
���

Chapter �

Shared Memory Synchronization

Noemie Slaats� Bart Van Assche and Albert Hoogewijs

Summary

Explicitly parallel programs consist of several threads� where each thread
is executed by a di�erent processing unit� These threads all have access
to a shared memory� and communicate by writing to or reading from the
shared memory� Reads and writes of di�erent threads execute uncoor�
dinatedly� Threads can wait for other threads by using synchronization�
Although reading and writing the shared memory is similar in all shared
memory systems� most shared memory systems have their own set of
synchronization instructions� The semantics of the memory access and
synchronization instructions together is called a memory model� which is
usually speci�ed informally or using a formalism speci�c to the memory
model� We present a uni�ed formalization of shared memory models
both in traditional and in VDM notation� We also show how the Mural
tool helps in writing the VDM speci�cations and in generating the cor�
responding formal theory� A proof constructed with Mural shows that
even basic properties of this formal theory can be nontrivial to prove�

��� Introduction

A shared memory system has an address space common to all processors using
the shared memory� Such a shared memory system can have one of the following
implementations� a shared memory multiprocessor� a hardware distributed shared
memory multiprocessor� or a network of workstations with distributed shared mem�
ory software� A shared memory multiprocessor has a physically shared memory�
while in the other two systems the memory is fully distributed over the processors�
In all three systems every processor has a local memory with a copy of a part of the

��� CHAPTER �� SHARED MEMORY SYNCHRONIZATION

shared memory� This memory is called a cache memory of the shared memory� To
preserve the semantics of a single shared memory� these cache memories have to be
kept consistent� The generic structure of a shared memory is shown in �gure 	���

Every processor runs one thread� or actually a uniprocessor program associated with
the thread� The di�erent uniprocessor programs together are the explicitly parallel
program� While running a thread� a processor issues read and write operations to
the shared memory� These read and write operations are the only interaction of the
processor with the shared memory� We call the sequence of operations that result
from running a thread the execution of that thread� Since the order of the opera�
tions in the execution is derived from the order of instructions in the uniprocessor
program running� we call this order the program order of the operations issued by
the corresponding processor�

In a shared memory system without local memories� every processor has the same
view of the shared memory� When duplicating or caching the contents of the shared
memory in local memories� however� every processor potentially can have a di�erent
view of the shared memory� We model a processor
s view of the shared memory
by specifying the history of the changes applied to that view� We represent this
history by the order in which operations of all processors have been observed by the
current processor� We call this order the memory order relation� It is a partial order
relation� able to model concurrent operations�

Although the memory orders are relations over more operations than the program
order� there is a strong relation between both� When the memory order as observed
by a processor includes the program order of the same processor� that processor
obeys the uniprocessor correctness property� This means that a one�processor pro�
gram will execute correctly on that processor�

To cooperate in a deterministic way� threads must be able to wait for one another
or to synchronize� Synchronization of two or more threads is a way to guarantee
an ordering between memory operations of di�erent threads� There are two kinds
of synchronization operations� low�level and high�level� Low�level synchronization
operations are read and write operations whose ordering is guaranteed to be the
same in all memory order relations� High�level synchronization operations are the
acquire�� release� and barrier operations� They are de�ned in section 	�����

This chapter is organized as follows� in section 	�� we give an informal description
of a shared memory synchronization model� The VDM speci�cation associated with
this model is given in section 	��� In section 	�� the formal theory for the memory
model is discussed� To generate this formal theory the Mural tool �� is used� In a
last section we review and discuss the example�

��� Formal De�nitions

The following information will be used to represent any operation� operation type�
sequence number� processor number and set of memory addresses where the oper�
ation takes e�ect on� Additionally� load operations have a loaded value associated

���� FORMAL DEFINITIONS ��	

observation

shared memory

synchronization

load
store

point

processor n

system
interconnection

processor 1

Figure 	��� Generic structure of a shared memory system� n processors� a shared
memory and inbetween an interconnection system� The interconnection system can
reorder requests and can cause arbitrary delays when propagating requests from
one processor to another� The shared memory itself is either physical or virtual�
Program order and memory order relations over load� store and synchronization
operations for a given processor are observed at the indicated observation point�
for a given processor are observed at the indicated observation point�

to them� store operations have a stored value� load�modify�store operations have
a loaded and a stored value� and acquire� release and barrier�operations have an
identi�cation number associated to them�

A load operation reads frommemory� a store operation writes to memory� and a load�
modify�store operation modi�es the value at a memory location without allowing
intervening operations by other processors�

De�nition � operation type

An operation has one of the types in Type � fns�nl �nf � ss� sl � sf � acq� rel � barg�
These types are respectively normal store� load� load�modify�store� synchronizing
store� load� load�modify�store� acquire� release and barrier operations�

We will use the symbol n � N for the number of processors of the memory system�
P � f�� � � � �ng for the set of processor numbers� and p � P for a processor number�
i � N is the per processor operation number� instructions executed later having
a higher operation number� Equal operation numbers for di�erent operations on
the same processor are not allowed� j � N is an identi�cation number for barriers
and critical sections� indicating which operations belong together� An entity in
the memory that can be addressed is called a location� and Mem is the set of all
addressable locations� m � Mem is a single memory location� and M � Mem
is a set of memory locations� indicating which set of locations is involved in an
operation� For loads� stores and load�modify�stores this is typically a singleton� and
for synchronization instructions this set M is a non�empty subset of Mem� What
is stored into a location or read from a location is called a value� and the set of all
allowed values is called Val� For an overview� see table 	���

��� CHAPTER �� SHARED MEMORY SYNCHRONIZATION

operation name general form restricted form shorthand
normal store �ns� i � p�M � v s� �ns� i � p� fmg� v s� l i�m�v s�
normal load �nl � i � p�M � v l� �nl � i � p� fmg� v l� s i�m�v l�
normal
load�modify�store �nf � i � p�M � v l � v s� �nf � i � p� fmg� v l � v s� f i�m�v l �v s�
synchronizing store �ss� i � p�M � v s� �ss� i � p� fmg� v s� sl i�m�v s�
synchronizing load �sl � i � p�M � v l� �sl � i � p� fmg� v l� ss i�m�v l�
synchronizing
load�modify�store �sf � i � p�M � v l � v s� �sf � i � p� fmg� v l � v s� sf i�m�v l �v s�
acquire �acq� i � p�M � j � �acq� i � p�M � j � a i�M �j �
release �rel � i � p�M � j � �rel � i � p�M � j � r i�M �j �
barrier �bar � i � p�M � j � �bar � i � p�M � j � b i�M �j �

Table 	��� Names of the operation types� the general form of an operation tuple�
the corresponding restricted form� and the abbreviation of the restricted form�
The general form operates on a set of memory locations M � while the restricted
form uses only one location m for load� and store�operations� Processor numbers
are not speci�ed in the restricted form� in graphs the processor number will be
clear from the context�

The functions num��� proc��� mem��� val l�� and val s�� operate on operation tu�
ples� and respectively return the values i � p� M � v l and v s�

The sets of operations of types ns�nl �nf � ss� sl � sf � acq� rel and bar are called respec�
tively S n� L n� F n� S s� L s� F s� Acq� Rel � and Bar � Derived sets of operation
types are in table 	���

����� Program Order and Executions

We will use the notation
po p

�� for the program order relation of processor p� and
po

�� for the union of these relations� Since the individual operations already include
a per�processor sequence�number proc��� the program order relations can be easily
de�ned using the sequence number�

De�nition � program order
po

�� and per processor program order
po p

��

The program order relation
po

�� is the relation between operations op �� op � � Op
and is de�ned by

op �
po

��op ��� �proc�op �� � proc�op ��� � �num�op �� � num�op ����

On processor p� operations are executed in the order
po p

�� � de�ned by

op �
po p

��op ��� �proc�op �� � proc�op �� � p� � �num�op �� � num�op ����

���� FORMAL DEFINITIONS ���

operation set contents formal de�nition
store operations S � S n � F n � S s � F s
load operations L � L n � F n � L s � F s
low�level synchronization operations Sync L � S s � L s � F s
high�level synchronization operations Sync H � Acq � Rel � Bar
synchronization operations Sync � Sync L � Sync H
operations executed on processor p Op p � fop � Op j proc�op� � pg
operations accessing at least location
set M Op M � fop � Op jM � mem�op�g
operations accessing at least location
set M on processor p Op M � p � Op M �Op p
operations accessing at least location
m Op m � Op fmg
operations accessing at least location
m on processor p Op m� p � Op m � Op p

Table 	��� Sets of operations for speci�c operation types� processor number� or
accessed memory locations�

Parallel Program
thread � thread �
x �� � y �� �

� � � �� y � � � �� x

Executed operations
processor � processor �
s ��x � �� s ��y� ��
l ��y� �� l ��x � ��

Figure 	��� A short parallel program and the operations for one possible execution
of that program� It is assumed that the memory has been initialized to zero� In
this example the shared memory did not process the load and store requests in
program order�

For an example of a parallel program� its program order and its memory order
relations� see �gures 	�� and 	���

From the de�nition of the global and per processor program order relations� we can
derive the following properties�

	 the per�processor program order
po p

�� is a total order for the operations of that
processor� Op p�

	 the relation
po

�� is a partial order in the set Op�

	 any order
po p

�� is contained in the order relation
po

��� or
p�P �
po p

�� �
po

���

The set of all operations and the order in which they are executed contain all infor�
mation� about how a program has been executed� observable by the threads� We call

��� CHAPTER �� SHARED MEMORY SYNCHRONIZATION

��
��
��
��

�� ����

s1(x,1) l2(y,0)

l4(x,0)s3(y,1)

�� ��

�
�
�
�

�
�
�
�

�
�
�
�

l2(y,0)p1:

l4(x,0)

s1(x,1)

s3(y,1)
��
��
��
��

��
��
��
��

���� ����

s1(x,1) l2(y,0)

l4(x,0)s3(y,1)
p2:

Figure 	��� Sample global program order relation
po

��� and memory order relations
mo�
�� and

mo�
�� for processors p � and p � respectively� The relations in the graphs

are the transitive reduction of the
po

�� �
mo�
�� and

mo �
�� relations�

the pair of the set of operations and the program order relation of these operations
an execution of the parallel program�

De�nition � execution E

An execution E � �Op�
po

��� of a program consists of the set Op of operations and
the order of execution

po

�� implied by the program�

����� Uniprocessor Correctness

Every processor of a multiprocessor system must obey uniprocessor correctness�
when a sequential program is executed on a single processor of a multiprocessor sys�
tem� the result must be the same as if the program was executed on a uniprocessor�
This is achieved when all data dependent operations of a thread are present in the
memory order relation in the same order as in program order� In its weakest form�
two operations are data dependent if they access the same memory location� and
either they are a store and a load operation� or they are two store operations writing
di�erent values� Executing data�dependent operations in a modi�ed order changes
either the result of one of the operations and�or the value written to memory� We
will use a stronger condition than preserving data�dependences� we require that the
order of any two operations referencing the same memory location is preserved�

Condition � uniprocessor data dependences

Any two operations on processor p to the same location that are ordered by program
order� are ordered by the memory order relation

mop

�� of that processor in the same
way�

m�Mem �
op �� op ��Op m �
p�P � op �
po p

��op � �� op �
mo p

�� op �

����� Result of a Load

Since the relation
mop

�� is the order in which a processor observes the memory opera�
tions of itself and other processors� the relation

mop

�� determines the result of a load

���� FORMAL DEFINITIONS ���

p2: ��
��
��
��

������ ������ ���� ��������p1:
s1(x,4)

prev(l1)={ }

s3(x,6)

s2(x,5)

(c)

hist(l4)={s1,s2,s3}

prev(l4)={s2,s3}

l4(x,?)l3(x,3)s2(x,3)s1(x,2)

(b)

hist(l3)={s1,s2}

prev(l3)={s2}

l1(x,1)

(a)

hist(l1)={ }

Figure 	��� Three examples of execution sequences and their memory order relation
mo�
�� � illustrating the value condition� The �rst two sequences have been executed

on one processor� the third on two processors� From the
mo�
�� relation the sets

hist�l� and prev�l� for the load l are derived� which in turn determine the result
value of the load� The graphs represent the transitive reduction of the memory

order relations
mo�

�� �

operation� For a load operation l � we de�ne the set hist�l� as the set of all store
operations preceding l � and the set prev�l� as the set of store operations immedi�
ately preceding l � When there is exactly one store operation s preceding l � the value
stored by s is also the result returned by l � If there are zero� two� or more store
operations preceding l � and they store zero� two� or more di�erent values� then the
result of l is unde�ned� For an example� see �gure 	���

Condition � value condition

p
�

� proc�l�

hist�l�
�

� fs � S mem�l� n flg j s
mop

�� lg

prev�l�
�

� fs � hist�l� j
s �� hist�l� n fsg � ��s
mop

�� s ��g

s� prev�l� � val l�l� � val s�s�

The relations
mop

�� de�ne the view of an individual processor of the order of memory
operations� We also need the combined view of all processors of the order of the
operations concerning a memory location m� We will call this relation the access
order for location m�

ao

�� m� and its union over all memory locations the access
order relation�

ao

�� �

��� CHAPTER �� SHARED MEMORY SYNCHRONIZATION

De�nition � access order
The access order

ao

�� m at the memory location m is the order in which operations
are executed on the location m� The relation

ao

�� � the access order relation� is the
union of the

ao

�� m relations�

ao

�� m
�

�
�

p�P �
mo p

�� �Op m�

ao

��
�

�
��

m�Mem �
ao

�� m
�
�

Before de�ning the shared memory condition� we de�ne consistency of relations and
sequential consistency of relations�

De�nition � consistency of relations

The relations R �� � � � �R n are consistent over the set A if and only if the relations
R �� � � � �R n are identical when restricted to A�

R � � A� � � � � � R n � A��

De�nition � sequential consistency of relations

The relations R �� � � � �R n are sequentially consistent over the set A if and only if
they are consistent and every relation R ��� � � �R n is a total order over the set A�

While the view of operations of di�erent processors on di�erent memory locations
can vary from processor to processor� all processors must have the same view of the
order of operations on one single memory location� Additionally� combining these
views must be meaningful� We call these two conditions together the shared memory
condition�

Condition � shared memory condition

m�Mem � f
mo�

�� � � � � �
mon

��g is consistent in Op m

�
ao

�� is a partial order�

From the shared memory condition� it follows that the individual
ao

�� m relations
are partial order relations�

����� Synchronization

In this formalization of operations and memory models� there are three types of
low�level synchronization operations �synchronizing load� synchronizing store and
synchronizing load�modify�store� and three types of high�level synchronizing oper�
ations �barrier� acquire and release�� These operations unify the synchronization
primitives used in existing memory models�

Low�level synchronization operations behave the same way as their counterparts
without synchronization� except that the order of low�level synchronization opera�
tions is identical in every memory order relation�

���� FORMAL DEFINITIONS ���

A barrier is a group of barrier operations b with the same identi�cation number id�b��
These individual operations execute on a set of processors P � � fproc�b� j b � Bg�
The barrier synchronizes for the processors in P � the access to the set of memory
locations M � mem�b�� all memory references to any of the locations M that are
ordered before the barrier as observed by any of the participating processors P ��
are before the barrier in the memory order relations of any processor� The same
holds for memory accesses ordered after the barrier� We de�ne the relation N as
the equivalence relation that holds between barrier operations of the same barrier�
Typically a barrier operation is implemented by waiting until all other processors
participating in the barrier arrive at their corresponding barrier operation�

A critical section has an identi�cation number j and protects the locations of the
set M by sequentializing other critical sections to any of these locations M � A
critical section on processor p starts with an acquire operation �acq� �� p�M � j � and
ends with a release operation �rel � �� p�M � j �� Although critical sections that have at
least one location in common cannot overlap� access to any of the protected variables
during the execution is still possible by another processor if it does not protect these
accesses with a critical section� Operations executed inside the critical section are
for every memory order relation ordered between the acquire and the release�

Before we start the formalization of barrier and critical section synchronization� we
introduce the relations N and N �� These relations partition the barrier operations
and the acquire�release pairs� The partitioning is based on the identi�cation number
id��� The relation N is extended to a re�exive relation over the set Op�

De�nition � equivalence relations N � N �

N
�

� f�op �� op �� � Bar� j id�op �� � id�op ��g � f�op� op� j op � Opg

N �
�

� f�a� r� � �Acq Rel� j id�a� � id�r�g

Now we can express that barriers are totally ordered per memory location� and that
all high� and low�level synchronization operations synchronizing a common memory
location have the same ordering in all memory order relations� Also� we require that
acquire�release pairs are totally ordered per memory location and neither overlap
nor nest�

Condition � order of synchronization operations

m�Mem � �
mo�

���N �
mo�

���N � � � � �
mon

�� �N �
are seq� consistent relations in Sync m�N

�
m�Mem � �
mo�
���N ��

mo�
�� �N �� � � � �

mon

�� �N ��
are seq� consistent relations in Sync m�N �

Acquire and Release Every release requires exactly one matching acquire� but
an acquire is allowed to have no matching release� In that case� the release is
considered to be past the end of the execution of the thread on the processor of the
acquire�

��� CHAPTER �� SHARED MEMORY SYNCHRONIZATION

Condition � correct use of acquire and release operations

a�Acq �
r �� r ��Rel � aN �r � � aN �r � �� r � � r �
�
r �Rel � �� a�Acq � aN �r

Further� matching acquire and release operations have to reference the same set of
memory locations and the acquire must be ordered before the release in the program
order relation�

Condition � same memory locations for matching acquire and release operations

a�Acq �
r �Rel � aN �r �� mem�a� � mem�r�

Condition � execution order of matching acquire and release operations

a�Acq �
r �Rel � aN �r �� a
po

��r �

Also� any operation ordered by program order between the acquire and the release
is for every processor also ordered by memory order between the acquire and the
release�

Condition 	 order of accesses to protected locations

a�Acq �
r �Rel � aN �r ��
op�Op mem�a��

�a
po

��op
po

��r ��
p�P � a
mop

�� op
mop

�� r�
�
a�Acq � ���r �Rel � aN �r� ��
op�Op mem�a��

�a
po

��op ��
p�P � a
mo p

�� op�

Barriers There are two conditions speci�c for barriers� any operation of a barrier
has to reference the same set of memory locations� and all instructions executed be�
fore a barrier are observed before that barrier by any processor� while all instructions
executed after a barrier are observed after that barrier�

Condition
 same set of locations per barrier

b �� b ��Bar � b �Nb � �� mem�b �� � mem�b ��

Condition �� correct barrier and operation ordering

b �� b � � Bar �
p�P �
op�Op mem�b �� n fb �g�

b �Nb � �� �op
po

��b � �� op
mop

�� b ��

� �b �
po

��op �� b �
mop

�� op�

���� THE VDM SPECIFICATION OF THE DEFINITIONS ���

����� Memory Model

The following de�nition of a shared memory model contains the properties common
to any model of a shared memory system�

De�nition 	 memory model

A memory model Mod is a set of executions E � where every execution satis�es the
general conditions �� �� �� the synchronization conditions � to ��� and the model�
speci�c conditions�

��� The VDM Speci�cation of the De�nitions

In the previous section a shared memory synchronization model is formalized in an
informal way� In this section the VDM speci�cation for all the de�nitions used for
this formalization will be composed�
For that purpose the VDM speci�cation support tool of Mural is used�

Mural is an interactive theorem prover and VDM speci�cation support tool� The
standard system is equipped with the theory of the VDM primitives� Because this
theory is not expressive enough for our application� we added a theory for relations�

to the parent theories of the speci�cation�

����� Operations

The �rst object we have to specify is an operation� For that purpose some new types
have to be declared�
A �rst such type� is the type to which all the terms expressing the kind of an
operation can assigned to� We call this type Type�

Type � not yet de�ned �

We say that Type is not yet de�ned because there does not exist a type in the known
theories� i�e� the theory of the VDM primitives and the relational theory� which we
can use to specify the new type Type�
Because all terms that express some kind of an operation are assigned to the type
Type� we know from section 	���

�This formal theory is described in appendix A

��� CHAPTER �� SHARED MEMORY SYNCHRONIZATION

ns�Type

nl �Type

nf �Type

ss�Type

sl �Type

sf �Type

acq�Type

rel �Type

bar �Type

and these are the only terms of the type Type�
However� it is not necessary to include this information in the VDM speci�cation�
It is su�cient to wait until the VDM speci�cation has been translated into its
corresponding formal theory� and then a basic rule containing this information can
be added to the set of basic rules of that theory�

In order to specify all possible operations of a particular execution of a parallel
program two more types are needed� The �rst one is�

location � not yet de�ned �

An element of the type location is a memory location that can be addressed by
an operation� All the allowed memory locations of a particular memory model
are grouped in a set called Mem� This set is a constant for that memory model�
Therefore its speci�cation will be a constant of the form�

Mem� location�set�

What is stored into a memory location or read from a memory location is an element
of the type value� This brings us to the second new type�

value � not yet de�ned �

The set of all the values that are allowed for a particular memory model is also a
constant� This set is called Val and is speci�ed by�

Val � value�set�

Making use of the previous de�ned types and constants all the possible operations
can be speci�ed�
Because the operations consist of di�erent �elds� as we can see in table 	��� the best
suited way to create these speci�cations is by using a composite type�

The normal store� load and load�modify�store operations

Translating the information of table 	��� about the normal store operation to a VDM
speci�cation results in�

���� THE VDM SPECIFICATION OF THE DEFINITIONS ��	

nstore �� type � Type
i � N
p � N�

M � location�set
v s � value

inv �type�Type�M � location�set� v s� value� �

type � ns � ��M �Mem� � �v s � Val���

The �ve �elds of the record do not express all the information known about a normal
store operation� Therefore an invariant containing the remaining information has
been added� This invariant expresses that the type of a normal store operation
always has to equal ns� and that the set of memory locations M has to be a subset
of the allowed memory locations of the model and analogously the stored value v s
must be an element of the allowed values for this memory model�
The speci�cation of the normal load operation is�

nload �� type � Type
i � N
p � N�

M � location�set
v l � value

inv �type�Type�M � location�set� v l � value� �

type � nl � ��M � Mem� � �v l � Val���

To construct the speci�cation of a normal load�modify�store operation a record
containing six �elds instead of �ve �elds is needed� because the normal load�modify�
store operation �rst loads a value from a memory location and then stores another
value to the same memory location� And of course both values have to be a member
of the set of the allowed values of the memory model�

nmodify �� type � Type
i � N
p � N�

M � location�set
v l � value
v s � value

inv �type�Type�M � location�set� v l � value� v s� value� �

type � nf � ��M � Mem� � ��v l � Val� � �v s � Val����

The synchronizing store� load and load�modify�store operations

From table 	��� it follows that the only di�erence between the synchronizing store
�resp� load� load�modify�store� operation and the normal store �resp� load and load�
modify�store� operation is the type �eld�

��� CHAPTER �� SHARED MEMORY SYNCHRONIZATION

sstore �� type � Type
i � N
p � N�

M � location�set
v s � value

inv �type�Type�M � location�set� v s� value� �

type � ss � ��M � Mem� � �v s � Val��

sload �� type � Type
i � N
p � N�

M � location�set
v l � value

inv �type�Type�M � location�set� v l � value� �

type � sl � ��M �Mem� � �v l � Val��

smodify �� type � Type
i � N
p � N�

M � location�set
v l � value
v s � value

inv �type�Type�M � location�set� v l � value� v s� value� �

type � sf � ��M � Mem� � ��v l � Val� � �v s � Val����

The acquire� release and barrier operations

There are three more operations left to specify� These are the acquire� release
and barrier operations� They are called high�level synchronizing operations� Again�
their speci�cation will consist of a record� containing �ve �elds� and an invariant
explaining what properties the �elds have to ful�ll�

acquire �� type � Type
i � N
p � N�

M � location�set
j � N

inv �M � location�set� type�Type� �

type � acq � �M �Mem�

release �� type � Type
i � N
p � N�

M � location�set
j � N

inv �type�Type�M � location�set� �

type � rel � �M � Mem�

���� THE VDM SPECIFICATION OF THE DEFINITIONS ���

barrier �� type � Type
i � N
p � N�

M � location�set
j � N

inv �type�Type�M � location�set� �

type � bar � �M � Mem��

We still need to specify many functions before we can formalize our memory model�
To make the speci�cation of these functions a little easier some more types are
de�ned� These new types are the union of previously declared types�
A �rst new type is the type OPs which collects all the store operations�

OPs � nstore j sstore�

Similarly we specify a type OPl for all load operations and a type OPf for all
load�modify�store operations�

OPl � nload j sload

OPf � nmodify j smodify�

The type OPsync brings together all the elements of the type acquire� release and
barrier�

OPsync � acquire j release j barrier �

Finally we introduce a union type that collects all kind of operations� This type is
called OP� Making use of the previous de�nitions the speci�cation of the type OP
becomes�

OP � OPs j OPl j OPf j OPsync�

For the same reason some new types were de�ned� we also declare some useful
functions�

����� Useful Functions

A �rst selected function is the function type� This function maps an element of the
type OP to an element of the type Type� the image of a given operation under the
function type is the type of that operation�
To which kind an operation belongs to� can be found in the �rst �eld of its corre�
sponding record� The function associated with the �rst �eld of an operation record
is the function s�type�

type �OP � Type

type�op� � s�type�op��

��� CHAPTER �� SHARED MEMORY SYNCHRONIZATION

The di�erence between the function type and the function s�type is� type is de�ned
for all elements of the type OP and s�type is de�ned for all kinds of operations �i�e�
normal load� normal store� � � � � separately�

Some other useful functions are the functions num��� proc��� mem��� val l�� and
val s�� mentioned in section 	��� The VDM notation for these functions is similar
to the previous speci�cation�

num �OP � Type

num�op� � s�i�op��

proc �OP �N�

proc�op� � s�p�op��

mem �OP � location�set

mem�op� � s�M �op��

val �l �OPl j OPf � value

val �l �op� � s�v l�op��

val �s �OPs j OPf � value

val �s�op� � s�v s�op��

The last of these functions is id which maps a synchronizing operation to its iden�
ti�cation number�

id �OPsync � N

id�op� � s�j �op��

By making use of the speci�cations of all these functions and types� we can specify
one particular execution of a parallel program satisfying a given memory model�

����� The Program Order and Executions

Because the program order relation
po p

�� depends of an execution E � the notion
execution has to be speci�ed before the program order� Once the object execution
is speci�ed the program order can be derived from this speci�cation�

���� THE VDM SPECIFICATION OF THE DEFINITIONS ���

A Program Execution

A program execution describes one particular execution of a parallel program for a
given memory model� The de�nition of an execution E given in section 	���� is a
tuple satisfying some restrictions� Therefore a record and an invariant will be used
for the VDM speci�cation�
At �rst glance it seems that there are only two �elds needed in the record� a �rst
component being the set Op of all operations that have been executed during a
particular execution E and a second component being a set po of pairs of operations�
This set of pairs will de�ne the program order of the execution when its elements
satisfy the following three conditions�

	 not only the �rst but also the last component of all the pairs must be an
element of the previously de�ned set Op�

	 both components of a pair must have been executed on the same processor�

	 the operation number of the �rst component of a pair must be less than or
equal to the operation number of the second component of that pair�

However� these two components together with their restrictions are not su�cient
to specify an execution� We need a third component� namely a natural number
n� di�erent from zero� declaring the number of processors used for that particular
execution of the parallel program� Knowing the number of processors used� we can
formulate one more condition the execution has to satisfy� i�e� every operation of
Op has to be executed on a processor used for the execution�
Bringing all this information together in a record with an invariant� results in�

Execution �� Op � OP �set
po � OP OP �set
n � N�

inv �Op�OP �set� po�OP OP �set�n�N�� �

a�OP � a � Op � �proc�a� � n� �

k �OP OP �
k � po � �k � Prod�Op�Op���
�proc�fst�k�� � proc�snd�k�� � �num�fst�k�� � num�snd�k�����

The Program Order and Per Processor Program Order

The program order po is one of the three de�ning components of an execution
E � Therefore we do not need to specify the program order explicitly� for a given
execution E the program order is speci�ed by s�po�E ��

The program order is de�ned for all the operations of an execution� The per pro�
cessor order only considers those operations that are executed on one particular
processor of an execution�
Similarly to the program order� the per processor order is also speci�ed as a set of
pairs with each pair of the set satisfying four conditions�

��� CHAPTER �� SHARED MEMORY SYNCHRONIZATION

	 the �rst three conditions are the same as the conditions for the elements of
the program order�

	 the fourth condition expresses that all the operations of all the pairs must be
executed on the same processor p�

To specify this set of pairs we use a function Po�p� This function depends on two
variables� a particular execution E and a processor p used for the execution E �

Po�p �p�N��E �Execution� R�OP OP �set

pre p � s�n�E �

post
k �OP OP � k � R �
�k � Prod�s�Op�E �� s�Op�E ��� � ��proc�fst�k�� � proc�snd�k��
�proc�snd�k�� � p� � �num�fst�k�� � num�snd�k�����

Knowing the VDM speci�cation of an execution� all the instructions S n� L n� F n�
S s� L s� F s� Acq� Rel � and Bar � which were mentioned in section 	��� and some
more can also be speci�ed�

Sets of Operations

A �rst set to be speci�ed is the set S�n�E � of all normal store operations executed
during a particular execution E of a parallel program� Because all normal store
operations of an execution are also operations of that execution� it is obvious that
the set of all normal store operations executed in E is a subset of the set s�Op�E ��
And vice versa when a normal store operation is an element of s�Op�E � then it is a
normal store operation executed by E � This means that�

Sn �E �Execution� v �nstore�set

post
s�nstore � s � v � s � s�Op�E ��

The set Ln�E � �resp� Fn�E �� of all normal load �resp� load�modify�store� operations
of E � and the set Ss�E � �resp� Ls�E �� Fs�E �� of all synchronizing store �resp� load�
load�modify�store� operations are speci�ed analogously�

Ln �E �Execution� v �nload �set

post
l �nload � l � v � l � s�Op�E �

Fn �E �Execution� v �nmodify�set

post
f �nmodify � f � v � f � s�Op�E �

Ss �E �Execution� v � sstore�set

post
s� sstore � s � v � s � s�Op�E �

���� THE VDM SPECIFICATION OF THE DEFINITIONS ���

Ls �E �Execution� v � sload �set

post
l � sload � l � v � l � s�Op�E �

Fs �E �Execution� v � smodify�set

post
f � smodify � f � v � f � s�Op�E ��

The same can be done for the set containing all the acquire Acq�E � �resp� release
Rel�E �� barrier Bar�E �� operations of an execution E �

Acq �E �Execution� v � acquire�set

post
a� acquire � a � v � a � s�Op�E �

Rel �E �Execution� v � release�set

post
r � release � r � v � r � s�Op�E �

Bar �E �Execution� v � barrier �set

post
b� barrier � b � v � b � s�Op�E ��

In furtherance of the next speci�cations� it is useful to specify the union of some
previously speci�ed sets� for example the set S �E � of all store operations of an
execution E and the set L�E � of all load operations of E �

S �Execution � OP �set

S �E � � �Sn�E � � Fn�E �� � �Ss�E � � Fs�E ��

L �Execution � OP �set

L�E � � �Ln�E � � Fn�E �� � �Ls�E � � Fs�E ���

Other sets that might be useful in the future are the set SyncL�E � of all low�
level synchronizing operations and the set SyncH�E � of all high�level synchronizing
operations�

SyncL �Execution � OP �set

SyncL�E � � �Ss�E � � Ls�E �� � Fs�E �

SyncH �Execution � OP �set

SyncH �E � � �Acq�E � � Rel�E �� � Bar�E ��

��� CHAPTER �� SHARED MEMORY SYNCHRONIZATION

The union of the two previous sets is Sync�E �� the set of all synchronizing operations
of a particular execution E �

Sync �Execution � OP �set

Sync�E � � SyncL�E � � SyncH �E ��

All the previously declared sets group operations of the same kind� Now� instead of
grouping operations of a same �Type
� some other properties are used to classify the
operations of an execution E �

For instance� the set Op�p�E � brings together all the operations of an execution E
executed on a same processor p� where p is a processor used for the execution E �

Op�p �p�N��E �Execution� v �OP �set

pre p � s�n�E �

post
op�OP � op � v � proc�op� � p � �op � s�Op�E ���

The pre�condition of this function expresses that p needs to be a processor used for
the given execution E �
Op�M�E � is the set of all the operations of an execution E accessing at least a given
set of memory locations M � with M a subset of all the allowed memory locations
Mem�

Op�M �M � location�set�E �Execution� v �OP �set

pre M �Mem

post
op�OP � op � v � �M � mem�op�� � �op � s�Op�E ���

The intersection of the two previous sets is called Op�Mp�M � p�E ��

Op�Mp � location N� Execution � OP �set

Op�Mp�M � p�E � � Op�M �M �E � � Op�p�p�E �

pre �M �Mem� � �p � s�n�E ���

The function Op�m returns the set of all operations of an execution E accessing at
least a single given memory location m� Using the function Op�M its speci�cation
is straightforward�

Op�m � location Execution � OP �set

Op�m�m�E � � Op�M �fmg�E �

pre m � Mem�

���� THE VDM SPECIFICATION OF THE DEFINITIONS ���

The speci�cation of the set Op�mp�m� p�E � of all operations accessing at least a
single memory location m on processor p is�

Op�mp � location N� Execution � OP �set

Op�mp�m� p�E � � Op�Mp�fmg� p�E �

pre �m � Mem� � �p � s�n�E ���

For later purpose some of these sets are de�ned for load and synchronizing operations
only�

L�p �p�N��E �Execution� v �OP �set

pre p � s�n�E �

post
op�OP � op � v � proc�op� � p � �op � L�E ��

L�m �m� location�E �Execution� v �OP �set

pre m � Mem

post
op�OP � op � v � �m � mem�op�� � �op � L�E ��

L�mp � location N� Execution � OP �set

L�mp�m� p�E � � L�m�m�E � � L�p�p�E �

pre �m � Mem� � �p � s�n�E ��

Sync�m �m� location�E �Execution� v �OP �set

pre m � Mem

post
op�OP � op � v � �m � mem�op�� � �op � Sync�E ���

Although there is not muchmentioned about the memory order in the formalization�
a speci�cation of the memory order is indispensable to express the conditions a
memory model has to ful�ll�

����� Memory Order

Since the memory order relation is speci�ed as a set of restrictions on a partial order
relation� the only explicit information we have about the memory order MO�p�p�E �
is that it is a partial order�

MO �p �p�N��E �Execution� R�OP OP �set

pre p � s�n�E �

post R � Prod�s�Op�E �� s�Op�E �� � PartOrder�R� s�Op�E ��

��� CHAPTER �� SHARED MEMORY SYNCHRONIZATION

More properties of this order are revealed in the following conditions�

����� Uniprocessor Correctness

The uniprocessor correctness is formalized through a property of the memorymodel�
This property is not necessary to specify the memory model� it only expresses a
property of the model� However to be sure the model satis�es this condition a basic
rule� associated with the condition� will be added to the set of inference rules of the
formal theory corresponding with the speci�cation of the memory model�

The same remark can be made for all the conditions mentioned in the section 	���

����� The Result of a Load

Although there is no need for a speci�cation of the value condition� some de�nitions
appearing in this condition have to be declared�

hist �l �OPl j OPf �E �Execution� v �OPs j OPf �set

pre l � L�E �

post
s�OPs j OPf � s � v �
�s � S �E �� � ��mem�l� � mem�s���
�s �� l � �pair�s� l� � MO �p�proc�l��E �����

prev �l �OPl j OPf �E �Execution� v �OPs j OPf �set

pre l � L�E �

post
s�OPs j OPf � s � v
� �s � hist�l �E �� �
s ��OPs j OPf � s � � �hist�l �E � � fsg�
� pair�s� s �� �� MO �p�proc�l��E ��

Also the shared memory condition introduces a new de�nition� the access order�
To specify the de�nition of the access order� the access order at every memory
location� Ao�m� has to be declared �rst�

Ao�m �m� location�E �Execution� R�OP OP �set

post
k �OP OP � k � R � �p�N� �
k � MO �p�p�E � � �k � Prod�Op�M �fmg�E ��Op�M �fmg�E ����

The previous result helps to specify the access order�

Ao �E �Execution� R�OP OP �set

post
k �OP OP � k � R � �m� location � k � Ao�m�m�E ��

���� A THEORY FOR SHARED MEMORY SYNCHRONIZATION ��	

����� Synchronization Operations

To describe most conditions the memorymodel has to comply with� synchronization
operations and some relations grouping these operations are needed� The synchro�
nization operations have been speci�ed before� now we still have to consider the
relations�
The �rst relation concerns barrier operations� the second relation groups acquire
and release operations which belong together�

N �E �Execution� N �OP OP �set

post
k �OP OP � k � N �
�k � Prod�Bar�E ��Bar�E ��� � id�fst�k�� � id�snd�k��
� �k � Prod�s�Op�E �� s�Op�E ��� � fst�k� � snd�k��

N � �E �Execution� N ��OP OP �set

post
k �OP OP � k � N �

� �k � Prod�Acq�E ��Rel�E ��� � id�fst�k�� � id�snd�k���

And �nally our goal is reached� a memory model can be speci�ed �

����� Memory Model

A memory model is a set of executions� therefore the type Model� every memory
model can be assigned to is�

Model � Execution�set�

Of course all the executions which are an element of a memorymodel need to satisfy
a few conditions� To make sure that these conditions are satis�ed the set of basic
rules of the formal theory corresponding to the speci�cation of the memory model
has to be extended�

��� A Formal Theory for Shared Memory Syn�

chronization

����� The Formal Language

In the previous section a VDM speci�cation for the formalization of a memorymodel
has been presented� To determine the formal language of the formal theory corre�
sponding to this speci�cation� Mural comes to assist� More precisely� the translation
from the speci�cation to its corresponding formal theory happens automatically in
Mural�
The automatic translation of our speci�cation generates the demanded formal lan�
guage together with a set of inference rules� However this set of inference rules is

��� CHAPTER �� SHARED MEMORY SYNCHRONIZATION

not su�cient to establish the formal theory of the considered memory model� as will
be explained hereafter�

����� The Set of Inference Rules

The set of inference rules produced by Mural contains all the basic rules and some
derived rules� known as proof obligations� corresponding with the translated spec�
i�cation� However� the speci�cation presented in the previous section does not
contain all the information available on the memory model since the ten conditions�
the model has to satisfy� were not added to the speci�cation� As mentioned before�
these conditions have to be annexed to the set of basic rules�
Therefore we have to rewrite them in a more formal way�

Condition � uniprocessor data dependences�

condition �

E �Execution�m� location�m � Mem� op��OP � op��OP �
op� � Op�m�m�E �� op� � Op�m�m�E �� p�N�� p � s�n�E �
��op�� op�� � Po�p�p�E �� � ��op�� op�� � MO �p�p�E ��

Condition � value condition�

condition �

l � �OPl j OPf �� s� �OPs j OPf ��
E �Execution� l � L�E �� s � prev�l �E �

val �l�l� � val �s�s�

Condition � shared memory condition�
This condition describes two properties of the memory model� The �rst property
expresses that the memory order relations on all the several processors must be
consistent for all memory locations�

condition �A

E �Execution�m� location�m � Mem�R� ���OP OP��set��set��
R � fRi � �OP OP��set j

�p�N� � �p � s�n�E �� � �Ri � MO �p�p�E ��g�
consistent �Rel�R�Op�m�m�E ��

The second property demands that the access order is a partial order relation�

condition �B
E �Execution

PartOrder�Ao�E �� s�Op�E ��

Condition � order of synchronization operations�
The fact that barrier� acquire� release and low�level synchronization operations are
totally ordered per memory location is expressed in a �rst rule�

���� A THEORY FOR SHARED MEMORY SYNCHRONIZATION ���

condition �A

m� location�m � Mem�E �Execution�
R� ����OP �set� �OP �set���set��set��

R � �fRi � ��OP �set� �OP �set���set j �p�N��
�p � s�n�E �� � �Ri � QuotRel�MO �p�p�E ��N �E �� s�Op�E ���g�

seq�const �Rel�R� partition�Sync�m�m�E ��N �E ���

A second rule involves only acquire and release operations�

condition �B

m� location�m � Mem�E �Execution�
R� ����OP �set� �OP �set���set��set��

R � �fRi � ��OP �set� �OP �set���set j �p�N��
�p � s�n�E �� � �Ri � QuotRel�MO �p�p�E ��N ��E �� s�Op�E ���g�

seq�const �Rel�R� partition�Sync�m�m�E ��N ��E ���

Condition � correct use of acquire and release operations�

condition �A
a� acquire�E �Execution� r�� release� r�� release

���a� r�� � N ��E �� � ��a� r�� � N ��E ��� � �r� � r��

condition �B
r � release�E �Execution� r � Rel�E �

�� a� acquire � �a� r� � N ��E �

Condition � same memory locations for matching acquire and release opera�
tions�

condition �
a� acquire� r � release�E �Execution

��a� r� � N ��E �� � �mem�a� � mem�r��

Condition � execution order of matching acquire and release operations�

condition �
a� acquire� r � release�E �Execution

��a� r� � N ��E �� � ��a� r� � s�po�E ��

Condition 	 order of accesses to protected locations
The �rst part deals with the situation in which an acquire operation has a matching
release operation�

condition �A
a� acquire� r � release�E �Execution

��a� r� � N ��E �� �
�
op�OP � �op � Op�m�mem�a��E �� �

����a� op� � s�Op�E �� � ��op� r� � s�Op�E ��� �
�
p�N� � �p � s�n�E �� �

�a� op� � MO �p�p�E �� � ��op� r� � MO �p�p�E �����

The second part concerns the situation for which an acquire has no matching re�
lease�

��� CHAPTER �� SHARED MEMORY SYNCHRONIZATION

condition �B
a� acquire�E �Execution

�� ��r � release � �a� r� � N ��E ��� �
�
op�OP � �op � Op�m�mem�a��E �� �

���a� op� � s�Op�E �� �
�
p�N� � �p � s�n�E �� � ��a� op� � MO �p�p�E �����

Condition
 same set of locations per barrier�

condition �
b�� barrier � b�� barrier �E �Execution

��b�� b�� � N �E �� � �mem�b�� � mem�b���

Condition �� correct barrier and operation ordering

condition �	

b�� barrier � b�� barrier �E �Execution� p�N�� p � s�n�E ��
op�OP � op � Op�m�mem�b���E ��� �b� � op�

��b�� b�� � N �E �� �
����op� b�� � s�Op�E �� � ��op� b�� � MO �p�p�E ���

�
���b�� op� � s�Op�E �� � ��b�� op� � MO �p�p�E ����

Everything� that was formalized previously� is captured in the formal theory except
for one fact�

Type De�nition

The �rst type speci�ed in this text was the type Type� In the section 	�� some
information about this type was given� However not all this information was added
to the speci�cation because it seemed better to express it in a basic rule�

Type de
nition
t �Type

����t � ns� � �t � nl�� � �t � nf �� �
���t � ss� � �t � sl�� � �t � sf ��� �
���t � acq� � �t � rel�� � �t � bar��

All these basic rules together with the basic rules and formal language generated by
Mural determine the formal theory of the formalized memory model�

����� A Proof

To check the usefulness of the previous formal theory� a basic property of this mem�
ory model is studied�

property po�p �
p�N�� p � s�n�E ��E �Execution

Po�p�p�E � � s�po�E �

This rule was also mentioned in section 	����� It expresses that the per processor
order is contained in the program order� which can be accepted intuitively�

���� A THEORY FOR SHARED MEMORY SYNCHRONIZATION ���

from

h� p�N�

h� p � s�n�E �
h� E �Execution

� s�po�E �� ��OP OP��set� s�po�Execution��formation�h��
� pre�Po�p�p�E � folding �h��
� �R� �OP OP��set � post �Po�p�p�E �R�

Po�p implementability�h�� h�� ��
� Po�p�p�E �� ��OP OP��set� Po�p formation�h�� h�� �� ��

from

	�h� a� �OP OP�
	�h� a � Po�p�p�E �

infer a � s�po�E � lemma po�p ��h�� h�� 	�h�� 	�h�� h��

infer Po�p�p�E � � s�po�E � ��I��� �� 	�

Figure 	�	� Proof of �property po�p �

Deriving the proof will show whether our intuition about the triviality of the prop�
erty is valid or not� To construct the corresponding proof� of the rule the interactive
theorem prover of Mural is used� We obtain the proof in Figure 	�	� In this proof
we introduced a lemma that will be proven separately�

Lemma

The lemma introduced in the proof is as follows�

lemma po�p �
p�N�� p � s�n�E �� a� �OP OP�� a � Po�p�p�E ��E �Execution

a � s�po�E �

Proving this lemma in its turn� results in the proof in Figures 	�� and 	��� The fact
that this proof is rather long makes us revise our �rst impression about the triviality
of the proved property�

�The inference rules� from the formal theory of the memory model� used in the proof are printed
in appendix B

�	� CHAPTER �� SHARED MEMORY SYNCHRONIZATION

from

h� p�N�

h� p � s�n�E �
h� a� �OP OP�
h� a � Po�p�p�E �
h	 E �Execution

� pre�Po�p�p�E � folding �h��
� �R� �OP OP��set � post �Po�p�p�E �R�

Po�p implementability�h�� h	� ��
� post �Po�p�p�E �Po�p�p�E �� Po�p speci�cation�h�� h	� �� ��
�
k �OP OP � �k � Po�p�p�E �� �

��k � Prod�s�Op�E �� s�Op�E ����
���proc�fst k� � proc�snd k�� � �proc�snd k� � p���
�num�fst k� � num�snd k���� unfolding ���

	 �a � Po�p�p�E �� �
��a � Prod�s�Op�E �� s�Op�E ����
���proc�fst a� � proc�snd a�� � �proc�snd a� � p���
�num�fst a� � num�snd a����
�E��� h��

� �a � Prod�s�Op�E �� s�Op�E ����
���proc�fst a� � proc�snd a�� � �proc�snd a� � p���
�num�fst a� � num�snd a��� � �E�left�	� h��

� a � Prod�s�Op�E �� s�Op�E �� ��E�right���
� ��proc�fst a� � proc�snd a�� � �proc�snd a� � p���

�num�fst a� � num�snd a�� ��E�left���
� num�fst a� � num�snd a� ��E�left���
�� �proc�fst a� � proc�snd a�� � �proc�snd a� � p� ��E�right���
�� proc�fst a� � proc�snd a� ��E�right����
�� mk �Execution�s�Op�E �� s�po�E �� s�n�E �� � E

Execution�introduction�h	�
�� mk �Execution�s�Op�E �� s�po�E �� s�n�E ���Execution

��type�inherit�left�h	� ���
�� inv �Execution�s�Op�E �� s�po�E �� s�n�E ��

inv�Execution�deduction����
�	 s�Op�E �� �OP �set� s�Op�Execution��formation�h	�
�� s�po�E �� ��OP OP��set� s�po�Execution��formation�h	�
�� s�n�E ��N� s�n�Execution��formation�h	�

Figure 	��� First part of proof of �lemma po�p �

���� DISCUSSION �	�

�� ��
a�OP � �a � s�Op�E �� � �proc�a� � s�n�E ����
�
k �OP OP � �k � s�po�E �� �
��k � Prod�s�Op�E �� s�Op�E ��� � ��proc�fst k� � proc�snd k���
�num�fst k� � num�snd k�������B

inv�Execution w���	� ��� ���
�� inv �Execution�s�Op�E �� s�po�E �� s�n�E �� �

��
a�OP � �a � s�Op�E �� � �proc�a� � s�n�E ����
�
k �OP OP � �k � s�po�E �� �
��k � Prod�s�Op�E �� s�Op�E ��� � ��proc�fst k� � proc�snd k���
�num�fst k� � num�snd k������

inv�Execution de�nition��	� ��� ��� ���
�� �
a�OP � �a � s�Op�E �� � �proc�a� � s�n�E ����

�
k �OP OP � �k � s�po�E �� �
��k � Prod�s�Op�E �� s�Op�E ��� � ��proc�fst k� � proc�snd k���
�num�fst k� � num�snd k����� ��subs�right�b����� ��� ���

��
k �OP OP � �k � s�po�E �� �
��k � Prod�s�Op�E �� s�Op�E ��� � ��proc�fst k� � proc�snd k���
�num�fst k� � num�snd k���� ��E�left����

�� �a � s�po�E �� �
��a � Prod�s�Op�E �� s�Op�E ��� � ��proc�fst a� � proc�snd a���
�num�fst a� � num�snd a����
�E���� h��

�� �a � Prod�s�Op�E �� s�Op�E ��� � ��proc�fst a� � proc�snd a���
�num�fst a� � num�snd a��� ��I�three��� ��� ��

infer a � s�po�E � � �E�right���� ���

Figure 	��� Second part of proof of �lemma po�p �

��� Discussion

The goal of this chapter was to prove some properties of a shared memory synchro�
nization model in a formal way� To obtain this goal we started from the informal
description of the memory model� This formalization contains all the information
one has to know to compose the corresponding VDM speci�cation� On the other
hand writing down the VDM speci�cation may help to detect some inaccuracies
of the model� Having determined the VDM speci�cation� the translation from the
speci�cation to its corresponding formal theory can be made� At this point the
assistance of Mural is called in�

As mentioned before� Mural translates a VDM speci�cation automatically to its
corresponding formal theory� i�e� the system generates the formal language and the
set of inference rules of the theory� The set of inference rules contains the basic rules�
which de�ne the relation between the formal language and the deduction calculus�

�	� CHAPTER �� SHARED MEMORY SYNCHRONIZATION

as well as some derived rules� The derived rules are the proof obligations following
from the function and constant de�nitions of the VDM speci�cation� These proof
obligations can be used to prove other properties of the theory before their proof
has been derived� To show the correctness of the property discussed in section 	����
we have made use of some proof obligations� In order to develop the proof the
theorem prover available in Mural was used� This theorem prover is not at all an
automatic theorem prover� it is more an interactive proof tool� This means it can
give suggestions for the veri�cation of a certain line in a proof� but most of the
thinking comes from the user� However using a theorem prover is still advantageous
because of the certainty one gets about the consistency of a developed proof in the
considered theory�

The property we have proved� seemed to be trivial at �rst sight� but writing down
its formal proof showed the opposite� Note that proving such theorems can be
quite educative� since deriving such a proof can help the speci�er to see which are
the obstacles in the model
s formalization to prove the property in an easier way�
This information can be used to rewrite the original VDM speci�cation as a more
straightforward speci�cation� In doing so a VDM development has been created for
which a retrieve function must be de�ned to be sure that the new speci�cation is
a correct rei�cation of the �rst� Of course� the more experience someone has� the
fewer re�nements he will have to write�

As a global conclusion we can state that VDM is a useful speci�cation language�
Starting from an informal text the translation to the corresponding VDM speci��
cation is straightforward� Look for example at the speci�cation of all the di�erent
kinds of operations� to compose such a speci�cation we only had to change the infor�
mal n�tuple� by which the operation is formalized� into a record consisting of n �elds
and an invariant� The invariant is required to express all the remaining information
about the operation� The usefulness of a speci�cation support tool and�or theorem
prover for these kind of assignments is indisputable� even if they are only used to
guarantee the consistency of the newly speci�ed objects or derived lemmas�

��� Related Work

We presented a uni�ed formalism for specifying memory models� able to represent
existing memory models accurately� Since the semantics of the memory models
remain unchanged when formalizing them� any program that has a de�ned result
in the original memory model has the same result using the equivalent formalized
model� Often simplifying assumptions can be made about the programs that will
be executed� An assumption that holds for many parallel programs is that the
parallel program is data�race free� Under this assumption� several memory models
execute parallel programs in the same way� Adve and Hill present a formalization
of a memory model that uni�es the properties of four existing memory models for
data�race free programs ���

Our approach to memory models focuses on the result of memory operations� When

���� APPENDIX A� A FORMAL THEORY FOR RELATIONS �	�

implementing a shared memory� the read and write operations have to be speci�ed
in more detail than we do� The approach of Gibbons and Merritt �� is to identify
writes with a write request sent by the processor to the shared memory� and to
replace read operations with a sequence of a read request sent to the memory and a
read response received from the memory� A write request includes a location and a
value� a read request a location� and a read response only a value� In the approach of
Gibbons and Merritt� a blocking memory is a memory that refuses further requests
from any processor after having received a read request and before having answered
this request� In other words� the memory blocks while processing a shared�memory
read�

��	 Appendix A� A Formal Theory for Relations

����� Signature

CONSTANTS

irre�exive �� ��� ��

QuotRel �� ��� ��

total �� ��� ��

PartOrder �� antisymmetric�Rel in���e�� ��e���� transitive�Rel in���e�� ��e���

S�TotOrder �� TotOrder���e�� ��e��� irre�exive�Rel in���e�� ��e���

EquivRel �� re�exive�Rel in���e�� ��e���� �symmetric�Rel in���e�� ��e���
� transitive�Rel in���e�� ��e����

Rel in �� ��� ��

TotOrder �� PartOrder���e�� ��e��� total�Rel in���e�� ��e���

transitive �� ��� ��

re�exive �� ��� ��

partition �� ��� ��

equiv�class �� ��� ��

seq�const�Rel �� ��� ��

S�PartOrder �� PartOrder���e�� ��e��� irre�exive�Rel in���e�� ��e���

�	� CHAPTER �� SHARED MEMORY SYNCHRONIZATION

antisymmetric �� ��� ��

Prod �� ��� ��

symmetric �� ��� ��

����� Axioms

antisymmetric�def
R� ��X X ��set�

antisymmetric�R� � �
a��X �
a��X �
����a�� a��� � R� � ���a�� a��� � R�� � �a� � a���

equiv�class�def
a�X �Q � ��X X ��set��A� �X �set��EquivRel�Q �A�� a � A
equiv �class�a�Q �A� � �fa ��X j ��a� a ��� � Rel in�Q �A�g�

irreexive�def
A� �X �set��R� ��X X ��set�
irre�exive�Rel in�R�A�� �

�
a�X � �a � A� � �� ���a� a�� � R���

partition�def
Q � ��X X ��set��A� �X �set�EquivRel�Q �A�
partition�A�Q� � �fS �a�X �set j �a�X �
�a � A� � �S �a � equiv �class�a�Q �A��g�

Prod�def
A� �X �set��B � �Y �set�

Prod�A�B� � �fk �X Y j �fst k � A� � �snd k � B�g�

Prod�form
A� �X �set��B � �Y �set�

Prod�A�B�� ��X Y ��set�

QuotRel�def
R� ��X X ��set��Q � ��X X ��set��A� �X �set��EquivRel�Q �A�

QuotRel�R�Q �A� �
�fS � �X �set� �X �set� j �a��X � �a��X �

��a� � A� � �a� � A��
�

���fst S � equiv �class�a��Q �A�� � �snd S � equiv �class�a��Q �A���
�

���a�� a��� � R��g�

reexive�def
A� �X �set��R� ��X X ��set�

re�exive�Rel in�R�A�� � �
a�X � �a � A� � ���a� a�� � R��

Rel in�def
A� �X �set��R� ��X X ��set�

Rel in�R�A� � �fk �X X j k � �R � Prod�A�A��g�

���� APPENDIX B� SOME RULES USED IN THE PROOF �		

seq�const�Rel�def
R� ���X X ��set��set��A� �X �set�

seq�const �Rel�R�A� �
��S � �X X ��set�
TotOrder�S �A�

�
�
Ri � �X X ��set � �Ri � R� � �S � �Ri � Prod�A�A�����

symmetric�def
R� ��X X ��set�
symmetric�R� �

�
a��X �
a��X � ���a�� a��� � R� � ���a�� a��� � R��

total�def
A� �X �set��R� ��X X ��set�

total�Rel in�R�A�� �
�
a��X �
a��X � ��a� � A� � �a� � A��

�
�����a�� a��� � R� � ���a�� a��� � R�� � �a� � a����

transitive�def
R� ��X X ��set�
transitive�R� �

�
a��X �
a��X �
a��X �
����a�� a��� � R� � ���a�� a��� � R�� � ���a�� a��� � R��

��
 Appendix B� Some Rules Used in the Proof

����� Axioms

Execution�introduction
t �Execution

mk �Execution�s�Op�t�� s�po�t�� s�n�t�� � t

inv�Execution de
nition

Op� �OP �set�� po� ��OP OP��set��n�N��
��
a�OP � �a � Op� � �proc�a� � n��

�
�
k �OP OP � �k � po� �

��k � Prod�Op�Op�� � ��proc�fst k� � proc�snd k��
��num�fst k� � num�snd k�������B

inv �Execution�Op� po�n� �
��
a�OP � �a � Op� � �proc�a� � n��

�
�
k �OP OP � �k � po� �

��k � Prod�Op�Op�� � ��proc�fst k� � proc�snd k��
��num�fst k� � num�snd k������

inv�Execution�deduction
mk �Execution�e�� e�� e���Execution

inv �Execution�e�� e�� e��

�	� CHAPTER �� SHARED MEMORY SYNCHRONIZATION

Po�p formation

p�N��E �Execution� pre�Po�p�p�E ��
�R� �OP OP��set � post �Po�p�p�E �R�

Po�p�p�E �� ��OP OP��set�

Po�p speci
cation

p�N��E �Execution� pre�Po�p�p�E ��
�R� �OP OP��set � post �Po�p�p�E �R�

post �Po�p�p�E �Po�p�p�E ��

s�n�Execution��defn
mk �Execution�e�� e�� e���Execution
s�n�mk �Execution�e�� e�� e��� � e�

s�Op�Execution��defn
mk �Execution�e�� e�� e���Execution
s�Op�mk �Execution�e�� e�� e��� � e�

s�po�Execution��formation
t �Execution

s�po�t�� ��OP OP��set�

����� Proof Obligations

inv�Execution w�
Op� �OP �set�� po� ��OP OP��set��n�N�

��
a�OP � �a � Op� � �proc�a� � n��
�

�
k �OP OP � �k � po� �
��k � Prod�Op�Op�� � ��proc�fst k� � proc�snd k���

�num�fst k� � num�snd k�������B

Po�p implementability
p�N��E �Execution� pre�Po�p�p�E �

�R� �OP OP��set � post �Po�p�p�E �R�

��� Bibliography

�� S� V� Adve and M� D� Hill� A uni�ed formalization of four shared�memory
models� IEEE Transactions on Parallel and Distributed Systems� ���������
���� June �����

�� J�C� Bicarregui� J�S� Fitzgerald� P�A� Lindsay� R� Moore� and B� Ritchie� Proof
in VDM� a practitioners guide� Springer�Verlag London Limited �����

�� Phillip B� Gibbons and Michael Merritt� Specifying nonblocking shared mem�
ories� In �th Annual ACM Symposium on Parallel Algorithms and Architec�
tures �SPAA	� �����

�� C�B� Jones� K�D� Jones� P�A� Lindsay� and R� Moore� Mural� a formal devel�
opment support system� Springer�Verlag London Limited �����

��� CHAPTER �� SHARED MEMORY SYNCHRONIZATION

Index

accountability� ��
Ammunition Control System� ��

British Nuclear Fuels� �

circular reasoning� ��
class�centered model� ���
con�dentiality� ��
consistency proof� ��
counter�example� ��� ��

emergent property� ��
environmental precondition� ��
exception condition� ��
EXPRESS� �	

formation property� ��
fully formal proof� v� vi� ��� ��� ��

genericity� ��

higher order logic� �	�� ��	

IFAD VDM�SL Toolbox� �� �	� ��� �	�
���� ���� ���

indirection� ��� ���� ���
information modelling� ��
instance�centered model� ���
integrity� ��� ���
Isabelle� ���� ���

levels of rigour� ��
Logic of Partial Functions� ���
looseness� ��	
LPF� ���

memorymodel� ������	� �������� ����
���� ���� ���� �	�� �	�

memory order� ���� ��	� �������� ����
���

Ministry of Defence� ��

modules� ��� ��� 	��	�� ��� ��� ����
��	� ���

MSMIE� ���
Multiprocessor Shared�Memory Infor�

mation Exchange� ���
Mural� ��� ���� ���� ��	� ���� ���� ����

�	�� �	�� ���� ���� ���

non�determinism� ��	

OBJ�� ��
object identi�er� ��� ���

partiality� ���� ���
partitions� ��
per processor program order� ���� ����

���
precondition for success� ��
program order� �������� ���� ��������

���
PVS system� �	�

reachable states� ��� ���
re�nement� �	� ��� ���� ���� �	�� ����

���� ���� �������
re�nement proof� ������	� ���
retrieve function� �������� ���� �	��

���� ���
rigorous proof� ��� ��

safety analysis� �
safety requirement� �
satis�ability proof obligation� ������ �	�

��
schema�centred model� ���
seals� ��
security enforcing functions� ��
security policy model� �	
security properties� ��� �	

��	

��� INDEX

shared memory system� ���
SpecBox� �� �	
SQL� �	
STEP standard� ��
system safety� 	

tactics� ���
TCC� �	�� ��	
testing� ��� 	�
textbook proof� ��� �	
theory of VDM primitves� ���
Transport of Dangerous Goods� ��
trusted gateway� ���
trusted path� ��
typechecking constraints� ��	

UN regulations� ��� ��� 	�� 	�
unde�ned� ���� ���
underspeci�cation� ��	
uniprocessor correctness� ���� ���� ���

value condition� ���� ���� ���
VDM�LPF� ��	

witness� ��� ������ ��� ��

