
��



Chapter �

The Speci�cation and Proof of an

EXPRESS to SQL �Compiler�

Juan Bicarregui and Brian Matthews

Summary

EXPRESS and SQL are two ISO standard languages for modelling data�
However� EXPRESS is abstract in the sense that it is intended to be
used to de�ne application�oriented data types� whereas SQL is concrete
in that all data must be modelled using relation tables� In this chapter�
we specify and prove some properties of an EXPRESS to SQL �compiler�
which implements the ISO standard STEP Data Access Interface �SDAI	
for the storage and retreval of EXPRESS instance data�

The �compiler� is formalised as a re�nement
 an abstract model of the
EXPRESS database is given which de�nes operations for the storage and
retreval based on a model of the EXPRESS data types on VDM� then a
speci�cation of a relational database is given as a basis for a re�nement
of the EXPRESS database� and then concrete versions of the operations
are de�ned on top of the relational model� These operations are� in
e�ect� the semantic functions of the compiler� The equivalence of the
abstract and concrete speci�cations is the justi�cation of the correctness
of the compiler�

We outline the speci�cations and prove an obligation concerning the
re�nement� A number of issues concerning modelling style arise in com�
paring the EXPRESS data types with those of VDM and concerning the
structuring of the development to facilitate proofs� The speci�cation was
developed using the IFAD VDM�SL Toolbox and the proofs constructed
by hand�



�
 CHAPTER �� AN EXPRESS TO SQL �COMPILER�

��� STEP and EXPRESS

EXPRESS is an �information modelling� language developed within the ISO Stan�
dard for the Exchange of Product model data �STEP	 ���� By de�ning standard
languages for the representation of data models and data compliant with those
models� and by standardising particular data models for speci�c application areas�
STEP provides a vendor�neutral mechanism for the representation of product data
and hence facilitates the open exchange of data between applications�

The STEP standard is divided into a number of parts� Some parts de�ne �generic
technologies� for the de�nition of models and data� others give particular data mod�
els �Application Protocols	 for representation of data in speci�c application areas�
For example the application protocol for geometric and topological representation�
de�nes that a circle should be represented by its centre and radius� rather than say
by a diameter or by three points on the circumference�

The generic technologies include EXPRESS �Part ��	 which is a language for the
de�nition of data models and EXPRESS�I �Part ��	 for representation of data�
Part �� gives a syntax for a condensed form of EXPRESS�I and Parts ����
 give a
standard API for accessing an EXPRESS�based database� the SDAI �STEP Data
Access Interface	� An abstract de�nition of the SDAI is given based on a partial
model of EXPRESS in EXPRESS and an informal de�nition of the operations to
manipulate this model� Concrete versions of the SDAI are de�ned in a number of
�language bindings� giving the data structures for implementations in particular
languages�

����� The Context

The work described in the chapter was undertaken in the context of the Process�
Base project� which concerns the development of an Application Protocol for Pro�
cess Plants �AP��� and AP���	 and is also developing software supporting transla�
tion between the APs and some native CAD formats �AutoCAD and PID	 for �D
schematics� �D models and functional data�

The translation between native and STEP data formats is achieved by some appli�
cation speci�c conversion software� Because data is structured radically di�erently
in the standard and native models this software requires intensive access to all parts
of the data and data models�

The implementation is achieved by interrogation of an SDAI database built on top
of relational technology� E�ectively two separate repositories are created� one loaded
with each data model� Translation takes place by selecting from the source database
the components required to construct each data item in the target database� The
EXPRESS �shell� built on top of the relational database is the EXPRESS to SQL
�compiler� referred to in the title of this chapter�

�ESPRIT Project ����� ProcessBase



���� STEP AND EXPRESS ��

S
D
A
I

S
D
A
I

Conversion 

Software

‘Compiler’
Express

Data

Express
‘Compiler’

Data
Reader

RDBRDB

Writer

Native Data STEP data

Native Data Model STEP Data Model

Figure ���
 The conversion takes place between � virtual SDAIs�

Express in
Express

Abstract
Operations

Concrete
Operations

Relational
Database

?

Figure ���
 The compiler is formalised as a re�nement

����� The Speci�cations

The abstract speci�cation is conceptually a single module� Its major datatypes are
an abstract syntax for the EXPRESS language itself� These are based on the de��
nition of EXPRESS in EXPRESS given in the SDAI but are remodelled to account
for some di�erences between the VDM and EXPRESS� The concrete speci�cation
is conceptually two modules� modules The �rst follows the de�nition of SQL in
VDM given in ���� This should be simple enough to be implemented on top of any
relational database� The second builds on this to give an implementation of the
SDAI� �In fact� some datatypes common to abstract and concrete speci�cations are
given as a separate module�	 The re�nement relation between speci�cations is the
justi�cation of the correctness of the compiler �Figure ���	�



�� CHAPTER �� AN EXPRESS TO SQL �COMPILER�

����� Related Work

EXPRESS is independent of any particular database technology� however� several
implementations of EXPRESS tools founded on relation database technology exist�
for example� ���� �
� ��� ��� ���� These were compared in a preliminary study to this
work ���� One implementation of EXPRESS in SQL was reverse engineered to de�ne
the translation and the compiler formalised as a re�nement between speci�cations
based upon an existing VDM de�nition of the semantics of SQL and the de�nition
of EXPRESS in EXPRESS given in ISO ����� Part ���

Formal de�nitions exist for several aspects of this development including a VDM
formalisation of the semantic of SQL ���� two EXPRESS models of EXPRESS it�
self ��� ��� and a VDM de�nition of part of the SDAI ���� An interesting development
which is trying to de�ne a unifying semantic model for several languages is ����

VDM is a mature notation for the de�nition of formal languages� �e�g� ���� ��� ��� ���
��� ���	� It is undergoing standardisation by BSI and ISO����� Several support tools
for VDM are available� the present work was undertaken using the IFAD VDM�SL
Toolbox ����

����� Overview

Section � gives an outline of some key concepts of the EXPRESS language and
Section � the abstract speci�cation of the EXPRESS database� Section � gives a
simpli�ed relational database and Section � de�nes the EXPRESS database opera�
tions on top of this� Section 
 discusses the approach taken�

��� An Outline of EXPRESS

EXPRESS is a language for de�ning data models� It has three levels of granularity�
The coarsest level components are Schema which are akin to modules� modules the
second and third are Entities and Attributes which loosely correspond to datatypes
�or object classes	 and �elds �or instance variables	 respectively�

We present some of the most important features of the EXPRESS language through
a simple example based on one given in �
��

����� Entities

The EXPRESS entity car describes the components of a car� As in a VDM record
type� each component is given a name and a type�



���� AN OUTLINE OF EXPRESS ��

ENTITY car �
model type 
 car model �
made by 
 manufacturer �
mnfg no 
 STRING �

registration no 
 STRING �
production year 
 INTEGER �

owned by 
 owner �
END�ENTITY

ENTITY car model �
name 
 STRING �

made by 
 manufacturer �
consumption 
 REAL �

END�ENTITY

Where Rules�

It is clear that the made by attribute should be the same for a car and for the model
of that car� This can be formalised as a �where rule� given in the de�nition of car�
for example

WHERE made by ��� model type�made by

This constraint is akin to an invariant in VDM� Note that ��� is object identity �see
later	�

Derived Attributes�

An alternative way to model this constraint would be to give the made by attribute
as a derived attribute of car�i�e�

DERIVE made by �� model type�made by

This indicates that the maker of a car can be derived �in this case trivially	 from
the maker of the model of the car�

In VDM� the same information could be extracted by use of an auxiliary function�

Object Identi�ers�

A fundamental di�erence between an EXPRESS entities and record types in say
VDM� is that an EXPRESS entity declaration indicates an implicit indirection in
the data� Following the object�oriented style� each instance of an entity corresponds
to a identi�ed object and an environment is assumed which dereferences object
identi�ers� For example� an instance of a car might be

�� � car�����	�
VW�		���
� 
N��	PQR
� ����� ���



��� CHAPTER �� AN EXPRESS TO SQL �COMPILER�

�� � car model�
GOLF
� �	� ����

�	 � manufacturer�� � � �

� � �

where the �i represent the object identi�ers� Note that the same manufacturer
appear in both the car and car model instances�

Uniqueness Constraints�

A number of constraints can be given which restrict the universe of instances�
Uniqueness of attributes or combinations of attributes can be speci�ed across all
instances of an entity� For example� the rule single states that the registration
number should be globally unique over all cars and joint states that� together� the
made by and mnfg no �elds are also globally unique�

UNIQUE single 
 registration no �
joint 
 made by�mnfg no �

Existence Constraints�

It is also possible to give constraints which describe the necessity of the existence of
some instance� For example� if owner is de�ned by

ENTITY owner �
owns 
 SET OF car �

END�ENTITY

then� in the entity de�nition for cars� one can state that every car must have an
owner by giving owned by as an �inverse attribute� as follows


INVERSE owned by � owner FOR owns

This stipulates that every car must appear uniquely in the set of cars owned by
some owner� This is equivalent to a clause in the invariant

inv�car�c� � c � c�owned by�owns

By de�ning speci�c pieces of syntax for many common modelling situations� EX�
PRESS entities give a means to specify certain types of relational constraints con�
cisely� This approach can be more �engineer friendly� than the explicit formalisation
of such constraints in the general logic of invariant predicates� However the inter�
pretation of these constructs can be somewhat confusing to the newcomer�

����� Other Type Constructors

EXPRESS also includes a number of other type constructors which can be used
without the overhead of object indirection� Type expressions using these construc�



���� AN OUTLINE OF EXPRESS ���

tors are named in de�ned types� For example there are arrays� lists� sets� bags�
enumerated types and select types �unions	� However� there are no map or function
types and tuples can only be constructed through the use of entities�

����� Subtypes

The object��avoured nature of EXPRESS is reinforced by its use of subtypes� A
subtype inherits and extends the set of attributes of its supertype� There are three
ways in which inheritance can be employed�

Simple inheritance is declared in both supertype and subtype� for example by the
combination

ENTITY C SUPERTYPE OF ONEOF �A�B� ����

and

ENTITY A SUBTYPE of C ����

ENTITY B SUBTYPE of C ����

Here A inherits from C and so does B�

A form of multiple inheritance is declared by

ENTITY C SUPERTYPE OF AND �A�B� ����

which allows instances with the �elds of A and B and C

The third form ANDOR�A�B� is equivalent to ONEOF�A� B� AND�A�B���

A supertype can be declared as abstract in which case it can only be instantiated
through its subtypes�

The SUPERTYPE clause can be omitted and inferred from the subtypes declara�
tions� However� the use of ANDOR as the default combinator for the subtypes when
no supertype clause is given makes its omission highly non�compositional� explicitly�

Subtyping provides a way to condense a data model de�nition by avoiding repeti�
tion of combinations of attributes which are common to several entity de�nitions�
However� it is possible to expand out the subtype hierarchy to give a model with an
equivalent set of valid instances� For present purposes� we assume that all subtyping
has been expanded out�

Thus EXPRESS provides many �though not all	 of the forms of type construction
available in VDM and includes a form of subtyping and object identity not available
there�



��� CHAPTER �� AN EXPRESS TO SQL �COMPILER�

��� The Abstract EXPRESS Database

The SDAI standard de�nes three components in the abstract de�nition of the in�
terface� Firstly� the �data dictionary� de�nes the types used� This is the abstract
syntax for the data models written in EXPRESS �the meta�data	 the instance data
written in EXPRESS�I �the actual data	� The second component is the �session�
which represents the components manipulated during execution �the state	� These
two components are given as formal models in EXPRESS� Thirdly� there are the
operations which� although described in terms of the formal models are given infor�
mally in the standard�

The abstract VDM speci�cation is built from two modules� modules One module
de�nes the types used as parameters to the operations� the other de�nes the abstract
state and operations�

Rather than give a VDMmodel which is as close as possible to the EXPRESS model
in the standard �the approach which is followed in ���	� we make certain modelling
decisions in �translating� from EXPRESS to VDM� The new model makes use of
the facilities available in VDM to replace some of the features of the EXPRESS
model which could not be modelled directly�

In an informal translation such as this� there remains a danger that the model
we construct does not correspond to that in the standard� However� this approach
was adopted after early attempts to follow the EXPRESS style in VDM encountered
di�culties with handling object identi�ers and the environment to dereference them�
This con�rmed previous experience ���� that trying to translate directly from one
language to an apparently similar one can lead to problems�

����� The EXPRESS and EXPRESS�I Abstract Syntax

The �rst module modules de�nes the abstract syntax for the EXPRESS Types�
that is� the meta�data and instance data stored by the database� This follows the
structure of the data dictionary in the SDAI� It will be shared by both abstract and
concrete speci�cations�

module ET

exports all

The following sections do not attempt to be comprehensive in their coverage of the
EXPRESS language� but rather describe those aspects which lead to interesting
modelling issues�

Schema De�nitions�

We begin by giving a model for schemas� A schema de�nition has a set of entities
which it declares� a set of types it declares� and some global rules�



���� THE ABSTRACT EXPRESS DATABASE ���

schema�def 
 
 exp�types 
 type�name
m
�� type�def

entities 
 entity�name
m
�� entity�def

global �rules 
 global �rule�set�

In keeping with VDM style� we exploit the fact that the type�names and entity�names
are unique and use these as the indices in map types�

In the EXPRESS model� these names are given as components of the entity and
type de�nitions� sets of which are components of schema de�nitions� Constraints
are then given which state that the names are unique within the parent object� For
example� the model of entity de�nition ensures that the entity names are unique
within the parent schema by the following combination of an inverse attribute and
a uniqueness rule


INVERSE parent�schema � schema�de�nition FOR entities

UNIQUE UR�� entity�name� parent�schema

This construction is rather common in EXPRESS�

Type De�nitions�

Entity names and a number of other type constructors can be used in type de�ni�
tions� For brevity we do not go into this further here�

type�def � entity�name j � � � �

Entity De�nitions�

Freed from its name� an entity de�nition is simply a map from attribute names to
attribute de�nitions�

entity�def � attribute�name
m
�� attribute�def �

Attribute De�nitions�

Attribute de�nitions can be of one of three forms� de�ned in EXPRESS using a
subtype�supertype relationship


ENTITY attribute ABSTRACT SUPERTYPE OF �

ONEOF�derived attribute� explicit attribute� inverse attribute��

For brevity� we only model explicit attributes here��

�One way in which it is possible to model the subtype�supertypes relationship in VDM is to
expand out the supertype�s attributes into each subtype� Another is to de�ne the supertype�s
attributes as a composit type and explicitly include this an attribute in the subtypes� Note that
this latter approach can be taken without the cost in complexity that the extra level of indirection
would have introduced if using EXPRESS entities�



��� CHAPTER �� AN EXPRESS TO SQL �COMPILER�

attribute�def � entity�name j
type�name j
aggregate�def j
� � � �

An attribute de�nition is the type of the attribute� It can either be an entity type�
indicated by the entity name� or any named type� or some particular forms of type
expressions� such as aggregate types which generalise sets� bags� lists and arrays�
It is unclear why not all forms of type expression are permitted as the types of
attributes�

Models�

A model is the set of instances of the entities of a schema� For consistency with the
use of �schema de�nition� above� here we call it a �data de�nition�

data�def � instance�ref
m
�� instance�def �

The SDAI states that �the underlying�schema of the model must be the schema that
de�nes the structure of the data that appears in the model�� but does not formalise
this� Formalising this requirement includes ensuring that each instance in the model
is an instance of an entity in the underlying schema� This constraint emerges here
as part of the invariant when instance data and meta data are brought together�

Instances�

The SDAI de�nes a hierarchy of kinds of instance
 an application�instance is an
instance of an entity de�ned in an application schema and an sdai�instance is an
instance of an entity de�ned in one of the schemas of the SDAI de�nition itself�
The latter are divided into dictionary�instances and session instances� The di�erent
classes are then used to distinguish types of instances when required� However� all
of these instances have the same attributes so here we do not need to model them
separately but rather can de�ne functions that distinguish them if necessary�

instance�def 
 
 entity 
 entity�name

attributes 
 attribute�name
m
�� attribute�value�

attribute�value � instance�ref j
expression j
aggregate�value j
� � � �

The entity �eld of an instance de�nition is the entity�de�nition of which this is an
instance� This �cross�linking� is required because this schema�centered model does
not tie instances to entities in any other way� �Some alternative approaches are



���� THE ABSTRACT EXPRESS DATABASE ���

discussed in ������	 In general� this form of duplication is undesirable as it leads to
many consistency checks in invariants and operations� belongs�

����� The State and Operations

The second module modules of the abstract speci�cation de�nes the state and op�
erations� It imports the EXPRESS types from the last module�

module AEDB

imports

from ET all

In an SDAI �session��� a database has a number of dbs indexed by schema names
Also� if there are several models for the same schema� these appear as separate dbs�
each with its own copy of the schema de�nition� �The alternative of composing each
schema de�nition with a set of models is also discussed in Section ������	

However� for simplicity� we specify a database described by a single schema� The
state brings together the schema and data in a database segment �a real database
may incorporate a number of these	� The database is initially empty��

state db of
schema 
 schema�def
model 
 data�def

inv mk�db �s� im	 �

� ir � dom im �
� en � dom s�entities �

isa�instance�of �ir � en�mk�db �s� im		�

init db � db � mk�db �mk�schema�def �f��g� f��g� f g	� f��g	
end

The instance and meta data are tied together via the entity �eld in the instance
de�nitions� The invariant states that all the instances must be instances of some
entity de�nition in the schema by using the function isa�instance�of � This function
takes as arguments the instance reference� the entity name� and the whole database�
The last is required in order that the �rst two can be dereferenced�

�In the SDAI� a session supports a number of repositories� here �like most of the implementa	
tions
 we assume the EXPRESS database contains a single repository�

�The syntax ET � is used for referring to constructs from the imported module�



��
 CHAPTER �� AN EXPRESS TO SQL �COMPILER�

isa�instance�of 
 instance�ref � entity�name � db � B

isa�instance�of �ir � en� d	 �

let id � d �instance�map �ir	�
em � d �schema�entities in

names�match �id �entity� en	 �
doms�equal �id �attributes� em �en		 �
� an � dom id �attributes �

isa �id �attributes �an	� em �en	 �an	� d	�

Three conditions are required to be satis�ed for an instance to be a valid instance
of an entity� Firstly� the names of the instance and the entity must match� secondly�
the attributes must have the same names in instance and entity de�nition� and lastly
each attribute value must be of type of the corresponding attribute de�nition� This
last condition is formalised by the function isa which is a general type checking
function which can be applied to any value�type pair and recursively recursively
calls isa�instance�of in the case that the pair is an instance�entity�

names�match 
 entity�name � entity�name � B

names�match �en�� en�	 �

en� � en��

doms�equal 
 ��A
m
�� �B	 � ��A

m
�� �C 	 � B

doms�equal �m��m�	 �

dom m� � dom m��

isa 
 attribute�value � attribute�def � db � B

isa �av � ad � d	 �

cases mk� �av � ad	 

mk��mk�instance�ref ��	�mk�entity�name ��		 �

isa�instance�of �av � ad � d	�
mk��mk�expression ��	�mk�type�name ��		 �

� � � � � �

end�

A number of auxiliary function are also provided for convenience in the operation
de�nitions that follow� For example


delete�instance 
 db � instance�ref � db

delete�instance �d � ir	 �

� �d � instance�map �� firg �C d �instance�map	

pre ir � dom d �instance�map �



���� THE ABSTRACT EXPRESS DATABASE ���

add �instance 
 instance�def � db � db � instance�ref

add �instance �i � d	 �

let nir � new �ir �d	�
ndb � � �d � instance�map �� d �instance�map m

S
fnir �� ig	 in

mk� �ndb�nir	

pre i �entity � dom d �schema�entities �
dom i �attributes � dom d �schema�entities �i �entity	 �
� an � dom i �attributes �

isof �type �i �attributes �an	� d �schema�entities �i �entity	 �an	� d	�

new �ir 
 db � instance�ref

new �ir �d	 �

let ir 
 instance�ref be st ir 	� dom d �instance�map in
ir

The Operations�

The SDAI de�nes some �� operations� not all of which were formalised in VDM�
There are also some operations required to complete the description of the EX�
PRESS database which are not de�ned in the SDAI� These concern instantiating
the database by reading EXPRESS data models and instances from �le�

Here we give a few example a pair of operations which add and delete entities within
the database and a pair which add and delete instances�

add �entity �en 
 ET �entity�name� ed 
 ET �entity�def 	
ext wr schema 
 ET �schema�def

pre en 	� dom schema�entities

post schema�entities �
�����
schema �entities y fen �� edg �

schema�exp�types �
�����
schema�exp�types �

schema�global �rules �
�����
schema�global �rules

delete�entity �en 
 ET �entity�name	
ext rd model 
 ET �data�def

wr schema 
 ET �schema�def

pre en � dom schema�entities �
� i � rng model � i �entity 	� en

post schema�entities � feng �C
�����
schema�entities �

schema�exp�types �
�����
schema�exp�types �

schema�global �rules �
�����
schema�global �rules



��� CHAPTER �� AN EXPRESS TO SQL �COMPILER�

add �instance �i 
ET �instance�def � en 
ET �entity�name	 ir 
ET �instance�ref
ext rd schema 
 ET �schema�def

wr model 
 ET �datadef

pre en � dom schema�entities �
ET �names�match �i �entity� en	 �
dom i �attributes � dom schema�entities �en	 �
� an � dom i �attributes �

ET �isa �i �attributes �an	�
schema�entities �en	 �an	�
mk�db �schema�model		

post let mk� �ndb�nir	 � ET �add �instance �i �mk�db �
�����
schema�

����
model		 in

mk�db �schema�model	 � ndb � ir � nir �

delete�instance �ir 
 ET �instance�ref 	
ext rd schema 
 ET �schema�def

wr model 
 ET �datadef

pre ir � dom data�def

post mk�db �schema�model	 �

ET �delete�instance �mk�db �
�����
schema�

����
model	� ir	

����� Re�ections on the Abstract Speci�cation

The most fundamental di�erence in style between EXPRESS and VDM arises from
the dereferencing implicit in instances of EXPRESS entities� In VDM� when indi�
rection is required it must be made explicit by use fo a map type� in EXPRESS�
each entity de�nition indicates an indirection in the corresponding instance data�

No uniform approach was taken here in determining which EXPRESS entities should
be given object identi�ers in the VDM model� However� often a strong indication
that a map type was required came from the use of the combination of inverse
attribute and uniqueness rule described above�

The data model given in ��� is rather concrete and includes a great proliferation of
cross�references and repetition of data which makes it di�cult to give a su�ciently
strong invariant and operation de�nitions� The ubiquity of object identi�ers in
EXPRESS models can lead to a blurring of the roles of composit types as tuple
constructors and to indicate indirection in the data�

The treatment here has removedmany of these cross�references but there is still some
�redundancy� remaining� The model given here can be seen as schema�centred in
that the meta data and instance data are separated at the level of schema� The
overall model of db is



���� A RELATIONAL DATABASE ���

entity�name
m
�� �attribute�name

m
�� attribute�def 	

�

instance�ref
m
�� entity�name

�

�attribute�name
m
�� attribute�val	

This makes instance references unique throughout the instances of the schema and
requires the three consistency clauses given above�

An alternative� class�centered� model would bring the instance references within the
entity de�nitions to give

entity�name
m
�� �attribute�name

m
�� attribute�def 	

�

instance�ref
m
�� �attribute�name

m
�� attribute�val	

Here instance references are only unique within the instances of a class and only the
isa and doms�equal clauses are required�

A third possible model would be instance�centered�

instance�ref
m
�� entity�name

�

�attribute�name
m
�� �attribute�def

�
attribute�val		

Now� only the isa constraint is required in the invariant although a new one is now
needed which states that all instances of the same entity have the same structure�

This last model highlights the fact that the entity names could be considered to be
redundant� entities with the same structure being equivalent� However� this value�
based rather than an instance�based approach does diminish the potential for the
classi�cation of instances� It is a matter for debate which of these models is more
abstract or more convenient in use� Which model is preferred is a matter of choice
but experience shows that it is often convenient to use whichever model has simplest
invariant�

��� A Relational Database

The basis for the concrete speci�cation of the EXPRESS database is a VDM de��
nition of an idealised relational database given in ����

����� Signature

We are careful only to export the types and operations which we want to make avail�
able to the implementation� Note that the structure of the types is exported meaning



��� CHAPTER �� AN EXPRESS TO SQL �COMPILER�

that the default constructors and selectors are also exported� This is considerably
more concise than de�ning and exporting each function explicitly�

module RDB

exports

types struct Relation�
struct RelationName�
struct Field �
struct Fields�
� � �

There are just seven operations in the idealised database�

operations Create 
RelationName � Fields
o
� �	�

Expand 
 RelationName � Field
o
� �	�

Drop 
 RelationName
o
� �	�

Insert 
 Ins j InsSel
o
� �	�

Update 
Upd j UpdCond
o
� �	�

Delete 
Del j DelCond
o
� �	�

Select 
 �Sel j SelCond	 � Environment
o
� Relation

����� Datatypes

A number of type declarations are required to support the de�nition of the opera�
tions� ��� de�nes some �syntactic types� which are the types which are used in the
parameters and results of the operations� and �semantic types� which are used to
model the internal structures of the database� Here we give a top�down presentation
of some of the types without distinguishing the two classes�

Database � RelationName
m
�� Relation�

Relation 
 
 scheme 
 Scheme
tuples 
Tuple�set

inv mk�Relation �s� ts	 �

� t � ts �
dom t � dom s �
� att � dom t � Compatible�type �t �att	� s �att		�

Scheme � AttributeName
m
�� Attribute�

Tuple � AttributeName
m
�� Value�

Attribute � DataType



���� A RELATIONAL DATABASE ���

Fields � Field �set�

Field 
 
name 
AttributeName
type 
DataType�

DataType � integer j string j RelationName

� � �

There are many more syntactic domains for queries in the full speci�cation which
are used for selections� conditions� comparisons� boolean operations� arithmetic op�
erations� etc�

����� The State and Operations

The state of the module is a single database� It is initially empty�

state rdb of
db 
Database

init rdb � db � mk�rdb �f��g	
end

Note that this model only supports a single schema�

A number of auxiliary functions are used in the de�nition of the operations� One
which is necessary in the following given here�

Make�Scheme 
 Fields � Scheme

Make�Scheme �fs	 �

ff �name �� f �type j f � fsg�

The seven operation given in the signature are su�cient to implement the abstract
operations given above� Just one example is given here�

Create �r 
RelationName� fs 
 Fields	
ext wr db 
Database

pre r 	� dom db �
�� � fj � fs �

� 	� fj 
 � �name 	� fj �name

post let rel � mk�Relation �Make�Scheme �fs	� fg	 in
db � db y fr �� relg

����� Re�ections on the Relational Database Speci�cation

The full speci�cation of the relational database runs to some �� pages of VDM�
Although this was taken directly from a published speci�cation� some signi�cant



��� CHAPTER �� AN EXPRESS TO SQL �COMPILER�

e�ort was required to fully formalise the speci�cation and put it into the support tool�
It is reassuring to note that only very minor errors were found during this process�
Of course� the e�ort required to achieve full formality is repaid by the possibilities
arising from automatic manipulation of the formal description� for example� proof
obligation and test case generation� animation and even code generation�

��� A Concrete EXPRESS Database

A re�nement of the abstract EXPRESS database was built on top of the relational
database�

The concrete EXPRESS database module modules import the abstract syntax of
EXPRESS de�ned in the abstract speci�cation and the relational database�
module CEDB

imports

from ET all �

from RDB all

The state of the concrete EXPRESS database is exactly a relational database�

We �rst de�ne some auxiliary functions�
functions

make�entity�name 
 RDB �RelationName � ET �entity�name

make�entity�name �r	 �

� � � �

make�RelationName 
 ET �entity�name � RDB �RelationName

make�RelationName �e	 �

� � � �

make�attribute�name 
 RDB �AttributeName � ET �attribute�name

make�attribute�name �an	 �

� � � �

make�AttributeName 
 ET �attribute�name � RDB �AttributeName

make�AttributeName �an	 �

� � � �



���� A REFINEMENT PROOF ���

make�DataType 
 ET �attribute�def � RDB �DataType

make�DataType �an	 �

cases an 

mk�ET �entity�name �n	 � make�RelationName �n	�
mk�ET �type�name ��Integer�	 � integer�

mk�ET �type�name ��String�	 � string

end

These are not speci�ed in any more detail� except that they are all bijections� and
have the following inverse properties�

� en�ET �entity�name �make�entity�name �make�RelationName �en		�en
� rn�RDB �RelationName �make�RelationName �make�entity�name �rn		�rn
� an�ET �attribute�name �make�attribute�name �make�AttributeName �an		�an
� an�RDB �AttributeName �make�AttributeName �make�attribute�name �an		�an

The de�nitions of operations in this model are generally straightforward� they break
down the abstract structures and rebuild the relevant concrete structures� We give
just a single example of an explicit version of the abstract operations de�ned on top
of the relational database�
operations

add �entity 
 ET �entity�name � ET �entity�def
o
� �	

add �entity �en� ed	 �

let �elds � fmk�RDB �Field
�make�AttributeName �an	�
make�DataType �ed �an			 j an � dom edg in

RDB �Create�make�RelationName �en	��elds	

Thus the design has the character of a programming task�

��� A Re�nement Proof

In this section� we give a proof that the relational database based speci�cation is
a re�nement of the abstract model� We restrict our interest to just one operation�
add entity� Note that in this section� for clarity� we omit the module pre�xes�

����� The Retrieve Function

The re�nement proof is based around the retrieve function� relating the concrete
state to the abstract� In this case� the concrete state is the relational database
model� the abstract the model of EXPRESS�

The retrieve function on the relational database state is broken down into the com�
position of retrieve functions on the constituent types in the state� This is only a



��� CHAPTER �� AN EXPRESS TO SQL �COMPILER�

partial de�nition� we omit for example� all the details of the retr model function� as
this plays no part in this part of the re�nement proof�
functions

retr 
 rdb � db

retr �r	 �

mk�db �retr �schema �r	� retr �model �r		�

retr �schema 
 rdb � schema�def

retr �schema �r	 �

mk�schema �retr �exp�types �r	� retr �entities �r	� retr �global �rules �r		�

retr �entities 
 rdb � �entity�name
m
�� entity�def 	

retr �entities �mk�rdb �rdb		 �

fmake�entity�name �rn	 �� retr �entity�def �rdb �rn		 j rn � dom rdbg�

retr �entity�def 
 Relation � entity�def

retr �entity�def �mk�Relation �s� �		 �

fmake�attribute�name �an	 �� retr �attribute�def �s �an		 j an � dom sg�

retr �attribute�def 
Attribute � attribute�def

retr �attribute�def �mk�Attribute �dt		 �

cases dt 

RelationName � mk�entity�name �dt	�
integer� mk�type�name ��INTEGER�	�
string� mk�type�name ��STRING�	 � � �

end

Note that retr attribute def and mk DataType are inverses�

Proofs about the retrieve function� Two obligations need to be proven about
the retrieve function
 retr�S�adeq �the is surjective	 and init�adeq �the initial concrete
state is retrieved to the initial abstract state	� In this case these give rise to the
following proof obligations�

d 
 db
� r 
 rdb � retr �r	 � d

d 
 db� r 
 rdb� d � retr �r	� rinit �rdb �r	
rinit �db �d	



���� A REFINEMENT PROOF ���

The second clearly holds
 the retrieve function maps the empty map onto the empty
map� The �rst requires the consideration of the invariants on the two states� This
is more complicated� and is omitted here�

����� The Re�nement Proof Obligations

Two proof obligations are required for each operation
 OP�dom�obl� which demon�
strates that the abstract precondition implies the concrete precondition� and OP�res�
obl� which demonstrates that the abstract precondition and concrete postcondition
together satisfy the abstract postcondition� Here� we only consider one operation�
add entity�

We �rst consider the obligation add�entity�dom�obl� This translates into the follow�
ing


en 
 entity�name �
ed 
 entity�def �

c 
 cedb�
en 	� dom �retr �c	�schema�entities	

make�RelationName �en	 	� dom �c�db	

Once de�nedness is established� the proof can proceed via forward reasoning� gener�
ating new hypotheses from the existing ones� The last hypothesis can be simpli�ed
by equal substitution using the f�defn rules for the retrieve functions


en 	� dom �retr �c	�schema�entities	
� en 	� dom �retr �entities �c		
� en 	� dom fmake�entity�name �rn	 �� retr �entity�def �c�db �rn		

j rn � dom �c�db	g
� en 	� fmake�entity�name �rn	 j rn � dom �c�db	g

Since make RelationName is an injection� we can apply this function to this last
hypothesis� pushing it through the set comprehension giving a new hypotheses�
which can be simpli�ed as follows


make�RelationName �en	 	� fmake�RelationName �make�entity�name �rn		
j rn � dom �c�db	g

� make�RelationName �en	 	� frn j rn � dom �c�db	g
� make�RelationName �en	 	� dom �c�db	

and the obligation holds� The second obligation add�entity�res�obl is more compli�
cated� and we only give a proof sketch� The form of the obligation is as follows�



��
 CHAPTER �� AN EXPRESS TO SQL �COMPILER�

en
entity�name�
ed
entity�def�

c
cedb�
en 	� dom�retr�c	�schema�entities	�

let �elds � f
mk�Field�make�AttributeName�an	�make�DataType�ed�an			

j an � dom ed
g in

post�Create�make�RelationName�en	��elds	

retr �c	�schema�entities � retr ���c 	�schema�entities y fen �� edg�

retr �c	�schema�exp�types � retr ���c 	�schema�exp�types�

retr �c	�schema�global �rules � retr ���c 	�schema�global �rules

The �fth hypothesis of this obligation is complex� It is derived from the post�
condition of the concrete add�entity operation� As this operation calls the Create
operation� the post�condition of the latter operation is substituted�

We can split the goal into three� one for each conjunction� It is the �rst one which we
are primarily interested in� Again� we proceed by using a forward proof� Most of the
information required to prove this goal is encapsulated within the last hypothesis�
This can be simpli�ed as follows� We �rst expand out the post�condition of Create�
leading to the following nested expression�

let �elds � f
mk�Field�make�AttributeName�an	�make�DataType�ed�an		

j an � dom ed
g in

let rel � mk�Relation�Make�Scheme��elds	�fg	 in

c�db � ��c �db y fmake�RelationName �en	 �� relg

By the equational congruence rule ���extend	� we can apply the retrieve function to
both sides of this expression �the let clauses are omitted for clarity in the following
proof steps	


retr �c�db	 � retr �c�db y fmake�RelationName �en	 �� relg	

Expanding the de�nition of retr gives


mk�db �retr �schema �c�db	� retr �model �c�db		 �

mk�db�retr �schema ���c �db y fmake�RelationName �en	 �� relg	�

retr�model ���c �db y fmake�RelationName �en	 �� relg		

As it is the schema component we are primarily interested� we can use the selector
de�nition rule schema�defn to give the equation


retr �c�db	�schema � retr �schema ���c �db y fmake�RelationName �en	 �� relg	



���� A REFINEMENT PROOF ���

Again using the selectors� this can be decomposed into the following three hypothe�
ses


retr �c�db	�schema�entities �

retr �schema ���c �db y fmake�RelationName �en	 �� relg	�entities
retr �c�db	�schema�exp�types �

retr �schema ���c �db y fmake�RelationName �en	 �� relg	�exp�types
retr �c�db	�schema�global �rules �

retr �schema ���c �db y fmake�RelationName �en	 �� relg	�global �rules

We are only interested in the �rst of these which can be rewritten to the following
hypothesis�

retr �c�db	�schema�entities �

retr �entities ���c �db y fmake�RelationName �en	 �� relg	

Now we can push retr�entities through the overriding since we know from the pre�
vious proof obligation that make�RelationName�en� 	� dom�old�c	�db�� This gives


retr �c�db	�schema�entities �

retr �entities ���c �db	 y retr �entities �fmake�RelationName �en	 �� relg	

Unfolding the de�nition of retr�entities gives


retr �c�db	�schema�entities �

retr ���c �db	�schema�entitiesy
fmake�entity�name �make�RelationName �en		 �� retr �entity�def �rel	g

and unfolding again on both sides


retr �c	�schema�entities �

retr ���c 	�schema�entities y fen �� retr �entity�def �rel	g

Unfolding the retr�entity�def�rel�� expanding the de�nition of rel as in the let clause�
we can give the following steps


retr �c	�schema�entities

� retr ���c 	�schema�entitiesy fen ��
retr �entity�def �make�Relation �Make�Scheme ��elds	� fg		 g

� retr ���c 	�schema�entitiesy f en ��
retr�entity�def �mk�Relation�

ff �name �� mk�Attribute �f �type	 j f � �eldsg	� fg	g

� retr ���c 	�schema�entitiesy f en ��
f make�attribute�name �an	 �� retr �attribute�def �att	 j

mk� �an� att	�� ff �name �� mk�Attribute �f �type	 j f � �eldsg gg



��� CHAPTER �� AN EXPRESS TO SQL �COMPILER�

Now� the de�nition of �elds states that the �rst component �i�e� f�name	 of each
pair is mk�AttributeName�an� for an � dom ed� and thus performing this expansion
gives


retr �c	�schema�entities

� retr ���c 	�schema�entitiesy f en ��
f make�attribute�name �an	 �� retr �attribute�def �att	 j

mk� �an� att	 � ff �name �� mk�Attribute �f �type	 j f �
f mk�Field � make�AttributeName �an	�

make�DataType �ed �an		 	 j an � dom edgggg

� retr ���c 	�schema�entities y fen ��
fmake�attribute�name �an	 �� retr �attribute�def �att	 j
mk� �an� att	 � fmk��make�AttributeName �an	�

make�DataType �ed �an			j an � dom edggg

� retr ���c 	�schema�entities y fen ��
f an �� retr �attribute�def �att	 j mk� �an� att	 �
fmk� �an�make�DataType �ed �an			 j an � dom edg g g

� retr ���c 	�schema�entitiesy f en ��
f an �� retr �attribute�def �make�DataType �ed �an			 j

an � dom edgg

retr�attribute�def is the inverse of make�DataType� and so


retr �c	�schema�entities

� retr ���c 	�schema�entities y fen �� fan �� ed �an	 j an � dom edgg

� retr ���c 	�schema�entities y fen �� edg

and the proof is complete�

����� Thoughts on the Re�nement Proof

This example is of a �medium�complexity� proof� but typical of the style required
to discharge such obligations� The proof of the obligations for the add�instance
operation are more complex� due to the necessity to ensure the integrity of the data�

Much of the complexity of the proofs is contained within the retrieve function� The
proof of the surjectivity of the retrieve is more problematic� due to the recursive
de�nitions used�

It is striking that this task could be described as �low�level theorem proving�� Most
of the proof steps are small and relatively trivial
 unfolding of function de�nitions
and let clauses� extensive simple equational reasoning� and the application of retrieve

�In this proof sketch� mk� �x � y
 � m is being used as a shorthand for x � dom m � y � m �x 
�



���� GENERAL EXPERIENCES AND CONCLUSIONS ���

function to generate new equational congruences� However� there are a large number
of these steps� even in a modest proof such as this one� The steps are tedious� with
substitutions and expansions into large� unwieldy terms� and are thus are highly
prone to human error�

This emphasises the need for appropriate machine support� Proofs of this type are
needed for each of the operations� with many such low�level reasoning steps� which
are prime candidates for automation� and many repeated chains of reasoning� calling
for the construction of repositories of reusable lemmas�

��� General Experiences and Conclusions

Concurrent engineering of the abstract speci�cation� re�nement and implementation
worked well� A major task was the understanding of the SDAI standard� by working
on speci�cation and implementation together� the abstract model in the standard
and the language bindings were both considered which was a help when trying to
interpret the standard�

No routine technique was found to develop a VDM model from an EXPRESS one�
No uniform approach was appropriate for object identi�ers or subtypes� rather it
was necessary build the VDM model as dictated by an understanding of the overall
speci�cation� Unsurprisingly perhaps� it is not appropriate to try to use EXPRESS
style in VDM�

The implicit dereferencing available in EXPRESS has both bene�ts and drawbacks�
In its favour is that many concise forms can be de�ned for particular situations� on
the other hand� it can overly complicate the data to require an indirection every
time a tuple is created� It is unfortunate that there is no other way of constructing
tuples in EXPRESS�

The IFAD VDM�SL Toolbox was invaluable for writing� typesetting and typecheck�
ing the speci�cations� There is no doubt that the task would have been more time
consuming and error prone without it� Many errors were found in the speci�cation
whilst it was developed and some minor ones in the previously published module�
The animation and testing facilities available in the toolbox were not used�

The Toolbox also provides a facility for generation of C�� code which could be
very useful� Code generated from the speci�cation of the �EXPRESS shell� could
form the basis of an actual implementation of the software� However� if this were to
be used� it would have to be integrated �and maintained	 with other software which
would interface to the relational database and the EXPRESS application� Although
this was not attempted� the documentation for the code generator describes the
structure of the resulting code� The present authors were surprised to �nd that the
code generation process builds classes according to the type constructors of VDM
rather than the data structures of the application data model� It could make the
integration task unnecessarily di�cult� Similar problems will of course be present
with any automatic code generation tool �����



��� CHAPTER �� AN EXPRESS TO SQL �COMPILER�

Although� the formalisation of the re�nement and proofs were not completed in full
detail� it was certainly worthwhile developing abstract and concrete views of the
system� Having two speci�cations helped one resist the temptation to gradually de�
crease the level of abstraction as the speci�cation developed� Re�nement and proof
would both require considerable e�ort� particularly as neither aspect is supported
by the Toolbox�

Certain pragmatic decisions also had to be taken as to what aspects to focus on
and what not to formalise� Thus� although the formal speci�cation has helped
enormously in the understanding of the system and its design� in this instance it
has done little to increase con�dence in correctness of the implementation�

��	 Bibliography

��� STEP Overview� ISO ������ Part ��

��� SDAI Speci�cation� ISO ������ Part ��� TC����SC��WG��

��� ibid� Section 
 to ��

��� Semantic Uni�cation Meta Model� ISO ������

��� A Formal Semantics For SQL� Meira� S�� Motz� M� and Tepedino� F� Intern�
J� Computer Math� Vol� ��� pp� ���
� �����	

�
� Schenck and Wilson� Information Modelling the EXPRESS way� Oxford Uni�
versity Press� �����

��� ibid� Appendix E�

��� Analysis of the STEP Standard Data Access Interface Using Formal Methods�
Botting� R�M� and Godwin� A�N� Computer Standards and Interfaces� �����

	� pp� ������
� North Holland� �����

��� Bicarregui J�C�� An evaluation of methods for generating SQL from EX�
PRESS� ESPRIT 
���� Processbase� Document RAL�
����TNR���
��� Jan�
uary �����

���� Bicarregui� Ritchie and Haughton� Experiences in Using Abstract Machine
Notation in a GKS Case Study� FME���
 Industrial Bene�t of Formal Meth�
ods� LNCS ���� Springer�Verlag� �����

���� Vienna Development Method � Speci�cation Language� Draft International
Standard� ISO�IEC DIS �������� �����E	�

���� Bicarregui� Dick and Woods� Supporting the length of formal development

form diagrams to VDM to B to C� �th International Conference on Putting
into Practice Methods and Tools for Information System Design� IBSN
 ��
��
�������� October �����



��	� BIBLIOGRAPHY ���

���� The CAESAR STEP Toolkit User manual �Version ���	� Caesar Systems
Limited� June �����

���� The EXPRESS Language Reference Manual� ISO IS �������� 
 �����E	�

���� Translating Express to SQL
 A User Guide� Morris� K�C�� NISTIR ��������
National Institute of Standards and Technology �NIST	� Gaithersburg MD��
������ USA�

��
� STEP Relational Interface� Raghaven� V�� Hardwick� M�� Rensselaer Polytech�
nic Institute� Computer Science Masters Project� �����	

���� Thomas D� Implementing the emerging ISO Standard STEP into a relational
database� BNCOD��� Proceedings of the �th British national Conference on
Databases�

���� P� Clement� Internal Report on the EXPRESS to SQL Compiler� Loughbor�
ough University of Technology Technical Report� �����

���� The IFAD VDM�SL Toolbox� in Woodcock and Larsen �Eds�	� FME��	� In�
dustrial Strength Formal Methods� Springer�Verlag� �����

���� C�B� Jones C�D� Allen� D�N�Chapman� A formal de�nition of algol 
�� Tech�
nical Report ������� IBM Laboratory� Hursley� Aug� �����

���� D� Andrews and W� Henhapl� Pascal� In Formal Speci�cation and Software
Development� chapter �� pages ��� ���� Prentice�Hall� �����

���� S�P�A� Lau� Derek Andrews� Anjula Garg and J�R� Pitchers� The Formal De��
nition of Modula�� and Its Associated Interpreter� In L� !Marshall R�!Bloom�eld
and R� Jones� editors� VDM ��� VDM � The Way Ahead� pages �
� ����
VDM�Europe� Springer�Verlag� September �����

���� W�Henhapl C�B�Jones P�Lucas H�Beki"c� D�Bj#rner� A formal de�nition of a
pl�i subset� Technical Report ������� IBM Laboratory� Vienna� December
�����

���� O�Oest �eds�	 D� Bj#rner� Towards a Formal Description of Ada� volume ��
of Lecture Notes in Computer Science� Springer�Verlag� �����

���� J�F� Nilsson� Formal Vienna�De�nition�Method models of Prolog� In J�A�
Campbell� editor� Implementations of PROLOG� pages ��� ���� Ellis Hor�
wood Series
 Arti�cial Intelligence� �����



��� CHAPTER �� AN EXPRESS TO SQL �COMPILER�



Index

accountability� 
�
Ammunition Control System� ��

British Nuclear Fuels� �

circular reasoning� 
�
class�centered model� ���
con�dentiality� 
�
consistency proof� ��
counter�example� ��� ��

emergent property� ��
environmental precondition� ��
exception condition� ��
EXPRESS� ��

formation property� ��
fully formal proof� v� vi� ��� ��� ��

genericity� �


higher order logic� ���� ���

IFAD VDM�SL Toolbox� �� ��� ��� ���
���� ���� ���

indirection� ��� ���� ���
information modelling� �

instance�centered model� ���
integrity� 
�� ���
Isabelle� ���� ���

levels of rigour� ��
Logic of Partial Functions� ���
looseness� ���
LPF� ���

memorymodel� ��� ���� ��� ���� ��� 
��
� ���� ���� ���� ���

memory order� ���� ���� ��� ���� ����
��


Ministry of Defence� ��

modules� �
� ��� �� ��� ��� ��� ����
���� ���

MSMIE� �
�
Multiprocessor Shared�Memory Infor�

mation Exchange� �
�
Mural� ��� ���� ���� ���� ��
� ���� ����

���� ���� ���� ���� ���

non�determinism� ���

OBJ�� ��
object identi�er� ��� ���

partiality� ���� ���
partitions� 
�
per processor program order� ��
� ����

���
precondition for success� ��
program order� ��� ���� ���� ��� ����

���
PVS system� ���

reachable states� ��� ���
re�nement� ��� ��� ���� ���� ���� ����

���� ���� ��� ��

re�nement proof� ��� ���� ���
retrieve function� ��� ��
� ���� ����

���� ���
rigorous proof� ��� ��

safety analysis� �
safety requirement� 

satis�ability proof obligation� �� ��� ���

�

schema�centred model� ���
seals� 
�
security enforcing functions� ��
security policy model� 
�
security properties� ��� ��

���



��
 INDEX

shared memory system� ���
SpecBox� �� ��
SQL� ��
STEP standard� �

system safety� �

tactics� ���
TCC� ���� ���
testing� ��� ��
textbook proof� ��� ��
theory of VDM primitves� ���
Transport of Dangerous Goods� ��
trusted gateway� ���
trusted path� ��
typechecking constraints� ���

UN regulations� ��� ��� ��� ��
unde�ned� ���� ���
underspeci�cation� ���
uniprocessor correctness� ���� ���� ���

value condition� ���� ���� ��

VDM�LPF� ���

witness� �
� �� ��� ��� ��


