ dom schema.entities

post schema.entities = schema.entities T {en — ed} A

schema.exp-types = schema.exp-types A

schema.global-rules = schema.global-rules

delete-entity (en : BT entity-name)
ext rd model : ET data-def
wr schema : E'T schema-def

pre en € dom schema.entities N
Vi € rng model - i.entity #* en

post schema.entities = {en} 4 schema.entities N\

schema.exp-types = schema.exp-types A

schema.global-rules = schema.global-rules

108 CHAPTER 4. AN EXPRESS TO SQL “COMPILER”

add-instance (i : ET instance-def , en : ET entity-name) ir: ET instance-ref
ext rd schema : F'T schema-def
wr model : ET datagef

pre en € dom schema.entities N
ET names-match (i.entity, en) A
dom i.attributes = dom schema.entities (en) A
Y an € dom i.attributes -
ET isa (i.attributes (an),
schema.entities (en) (an),
mk-db (schema, model))

post let mk- (ndb, nir) = ET add-instance (i, mk-db (schema, model)) in
mk-db (schema, model) = ndb A ir = nir ;

delete-instance (ir : ET instance-ref)
ext rd schema : F'T schema-def
wr model : ET datagef

pre ir € dom data-def
post mk-db (schema, model) =

P —

ET delete-instance (mk-db (schema, model), ir)

4.3.3 Reflections on the Abstract Specification

The most fundamental difference in style between EXPRESS and VDM arises from
the dereferencing implicit in instances of EXPRESS entities. In VDM, when indi-
rection is required it must be made explicit by use fo a map type; in EXPRESS,
each entity definition indicates an indirection in the corresponding instance data.

No uniform approach was taken here in determining which EXPRESS entities should
be given object identifiers in the VDM model. However, often a strong indication
that a map type was required came from the use of the combination of inverse
attribute and uniqueness rule described above.

The data model given in [2] is rather concrete and includes a great proliferation of
cross-references and repetition of data which makes it difficult to give a sufficiently
strong invariant and operation definitions. The ubiquity of object identifiers in
EXPRESS models can lead to a blurring of the roles of composit types as tuple
constructors and to indicate indirection in the data.

The treatment here has removed many of these cross-references but there is still some
“redundancy” remaining. The model given here can be seen as schema-centred in
that the meta data and instance data are separated at the level of schema. The
overall model of db is

4.4. A RELATIONAL DATABASE 109

entity-name — (attribute-name - attribule-def)
X
instance-ref - entity-name

X

(attribute-name = attribute-val)

This makes instance references unique throughout the instances of the schema and
requires the three consistency clauses given above.

An alternative, class-centered, model would bring the instance references within the
entity definitions to give

entily-name - (altribute-name = attribute-def)
X
instance-ref —> (attribute-name - attribute-val)

Here instance references are only unique within the instances of a class and only the
isa and doms-equal clauses are required.

A third possible model would be instance-centered.

instance-ref — entily-name
X
(attribute-name = (attribute-def
X
attribute-val))

Now, only the isa constraint is required in the invariant although a new one is now
needed which states that all instances of the same entity have the same structure.

This last model highlights the fact that the entity names could be considered to be
redundant, entities with the same structure being equivalent. However, this value-
based rather than an instance-based approach does diminish the potential for the
classification of instances. It is a matter for debate which of these models is more
abstract or more convenient in use. Which model is preferred is a matter of choice
but experience shows that it is often convenient to use whichever model has simplest
invariant.

4.4 A Relational Database

The basis for the concrete specification of the EXPRESS database is a VDM defi-
nition of an idealised relational database given in [5].
4.4.1 Signature

We are careful only to export the types and operations which we want to make avail-
able to the implementation. Note that the structure of the types is exported meaning

110 CHAPTER 4. AN EXPRESS TO SQL “COMPILER”

that the default constructors and selectors are also exported. This is considerably
more concise than defining and exporting each function explicitly.

module RDB
exports

types struct Relation,
struct RelationName,
struct Flield,
struct Flields,

There are just seven operations in the idealised database.

operations Creale : RelationName x Fields = (),
Ezxpand : RelationName x Field > (),
Drop : RelationName - (),
Insert : Ins | InsSel = (),
Update : Upd | UpdCond = (),
Delete : Del | DelCond = (),
Select : (Sel | SelCond) x Environment = Relation

4.4.2 Datatypes

A number of type declarations are required to support the definition of the opera-
tions. [5] defines some “syntactic types” which are the types which are used in the
parameters and results of the operations, and “semantic types” which are used to
model the internal structures of the database. Here we give a top-down presentation
of some of the types without distinguishing the two classes.

Database = RelationName - Relation;
Relation :: scheme : Scheme
tuples : Tuple-set

inv mk-Relation (s, ts) &
Viels-
dom t = dom s A
Y att € dom t - Compatible-type (t (att), s (att));

Scheme = AttributeName - Attribute;
Tuple = AttributeName = Value:;

Attribute = DataType

4.4. A RELATIONAL DATABASE 111
Fields = Field-set;

Field :: name : AttributeName
type : DataType;

DataType = INTEGER | STRING | RelationName

There are many more syntactic domains for queries in the full specification which
are used for selections, conditions, comparisons, boolean operations, arithmetic op-
erations, etc.

4.4.3 The State and Operations

The state of the module is a single database. It is initially empty.

state rdb of
db : Database
init rdb 2 db = mk-rdb ({—1)

end

Note that this model only supports a single schema.

A number of auxiliary functions are used in the definition of the operations. One
which is necessary in the following given here.

Make-Scheme : Fields — Scheme

Make-Scheme (fs) &
{f.name — f.type | f € fs};

The seven operation given in the signature are sufficient to implement the abstract
operations given above. Just one example is given here.

Create (r : RelationName, fs : Fields)
ext wr db : Database
pre 7 & dom db A
Vfi,fjefs-
fi#fi = fiiname # fj.name
post let rel = mk-Relation (Make-Scheme (fs),{}) in
db = db i {r — rel}

4.4.4 Reflections on the Relational Database Specification

The full specification of the relational database runs to some 10 pages of VDM.
Although this was taken directly from a published specification, some significant

112 CHAPTER 4. AN EXPRESS TO SQL “COMPILER”

effort was required to fully formalise the specification and put it into the support tool.
It is reassuring to note that only very minor errors were found during this process.
Of course, the effort required to achieve full formality is repaid by the possibilities
arising from automatic manipulation of the formal description, for example, proof
obligation and test case generation, animation and even code generation.

4.5 A Concrete EXPRESS Database

A refinement of the abstract EXPRESS database was built on top of the relational
database.

The concrete EXPRESS database module modules import the abstract syntax of
EXPRESS defined in the abstract specification and the relational database.
module CEDB

imports
from ET all |
from RDB all

The state of the concrete EXPRESS database is exactly a relational database.

We first define some auxiliary functions.
functions

make-entity-name : RDB* RelationName — ETentity-name
make-entity-name (r) &

ey

make- RelationName : E'T entity-name — RDB* RelationName
make- RelationName (e¢) &

ey

make-atiribute-name : RDB AttributeName — ET attribute-name

make-attribute-name (an) £

ey

make-AttributeName : E'T atiribute-name — RDB‘ AtiributeName
make- AttributeName (an) JA

ey

4.6. A REFINEMENT PROOF 113

make-DataType : ET*attribute-def — RDBDataType

make-DataType (an) &
cases an :
mk-ET entity-name (n) — make- RelationName (n),
mk-ET type-name (" Integer") — INTEGER,
mk-ET type-name (" String") — STRING
end

These are not specified in any more detail, except that they are all bijections, and
have the following inverse properties.

Ven € ET entity-name - make-entity-name (make- RelationName (en))=en

YV rn € RDB* RelationName - make- RelationName (make-entity-name (rn))=rn

YV an € ET attribute-name - make-attribute-name (make- Attribute Name (an))=an
YV an€ RDB‘ Attribute Name - make- AttributeName (make-attribute-name (an))=an

The definitions of operations in this model are generally straightforward, they break
down the abstract structures and rebuild the relevant concrete structures. We give
just a single example of an explicit version of the abstract operations defined on top
of the relational database.

operations

add-entity : ET*entity-name x ET*entity-def = ()

add-entity (en, ed) &
let fields = {mk-RDB*Field
(make- AttributeName (an),
make-DataType (ed (an))) | an € dom ed} in
RDB* Create(make- RelationName (en), fields)

Thus the design has the character of a programming task.

4.6 A Refinement Proof

In this section, we give a proof that the relational database based specification is
a refinement of the abstract model. We restrict our interest to just one operation,
add_entity. Note that in this section, for clarity, we omit the module prefixes.

4.6.1 The Retrieve Function

The refinement proof is based around the retrieve function, relating the concrete
state to the abstract. In this case, the concrete state is the relational database

model; the abstract the model of EXPRESS.

The retrieve function on the relational database state is broken down into the com-
position of retrieve functions on the constituent types in the state. This is only a

114 CHAPTER 4. AN EXPRESS TO SQL “COMPILER”

partial definition; we omit for example, all the details of the retr_model function, as
this plays no part in this part of the refinement proof.
functions

retr : rdb — db

retr (r) &
mk-db (retr-schema (1), retr-model (r));

retr-schema : rdb — schema-def

retr-schema (r) &
mk-schema (retr-exp-types (1), retr-entities (r), retr-global-rules (r));

retr-entities : rdb — (entity-name - entity-def)

retr-entities (mk-rdb (rdb)) &
{make-entity-name (rn) — retr-entity-def (rdb(rn)) | rn € dom rdb};

retr-entity-def : Relation — entity-def
retr-entity-def (mk-Relation (s,-)) &

{make-attribute-name (an) — retr-attribute-def (s (an)) | an € dom s};

retr-attribute-def : Attribute — attribute-def

retr-attribute-def (mk-Attribute (dt)) &
cases dt :
RelationName — mk-entity-name (dt),
INTEGER — mk-type-name ("INTEGER"),
STRING — mk-type-name ("STRING") ...
end

Note that retr_attribute_def and mk_Data Type are inverses.

Proofs about the retrieve function. Two obligations need to be proven about
the retrieve function: retr-S-adeq (the is surjective) and init-adeq (the initial concrete
state is retrieved to the initial abstract state). In this case these give rise to the
following proof obligations.

d:db
dr:rdb - retr(r)=d

d:db,r:rdb,d = retr(r), rinit-rdb (r)
rinit-db (d)

4.6. A REFINEMENT PROOF 115

The second clearly holds: the retrieve function maps the empty map onto the empty
map. The first requires the consideration of the invariants on the two states. This
is more complicated, and is omitted here.

4.6.2 The Refinement Proof Obligations

Two proof obligations are required for each operation: OP-dom-0bl, which demon-
strates that the abstract precondition implies the concrete precondition, and OP-res-
obl, which demonstrates that the abstract precondition and concrete postcondition
together satisfy the abstract postcondition. Here, we only consider one operation,
add_entity.

We first consider the obligation add-entity-dom-obl. This translates into the follow-
ing:

en : entity-name,
ed : entity-def,
c: cedb,
en & dom (retr (¢).schema.entities)

make-RelationName (en) ¢ dom (c.db)

Once definedness is established, the proof can proceed via forward reasoning, gener-
ating new hypotheses from the existing ones. The last hypothesis can be simplified
by equal substitution using the f-defn rules for the retrieve functions:

en & dom (retr (¢).schema.entities)
= en ¢ dom (retr-entities (¢))
= en ¢ dom {make-entity-name (rn) — retr-entity-def (c.db(rn))
| rn € dom (c.db)}
= en ¢ {make-entity-name (rn) | rn € dom (c.db)}

Since make_RelationName is an injection, we can apply this function to this last
hypothesis, pushing it through the set comprehension giving a new hypotheses,
which can be simplified as follows:

make- RelationName (en) € {make- RelationName (make-entity-name (rn))
| rn € dom (c.db)}
= make-RelationName (en) & {rn | rn € dom (c.db)}
= make-RelationName (en) ¢ dom (c.db)

and the obligation holds. The second obligation add-entity-res-obl is more compli-
cated, and we only give a proof sketch. The form of the obligation is as follows.

116 CHAPTER 4. AN EXPRESS TO SQL “COMPILER”

en:entity-name,
ed: entity-def,
c:cedb,
en & dom(retr(c).schema.entities),
let fields = {
mk-Field(make-Attribute Name(an),make-Data Type(ed(an)))
| an € dom ed
}in

post- Create(make-RelationName(en),fields)

retr (c).schema.entities = retr ("¢).schema.entities 1 {en s ed }A

relr (¢).schema.exp-types = retr (¢).schema.exp-typesA

retr (c).schema.global-rules = retr ("¢).schema.global-rules

The fifth hypothesis of this obligation is complex. It is derived from the post-
condition of the concrete add-entity operation. As this operation calls the Create
operation, the post-condition of the latter operation is substituted.

We can split the goal into three, one for each conjunction. It is the first one which we
are primarily interested in. Again, we proceed by using a forward proof. Most of the
information required to prove this goal is encapsulated within the last hypothesis.
This can be simplified as follows. We first expand out the post-condition of Create,
leading to the following nested expression.

let fields = {
mk-Field(make-Attribute Name(an),make-Data Type(ed(an))
| an € dom ed
}in

let rel = mk-Relation(Make-Scheme(fields),{}) in
c.db = "¢ .db t {make- RelationName (en) s rel}

By the equational congruence rule (=-extend), we can apply the retrieve function to
both sides of this expression (the let clauses are omitted for clarity in the following
proof steps):

retr (c.db) = retr (c.db t {make-RelationName (en) — rel})

Expanding the definition of retr gives:

mk-db (retr-schema (c.db), retr-model (c.db)) =
mk-db(retr-schema (¢ .db t {make- RelationName (en) s rel}),
retr-model ("¢ .db t {make-RelationName (en) — rel}))

As it is the schema component we are primarily interested, we can use the selector
definition rule schema-defn to give the equation:

relr (c.db).schema = retr-schema (¢ .db t {make- RelationName (en) v rel})

4.6. A REFINEMENT PROOF 117

Again using the selectors, this can be decomposed into the following three hypothe-
ses:

retr (c.db).schema.entities =

retr-schema ("¢ .db 1 {make- RelationName (en) — rel}).entilies

retr (c.db).schema.exp-types =

retr-schema ("¢ .db 1 {make- RelationName (en) +— rel}).exp-types
retr (c.db).schema.global-rules =

retr-schema ("¢ .db 1 {make- RelationName (en) + rel}).global-rules

We are only interested in the first of these which can be rewritten to the following
hypothesis.

retr (c.db).schema.entities =
relr-entities ("¢ .db ¥ {make- RelationName (en) — rel})

Now we can push retr-entities through the overriding since we know from the pre-
vious proof obligation that make-RelationName(en) & dom(old(c).db). This gives:

retr (c.db).schema.entities =

retr-entities ("¢ .db) 1 retr-entities ({make- RelationName (en) > rel})
Unfolding the definition of retr-entities gives:

retr (c.db).schema.entities =

retr (¢ .db).schema.entitiest

{make-entity-name (make- RelationName (en)) > retr-entity-def (rel)}
and unfolding again on both sides:

retr (¢).schema.entities =

retr ("¢).schema.entities 1 {en v retr-entity-def (rel)}

Unfolding the retr-entity-def(rel), expanding the definition of rel as in the let clause,
we can give the following steps:
retr (¢).schema.entities
= retr (¢).schema.entitiest {en
retr-entity-def (make- Relation (Make-Scheme (fields),{})) }
= retr ("¢).schema.entitiest { en
retr-entity-def (mk-Relation(
{f-name — mk-Attribute (f.type) | f € fields}), {})}
= retr ("¢).schema.entitiest { en
{ make-attribute-name (an) — retr-attribute-def (att) |

mk- (an, att)°€ {f.name — mk-Attribute (f.type) | f € fields} }}

118 CHAPTER 4. AN EXPRESS TO SQL “COMPILER”

Now, the definition of fields states that the first component (i.e. finame) of each
pair is mk-AttributeName(an) for an € dom ed, and thus performing this expansion
gives:
retr (¢).schema.entities
= retr (¢).schema.entitiest { en
{ make-attribute-name (an) — retr-attribute-def (att) |
mk- (an, att) € {f.name — mk-Attribute (f.type) | f €
{ mk-Field (make-Attribute Name (an),
make-DataType (ed (an))) | an € dom ed}}}}

= retr ("¢).schema.entities T {en
{make-attribute-name (an) — retr-attribute-def (att) |
mk- (an, att) € {mk-(make- AttributeName (an),
make-DataType (ed (an)))| an € dom ed}}}

= retr ("¢).schema.entities T {en
{ an > retr-attribute-def (att) | mk-(an, att) €
{mk- (an, make-DataType (ed (an))) | an € dom ed} } }

= retr (¢).schema.entitiest { en
{ an > retr-attribute-def (make- DataType (ed (an))) |
an € dom ed}}

retr-attribute-def is the inverse of make-DataType, and so:

retr (¢).schema.entities
= retr ("¢).schema.entities 1 {en v+ {an + ed (an) | an € dom ed}}

= retr (¢).schema.entities T {en s ed}

and the proof is complete.

4.6.3 Thoughts on the Refinement Proof

This example is of a “medium-complexity” proof, but typical of the style required
to discharge such obligations. The proot of the obligations for the add-instance
operation are more complex, due to the necessity to ensure the integrity of the data.

Much of the complexity of the proofs is contained within the retrieve function. The
proof of the surjectivity of the retrieve is more problematic, due to the recursive
definitions used.

It is striking that this task could be described as “low-level theorem proving”. Most
of the proof steps are small and relatively trivial: unfolding of function definitions
and let clauses; extensive simple equational reasoning; and the application of retrieve

5In this proof sketch, mk-(z,y) € m is being used as a shorthand for z € dom m A y = m (z).

4.7. GENERAL EXPERIENCES AND CONCLUSIONS 119

function to generate new equational congruences. However, there are a large number
of these steps, even in a modest proof such as this one. The steps are tedious, with
substitutions and expansions into large, unwieldy terms, and are thus are highly
prone to human error.

This emphasises the need for appropriate machine support. Proofs of this type are
needed for each of the operations, with many such low-level reasoning steps, which
are prime candidates for automation, and many repeated chains of reasoning, calling
for the construction of repositories of reusable lemmas.

4.7 General Experiences and Conclusions

Concurrent engineering of the abstract specification, refinement and implementation
worked well. A major task was the understanding of the SDAI standard; by working
on specification and implementation together, the abstract model in the standard
and the language bindings were both considered which was a help when trying to
interpret the standard.

No routine technique was found to develop a VDM model from an EXPRESS one.
No uniform approach was appropriate for object identifiers or subtypes, rather it
was necessary build the VDM model as dictated by an understanding of the overall
specification. Unsurprisingly perhaps, it is not appropriate to try to use EXPRESS

style in VDM!
The implicit dereferencing available in EXPRESS has both benefits and drawbacks.

In its favour is that many concise forms can be defined for particular situations, on
the other hand, it can overly complicate the data to require an indirection every
time a tuple is created. It is unfortunate that there is no other way of constructing

tuples in EXPRESS.

The IFAD VDM-SL Toolbox was invaluable for writing, typesetting and typecheck-
ing the specifications. There is no doubt that the task would have been more time
consuming and error prone without it. Many errors were found in the specification
whilst it was developed and some minor ones in the previously published module.
The animation and testing facilities available in the toolbox were not used.

The Toolbox also provides a facility for generation of C++ code which could be
very useful. Code generated from the specification of the “EXPRESS shell” could
form the basis of an actual implementation of the software. However, if this were to
be used, it would have to be integrated (and maintained) with other software which
would interface to the relational database and the EXPRESS application. Although
this was not attempted, the documentation for the code generator describes the
structure of the resulting code. The present authors were surprised to find that the
code generation process builds classes according to the type constructors of VDM
rather than the data structures of the application data model. It could make the
integration task unnecessarily difficult. Similar problems will of course be present
with any automatic code generation tool [12].

120 CHAPTER 4. AN EXPRESS TO SQL “COMPILER”

Although, the formalisation of the refinement and proofs were not completed in full
detail, it was certainly worthwhile developing abstract and concrete views of the
system. Having two specifications helped one resist the temptation to gradually de-
crease the level of abstraction as the specification developed. Refinement and proof
would both require considerable effort, particularly as neither aspect is supported

by the Toolbox.

Certain pragmatic decisions also had to be taken as to what aspects to focus on
and what not to formalise. Thus, although the formal specification has helped
enormously in the understanding of the system and its design, in this instance it
has done little to increase confidence in correctness of the implementation.

4.8 Bibliography

[1] STEP Overview, ISO 10303, Part 1.

[2] SDAI Specification, ISO 10303, Part 22. TC184/SC4/WGT.
3] ibid. Section 6 to 8.

[4] Semantic Unification Meta Model. ISO 10303.

[5] A Formal Semantics For SQL. Meira, S., Motz, M. and Tepedino, F. Intern.
J. Computer Math. Vol. 34. pp. 43-63 (1990)

[6] Schenck and Wilson. Information Modelling the EXPRESS way, Oxford Uni-
versity Press, 1995.

[7] ibid. Appendix E.

[8] Analysis of the STEP Standard Data Access Interface Using Formal Methods.
Botting, R.M. and Godwin, A.N. Computer Standards and Interfaces. 17(5-
6), pp. 437-456, North Holland, 1995.

[9] Bicarregui J.C., An evaluation of methods for generating SQL from EX-
PRESS. ESPRIT 6212, Processbase, Document RAL/6212/TNR/016/4. Jan-
uary 1995.

[10] Bicarregui, Ritchie and Haughton, Experiences in Using Abstract Machine
Notation in a GKS Case Study. FME’94: Industrial Benefit of Formal Meth-
ods, LNCS 873, Springer-Verlag, 1994.

[11] Vienna Development Method - Specification Language, Draft International
Standard, ISO/IEC DIS 13817-1, 1995(E).

[12] Bicarregui, Dick and Woods, Supporting the length of formal development:
form diagrams to VDM to B to C, Tth International Conference on Putting
into Practice Methods and Tools for Information System Design. IBSN: 2-
906082-19-9 October 1995.

4.8. BIBLIOGRAPHY 121

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

The CAESAR STEP Toolkit User manual (Version 1.3). Caesar Systems
Limited, June 1992.

The EXPRESS Language Reference Manual, ISO IS 10303-11 : 1994(E).

Translating Express to SQL: A User Guide. Morris, K.C., NISTIR 90-4341,
National Institute of Standards and Technology (NIST), Gaithersburg MD.,
20899. USA.

STEP Relational Interface, Raghaven, V., Hardwick, M., Rensselaer Polytech-
nic Institute, Computer Science Masters Project. (1993)

Thomas D, Implementing the emerging ISO Standard STEP into a relational
database, BNCOD-8, Proceedings of the 8th British national Conference on
Databases.

P. Clement, Internal Report on the EXPRESS to SQL Compiler. Loughbor-
ough University of Technology Technical Report. 1991.

The IFAD VDM-SL Toolbox, in Woodcock and Larsen (Eds.). FME’93: In-
dustrial Strength Formal Methods. Springer-Verlag, 1993.

C.B. Jones C.D. Allen, D.N.Chapman. A formal definition of algol 60. Tech-
nical Report 12.105, IBM Laboratory, Hursley, Aug. 1972.

D. Andrews and W. Henhapl. Pascal. In Formal Specification and Software
Development, chapter 7, pages 175-252. Prentice-Hall, 1982.

S.P.A. Lau, Derek Andrews, Anjula Garg and J.R. Pitchers. The Formal Defi-
nition of Modula-2 and Its Associated Interpreter. In L.Marshall R.Bloomfield
and R. Jones, editors, VDM 8§ VDM — The Way Ahead, pages 167-177.
VDM-Europe, Springer-Verlag, September 1988.

W.Henhapl C.B.Jones P.Lucas H.Beki¢, D.Bjgrner. A formal definition of a
pl/i subset. Technical Report 25.139, IBM Laboratory, Vienna, December
1974.

0.0est (eds.) D. Bjgrner. Towards a Formal Description of Ada, volume 98
of Lecture Notes in Computer Science. Springer-Verlag, 1980.

J.F. Nilsson. Formal Vienna-Definition-Method models of Prolog. In J.A.
Campbell, editor, Implementations of PROLOG, pages 281-308. Ellis Hor-
wood Series: Artificial Intelligence, 1984.

224 CHAPTER 4. AN EXPRESS TO SQL “COMPILER”

Index

accountability, 67
Ammunition Control System, 31

British Nuclear Fuels, 2

circular reasoning, 61
class-centered model, 109
confidentiality, 67
consistency proof, 84
counter-example, 13, 19

emergent property, 24
environmental precondition, 78
exception condition, 79

EXPRESS, 95

formation property, 42
fully formal proof, v, vi, 11, 27, 92

genericity, 26
higher order logic, 159, 195

IFAD VDM-SL Toolbox, 2, 25, 31, 95,
119, 191, 192

indirection, 99, 108, 119

information modelling, 96

instance-centered model, 109

integrity, 67, 118

[sabelle, 191, 193

levels of rigour, 11
Logic of Partial Functions, 192
looseness, 185

LPF, 192

memory model, 133-135, 137-139, 143—
146, 148, 149, 151, 152
memory order, 124, 125, 127-132, 143,

146
Ministry of Defence, 32

225

modules, 26, 31, 50-53, 97, 98, 102,
105, 112

MSMIE, 169

Multiprocessor Shared-Memory Infor-
mation Exchange, 169

Mural, 92, 124, 133, 145, 146, 148, 149,
151, 152, 192, 209, 217

non-determinism, 185

OBJ3, 31
object identifier, 99, 108

partiality, 184, 192

partitions, 68

per processor program order, 126, 127,
139

precondition for success, 79

program order, 124-128, 132, 138-140,
148

PVS system, 157

reachable states, 24, 171

refinement, 95, 97, 112, 113, 152, 178,
181, 182, 184-186

refinement proof, 113-115, 118

retrieve function, 113-116, 118, 152,
181, 182

rigorous proof, 11, 19

safety analysis, 9

safety requirement, 6

satisfiability proof obligation, 11-13, 15,
86

schema-centred model, 108

seals, 69

security enforcing functions, 70

security policy model, 65

security properties, 78, 85

226

shared memory system, 123
SpecBox, 2, 25

SQL, 95

STEP standard, 96

system safety, 5

tactics, 198

TCC, 158, 175

testing, 27, 50

textbook proof, 11, 15

theory of VDM primitves, 133
Transport of Dangerous Goods, 32
trusted gateway, 201

trusted path, 70

typechecking constraints, 175

UN regulations, 32, 34, 50, 51
undefined, 184, 192
underspecification, 185

uniprocessor correctness, 124, 128, 144

value condition, 129, 144, 146
VDM-LPF, 195

witness, 16, 39-43, 48, 49

INDEX

