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Chapter 5

Shared Memory Synchronization

Noemie Slaats, Bart Van Assche and Albert Hoogewijs

Summary

Explicitly parallel programs consist of several threads, where each thread
is executed by a different processing unit. These threads all have access
to a shared memory, and communicate by writing to or reading from the
shared memory. Reads and writes of different threads execute uncoor-
dinatedly. Threads can wait for other threads by using synchronization.
Although reading and writing the shared memory is similar in all shared
memory systems, most shared memory systems have their own set of
synchronization instructions. The semantics of the memory access and
synchronization instructions together is called a memory model, which is
usually specified informally or using a formalism specific to the memory
model. We present a unified formalization of shared memory models
both in traditional and in VDM notation. We also show how the Mural
tool helps in writing the VDM specifications and in generating the cor-
responding formal theory. A proof constructed with Mural shows that
even basic properties of this formal theory can be nontrivial to prove.

5.1 Introduction

A shared memory system has an address space common to all processors using
the shared memory. Such a shared memory system can have one of the following
implementations: a shared memory multiprocessor, a hardware distributed shared
memory multiprocessor, or a network of workstations with distributed shared mem-
ory software. A shared memory multiprocessor has a physically shared memory,
while in the other two systems the memory is fully distributed over the processors.
In all three systems every processor has a local memory with a copy of a part of the
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shared memory. This memory is called a cache memory of the shared memory. To
preserve the semantics of a single shared memory, these cache memories have to be
kept consistent. The generic structure of a shared memory is shown in figure 5.1.

Every processor runs one thread, or actually a uniprocessor program associated with
the thread. The different uniprocessor programs together are the explicitly parallel
program. While running a thread, a processor issues read and write operations to
the shared memory. These read and write operations are the only interaction of the
processor with the shared memory. We call the sequence of operations that result
from running a thread the execution of that thread. Since the order of the opera-
tions in the execution is derived from the order of instructions in the uniprocessor
program running, we call this order the program order of the operations issued by
the corresponding processor.

In a shared memory system without local memories, every processor has the same
view of the shared memory. When duplicating or caching the contents of the shared
memory in local memories, however, every processor potentially can have a different
view of the shared memory. We model a processor’s view of the shared memory
by specifying the history of the changes applied to that view. We represent this
history by the order in which operations of all processors have been observed by the
current processor. We call this order the memory order relation. It is a partial order
relation, able to model concurrent operations.

Although the memory orders are relations over more operations than the program
order, there is a strong relation between both. When the memory order as observed
by a processor includes the program order of the same processor, that processor
obeys the uniprocessor correctness property. This means that a one-processor pro-
gram will execute correctly on that processor.

To cooperate in a deterministic way, threads must be able to wait for one another
or to synchronize. Synchronization of two or more threads is a way to guarantee
an ordering between memory operations of different threads. There are two kinds
of synchronization operations: low-level and high-level. Low-level synchronization
operations are read and write operations whose ordering is guaranteed to be the
same in all memory order relations. High-level synchronization operations are the
acquire-, release- and barrier operations. They are defined in section 5.2.4.

This chapter is organized as follows: in section 5.2 we give an informal description
of a shared memory synchronization model. The VDM specification associated with
this model is given in section 5.3. In section 5.4 the formal theory for the memory
model is discussed. To generate this formal theory the Mural tool [4] is used. In a
last section we review and discuss the example.

5.2 Formal Definitions

The following information will be used to represent any operation: operation type,
sequence number, processor number and set of memory addresses where the oper-
ation takes effect on. Additionally, load operations have a loaded value associated
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_______sharedmemory !
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system
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Figure 5.1: Generic structure of a shared memory system: n processors, a shared
memory and inbetween an interconnection system. The interconnection system can
reorder requests and can cause arbitrary delays when propagating requests from
one processor to another. The shared memory itself is either physical or virtual.
Program order and memory order relations over load, store and synchronization
operations for a given processor are observed at the indicated observation point.
for a given processor are observed at the indicated observation point.

to them, store operations have a stored value, load-modify-store operations have
a loaded and a stored value, and acquire, release and barrier-operations have an
identification number associated to them.

A load operation reads from memory, a store operation writes to memory, and a load-
modify-store operation modifies the value at a memory location without allowing
intervening operations by other processors.

Definition 1 operation type

An operation has one of the types in Type = {ns,nl nf,ss, sl sf, acq, rel, bar}.
These types are respectively normal store, load, load-modify-store, synchronizing
store, load, load-modify-store, acquire, release and barrier operations.

We will use the symbol n € N for the number of processors ot the memory system,
P ={1,...,n} for the set of processor numbers, and p € P for a processor number.
i € N is the per processor operation number, instructions executed later having
a higher operation number. Equal operation numbers for different operations on
the same processor are not allowed. j € N is an identification number for barriers
and critical sections, indicating which operations belong together. An entity in
the memory that can be addressed is called a location, and Mem is the set of all
addressable locations. m € Mem is a single memory location, and M C Mem
is a set of memory locations, indicating which set of locations is involved in an
operation. For loads, stores and load-modify-stores this is typically a singleton, and
for synchronization instructions this set M is a non-empty subset of Mem. What
is stored into a location or read from a location is called a value, and the set of all
allowed values is called Val. For an overview, see table 5.1.
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operation name general form restricted form shorthand
normal store (ns,i,p, M,v.s) (ns,i,p,{m},v-s) l-i(m,v-s)
normal load (nl,i,p, M, v_l) (nl,i,p,{m},v.l) s-i(m,v-l)
normal

load-modify-store  (nf, i, p, M, v-l,v_5) (nf,i,p,{m},v-l,v.s) foi(m,v-l,v-5s)
synchronizing store (ss, i, p, M, v-s) (ss,i,p,{m},v=s) sl-i(m,v-s)
synchronizing load  (sl, i, p, M, v_1) (slyi,p,{m},vl) ss-i(m,v-l)
synchronizing

load-modify-store  (sf, i, p, M, vl v_s) (sf,i,p,{m},v-l,v-s) sfoi(m,v-l,v-s
acquire (acq,i,p, M,j) (acq,i,p, M,j) a-i(M.j)
release (rel,i,p, M, j) (rel,i,p, M, j) r-i(M.j)
barrier (bar,i,p, M,j) (bar,i,p, M,j) b-i(M,j)

Table 5.1: Names of the operation types, the general form of an operation tuple,
the corresponding restricted form, and the abbreviation of the restricted form.
The general form operates on a set of memory locations M, while the restricted
form uses only one location m for load- and store-operations. Processor numbers
are not specified in the restricted form: in graphs the processor number will be
clear from the context.

The functions num(), proc(), mem(), val-l() and val-s() operate on operation tu-
ples, and respectively return the values ¢, p, M, v.l and v_s.

The sets of operations of types ns, nl, nf, ss, sl, sf, acq, rel and bar are called respec-
tively Son, Lon, F_on, S_s, L_s, F_s, Acq, Rel, and Bar. Derived sets of operation
types are in table 5.2.

5.2.1 Program Order and Executions

We will use the notation ®3 for the program order relation of processor p, and
=% for the union of these relations. Since the individual operations already include
a per-processor sequence-number proc(), the program order relations can be easily
defined using the sequence number.

. pop
Definition 2 program order X% and per processor program order ——

The program order relation = is the relation between operations op-1,0p-2 € Op

and is defined by
op-1-50p-2 < (proc(op-1) = proc(op-2)) A (num(op-1) < num(op-2)).
On processor p, operations are executed in the order % defined by

op-122 0p_2 <= (proc(op-1) = proc(op-2) = p) A (num(op-1) < num(op-2)).
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operation set contents

formal definition

store operations

load operations

low-level synchronization operations
high-level synchronization operations
synchronization operations
operations executed on processor p
operations accessing at least location
set M

operations accessing at least location
set M on processor p

operations accessing at least location
m

operations accessing at least location
m On Processor p

accessed memory locations.

S=S5SnUF_nUS_.sUF_s
L=LnUF_nUL.sUF_s
Sync-L = S_sU L_.sU F_s
Sync-H = Acq U Rel U Bar
Syne = Sync-L U Sync-H

Op-p = {op € Op | proc(op) = p}
Op-M ={op € Op | M C mem(op)}
Op-M,p = Op-M 0 Op_p

Op-m = Op-{m}

Op-m,p = Op-m N Op-p

Table 5.2: Sets of operations for specific operation types, processor number, or

Parallel Program

Executed operations

program order.

thread 1 thread 2 processor 1 processor 2
x:=1 y:=1 s-1(z,1) s-3(y, 1)
=y =X [-2(y,0) [-4(z,0)

Figure 5.2: A short parallel program and the operations for one possible execution
of that program. It is assumed that the memory has been initialized to zero. In
this example the shared memory did not process the load and store requests in

For an example of a parallel program, its program order and its memory order

relations, see figures 5.2 and 5.3.

From the definition of the global and per processor program order relations, we can

derive the following properties:

o the per-processor program order
processor, Op_p.

pop
—

is a total order for the operations of that

e the relation =% is a partial order in the set Op.

pop .

e any order —

is contained in the order relation =%, or Vp: P -

pop

o

The set of all operations and the order in which they are executed contain all infor-
mation, about how a program has been executed, observable by the threads. We call
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pl: s1(x,1) 12(y,0) s1(x,1) 12(y,0) s1(x,1) 12(y,0)
p2: ——————p>o
s3(y,1) 14(x,0) s3(y,1) 14(x,0) s3(y,1) 14(x,0)

Figure 5.3: Sample global program order relation =, and memory order relations

mo 1

2} and 2 for processors p-1 and p-2 respectively. The relations in the graphs

mo 1

are the transitive reduction of the ==, ™ and ™% relations.

the pair of the set of operations and the program order relation of these operations
an execution of the parallel program.

Definition 3 execution F

An execution E = (Op, =) of a program consists of the set Op of operations and
the order of execution == implied by the program.

5.2.2 Uniprocessor Correctness

Every processor of a multiprocessor system must obey uniprocessor correctness:
when a sequential program is executed on a single processor of a multiprocessor sys-
tem, the result must be the same as if the program was executed on a uniprocessor.
This is achieved when all data dependent operations of a thread are present in the
memory order relation in the same order as in program order. In its weakest form,
two operations are data dependent if they access the same memory location, and
either they are a store and a load operation, or they are two store operations writing
different values. Executing data-dependent operations in a modified order changes
either the result of one of the operations and/or the value written to memory. We
will use a stronger condition than preserving data-dependences: we require that the
order of any two operations referencing the same memory location is preserved.

Condition 1 uniprocessor data dependences

Any two operations on processor p to the same location that are ordered by program

order, are ordered by the memory order relation = of that processor in the same

way.

Vm: Mem-Yop_1,0p-2: Op_m -¥p: P op-123 0p_2 = op_1" op.2

5.2.3 Result of a Load

Since the relation =% is the order in which a processor observes the memory opera-
tions of itself and other processors, the relation ™ determines the result of a load
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s2(x,5)
p2:
11(x,1) s1(x,2)  s2(x,3)  13(x,3) s1(x,4) 14(x,?)
[ ] o————0— P
hist(11)={ } hist(13)={s1,s2} hist(l4)={s1,s2,s3}
prev(11)={} prev(13)={s2} prev(l4)={s2,s3}

() (b) (c)

Figure 5.4: Three examples of execution sequences and their memory order relation
Il“i}, illustrating the value condition. The first two sequences have been executed
on one processor, the third on two processors. From the 2o} relation the sets
hist(l) and prev(l) for the load [ are derived, which in turn determine the result
value of the load. The graphs represent the transitive reduction of the memory

) 1
order relations =% .

operation. For a load operation [, we define the set hist(l) as the set of all store
operations preceding [, and the set prev(l) as the set of store operations immedi-
ately preceding [. When there is exactly one store operation s preceding [, the value
stored by s is also the result returned by [. If there are zero, two, or more store
operations preceding [, and they store zero, two, or more different values, then the
result of [ is undefined. For an example, see figure 5.4.

Condition 2 wvalue condition

p = proc(l)

hist(1) = {s € S_mem(1) \ {1} | s=$'1}

prev(l) = {s € hist(1) | Vs": hist(1) \ {s} - =(s=¥s')}

Vs:prev(l) - val-l(l) = val-s(s)
The relations = define the view of an individual processor of the order of memory
operations. We also need the combined view of all processors of the order of the
operations concerning a memory location m. We will call this relation the access
order for location m, - _m, and its union over all memory locations the access
order relation, = .
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Definition 4 access order

The access order = _m at the memory location m is the order in which operations
are executed on the location m. The relation ==, the access order relation, is the
union of the =% _m relations.

N — Up:P-I—m—gﬁOp_m2
2o, 2 (Um:Mem-ﬂ_m)*

Before defining the shared memory condition, we define consistency of relations and
sequential consistency of relations.

Definition 5 consistency of relations

The relations R-1,..., R-n are consistent over the set A if and only if the relations
R_1,..., R_n are identical when restricted to A:
RINA*=...=R.nn A

Definition 6 sequential consistency of relations

The relations R_1,..., R_n are sequentially consistent over the set A if and only if
they are consistent and every relation R_1,...,R-n is a total order over the set A.

While the view of operations of different processors on different memory locations
can vary from processor to processor, all processors must have the same view of the
order of operations on one single memory location. Additionally, combining these
views must be meaningful. We call these two conditions together the shared memory
condition.

Condition 3 shared memory condition

1 . . .
Vm: Mem- {5, ..., ¥} is consistent in Op.m

A =5 is a partial order.

From the shared memory condition, it follows that the individual =% _m relations
are partial order relations.

5.2.4 Synchronization

In this formalization of operations and memory models, there are three types of
low-level synchronization operations (synchronizing load, synchronizing store and
synchronizing load-modify-store) and three types of high-level synchronizing oper-
ations (barrier, acquire and release). These operations unify the synchronization
primitives used in existing memory models.

Low-level synchronization operations behave the same way as their counterparts
without synchronization, except that the order of low-level synchronization opera-
tions is identical in every memory order relation.
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A barrieris a group of barrier operations b with the same identification number id(5).
These individual operations execute on a set of processors P’ = {proc(d) | b € B}.
The barrier synchronizes for the processors in P’ the access to the set of memory
locations M = mem(b): all memory references to any of the locations M that are
ordered before the barrier as observed by any of the participating processors P’,
are before the barrier in the memory order relations of any processor. The same
holds for memory accesses ordered after the barrier. We define the relation N as
the equivalence relation that holds between barrier operations of the same barrier.
Typically a barrier operation is implemented by waiting until all other processors
participating in the barrier arrive at their corresponding barrier operation.

A critical section has an identification number j and protects the locations of the
set M by sequentializing other critical sections to any of these locations M. A
critical section on processor p starts with an acquire operation (acq,?, p, M,j) and
ends with a release operation (rel,?, p, M, j). Although critical sections that have at
least one location in common cannot overlap, access to any of the protected variables
during the execution is still possible by another processor if it does not protect these
accesses with a critical section. Operations executed inside the critical section are
for every memory order relation ordered between the acquire and the release.

Before we start the formalization of barrier and critical section synchronization, we
introduce the relations N and N’. These relations partition the barrier operations
and the acquire/release pairs. The partitioning is based on the identification number
id(). The relation N is extended to a reflexive relation over the set Op.

Definition 7 equivalence relations N, N’

N
Nl

{(op-1,0p-2) € Bar® | id(op-1) = id(op-2)} U {(op, op) | op € Op}
{(a,r) € (Acq x Rel) | id(a) =id(r)}

> 1

Now we can express that barriers are totally ordered per memory location, and that
all high- and low-level synchronization operations synchronizing a common memory
location have the same ordering in all memory order relations. Also, we require that
acquire-release pairs are totally ordered per memory location and neither overlap
nor nest.

Condition 4 order of synchronization operations

Vm: Mem - (25 /N, 23 /N, ..., 23 /N)
are seq. consistent relations in Sync_m/N
A ‘v’m:Mem-(IPi} N’,Ifiz/N’,...,I?o—?/N’)

are seq. consistent relations in Sync_m /N’

Acquire and Release Every release requires exactly one matching acquire, but
an acquire is allowed to have no matching release. In that case, the release is
considered to be past the end of the execution of the thread on the processor of the
acquire.
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Condition 5 correct use of acquire and release operations

Va: Acq-¥rol,r2: Rel - aN'r_1 A aN'r2 = rol = 122
N Yr:Rel-3la: Acqg - aN'r

Further, matching acquire and release operations have to reference the same set of
memory locations and the acquire must be ordered before the release in the program
order relation.

Condition 6 same memory locations for matching acquire and release operations

Va: Acq-Vr: Rel - aN'r = mem(a) = mem(r)

Condition 7 execution order of matching acquire and release operations

Va: Acq-Vr: Rel - aN'r = a5 r.

Also, any operation ordered by program order between the acquire and the release
is for every processor also ordered by memory order between the acquire and the
release.

Condition 8 order of accesses to protected locations

Va: Acq-Vr: Rel - aN'r = Yop: Op-mem(a)-
(a2 op2sr = Vp: P-a= op™dr)

N Ya:Acqg- (=3r: Rel - aN'r) = Yop: Op-mem(a)-
(a2%0p = Vp: P- a™% op)

Barriers There are two conditions specific for barriers: any operation of a barrier
has to reference the same set of memory locations, and all instructions executed be-
fore a barrier are observed before that barrier by any processor, while all instructions
executed after a barrier are observed after that barrier.

Condition 9 same set of locations per barrier

Vb-1,0-2: Bar - b_1Nb-2 = mem(b-1) = mem(b-2)
Condition 10 correct barrier and operation ordering

Vb-1,b6-2- Bar.Vp: P-Yop: Op-mem(b-1) \ {b-1}
boANb.2 = (op 22 b1 = op=H b.2)
A (b1 0p = .27 0p)
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5.2.5 Memory Model

The following definition of a shared memory model contains the properties common
to any model of a shared memory system.

Definition 8 memory model

A memory model Mod is a set of executions E, where every execution satisfies the
general conditions 1, 2, 3, the synchronization conditions 4 to 10, and the model-
specific conditions.

5.3 The VDM Specification of the Definitions

In the previous section a shared memory synchronization model is formalized in an
informal way. In this section the VDM specification for all the definitions used for
this formalization will be composed.

For that purpose the VDM specification support tool of Mural is used.

Mural is an interactive theorem prover and VDM specification support tool. The
standard system is equipped with the theory of the VDM primitives. Because this
theory is not expressive enough for our application, we added a theory for relations!
to the parent theories of the specification.

5.3.1 Operations

The first object we have to specify is an operation. For that purpose some new types
have to be declared.

A first such type, is the type to which all the terms expressing the kind of an
operation can assigned to. We call this type Type:

Type = not yet defined.

We say that Type is not yet defined because there does not exist a type in the known
theories, i.e. the theory of the VDM primitives and the relational theory, which we
can use to specify the new type Type.

Because all terms that express some kind of an operation are assigned to the type
Type, we know from section 5.2:

I'This formal theory is described in appendix A
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ns: Type

nl: Type

nf: Type

ss: Type

sl: Type

sf: Type

acq: Type

rel: Type

bar: Type

and these are the only terms of the type Type.

However, it is not necessary to include this information in the VDM specification.
It is sufficient to wait until the VDM specification has been translated into its

corresponding formal theory; and then a basic rule containing this information can
be added to the set of basic rules of that theory.

In order to specify all possible operations of a particular execution of a parallel
program two more types are needed. The first one is:

location = not yet defined.

An element of the type location is a memory location that can be addressed by
an operation. All the allowed memory locations of a particular memory model
are grouped in a set called Mem. This set is a constant for that memory model.
Therefore its specification will be a constant of the form:

Mem: location-set.

What is stored into a memory location or read from a memory location is an element
of the type wvalue. This brings us to the second new type:

value = not yet defined.

The set of all the values that are allowed for a particular memory model is also a
constant. This set is called Val and is specified by:

Val: value-set.

Making use of the previous defined types and constants all the possible operations
can be specified.

Because the operations consist of different fields, as we can see in table 5.1, the best
suited way to create these specifications is by using a composite type.

The normal store, load and load-modify-store operations
Translating the information of table 5.1, about the normal store operation to a VDM
specification results in:
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nstore :: type : Type
¢t : N
p Ny
M : location-set
v_s : value
inv (type: Type, M: location-set, v_s: value) &
type = ns A (M C Mem) A (v-s € Val)).

The five fields of the record do not express all the information known about a normal
store operation. Therefore an invariant containing the remaining information has
been added. This invariant expresses that the type of a normal store operation
always has to equal ns, and that the set of memory locations M has to be a subset
of the allowed memory locations of the model and analogously the stored value v_s
must be an element of the allowed values for this memory model.
The specification of the normal load operation is:
nload :: type : Type
¢t : N
p Ny
M : location-set
vl @ value
inv (type: Type, M: location-set, v_l: value) &
type = nl A (M C Mem) A (v-l € Val)).

To construct the specification of a normal load-modify-store operation a record
containing six fields instead of five fields is needed, because the normal load-modify-
store operation first loads a value from a memory location and then stores another
value to the same memory location. And of course both values have to be a member
of the set of the allowed values of the memory model:

nmodify :: type : Type

¢ : N

p Ny

M : location-set
vl : wvalue
vos : value

inv (type: Type, M: location-set, v_l: value, v-s: value) &
type = nf A ((M C Mem) A ((v-l € Val) A (v-s € Val))).

The synchronizing store, load and load-modify-store operations

From table 5.1, it follows that the only difference between the synchronizing store
(resp. load, load-modify-store) operation and the normal store (resp. load and load-
modify-store) operation is the type field:
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sstore :: type : Type
¢t : N
p Ny
M : location-set
vos : value
inv (type: Type, M: location-set, v_s: value) &
type = ss N (M C Mem) A (v-s € Val))

sload :: type : Type
¢t : N
p Ny
M : location-set
vl @ value
inv (type: Type, M: location-set, v_l: value) &
type = sl A (M C Mem) A (vl € Val))

smodify :: type : Type

i : N

p Ny

M : location-set
vl ¢ value
vos : value

inv (type: Type, M: location-set, v_1: value, v-s: value) &
type = sf A (M C Mem) A ((v-l € Val) A (v-s € Val))).

The acquire, release and barrier operations

There are three more operations left to specify. These are the acquire, release
and barrier operations. They are called high-level synchronizing operations. Again,
their specification will consist of a record, containing five fields, and an invariant
explaining what properties the fields have to fulfill:

acquire :: type : Type

1 : N
p Ny

M : location-set
7J N

inv (M: location-set, type: Type) &
type = acq N (M C Mem)

release :: type : Type

1 : N
p Ny

M : location-set
7J N

inv (type: Type, M: location-set) &
type = rel AN (M C Mem)
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barrier :: type : Type

1 : N
p Ny

M : location-set
7J N

inv (type: Type, M: location-set) &

type = bar A (M C Mem).
We still need to specify many functions before we can formalize our memory model.
To make the specification of these functions a little easier some more types are

defined. These new types are the union of previously declared types.
A first new type is the type OPs which collects all the store operations:

OPs = nstore | sstore.

Similarly we specify a type OPI for all load operations and a type OPf for all
load-modify-store operations:

OPl = nload | sload

OPf = nmodify | smodify.

The type OPsync brings together all the elements of the type acquire, release and
barrier:

OPsync = acquire | release | barrier.

Finally we introduce a union type that collects all kind of operations. This type is
called OP. Making use of the previous definitions the specification of the type OF
becomes:

OP = OPs | OPl | OPf | OPsync.

For the same reason some new types were defined, we also declare some useful
functions.

5.3.2 Useful Functions

A first selected function is the function type. This function maps an element of the
type OP to an element of the type Type; the image of a given operation under the
function type is the type of that operation.

To which kind an operation belongs to, can be found in the first field of its corre-
sponding record. The function associated with the first field of an operation record
is the function s-type:

type : OP — Type

type(op) & s-type(op).
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The difference between the function type and the function s-type is: type is defined
for all elements of the type OP and s-type is defined for all kinds of operations (i.e.
normal load, normal store, ...) separately.

Some other useful functions are the functions num(), proc(), mem(), val-l() and
val-s() mentioned in section 5.2. The VDM notation for these functions is similar
to the previous specification:

num : OP — Type

num(op) 2  s-i(op).

proc : OP — Ny

a

proc(op) s-p(op).

mem : OP — location-set

mem(op) £ s-M(op).

val-1 : OPl | OPf — wvalue
val-l(op) &  s-v_l(op).

val-s : OPs | OPf — value
val-s(op) £ s-v-s(op).

The last of these functions is ¢d which maps a synchronizing operation to its iden-
tification number:

id : OPsync — N

id(op) & s-j(op).

By making use of the specifications of all these functions and types, we can specify
one particular execution of a parallel program satistying a given memory model.
5.3.3 The Program Order and Executions

Because the program order relation *3 depends of an execution K, the notion
execution has to be specified before the program order. Once the object execution
is specified the program order can be derived from this specification.
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A Program Execution

A program execution describes one particular execution of a parallel program for a
given memory model. The definition of an execution E given in section 5.2.1 is a
tuple satisfying some restrictions. Therefore a record and an invariant will be used
for the VDM specification.

At first glance it seems that there are only two fields needed in the record: a first
component being the set Op of all operations that have been executed during a
particular execution E and a second component being a set po of pairs of operations.
This set of pairs will define the program order of the execution when its elements
satisfy the following three conditions:

e not only the first but also the last component of all the pairs must be an
element of the previously defined set Op;

e both components of a pair must have been executed on the same processor;

e the operation number of the first component of a pair must be less than or
equal to the operation number of the second component of that pair.

However, these two components together with their restrictions are not sufficient
to specify an execution. We need a third component, namely a natural number
n, different from zero, declaring the number of processors used for that particular
execution of the parallel program. Knowing the number of processors used, we can
formulate one more condition the execution has to satisfy: i.e. every operation of
Op has to be executed on a processor used for the execution.
Bringing all this information together in a record with an invariant, results in:
Execution :: Op : OP-set
po @ OP x OP-set
n : Ny

inv (Op: OP-set, po: OP x OP-set, n:N;) &

Va:OP-a € Op = (proc(a) < n) A

Vk: OP x OP -

k€ po & (ke Prod(Op,Op))A

(proc(fst(k)) = proc(snd(k)) A (num(fst(k)) < num(snd(k)))).

The Program Order and Per Processor Program Order

The program order po is one of the three defining components of an execution
E. Therefore we do not need to specify the program order explicitly: for a given
execution F the program order is specified by s-po(F).

The program order is defined for all the operations of an execution. The per pro-
cessor order only considers those operations that are executed on one particular
processor of an execution.

Similarly to the program order, the per processor order is also specified as a set of
pairs with each pair of the set satistying four conditions:
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o the first three conditions are the same as the conditions for the elements of
the program order;

e the fourth condition expresses that all the operations of all the pairs must be
executed on the same processor p.

To specify this set of pairs we use a function Po-p. This function depends on two
variables: a particular execution E and a processor p used for the execution E:

Po-p (p: Ny, E: Execution) R: OP x OP-set
pre p < s-n(F)
post Vk: OP x OP -k € R &

(k € Prod(s-Op(F),s-Op(E))) A ((proc(fst(k)
Aproc(snd(k)) = p) A (num(fst(k)) < num(sn

) = proc(snd(k))
d(k))))-

Knowing the VDM specification of an execution, all the instructions S-n, L_n, F_n,
S_s, Los, F_s, Acq, Rel, and Bar, which were mentioned in section 5.2, and some
more can also be specified.

Sets of Operations

A first set to be specified is the set S-n(F) of all normal store operations executed
during a particular execution FE of a parallel program. Because all normal store
operations of an execution are also operations of that execution, it is obvious that
the set of all normal store operations executed in F is a subset of the set s-Op(F).
And vice versa when a normal store operation is an element of s-Op(F) then it is a
normal store operation executed by E. This means that:

Sn (E: Execution) v: nstore-set
post Vs:nstore-s € v & s € s-Op(F).

The set Ln(FE) (resp. Fn(F)) of all normal load (resp. load-modify-store) operations
of F, and the set Ss(F) (resp. Ls(F), Fs(F)) of all synchronizing store (resp. load,

load-modify-store) operations are specified analogously:

Ln (E: Execution) v: nload-set
post Vi:nload -1 € v & 1€ 5-Op(L)

Fn (E: Execution) v: nmodify-set
post Vf:nmodify - f € v & f € s-Op(F)

Ss (E: Execution) v: sstore-set
post Vs:sstore-s € v & s € s-Op(F)
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Ls (E: Execution) v: sload-set
post Vi:sload -l € v & [ € s-Op(E)

Fs (E: Execution) v: smodify-set
post Vf:smodify - f € v & [ € s-Op(FE).

The same can be done for the set containing all the acquire Aeq(F) (resp. release
Rel(E), barrier Bar(E)) operations of an execution E:

Acq (E: Execution) v: acquire-set
post Ya: acquire - a € v & a € s-Op(F)

Rel (E: Execution) v: release-set
post Vr:release-r € v & r € s-Op(F)

Bar (E: Execution) v: barrier-set

post Vb: barrier-b € v & b€ s-Op(F).

In furtherance of the next specifications, it is useful to specify the union of some
previously specified sets: for example the set S(F) of all store operations of an
execution F and the set L(F) of all load operations of F£:

S : Execution — OP-set
S(EY & (Sn(E)UFn(E))U(Ss(E)U Fs(E))

L : Execution — OP-set

LE) & (Ln(E)UFn(E))U(Ls(E)U Fs(E)).

Other sets that might be useful in the future are the set SyncL(FE) of all low-
level synchronizing operations and the set SyncH(E) of all high-level synchronizing
operations:

Syncl : Execution — OP-set

SyncL(F) & (Ss(E)U Ls(E))U Fs(E)

SyncH : Execution — OP-set
SyncH(E) & (Acq(E)U Rel(E)) U Bar(E).
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The union of the two previous sets is Syne(F), the set of all synchronizing operations
of a particular execution £

Sync : Frecution — OP-set
Sync(E) &  SyncL(E) U SyncH (E).

All the previously declared sets group operations of the same kind. Now, instead of
grouping operations of a same ‘ Type’, some other properties are used to classify the
operations of an execution F.

For instance, the set Op-p(FE) brings together all the operations of an execution ¥
executed on a same processor p; where p is a processor used for the execution F:

Op-p (p: Ny, E: Execution) v: OP-set

pre p < s-n(F)

post Yop: OP - op € v & proc(op) = p A (op € s-Op(F)).

The pre-condition of this function expresses that p needs to be a processor used for
the given execution F.

Op-M(FE) is the set of all the operations of an execution E accessing at least a given

set of memory locations M, with M a subset of all the allowed memory locations

Mem:

Op-M (M: location-set, E: Execution) v: OP-set
pre M C Mem
post Yop: OP -op € v & (M C mem(op)) A (op € s-Op(E)).

The intersection of the two previous sets is called Op-Mp(M, p, E'):

Op-Mp : location x Ny x Frecution — OP-set
Op-Mp(M,p, ) & Op-M(M,E)n Op-p(p, E)
pre (M C Mem) A (p < s-n(FE)).

The function Op-m returns the set of all operations of an execution E accessing at
least a single given memory location m. Using the function Op-M its specification
is straightforward:

Op-m : location x Erecution — OP-set
Op-m(m,E) & Op-M({m},E)
pre m € Mem.
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The specification of the set Op-mp(m, p, E') of all operations accessing at least a
single memory location m on processor p is:

Op-mp : location x Ny x Frecution — OP-set

Op-mp(m,p, E) & Op-Mp({m},p, F)

pre (m € Mem) A (p < s-n(FE)).

For later purpose some of these sets are defined for load and synchronizing operations
only:

L-p (p: Ny, E: Ezecution) v: OP-set

pre p < s-n(F)

post Yop: OP - op € v & proc(op) = p A (op € L(F))

L-m (m: location, E: Frecution) v: OP-set
pre m € Mem
post Yop: OP -op € v < (m € mem(op)) A (op € L(E))

L-mp :location x Ny x FExecution — OP-set
L—mp(m,p,E) é L—m(m,E)ﬂL—p(p,E)
pre (m € Mem) A (p < s-n(F))

Sync-m (m: location, E: Execution) v: OP-set
pre m € Mem
post Yop: OP - op € v & (m € mem(op)) A (op € Sync(F)).

Although there is not much mentioned about the memory order in the formalization,
a specification of the memory order is indispensable to express the conditions a
memory model has to fulfill.

5.3.4 Memory Order

Since the memory order relation is specified as a set of restrictions on a partial order
relation, the only explicit information we have about the memory order MO-p(p, F)
is that it is a partial order:

MO-p (p: Ny, E: Execution) R: OP x OP-set
pre p < s-n(F)
post R C Prod(s-Op(FE),s-Op(E)) A PartOrder(R, s-Op(F).
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More properties of this order are revealed in the following conditions.

5.3.5 Uniprocessor Correctness

The uniprocessor correctness is formalized through a property of the memory model.
This property is not necessary to specify the memory model, it only expresses a
property of the model. However to be sure the model satisfies this condition a basic
rule, associated with the condition, will be added to the set of inference rules of the
formal theory corresponding with the specification of the memory model.

The same remark can be made for all the conditions mentioned in the section 5.2.

5.3.6 The Result of a Load

Although there is no need for a specification of the value condition, some definitions
appearing in this condition have to be declared:

hist (I: OPl'| OPf, E: Execution) v: OPs | OPf-set
pre [ € L(F)
post Vs: OPs | OPf -s € v &

(s € S(E)) A ((mem(l) © mem(s))A

(s # LA (pair(s, 1) € MO-p(proc(l), E)))).

prev (I: OPL| OPf, E: Execution) v: OPs | OPf-set

pre [ € L(F)

post Vs: OPs | OPf -s € v
& (s € hist(l,E)) ANVs: OPs | OPf - s € (hist(l, E) — {s})
= pair(s,s’) ¢ MO-p(proc(l), E).

Also the shared memory condition introduces a new definition: the access order.
To specify the definition of the access order, the access order at every memory
location, Ao-m, has to be declared first:

Ao-m (m:location, E: Execution) R: OP x OP-set

post Vk: OP x OP -k € R < dp:Nj -
k€ MO-p(p, E) A (k € Prod(Op-M({m}, ), Op-M({m}, ).

The previous result helps to specify the access order:

Ao (E: Execution) R: OP x OP-set
post Vk: OP x OP -k € R < dm:location - k € Ao-m(m, F).
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5.3.7 Synchronization Operations

To describe most conditions the memory model has to comply with, synchronization
operations and some relations grouping these operations are needed. The synchro-
nization operations have been specified before, now we still have to consider the
relations.

The first relation concerns barrier operations, the second relation groups acquire
and release operations which belong together:

N (E: Ezxecution) N: OP x OP-set
post Vk: OP x OP -k e N &
(k € Prod(Bar(FE), Bar(F))) A id(fst(k
V (k € Prod(s-Op(F),s-Op(E))) A fst(

) = id(snd(k)
k) = snd(k);

N’ (E: Execution) N': OP x OP-set
post Vk: OP x OP -k € N’
& (k€ Prod(Acq(E), Rel(E))) A id(fst(k)) = id(snd(k)).

And finally our goal is reached, a memory model can be specified !

5.3.8 Memory Model

A memory model is a set of executions, therefore the type Model, every memory
model can be assigned to is:

Model = FEzxecution-set.

Of course all the executions which are an element of a memory model need to satisfy
a few conditions. To make sure that these conditions are satisfied the set of basic
rules of the formal theory corresponding to the specification of the memory model
has to be extended.

5.4 A Formal Theory for Shared Memory Syn-
chronization

5.4.1 The Formal Language

In the previous section a VDM specification for the formalization of a memory model
has been presented. To determine the formal language of the formal theory corre-
sponding to this specification, Mural comes to assist. More precisely, the translation
from the specification to its corresponding formal theory happens automatically in
Mural.

The automatic translation of our specification generates the demanded formal lan-
guage together with a set of inference rules. However this set of inference rules is
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not sufficient to establish the formal theory of the considered memory model, as will
be explained hereafter.

5.4.2 The Set of Inference Rules

The set of inference rules produced by Mural contains all the basic rules and some
derived rules, known as proof obligations, corresponding with the translated spec-
ification. However, the specification presented in the previous section does not
contain all the information available on the memory model since the ten conditions,
the model has to satisfy, were not added to the specification. As mentioned before,
these conditions have to be annexed to the set of basic rules.

Therefore we have to rewrite them in a more formal way:

Condition 1 uniprocessor data dependences:

E: Ezxecution, m: location, m € Mem, opl: OP, op2: OP,
(condition 1] opl € Op-m(m, E), op2 € Op-m(m, E), p: Ny, p < s-n(F)
R (opT, 0p2) € Po-p(p, E)) = ((opl, 0p2) € MO-p(p, I))

Condition 2 wvalue condition:
[:(OPl | OPf),s:(OPs | OPf),
E: Erecution,l € L(E),s € prev(l, F)

[condition 2 oal-1(1) = val-s(s)

Condition 3 shared memory condition.

This condition describes two properties of the memory model. The first property
expresses that the memory order relations on all the several processors must be
consistent for all memory locations:

E: Execution, m: location, m € Mem, R: (((OP x OP)-set)-set),
R = {Ri:(OP x OP)-set |
— Ip: Ny - (p < s-n(E)) A (Ri = MO-p(p, £))})
[condition 34 ] consistent-Rel(R, Op-m(m, )

The second property demands that the access order is a partial order relation:

E: Ezecution

[condition 38 PartOrder(Ao(E), s-Op(L))

Condition 4 order of synchronization operations.
The fact that barrier, acquire, release and low-level synchronization operations are
totally ordered per memory location is expressed in a first rule:
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m: location, m € Mem, E: Execution,
R: ((((OP-set) x (OP-set))-set)-set),
R = ({Ri: ((OP-set) x (OP-set))-set | 3p: Ny-
____ (p < salE) A (Ri = QuotRel(MO-p(p, E), N(E), 5-Op(E))})
[condition 4A] seq-const- Rel( R, partition(Sync-m(m, E), N(F)))

A second rule involves only acquire and release operations:

m: location, m € Mem, E: Execution,
R: ((((OP-set) x (OP-set))-set)-set),
R = ({Ri: ((OP-set) x (OP-set))-set | dp: N;-
____ (p < sn(B)) A (Ri = QuotRel(MO-p(p, ), N'(E), 5-Op(E)))}
[condition 4B ] seq-const- Rel( R, partition(Syne-m(m, E), N'(E)))

Condition 5 correct use of acquire and release operations.

— a: acquire, F: Fxecution, rl: release, r2: release
[condition 54 | (((a,r1) € N'(E)) A ((a,r2) € N'(F))) = (rl =1r2)

r:release, E: Execution,r € Rel(E)

:Condition oB Ala: acquire - (a,r) € N'(F)

Condition 6 same memory locations for matching acquire and release opera-
tions.

¥HE a: acquire, r: release, K: Execution
[condition 6 ((a,r) € N'(F)) = (mem(a)= mem(r))

Condition 7 execution order of matching acquire and release operations.

— a: acquire, r: release, K: Execution
(condtion T}7, ST € NTE)) = (@, 7] € ol F)

Condition 8 order of accesses to protected locations
The first part deals with the situation in which an acquire operation has a matching
release operation:

@ a: acquire, r: release, K: Execution
condition ((a7 7") E N/(E)) =

(Vop: OP - (op € Op-m(mem(a), E)) =
((((a, 0p) € 5-Op(E)) A((op,7) € s-Op(E))) =
(Vp:Ny - (p <s-n(F)) =
(a,0p) € MO-p(p, E)) A ((op,r) € MO-p(p, E)))))

The second part concerns the situation for which an acquire has no matching re-
lease:
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— a: acquire, F: Frecution
[condition 8B] (= (3r: release - (a,r) € N'(F))) =
(Vop: OP - (op € Op-m(mem(a), L))

(((a,0p) € s-Op(E)) =
(Vp:Ni - (p < s-n(F)) = ((a,0p) € MO-p(p, £)))))

=

Condition 9 same set of locations per barrier.

— b1: barrier, b2: barrier, F: Frecution
[condition 9] ((b1,02) € N(F)) = (mem(bl) = mem(b2))

Condition 10 correct barrier and operation ordering

bl: barrier, b2: barrier, E: Execution, p: Ny, p < s-n(F),
— op: OP,op € Op-m(mem(bl), E),— (bl = op)
condition 10 P P ((blzj 52) c N(E)) .y P
((((op, b1) € s-Op(E)) = ((op,b2) € MO-p(p, E)))
A
(b1, 0p) € s-Op(E)) = ((b2,0p) € MO-p(p, E))))

Everything, that was formalized previously, is captured in the formal theory except
for one fact.

Type Definition

The first type specified in this text was the type Type. In the section 5.2 some
information about this type was given. However not all this information was added
to the specification because it seemed better to express it in a basic rule:

Type definition | (t=ns) V (t=nl)) V ({ = nf))
t

((t=ss) V(L )
(((t = acq) V (t =rel)) V (t = bar))

All these basic rules together with the basic rules and formal language generated by
Mural determine the formal theory of the formalized memory model.

5.4.3 A Proof

To check the usefulness of the previous formal theory, a basic property of this mem-
ory model is studied:
‘ - 1 p: Ny, p < s-n(F), E: Execution
roper O-
Sl S s Po-p(p, E) € s-po(E)

This rule was also mentioned in section 5.2.1. It expresses that the per processor
order is contained in the program order, which can be accepted intuitively.
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from

hl  p: Ny

h2  p <s-n(F)
h3 E: Execution

1 s-po(E): ((OP x OP)-set) s-po(Execution)-formation(h3)
pre-Po-p(p, F) folding (h2)

3 dR: (OP x OP)-set - post-Po-p(p, E, R)
Po-p implementability(hl, h3, 2)

4 Po-p(p, E): ((OP x OP)-set) Po-p formation(hl, h3, 2, 3)
from
5.h1 a: (OP x OP)
5.h2 a € Po-p(p, F)
infer a € s-po(F) lemma po-p 1(hl, h2, 5.h1, 5.h2, h3)
infer Po-p(p, ) C s-po(F) C-1(4, 1, 5)

Figure 5.5: Proof of ‘property po-p 1’

Deriving the proof will show whether our intuition about the triviality of the prop-
erty is valid or not. To construct the corresponding proof? of the rule the interactive
theorem prover of Mural is used. We obtain the proof in Figure 5.5. In this proof
we introduced a lemma that will be proven separately.

Lemma

The lemma introduced in the proof is as follows:

p: N1, p <s-n(E),a:(OP x OP),a € Po-p(p, F), E: Execution

lemma po-p 1 = S—pO(E)

Proving this lemma in its turn, results in the proof in Figures 5.6 and 5.7. The fact
that this proof is rather long makes us revise our first impression about the triviality

of the proved property.

2The inference rules, from the formal theory of the memory model, used in the proof are printed
in appendix B
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from

hl1  p:INy

h2  p <s-n(F)

h3 a: (OP x OP)
h4  a € Po-p(p, F)
hb5 E: Execution

1 pre-Po-p(p, F) folding (h2)
dR: (OP x OP)-set - post-Po-p(p, E, R)

Po-p implementability(hl, h5, 1)
3 post-Po-p(p, E, Po-p(p, F)) Po-p specification(hl, h5, 1, 2)
4 Vk: OP x OP - (k € Po-p(p, F)) <
((k € Prod(s-Op(FE),s-Op(E)))A
(((proc(fst k) = proc(snd k)) A (proc(snd k) = p))A
(num(fst k) < num(snd k)))) unfolding (3)
(a € Po-p(p, £)) &
((a € Prod(s-Op(FE),s-Op(E)))A
(((proc(fst a) = proc(snd a)) A (proc(snd a) = p))A
Enum(fst a) < num(snd a)))) V-E(4, h3)
( ))
(

((proc(fst a) = proc(snd (proc(snd a) = p))A
num(fst a) < num(snd a))) & -E-left(5, h4)
7 a € Prod(s-Op(FE),s-Op(E)) A-E-right(6)
) A (proc(snd a) = p))A

8 ((proc(fst a) = proc(snd a)

(num(fst a) < num(snd a)) N-E-left(6)
9 num(fst a) < num(snd a) A-E-left(8)
10 (proc(fst a) = proc(snd a)) A (proc(snd a) = p) A-E-right(8)
11 proc(fst a) = proc(snd a) A-E-right(10)

12 mk-Execution(s-Op(E), s-po(E),s-n(F)) = F
Execution-introduction(h5)
13 mk-Execution(s-Op(E), s-po(E), s-n(F)): Execution
=-type-inherit-left(h5, 12)
14 dinv-Frecution(s-Op(FE), s-po(E), s-n(F))

inv-Execution-deduction(13)
15 s-Op(FE): (OP-set) s-Op(Execution)-formation(h5)
16 s-po(F): ((OP x OP)-set) s-po(Execution)-formation(h5)
17 s-n(k): Ny s-n(Execution)-formation(h5)

Figure 5.6: First part of proof of ‘lemma po-p 1’
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18 ((Va: OP-(a € s-Op(E)) = (proc(a) < s-n(L)))A

(Vk: OP x OP - (k € s- po(E)) &

((k € Prod(s-Op(F),s-Op(E))) A ((proc(fst k) = proc(snd k))A

(num(fst k) < num(snd k)))))):B

inv-Execution wif(15, 16, 17)

19 inv-Ezecution(s-Op(F), s- po(E) 8-
(Va: OP - (a € s-Op(FE)) = (
(Vk: OP x OP - (k € s- po(E)) &
((k € Prod(s-Op(F),s-Op(E))) A
(num(fst k) < num(snd E))))

((proc(fst k) = proc(snd k))A

inv-Execution definition(15, 16, 17, 18)
20 (MVa:OP-(a € s-Op(FE)) = (proc(a) < s-n(E)))A
(Vk:OPXOP-(kESpO( ) <
((k € Prod(s-Op(FE),s-Op(E))) A ((proc(fst k) = proc(snd k))A
(num(fst k) < num(snd E))) =-subs-right(b)(18, 19, 14)

21 VYEk:OP x OP-(k € s-po(F)) <

((k € Prod(s-Op(FE),s-Op(E))) A ((proc(fst k) = proc(snd k))A

(num(fst k) < num(snd k)))) A-E-left(20)
22 (a€spo(l)) &

((a € Prod(s-Op(FE),s-Op(E))) A ((proc(fst a) = proe(snd a))A

(num(fst a) < num(snd a)))) V-E(21, h3)
23 (a € Prod(s-Op(FE),s-Op(E))) A ((proc(fst a) = proe(snd a))A

(num(fst a) < num(snd a))) A-I-three(7, 11, 9)
infer a € s-po(F) & -E-right(22, 23)

Figure 5.7: Second part of proof of ‘lemma po-p 1’

5.5 Discussion

The goal of this chapter was to prove some properties of a shared memory synchro-
nization model in a formal way. To obtain this goal we started from the informal
description of the memory model. This formalization contains all the information
one has to know to compose the corresponding VDM specification. On the other
hand writing down the VDM specification may help to detect some inaccuracies
of the model. Having determined the VDM specification, the translation from the
specification to its corresponding formal theory can be made. At this point the
assistance of Mural is called in.

As mentioned before, Mural translates a VDM specification automatically to its
corresponding formal theory: i.e. the system generates the formal language and the
set of inference rules of the theory. The set of inference rules contains the basic rules,
which define the relation between the formal language and the deduction calculus,
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as well as some derived rules. The derived rules are the proof obligations following
from the function and constant definitions of the VDM specification. These proof
obligations can be used to prove other properties of the theory before their proof
has been derived. To show the correctness of the property discussed in section 5.4.3
we have made use of some proof obligations. In order to develop the proof the
theorem prover available in Mural was used. This theorem prover is not at all an
automatic theorem prover, it is more an interactive proof tool. This means it can
give suggestions for the verification of a certain line in a proof, but most of the
thinking comes from the user. However using a theorem prover is still advantageous
because of the certainty one gets about the consistency of a developed proof in the
considered theory.

The property we have proved, seemed to be trivial at first sight, but writing down
its formal proof showed the opposite. Note that proving such theorems can be
quite educative, since deriving such a proof can help the specifier to see which are
the obstacles in the model’s formalization to prove the property in an easier way.
This information can be used to rewrite the original VDM specification as a more
straightforward specification. In doing so a VDM development has been created for
which a retrieve function must be defined to be sure that the new specification is
a correct reification of the first. Of course, the more experience someone has, the
fewer refinements he will have to write.

As a global conclusion we can state that VDM is a useful specification language.
Starting from an informal text the translation to the corresponding VDM specifi-
cation is straightforward. Look for example at the specification of all the different
kinds of operations: to compose such a specification we only had to change the infor-
mal n-tuple, by which the operation is formalized, into a record consisting of n fields
and an invariant. The invariant is required to express all the remaining information
about the operation. The usefulness of a specification support tool and/or theorem
prover for these kind of assignments is indisputable, even if they are only used to
guarantee the consistency of the newly specified objects or derived lemmas.

5.6 Related Work

We presented a unified formalism for specifying memory models, able to represent
existing memory models accurately. Since the semantics of the memory models
remain unchanged when formalizing them, any program that has a defined result
in the original memory model has the same result using the equivalent formalized
model. Often simplifying assumptions can be made about the programs that will
be executed. An assumption that holds for many parallel programs is that the
parallel program is data-race free. Under this assumption, several memory models
execute parallel programs in the same way. Adve and Hill present a formalization
of a memory model that unifies the properties of four existing memory models for
data-race free programs [1].

Our approach to memory models focuses on the result of memory operations. When
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implementing a shared memory, the read and write operations have to be specified
in more detail than we do. The approach of Gibbons and Merritt [3] is to identify
writes with a write request sent by the processor to the shared memory, and to
replace read operations with a sequence of a read request sent to the memory and a
read response received from the memory. A write request includes a location and a
value, a read request a location, and a read response only a value. In the approach of
Gibbons and Merritt, a blocking memory is a memory that refuses further requests
from any processor after having received a read request and before having answered
this request. In other words, the memory blocks while processing a shared-memory
read.

5.7 Appendix A. A Formal Theory for Relations

5.7.1 Signature

CONSTANTS

irreflexive —  (1,0)

QuotRel — (3,0)

total — (1,0)

PartOrder —  antisymmetric(Rel_in([el], [¢2])) A transitive( Rel-in([1], [¢2]))
S-TotOrder ~ TotOrder([el], [e2]) A irreflexive( Rel-in([e1], [¢2]))

EquivRel — reflexive( Rel-in([el],[€2])) A (symmetric(Rel-in([el], [e2]))
A transitive( Rel-in([el], [€2])))

Rel_in +— (2,0)

TotOrder — PartOrder([el], [¢2]) A total( Rel-in([el], [¢2]))
transitive — (1,0)

reflexive —  (1,0)

partition —  (2,0)

equiv-class —  (3,0)

seq-const-Rel (2, 0)

S-PartOrder +—  PartOrder([el],[e2]) A irreflexive( Rel-in([el], [€2]))
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antisymmetric —  (1,0)
Prod — (2,0)

symmetric —  (1,0)

5.7.2 Axioms

‘antisymmetric—defi i R:~((X X_X)_Set) .
antisymmetric(R) = (Val: X - Va2: X-
((((al,a2)) € R)A(((a2,al)) € R)) = (al = a2))

: a: X, Q: ((X x X)-set), A: (X-set), FquivRel(Q, A),a € A
@ equiv-class(a, @, A) = ({a": X | ((a,d)) € Rel-in(Q, A)})

A: (X-set), R: (X x X)-set)

I:/irreﬂemve_def irreflexive( Rel-in(R, A)) =

(Va: X -(a€ A) = (—=(((a,a)) € R)))

— Q: ((X x X)-set), A: (X-set) EquivRel( (), A)
I@ partition(A, Q) = ({S]a]: X-set | Ja: X-
(a € A) A (S[a] = equiv-class(a, @, A))})

A:(X-set), B: (Y-set)
e el T T BT = (7 X = V| (fst £ € A) A (snd F € B)])

A: (X-set), B: (V-set)
[Prod-form |50 7T By (X = ¥ )-set)

R:((X x X)-set), Q: (X x X)-set), A: (X-set), EquivRel( (), A)
QuotRel-def QuotRel(R, QvA) —
({S:(X-set) x (X-set) | Jal: X - Ja2: X-
((al € A) A (a2 € A))
A
(((fst S = equiv-class(al, @, A)) A (snd S = equiv-class(a2, @, A)))
A

(((al,a2)) € R))})

. A: (X-set), R: ((X x X)-set)
[reflexive-def| reflexive( Rel-in(R, A)) = (Va: X - (e € A) = (((a,a)) € R))

. A: (X-set), R: (X x X)-set)
[Rel-in-def] Rel-in(R,A) = ({k: X x X | k><€ (RN Prod(A, A))})
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R:(((X x X)-set)-set), A: (X-set)
seq-const-Rel-def |
d ! seq-const-Rel(R, A) =
(35: (X x X)-set-
TotOrder(S, A)
A
(VRi: (X x X)-set-(Ri € R) = (S =(Rin Prod(A, A)))))

. R:((X x X)-set)
I@ symmetric(R) =

(Val: X -Va2: X - (((al,a2)) € R) = (((a2,al)) € R))

A: (X-set), R: (X x X)-set)

[total-def] total( Rel-in(R, A)) =
(Val: X -Va2: X - ((al € A) A (a2 € A))
=

(((((al,a2)) € R) V (((a2,al)) € R)) V (al = a2)))

R:((X x X)-set)

transitive-def tmnsitive(R) —
(Val: X -Va2: X -Va3: X-
((((al,a2)) € R) A (((a2,a3)) € R)) = (((al,a3)) € R))

5.8 Appendix B. Some Rules Used in the Proof

5.8.1 Axioms

t: Frecution
mk-Execution(s-Op(t), s-po(t), s-n(t)) =1

| Execution-introduction |

Op: (OP-set), po: ((OP x OP)-set), n: Ny,
((Va: OP - (a € Op) = (proc(a) < n))
A
(Vk: OP x OP - (k € po) &
((k € Pro(al(OpE Op)))/\ ((proc((fst k)))z))[;?)wc(snd k))
| Alnum(fst k) < num(snd & :B
inv-Execution definition | inv—E:z:ecution( Op. po. n) —
((Va: OP - (a € Op) = (proc(a) < n))
A
(Vk: OP x OP - (k € po) &
((k € Prod(Op, Op)) A ((proc(fst k) = proc(snd k))
A(num(fst k) < num(snd k))))))

: : — mk-Erecution(el, €2, e3): Erecution
inv-Execution-deduction |

inv-Frecution(el, €2, €3)
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p: Ny, E: Execution, pre-Po-p(p, F),
‘P — dR: (OP x OP)-set - post-Po-p(p, E, R)
ob formation | Po-p(p, E): ((OP x OP)-set)

p: Ny, E: Frecution, pre-Po-p(p, F),
5 T dR: (OP x OP)-set - post-Po-p(p, E, R)
‘ o-p specl cat10n| post—Po—p(p, E, PO—p(p, E))

mk-Execution(el, €2, e3): Execution
s-n(mk-Execution(el, €2, e3)) = €3

‘ s-n(Execution)-defn |

mk-Execution(el, €2, e3): Execution
s-Op(mk-Execution(el, e2,e3)) = el

‘ s-Op(Execution)-defn i

: — t: Frecution
‘ s—po(Executlon)—formatlon| s-po(1): ((OP x OP)-set)

5.8.2 Proof Obligations

i Fcntion ] Op: (OP-set), po: ((OP x OP)-set), n: Ny
ALY (Va: OP - (a € Op) = (proc(a) < n))
A
(Vk: OP x OP - (k € po) &
((k € Prod(Op, Op)) A ((proc(fst k) = proc(snd k))A
(num(fst k) < num(snd k)))))): B

: - p: Ny, E: Execution, pre-Po-p(p, )
‘ Po-p 1mplementab1hty|
| JR: (OP x OP)-set - post-Po-p(p, I, R)
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