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Summary

This chapter describes the construction of a theorem proving compo�
nent of a prototype integrated CASE and theorem proving tool which
combines the bene�ts of a general�purpose theorem prover called Isabelle
with those of a commercial software development environment for VDM�
SL�the IFAD VDM�SL Toolbox� The integrated tool supports proof in
the notation of the CASE tool by handling �di�cult� constructs such as
patterns and cases expressions in a novel way using reversible transfor�
mations� Hence� it gives the user a consistent view on the modeling� the
model analysis and the proof processes as both pragmatic testing and
formal proof is supported in one notation� The chapter illustrates the
use of the theorem prover on two examples where automation of proof
support is a key issue and a challenge due to the three�valued nature of
the Logic of Partial Functions �LPF� underlying VDM�SL�


�� Introduction

A large part of industry�s reluctance towards theorem proving is caused by the �take
it or leave it� approach that has been taken when presenting the technology to in�
dustry� The focus has traditionally been on fully veri�ed systems� and the theorem
prover has been the starting point of discussion� We suggest instead taking a more
pragmatic starting point� such as a CASE tool� and step by step �upgrading� this
tool with support for proofs� More light�weight use of theorem provers is to �de�
bug� speci�cations by proving various consistency conditions� such as type checking



	�� CHAPTER �� SUPPORTING PROOF IN VDM�SL USING ISABELLE

conditions in PVS ���� and type checker generated proof obligations in the IFAD
VDM�SL Toolbox ���� More heavy�weight use is� for example� to prove re�nements
of speci�cations�

This chapter presents the �rst steps towards building an industrial�strength proof
support tool for VDM�SL using this CASE tool oriented approach� Our starting
point is the IFAD VDM�SL Toolbox �	�� 
� 		�� which is a commercial software de�
velopment environment that supports a range of development activities� including
various static checks� speci�cation level execution and debugging and code gener�
ation to C��� We try to combine the bene�ts of this toolset with the bene�ts of
the generic theorem prover Isabelle� �	
�� We do not build the theorem prover from
scratch since this is a far too time consuming task� and systems like Isabelle are
designed to allow fast construction of theorem provers for new logics� The chapter
focuses both on the construction of a theorem prover for VDM�SL in Isabelle� called
VDM�LPF� and on the integration of this �proof engine� with the IFAD VDM�SL
Toolbox in a way that gives the user a consistent view on the speci�cation and the
proof process� Our intended use of the combined tool is mainly for proving type
consistency proof obligations� Experiments have already shown this to be a powerful
approach to debug speci�cations ��� and to prove safety properties for operations in
state�based systems� However� it will also be possible to prove general correctness
requirements of speci�cations�

The �rst attempt to build proof support for VDM�SL was in the Mural project �	
� ���
and these results have been an important starting point for this work� in particular
the book ���� However� our combined tool extends the subset of VDM�SL supported
in Mural with �at least� let expressions� cases expressions� patterns� enumerated ex�
pressions� quote types and the character type� Di�cult constructs like patterns and
cases expressions are handled using reversible transformations and special�purpose
derived proof rules that mimic the original expressions�

LPF

The �Logic of Partial Functions� �LPF� is a well�established basis for reasoning
about VDM�SL speci�cations �	�� 	
� ��� Consequently we have chosen to base the
theorem prover component of our system on LPF�

LPF is designed speci�cally to cope with �unde�ned values� resulting from partiality
of functions� Logics such as �rst�order classical logic are two�valued in the sense that
formulas are either true or false� In contrast� LPF is three�valued� allowing formulas
also to be unde�ned� Because many of the connectives are non�strict� a formula
can be de�ned even though its subformulas are unde�ned� For example� the formula
e� or e
 is true whenever one of its subformulas e� or e
 is true even if the other is
unde�ned� To be false both subformulas must be false� In the remaining situations
the disjunction is unde�ned�

�A generic theorem prover provides a logical framework in which new logics can be formulated�
A new logic is called an instantiation� or an object�logic�



��	� OVERVIEW OF APPROACH 	�


The de�nition of LPF means that it has many nice properties� For example� both
disjunction and conjunction behave symmetrically� In fact� all inference rules valid
in LPF are also valid in classical logic� However� the opposite is not true� Most
noticeably� the law of the excluded middle e or not e does not hold due to the
third value representing unde�nedness�

Isabelle

Isabelle �	
� is a generic theorem proving systemwhich can be instantiated to support
reasoning in new so�called object�logics by extending its meta�logic� The language
of the meta�logic is typed lambda�calculus� The syntax of an object�logic is imple�
mented by extending this language with new types and constants� The inference
rules of an object�logic are implemented by extending the meta�logic with corre�
sponding meta�axioms� Object�level natural deduction proofs can be carried out as
meta�level proofs using di�erent forms of resolution to apply rules�

The Isabelle system contains a range of useful features� For example� it provides
unknowns� which are essentially free variables that can be instantiated gradually
during a proof by higher�order uni�cation� It also provides syntax annotations�
syntax declarations and several translation mechanisms that are useful for handling
concrete syntax� In addition� it has a tactic language and generic packages to write
powerful proof procedures for object logics with little e�ort�

Organization of this Chapter

We �rst give an overview of our approach to build an integrated CASE and theorem
proving tool in Section ���� The following three sections� Section ��
 to Section ����
describe the Isabelle instantiation� syntax� proof theory and proof support �tactics��
Section ��� and Section ��� concern the integration� respectively the transformation
of expressions to �t into the subset supported by Isabelle and the generation of
�representations� of speci�cations as Isabelle theories� Section ��
 presents future
work and Section ��� the conclusions� This chapter collects material from the two
papers �
� ���


�� Overview of Approach

The overall idea of the integrated system is that a user writes a VDM�SL speci�cation
using the IFAD VDM�SL Toolbox to syntax check� type check and possibly validate
the speci�cation� When the user wants to prove a property entered by hand or
a proof obligation generated by the type checker� he can start the Proof Support
Tool �PST�� generate axioms from a speci�cation and load these into a VDM�SL
instantiation of Isabelle� The PST will then provide a Graphical User Interface
�GUI� to Isabelle through which proofs can be conducted and managed in a �exible
way� This system architecture is illustrated in Figure ��	� We call this a two�layered
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Figure ��	� Overview of system architecture�

architecture in the sense that the theorem prover is the bottom layer� the �proof
engine�� and the proof support tool and its graphical user interface are the top layer�
In between the layers� transformation� parsing and pretty�printing occur�

	���� Reading of Figure 	��

The left hand side of Figure ��	 concerns initializing the proof support tool for a
speci�cation� The speci�cation is written and then syntax and type checked using
the Toolbox� It must be type checked because axioms are generated on basis of this
assumption �see Section ����� The resulting abstract syntax tree representation of
the speci�cation is communicated to the proof support tool �via a �le link�� From
the syntax tree� axioms are generated as proof rules whose hypotheses are stated
using abstract syntax for VDM�SL and type judgements� The expression parts of
axioms are then transformed to a subset of VDM�SL� This subset does not contain
for instance patterns and cases expressions� Finally� the transformed axioms are
printed together with signature information for new constants to an Isabelle theory
�le�

The theory �le generated as above is read into an instantiation of Isabelle� called
Isabelle�VDM�LPF� which contains a proof theory for the VDM�SL subset� The
right hand side of Figure ��	 illustrates how proofs of theorems and proof obligations
are conducted by sending commands to Isabelle via the PST graphical user interface�
Such commands could tell Isabelle to start a new proof or to apply some tactic in
an on�going backwards proof� Proof states in backwards proofs are represented as
proof rules in Isabelle and the Toolbox parser has been extended to read Isabelle�s
notation for these� After parsing proof states to abstract syntax� a transformation
function is applied� which reintroduces for instance patterns and cases expressions�
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Finally� a VDM�SL ASCII pretty�printer produces concrete syntax which can be
displayed to the user� Both the generation of axioms� the transformation and the
pretty�printing are speci�ed in VDM�SL itself� The underlying �programs� work by
executing speci�cations using the Toolbox�


�� Syntax

Isabelle is a generic theorem prover which provides distinguishing features for em�
bedding new logics �syntax and proof rules� and reasoning in these logics� Isabelle
has a meta�logic� an intuitionistic higher order logic based on typed lambda�calculus�
in which constructs of new logics become constants� primitive proof rules become
�meta�� axioms� and derived rules become �meta�� theorems� Moreover� it provides
a few� but powerful tactics for applying these rules� based on di�erent kinds of res�
olution and generic packages for writing proof search procedures for new logics �see
Section �����

When embedding a language such as VDM�SL in Isabelle� two sometimes con�icting
criteria must be met� Firstly� the language should allow smooth reasoning using
features of Isabelle� Secondly� it should provide a user�friendly and familiar notation�
These two goals are achieved by implementing an abstract and a concrete syntax
and by relating these using automatic translations�

Syntax issues are described in more detail in the Appendix� Here� we just illustrate
on some examples that� with our de�nitions� Isabelle is able to print and parse
exactly the VDM�SL concrete syntax such as the following��

�������

�x � � � x in set ������	 
 x �� �	

forall x
nat� y
nat 
 x � y � y � x

let x � �� y � x � �� z � � in y � z

if n � � then � elseif n � � then � elseif n � �� then � else n

mk��x���z���� � mk������������� � �

As illustrated in the last line� Isabelle�s syntax handling features support something
as exotic as arbitrary�length tuples and generalized projections�


�� Proof System of VDM�LPF

The proof system for VDM�SL axiomatized in Isabelle has been developed with
minor modi�cations from that presented in the book ���� where LPF is used as the
basis� In addition to primitive and derived rules for propositional and predicate LPF�
the book contains a large number of rules for datatypes such as natural numbers�
sets� sequences� maps� etc� As in many other formulations of LPF� these rules are

�Throughout this chapter we use ASCII syntax for VDM�SL in order to highlight the similarity
between the syntax used by the IFAD Toolbox and the Isabelle instantiation�
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formulated as natural deduction rules� This �ts well with the choice of Isabelle
which supports natural deduction style proof particularly well�

The following two subsections describe part of the VDM�SL proof system and its
implementation in Isabelle� The axiomatization of� for example� datatypes is not
discussed since we do not contribute to the presentation in ����

	���� Proof Rules

The proof system of LPF contains most of the standard rules of propositional and
predicate logic� However� it is a three�valued logic so it does not provide the law of
excluded middle� and some rules have additional typing assumptions� for example�
in order to ensure that equality is de�ned�

Most of the rules of the Isabelle instantiation are taken from ���� The adaptation
consists mostly of changing the syntax� For example� consider the rules�

true

P � Q

P �Q

P �Q � P 
 R� Q 
 R

R

x � A 
x 	P�x �

	�
 x � � A � P�x ��

b � A� a � b� P�b�

P�a�

These rules are translated into the following Isabelle axioms�

true�intr �true�

and�intr ��� P� Q �� ��� P and Q�

or�elim ��� P or Q� P ��� R� Q ��� R �� ��� R�

not�exists�intr ����x�x
A ��� not P�x�� ��� not �exists x
A 
 P�x���

eq�subs�left ��� a�b� P�b�� b
A �� ��� P�a��

In these axioms� ��
 represents meta�implication while �� and �� enclose a list
of assumptions separated by �� Note that variable subscripts for locally bound
variables in sequents are handled using meta�quanti�cation ��� Apart from using
the concrete ASCII syntax of VDM�LPF �see Appendix�� these examples illustrate
how the horizontal line and turnstile in the original rules are represented as meta�
implication�

In some cases� the order of assumptions is changed to make the rules work better
with Isabelle�s resolution tactics� which often use uni�cation on the �rst assumption
to instantiate variables� In particular� type assumptions are often moved from the
front of the assumption list to the back� since these do not typically contain any
important information for restricting the application of rules� An example of this is
the last substitution rule above�

	���� Combining Natural Deduction and Sequent Style Proof

In order to formalize proof rules as meta�level axioms in Isabelle it is necessary to
de�ne a judgement relating object�level formulas to meta�level formulas in Isabelle�s
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higher�order logic� In the LPF variant used here� there is no distinction between
expressions and formulas� Hence� expressions �and formulas� are represented as
lambda�calculus terms of type ex� In Isabelle meta�level formulas are terms of type
prop� Consequently� the standard judgement relating object�level expressions to
meta�level formulas is the following lifting constant�

TRUE� 

 ex �� prop ������ ��

The concrete syntax associated with this constant in brackets speci�es that TRUE�
will not occur explicitly in �meta�� axioms representing proof rules �� is a prece�
dence�� Hence� TRUE� was invisible in the proof rules presented above�

The standard judgement TRUE� is su�cient for implementing a natural deduction
system for LPF� However� in order to automate proving in VDM�LPF� it is advan�
tageous to be able to conduct �or simulate� sequent calculus style backward proof�
In classical logic this can be done by representing multiple conclusions as negated
assumptions� This issue is a consequence of the law of excluded middle� However�
LPF is a three�valued logic and does not satisfy this law� Instead� we have therefore
declared an additional judgement for this purpose�

FALSE� 

 ex �� prop ��FALSE �� ��

In this case the concrete syntax requires an object�level formula to be preceded by
FALSE �speci�ed in brackets�� The idea is that this judgement acts as a kind of non�
strict negation with respect to the third value of LPF� This form of negation� which
can only occur at the outermost level� allows multiple conclusions to be represented
as a �negated� assumptions� This is discussed further in Section ����

There are two new rules for the FALSE judgement�

FALSE�dup ��FALSE P ��� P� ��� P�

FALSE�contr ��� FALSE P� P �� ��� Q�

The �rst rule allows a conclusion to be duplicated as a negated assumption using
FALSE� while the second rule is a contradiction�like rule� Together these rules imply
that FALSE behaves as desired�

The inclusion of the additional judgement FALSE to represent multiple conclusions
has interesting consequences for the proof system� For example� the primitive rule

��� y�y
A ��� def P�y�� ��� def exists x
A 
 P�x�

becomes derivable� and it is no longer necessary or useful� This is fortunate since
the rule appears to be hard to apply properly� especially in automatic backwards
proof� An automatic proof of the rule is given in Section ������

Soundness

We are con�dent� but have not formally proved� that the modi�cations of the proof
system discussed above are sound� We base this con�dence on Cheng�s thesis ���� who
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has proved essentially this result for VDM�SL without datatypes� Cheng formulates
both a sequent calculus and a natural deduction proof system for predicate LPF
with equality and non�strict connectives�� Among other things� he proves that these
proof systems are equivalent in terms of what can be derived� However� he does
not consider datatypes like those of VDM�LPF� Hence� we should eventually extend
Cheng�s work to ensure that the VDM�SL datatype extensions of LPF do not violate
soundness� We have done some preliminary work on this�


�	 Proof Tactics

Isabelle�s built�in tactics can be used immediately with VDM�LPF for �ne�grained
proof� However� it is advantageous to build special�purpose tactics exploiting the
FALSE judgement as well as tactics for doing automatic proof search� This section
describes such basic tactics as well as proof search tactics�

	���� Basic Tactics

In many cases Isabelle�s standard resolution tactics are suitable for applying the
rules of VDM�LPF directly� For example� consider a proof state with the following
subgoal�

�� Q and P ��� P or Q

The conclusion of this goal can be broken down using the standard resolution tactic
resolve�tacwith the or�introduction rule or�intr�left� which will apply this rule
to the conclusion in a backward fashion� This can be written using Isabelle�s useful
shorthand br� where b stands for by�

� br or�intr�left �� � same as
 by�resolve�tac �or�intr�left� ��  �

�� Q and P ��� P

In a similar fashion the assumption of the subgoal can be broken down� this time
using eresolve�tac to apply the and�elimination rule and�elim in a forward fashion
on the assumption of the subgoal�

� be and�elim �� � same as
 by �eresolve�tac �and�elim� ��  �

�� �� Q� P �� ��� P

Finally� the remaining subgoal can be solved using assume�tac which simulates
proof by assumption in natural deduction�

� ba �� � same as
 by �assume�tac ��  �

No subgoals�

�The connectives� in particular de�nedness �for �true or false	
� in our variant of LPF are all
strict�
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In addition to the above tactics� Isabelle has a few other basic resolution tactics for
applying natural deduction rules �see �	
���

There are a few situations where the above tactics are not suitable for applying the
rules of VDM�LPF� For example� consider the following subgoal where a multiple
conclusion is represented as an assumption using the FALSE judgement�

�� �� P and Q� FALSE P or Q �� ��� R

In this case resolve�tac cannot be used directly to apply or�intr to �part of�
the conclusion P or Q� since it is represented as an assumption� Instead we have
developed variants of the standard resolution tactics� which can be used in such
situations� The names of these are obtained by just adding an additional prime
on standard names� as in resolve�tac�� These tactics use the proof rules for
the FALSE judgement to allow a rule to be applied to conclusions represented in
assumptions using FALSE� In addition to these� a VDM�LPF variant of assume�tac�
called assume�tac�� allows one step proofs of subgoals like�

�� P �� ��� P

�� P� FALSE P �� ��� R

�� P� not P �� ��� R

The �rst case is just ordinary proof by assumption� the next covers the situation
where a conclusion appears in the assumptions due to FALSE� while the last case
deals with the situation where a proof branch is ended by an application of the
primitive LPF contradiction rule �� P� not P �� ��� Q�

	���� Proof Search Tactics

Isabelle also provides a generic classical reasoning package for automating larger
parts of proofs than supported by the tactics above� However� VDM�LPF is not
classical and therefore it seems hard to use this package� Classical laws are used
for simulating sequents using natural deduction� Instead we have implemented a
new package designed speci�cally for VDM�LPF� This package combines ideas from
Cheng�s thesis on LPF ��� with ideas and code from the classical reasoning package�
As in Isabelle� the aim of this is to provide a practical tool and less emphasis is put
on completeness issues�

The proof search tactics in the packages are based on the same basic idea� do
sequent calculus style backward proofs using suitable rules to break assumptions
and conclusions of subgoals gradually down� until the conclusion is provable from
an assumption� In other words� natural deduction introduction rules are applied
as right sequent style rules� while elimination rules are applied as left rules� Our
package handles multiple conclusions using FALSE and by working as if using the
primed versions of the tactics� Rules for both FALSE and strict negation not are
required by the package� In contrast� the Isabelle classical reasoning package does
not make such a distinction since it uses just classical negation to represent multiple
conclusions �this is not possible in non�classical logics��
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Rules applied by the tactics are organized in rule sets and are supplied directly as
arguments of the tactics� As in Isabelle�s classical reasoner� a rule set is constructed
by dividing rules into groups of introduction rules� elimination rules� etc� For each
of these groups� the rules are further divided into safe and hazardous rules� Roughly
speaking� the idea is that a safe rule can always be attempted blindly� while a
hazardous rule might� for example� sidetrack the search �thus requiring backtracking�
or cause the search to loop� The search tactics generally try safe rules before the
hazardous ones�

In most cases� the grouping is fairly straightforward� for example� consider the fol�
lowing rules for disjunction�

or�intr�left �P ��� P or Q�

or�intr�right �Q ��� P or Q�

or�intr ��� FALSE P ��� Q �� ��� P or Q��

or�elim ��� P or Q� P���R� Q���R �� ��� R�

not�or�intr ��� not P� not Q �� ��� not �P or Q��

not�or�elim ��� not �P or Q�� �� not P� not Q �� ��� R �� ��� R�

The �rst two rules are hazardous introduction rules� since they force a choice between
the two disjuncts� In contrast the third is a safe introduction rule using FALSE

to represent the two possible conclusions� The fourth rule is just the standard
elimination rule for disjunction� In addition to these� rules explaining how negation
behaves when combined with disjunction are needed� This is the purpose of the
last two rules� The reason why these are needed is that it is not possible to give
general rules for negation� These conjunction�like introduction and elimination rules
are both safe� The rule set prop�lpfs for propositional VDM�LPF contains all the
above rules� except the hazardous introduction rules which are replaced by the single
safe one�

In order to illustrate how the search strategy described above can be used to �nd
proofs� a sketch of a small proof following this strategy is shown below�

�� not �Q and P� ��� not P or not Q

� br or�intr ��

�� �� not �Q and P�� FALSE not P �� ��� not Q

� be not�and�elim ��

�� �� FALSE not P� not Q �� ��� not Q

�� �� FALSE not P� not P �� ��� not Q

� ba� �� ba� �� � same as
 by �assume�tac� ��  �

No subgoals�

The tactic lpf�fast�tac combines the strategy above and depth �rst search with
backtracking at suitable points �e�g� if more than one unsafe rule is applicable��
This is probably the most used tactic in the package� For example� when invoked
as lpf�fast�tac prop�lpfs �� this tactic proves the above theorem in one step�
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Other similar tactics support safe steps only to be carried out �lpf�safe�tac�� sup�
port the restriction of the depth of proofs �lpf�depth�tac�� etc� So far these tactics
have been used to prove �in one step� essentially all of the 	�� derived propositional
and predicate logic rules mentioned in ����

Before we consider a �real� case study� we end this subsection by considering a
simple example where the assumption of the rule is itself a generalized rule�

val �asm� �

goal Pred�thy ����y�y
A ��� def P�y�� ��� def exists x
A 
 P�x���

by �lpf�fast�tac �exists�lpfs addDs �asm�� ���

qed �def�exists�inh��

This situation is handled by adding the assumption to exists�lpfs� which contains
a number of rules about the exists quanti�er and is one of the intermediate rule sets
used to build the theory of predicate VDM�LPF� Hence� the proof search tactics
provide a universal strategy which also works for most proofs about quanti�ers as
long as a su�cient quanti�er rule set is supplied as an argument to guide the search�
Moreover� this example shows that lpf�fast�tac can be used to prove a quanti�er
rule which is primitive in LPF �see Section �������

	���� Gateway Example

This section illustrates how the VDM�LPF instantiation works on an example VDM�
SL speci�cation of a trusted gateway �provided by John Fitzgerald�� Though the
example is small� it is inspired by an industrial case study on formal methods �	�� 	���
Strictly speaking� we do not support reasoning about the speci�cation itself� but
about an axiomatization of the speci�cation which is automatically generated as
described in Section ���� The details of the axiomatization are not important for
this section�

In the following we �rst present excerpts from a speci�cation of the trusted gateway
and then illustrate the use of our proof tactics to prove invariant and safety prop�
erties� We use ASCII syntax for both the Toolbox�s and Isabelle�s VDM�SL since it
is an important point that they are the same�

A Trusted Gateway

A trusted gateway connects an input port to two output ports� which are a high�
and a low�security port �see Figure ����� The purpose of the gateway is to prevent
accidental disclosure of classi�ed or sensitive information on the low�security port�
The trusted gateway reads messages from the input port into an internal block where
it analyzes them according to two categories of high� and low�classi�cation strings�
It must send messages containing only low�classi�cation strings to the low�security
port and all other messages to the high�security port�

In VDM�SL we can model a trusted gateway as the following record type�
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Messages
High

Low
Gateway
Trusted

Figure ���� A Trusted Gateway

Gateway

 input
 Port

highOutput
 Port

lowOutput
 Port

high
 Category

low
 Category

block
 Message

inv g �� �forall msg in set elems g�highOutput 


classification�msg�g�high�g�low� � �HIGH�� and

�forall msg in set elems g�lowOutput 


classification�msg�g�high�g�low� � �LOW�� and

g�high inter g�low � �	

This type has an invariant which speci�es correct behaviour of gateways� i�e� all
messages on the high�security output port must be classi�ed as high� all messages
on the low�security output port must be classi�ed as low� and the two categories of
high� and low�classi�cation should not have any strings in common� A message is
modeled as a sequence of strings� a port as a sequence of messages� and a category
as a set of strings�

The di�erent operations on the gateway are modeled as functions acting on elements
of type Gateway� These include a function for loading an element into the internal
block� a function for analyzing the contents of the block and a function for emptying
the block� For illustration� the speci�cation of the analyze function is shown�

Analyze
 Gateway �� Gateway

Analyze�g� ��

if classification�g�block�g�high�g�low� � �HIGH�

then mk�Gateway�g�input�

g�highOutput ! �g�block��

g�lowOutput�

g�high�g�low�g�block�

else mk�Gateway�g�input�

g�highOutput�

g�lowOutput ! �g�block��

g�high�g�low�g�block��

This function copies messages from the internal block to the appropriate output
port� depending on the result returned by the classi�cation function� The de�nition
of the classi�cation function is central�

classification
 String  Category  Category �� ��HIGH� � �LOW��

classification�s�high�low� ��
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if contains�category�s�high�

then �HIGH�

elseif contains�category�s�low�

then �LOW�

else �HIGH�

Note that the order of the if�conditions is important� and messages that contain
neither high nor low classi�ed strings are classi�ed as high for security reasons�

Invariant Properties

In order to be well�formed� functions such as Analyze must respect the invariant
of their result type� For Analyze� this means that its body must yield a gateway
assuming that its argument is a gateway� This is stated as follows in Isabelle�

g 
 Gateway ���

if classification"�g�block� g�high� g�low� � �HIGH� then

mk�Gateway�g�input� g�highOutput ! �g�block�� g�lowOutput�

g�high� g�low� g�block�

else

mk�Gateway�g�input� g�highOutput� g�lowOutput ! �g�block��

g�high� g�low� g�block� 


Gateway

Note that essentially the same ASCII syntax is supported by Isabelle here and
by the VDM�SL Toolbox in the previous section� but object�level application in
VDM�LPF is written using  instead of the usual juxtaposition �discussed further
in Section ����	�� Also note that post�x �eld selection is supported in Isabelle by
declarations such as

block� 

 ex �� ex ����block� ����

high� 

 ex �� ex ����high� ����

produced by the axiomatization� The above statement� which is generated auto�
matically using the proof obligation generator described in ���� has been proved
in VDM�LPF� However� due to lack of space it is not possible to show the entire
interactive proof here� Instead some central steps in the proof are discussed�

The �rst obvious step is to use case analysis on the conditional expression� Due
to the third value in VDM�LPF� we get three subgoals� the two obvious ones and
another which says that the test condition must be true or false �it could potentially
be unde�ned in some cases�� Here we concentrate on the subgoal corresponding to
the �rst branch of the conditional�

�� g 
 Gateway� classification"�g�block�g�high�g�low� � �HIGH� �� ���

mk�Gateway

�g�input� g�highOutput!�g�block�� g�lowOutput� g�high�

g�low� g�block� 


Gateway
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To prove this� we �rst unfold the type de�nition of Gateway in the assumptions and
the conclusion� then we prove some trivial type judgement subgoals automatically�
and what we obtain is the subgoal�

�� classification"�g�block�g�high�g�low� � �HIGH�� g�input 
 Port�

g�highOutput 
 Port� g�lowOutput 
 Port� g�high 
 Category�

g�low 
 Category� g�block 
 Message�

�forall m in set elems g�highOutput 


classification"�m�g�high�g�low� � �HIGH�� and

�forall m in set elems g�lowOutput 


classification"�m�g�high�g�low� � �LOW�� and

g�high inter g�low � �	 �� ���

�forall m in set elems �g�highOutput!�g�block�� 


classification"�m�g�high�g�low� � �HIGH�� and

�forall m in set elems g�lowOutput 


classification"�m�g�high�g�low� � �LOW�� and

g�high inter g�low � �	

The hardest part is clearly to prove the �rst conjunct of the conclusion� the other two
follow trivially from the assumptions� One tactic lpf�fast�tac proves the above
subgoal�

by �lpf�fast�tac

�prop�lpfs addIs �foralls�lemma� addEs �Port�elim�� ���

Its rule set argument for guiding the proof search contains proof rules for propo�
sitional reasoning� a suitable lemma for the di�cult conjunct and a single rule for
type checking ports� The lemma states how to break the quanti�cation according
to the sequence concatenation� and it is proved from various properties about sets�
sequences and of course the set�bounded universal quanti�er�

Safety Property

The safety property for a trusted gateway states that all messages on the low security
output port are given a low security classi�cation�

g 
 Gateway ���

forall m in set elems g�lowOutput 


classification"�m� g�high� g�low� � �LOW�

This has a single tactic proof�

by �lpf�fast�tac

�prop�lpfs addEs �Gateway�elim� addDs �inv�Gateway�dest�� ���

The rule set argument supports propositional reasoning� unfolding of the gateway
type assumption and unfolding of the resulting gateway invariant� Inspecting the
property more closely� it is not surprising that the proof turned out to be that
simple� since the safety property is essentially a part of the invariant� Thus the real
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challenge is to prove that the invariant on Gateway is preserved�


�� Transformations

We have now completed the description of the VDM�SL proof engine based on
Isabelle� The following two sections concern aspects related to the integration of
this proof tool with the IFAD VDM�SL Toolbox�

As already noted� the proof tool supports a subset of VDM�SL� since VDM�SL
was designed for writing large speci�cations in industry with constructs that are
not designed for embedding in a theorem prover� This section describes how we
treat some of the complex constructs by transforming expressions down to expanded
expressions in the subset that has been formalized in Isabelle�

Throughout this section we use a record type R of the following form�

R 

 a
T�

b
T�

c
T�

	���� Pattern Matching

We represent pattern matching by transforming patterns to combinations of if and let
expressions where a boolean condition for matching is expressed using an existential
quanti�cation� The user of the system does not see these expanded forms since the
expansion is reversed before showing output from Isabelle to the user �after this has
been parsed by the Toolbox parser��

In this section we illustrate how to treat patterns in let� quanti�ed and compre�
hension expressions� In the presentation� we just use expression templates� but the
transformation does work for real speci�cations� see Section ����

Let Expressions

The VDM�LPF instantiation of Isabelle supports only simple let expressions of the
form

let x � e�� y � e��x�� z � e��x�y� in expr

where x� y and z are variables� Note that the �rst variable of the let expression may
be used in the second expression� etc�

However� a VDM�SL let expression may contain general patterns in addition to
variables� Consider a let expression of the form

let mk�R�x���z� � e��

mk���e��y� � e�

in body
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Here� x� z and y are pattern variables� � is the don�t care pattern and �e� is a value
pattern� i�e� the expression e is evaluated� The expression e� must be a record of
type R for the �rst pattern to match� and for the second pattern to match� e
 must
be a tuple with two components where the �rst component is equal to the value of
e� If one of the patterns does not match� then the expression is unde�ned�

The above expression is transformed to an equivalent expanded expression contain�
ing if expressions� existential quanti�ers and simple let expressions�

let new � e� in

if �exists x
T�� z
T�� dc
T� 
 mk�R�x�dc�z� � new� then

let x � new�a� z � new�c in

let new� � e� in

if �exists y
Ty 
 mk��e�y� � new�� then

let y � new���� in body

else undefined

else undefined

This expression lies within the VDM subset formalized in Isabelle� undefined is a
constant symbol de�ned with no rules and represents a divergence from ���� The
variables new� new
 and dc must be new identi�ers generated by the transformation
�see Section ����� The � ends a binding list and corresponds to �such that�� The
selector �
 takes the second component of a tuple� The type information on� for
example� y in the second exists is available in the Toolbox abstract syntax tree after
type checking� Note that we illustrate the transformation on concrete syntax due
to readability� but it is really performed on the abstract syntax tree�

Quanti�ed Expressions

Patterns in quanti�ed expressions are represented using an existential quanti�er and
an implication �
� Consider for example

forall mk��mk�R�x���z���e�� in set s 
 expr�x�z�

which is transformed to�

forall new in set s 


�exists x
T�� z
T�� dc
T� 
 mk��mk�R�x�dc�z��e� � new� ��

let x � new����a� z � new����c in expr�x�z�

For existential quanti�cation we must replace implication by conjunction�

Comprehensions

Set� map� and sequence comprehensions can all be treated in the same way� For
example the set comprehension

�expr�x�z� � mk��mk�R�x���z���e�� in set s 
 p�x�z�	
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is transformed to�

�let x � new����a� z � new����c in expr�x�z� � new in set s 


exists

x
T�� z
T�� dc
T� 
 mk��mk�R�x�dc�z��e� � new and p�x�z�	

This is also illustrated in the example in Section ����

	���� Cases Expressions

Cases expressions are not supported in the instantiation of Isabelle� VDM�SL cases
expressions are transformed to certain combinations of if and simple let expressions�
in a way somewhat similar to let expressions with patterns� However� to the user
these combinations appear to be cases expressions since the transformation to ex�
panded expressions is reversed before expressions are displayed� Moreover� there are
proof rules which make the if�let combinations appear to be cases expressions�

Consider the following example which uses the same patterns that were used above�

cases expr


mk�R�x���z� �� e��

mk���e��y� �� e��

others �� e�

end

This is transformed to the following expression�

let new � expr in

if �exists x
T�� z
T�� dc
T� 
 mk�R�x�dc�z� � new� then

let x � new�a� z � new�c in e�

elseif �exists y
Ty 
 mk��e�y� � new� then

let y � new��� in e�

else e�

One di�erence between the expanded forms of let and cases expressions is the use
of unde�ned else branches in if expressions used to represent let expressions�

A number of proof rules has been derived to make the expanded forms mimic cases
expressions� i�e� these rules can be applied on let�if combinations in such a way
that it appears to the user that these are real cases expression �due to reverse
transformation��

cases�match

��� P�e�� e
A� e��e�
B �� ���

�let x � e in if P�x� then e��x� else e��x�� � e��e��

cases�not�match

��� not P�e�� e
A� e��e�
B �� ���

�let x � e in if P�x� then e��x� else e��x�� �

�let x � e in e��x���

cases�form�sqt
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��� def P�e�� e
A�

�� P�e� �� ��� e��e�
B�

�� not P�e� �� ��� let x � e in e��x�
B �� ���

�let x � e in if P�x� then e��x� else e��x�� 
 B�

Let us explain why these proof rules mimic cases expressions from the viewpoint of
a user� For simplicity we consider a slightly di�erent example than above� Suppose
we are doing a proof where we would like to reduce a cases expression of the form�

cases ex


mk��n�m�m� �� n�m�

mk��n���n� �� n�

others �� �

end

Further� suppose that we expect the �rst pattern to not match� We would then use
the proof rule cases�not�match to reduce the cases expression� In conducting a
proof this rule would be instantiated to�

��� not exists n
nat� m
nat 
 mk��n�m�m� � ex� ex
A�

if �exists n
nat� dc
nat 
 mk��n�dc�n� � ex� then n

else �
B �� ���

�let new � ex in

if �exists n
nat� m
nat 
 mk��n�m�m� � new� then

let n � new����

m � new��� in n�m

elseif �exists n
nat� dc
nat 
 mk��n�dc�n� � new� then

let n � new��� in n

else �� �

�let new � ex in

if �exists n
nat� dc
nat 
 mk��n�dc�n� � new� then n else ���

Isabelle would typically do this instantiation and the necessary ��reductions auto�
matically� a user just tells it to apply the rule �by providing the name of the rule��
It is important to realize that the left�hand side of the equality is the expanded form
of the original cases expression and that the right�hand side of the equality is still a
cases expression� namely�

cases ex


mk��n���n� �� n�

others �� �

end

Hence� the �rst cases expression above reduces to a cases expression where the �rst
pattern has been thrown away� if this pattern does not match� Note that the if�
then�else structure of the derived cases rules works because

if b� then e�

elseif b� then e�
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else e�

is just syntactic sugar for

if b� then e�

else if b� then e�

else e�


�
 Generating Axioms� An Example

In order to support reasoning about speci�cations� we automatically generate axioms
stated as proof rules which formalize the meaning of the de�nitions in a speci�cation�
These axioms are stated in Toolbox abstract syntax extended with a construction for
proof rules� type judgements and subtypes� Once the axioms have been transformed
to the Isabelle subset� they can be read into Isabelle and then used in proofs� We
shall not go into the details here of the speci�cation of the axiom generator� which
was done in VDM�SL and developed using the Toolbox itself� as it is straightforward
and based on ���� Note that in addition to axioms for speci�cations� Isabelle needs
the signatures of new constants� These are also straightforward to generate� again
the speci�cation of this was done in VDM�SL using the Toolbox�

In this section we illustrate the working of the axiom �and signature� generator on a
small example� which is adapted from an example of a forthcoming book on VDM�
SL ��� and inspired by a real industrial system� The example concerns an alarm
paging system for a chemical plant� A safety requirement of the system is that for
any period of time and any possible alarm code �and location� there must be an
expert with the required quali�cations to deal with the alarm on duty according to
a certain plan�

The speci�cation below is stated in the expression �or functional� subset of VDM�
SL� but we could as well have used a state to model the plant and de�ned some of
the functions as implicit operations on the state �using preconditions and postcondi�
tions�� The approach to state de�nitions and implicit operations is �also� borrowed
from the Mural project� A state de�nition is treated in essentially the same way as
a record and implicit operations are treated as functions on the state which take the
state as an extra argument and result�

	�	�� Type De�nitions

We shall model the chemical plant as a record type whose invariant speci�es the
safety requirement�

Plant 

 plan 
 Plan

alarms 
 set of Alarm

inv mk�Plant�plan�alarms� ��

forall per in set dom plan� alarm in set alarms 
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QualificationsOK�alarm�plan�per���

The record has two �elds� containing a plan and a set of alarms respectively� The
function QualificationsOK de�nes the safety requirement and will be speci�ed
later�

A plan is simply a map from periods to sets of experts�

Plan � map Period to set of Expert

inv plan �� forall exs in set rng plan 
 exs �� �	�

Period � token�

The invariant says that there should always be at least one expert associated with
any period� The data type of periods is left unspeci�ed �using the token type which
just denotes an in�nite set with equality��

An expert has an ID and a set of quali�cations�

Expert 

 expertid 
 ExpertId

quali 
 set of Qualification

inv mk�Expert���q� �� q �� �	�

ExpertId � token�

Qualification � �Elec� � �Mech� � �Chem� � �Chief��

Quali�cations are modeled as an enumeration type� An expert must have at least
one quali�cation�

The datatype of alarms is modeled as a record type with two �elds� one for the
alarm codes and one for the location of the alarms�

Alarm 

 code 
 AlarmCode

loc 
 Location�

AlarmCode � �A� � �B� � �C��

Location � �P�� � �P�� � �P�� � �P�� � �P�� � �P�� � �P��

A function is clearly needed to specify which quali�cations are required for the
di�erent alarms� this is done below�

We shall now consider the signature of new constants and axioms generated for these
type de�nitions� We cannot include all axioms in this chapter� Axioms are generated
by executing a shell script genax with the �le name of our speci�cation alarm�vdm

as an argument� The result is a �le alarm�thy which contains the Isabelle theory
�le for the speci�cation� This is ready to be loaded into the Isabelle�VDM�LPF
instantiation� which is started by executing the binary vdmlpf in a shell�

The theory �le starts with the signature of new constants� For a record type�
like Plant used for illustration in the following� a record constructor function is
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introduced�

mk�Plant 

 �ex�ex� �� ex

This means that mk�Plant is a function in the Isabelle meta�logic� which takes two
expressions as arguments� corresponding to the two �elds� and yields an expression
as a result� corresponding to a record with these two �eld values� The �eld selectors
of the record type are de�ned in both an abstract and a concrete syntax version
which allows the concrete syntax to support VDM�SL �eld selection using a post�x
notation�

plan� 

 ex �� ex ����plan� ����

alarms� 

 ex �� ex ����alarms� ����

The primes are used on constants of the abstract syntax by convention� The paren�
thesis on the right speci�es a priority grammar for the post�x notation� we shall
not go into details here� For a record type with an invariant� the signature of the
invariant function must also be included�

inv�Plant 

 ex

In contrast to the constructor and selector functions this is represented as an object�
logic function� A special object�logic application operator is de�ned in VDM�LPF
and written using an  � The invariant function could be represented as a meta�logic
function but there are technical reasons for not doing this� VDM�SL map application
and sequence indexing have to be represented in the object�logic� since maps and
sequences are object logic values� And the application of invariant functions� as well
as many other functions� is not distinguished from these �rst forms of applications
in the abstract syntax tree of the IFAD Toolbox� Hence� di�erent translations of
such equivalently represented constructs would be di�cult�

After the signature declarations the generated axioms are stated as proof rules� The
de�nition axiom for the invariant function is stated as follows�

inv�Plant�defn

�inv�Plant"�mk�Plant�plan� alarms�� ��

forall per in set dom plan� alarm in set alarms 


QualificationsOK"�alarm� plan"�per���

This is stated as a simplemeta�equality rewrite rule� A number of formation and def�
inition axioms are introduced for record types� For the record constructor function�
the following two axioms are needed�

mk�Plant�form

��� gax�� 
 Plan� gax�� 
 set of Alarm�

inv�Plant"�mk�Plant�gax��� gax���� �� ���

mk�Plant�gax��� gax��� 
 Plant�

mk�Plant�defn

�gax� 
 Plant ��� mk�Plant�gax��plan� gax��alarms� � gax��
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The gax variables may look strange� they are automatically indexed by the axiom
generator� Each �eld selector of a record type yields two similar axioms�

plan�Plant�form

�gax� 
 Plant ��� gax��plan 
 Plan�

plan�Plant�defn

��� gax�� 
 Plan� gax�� 
 set of Alarm �� ���

mk�Plant�gax��� gax����plan � gax���

Many typing hypotheses appear in order to ensure de�nedness of object equality ��

Basic type de�nitions like the de�nition of Plan and AlarmCode yield fewer axioms�
Hence� for Plan just two de�nition axioms are generated�

inv�Plan�defn

�inv�Plan"�plan� �� forall exs in set rng plan 
 exs �� �	�

Plan�defn

�Plan ��

�� gax� 
 map Period to set of Expert 
 inv�Plan"�gax�� ���

The latter de�nes Plan as a subtype of a map type� restricted using the invariant
of Plan� The AlarmCode de�nition just yields one axiom

AlarmCode�defn

�AlarmCode �� �A� � �B� � �C��

but as a side e�ect axioms are also generated for each of the quote types� for example�

A�axiom

��A� 
 �A��

A�singleton

�gax�� 
 �A� ��� gax�� � �A��

A�B�disjoint

��A� �� �B��

Disjointness axioms are needed for all pairs of quotes� In VDM�SL� the notation
�A
 is used for both a quote type and its one element� This can be supported in
Isabelle since the corresponding constants of the meta�logic have di�erent meta�
types� Ambiguities are resolved by the Isabelle type checker�

	�	�� Function De�nitions

We shall now continue the example from above by specifying a few functions� As
already noted we need a function to map alarm codes and locations to quali�cations
required of experts� We also need a function to specify the safety requirement� and



���� GENERATING AXIOMS� AN EXAMPLE �	


a function to page a set of experts to handle a speci�c alarm�

However� consider �rst a simpler function that tests whether a given expert is on
duty in a certain period�

OnDuty
 Expert  Period  Plant �� bool

OnDuty�ex�per�plant� ��

ex in set plant�plan�per�

pre per in set dom plant�plan�

This function has as precondition that the period is valid� i�e� it is covered by the
plan� This ensures that the map application in the body of the function is de�ned�

All functions of speci�cations are represented as object�logic functions� just like
invariants� Hence� the signature of OnDuty is simply�

OnDuty 

 ex

The signature of the precondition function pre�OnDuty is the same�

A function de�nition like this� with a precondition and in the explicit style� results
in two axioms� one de�ning the precondition and one de�ning the function�

pre�OnDuty�defn

�pre�OnDuty"�ex� per� plant� �� per in set dom plant�plan�

OnDuty�defn

��� ex 
 Expert� per 
 Period� plant 
 Plant�

pre�OnDuty"�ex� per� plant� �� ���

OnDuty"�ex� per� plant� � ex in set plant�plan"�per��

Strictly speaking the latter should include a type judgement in the hypotheses saying
that the body of the function is well�typed� in order to ensure that the LPF equality
is de�ned� However� as mentioned in Section ���� we assume that the speci�cations
have been checked using the Toolbox type checker �extended with proof obligations��
and for convenience we shall therefore omit this condition� Note that we could
include the condition as a hypothesis� prove the hypothesis once and for all� and
then derive the above axiom� This integration could be taken further in a very
tightly integrated system where the Toolbox type checker could be integrated even
more with the proof process to �prove� type judgements arising in proofs�

The following function interprets alarms�

AlarmQualifications
 Alarm �� set of Qualification

AlarmQualifications�alarm� ��

cases alarm


mk�Alarm��A���� �� ��Mech�	�

mk�Alarm��B��loc� ��

if loc in set ��P����P����P��	

then ��Chief���Elec���Chem�	

else ��Elec�	�
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others �� ��Chief�	

end�

Alarms with code �A
 require a mechanic� regardless of the location �speci�ed using
a �don�t care� pattern�� Alarms with code �B
 at the locations �P�
� �P�
 and �P!


are more serious� they require three quali�cations� including a chief� �B
 alarms at
other locations require an electrician� The pattern variable loc is bound to the value
of the location �eld of �B
 alarms� Finally� all other alarms require a chief �e�g� for
inspecting the situation��

The axiomatization of this de�nition is straightforward of course� it just yields one
axiom� However� the interesting aspect of the de�nition is the cases expression in
the function body� which is translated to nested let and if expressions�

AlarmQualifications�defn

�alarm 
 Alarm ���

AlarmQualifications"�alarm� �

�let tf�� � alarm in

if exists dc�� 
 Location 
 mk�Alarm��A��dc��� � tf�� then

��Mech�	

elseif exists loc 
 Location 
 mk�Alarm��B��loc� � tf�� then

let loc � tf���loc in

if loc in set ��P��� �P��� �P��	 then

��Chief�� �Elec�� �Chem�	

else ��Elec�	

else ��Chief�	��

The variables tf are generated automatically during the transformation� Again� as
discussed above� a type judgement for the function body should strictly speaking be
included in the hypotheses�

We can now de�ne the safety requirement� which was stated in the invariant of
Plant� using the function�

QualificationsOK
 Alarm  set of Expert �� bool

QualificationsOK�alarm�exs� ��

let reqquali � AlarmQualifications�alarm� in

forall quali in set reqquali 


exists ex in set exs 
 quali in set ex�quali

The axiomatization is obvious�

QualificationsOK�defn

��� alarm 
 Alarm� exs 
 set of Expert �� ���

QualificationsOK"�alarm� exs� �

�let reqquali � AlarmQualifications"�alarm� in

forall quali in set reqquali 


exists ex in set exs 
 quali in set ex�quali��

Again� this is in principle a derived axiom�
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The function de�nitions above are all stated in the explicit style� which means that
an algorithm is given for calculating the results� VDM�SL also supports an implicit
style� where the result is just speci�ed by a postcondition� The following function
de�nition is in the implicit style�

Page�a
Alarm�per
Period�plant
Plant� r
set of Expert

pre per in set dom plant�plan and

a in set plant�alarms

post r subset plant�plan�per� and

AlarmQualifications�a� subset

dunion �quali � mk�Expert���quali� in set r	�

This function uses the plan of a plant to page a set of experts for a given alarm
and period� A valid implementation of this function could just calculate all experts
on duty for a certain period� regardless of the alarm� but a better implementation
would probably try to minimize the set in some way�

Implicit function de�nitions yield four axioms� two de�ning the preconditions and
postcondition respectively� and one de�nition and one formation axiom for the new
function�

pre�Page�defn

�pre�Page"�a� per� plant� ��

per in set dom plant�plan and a in set plant�alarms�

post�Page�defn

�post�Page"�a� per� plant� r� ��

r subset plant�plan"�per� and

AlarmQualifications"�a� subset

dunion �let quali � tf���quali in quali � tf�� in set r 


exists quali 
 set of Qualification� dc�� 
 ExpertId 


mk�Expert�dc��� quali� � tf�� and true	�

Page�defn

��� a 
 Alarm� per 
 Period� plant 
 Plant�

pre�Page"�a� per� plant� �� ���

post�Page"�a� per� plant� Page"�a� per� plant���

Page�form

��� a 
 Alarm� per 
 Period� plant 
 Plant�

pre�Page"�a� per� plant� �� ���

Page"�a� per� plant� 
 set of Expert�

Note that the body of the postcondition is expanded slightly in order to treat the
pattern in the set comprehension expression� The Toolbox parser inserts true when
there is no restriction predicate in a comprehension expression� The Toolbox type
checker ensures that the third axiom makes sense by generating a satis�ability proof
obligation� Hence� also axioms for implicit functions are generated on the assump�
tion that speci�cations are type correct�
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�� Future Work

Although the current system can be used to reason about VDM�SL speci�cations�
it can clearly be improved in many ways� Some future work and improvements are
discussed brie�y below�

Proof Rules

The proof system still needs work to be truly practical� Many of the rules for
the di�erent VDM�SL datatypes seem quite ad hoc and more work is needed here�
Although often ignored� it is a major task to develop well�organized and powerful
proof rules for datatypes like those of VDM�SL� Moreover� such proof rules should
be organized in rule sets for the proof search tactics �if possible�� This is also a
major and important task�

Tactics

The current version of VDM�LPF does not provide a simpli�er� Unfortunately it
does not seem easy to instantiate Isabelle�s generic simpli�er to support reasoning
about equality in VDM�LPF� since in order to do this we must justify that we can
identify the VDM�LPF object�level equality with Isabelle�s meta�level equality� If
we cannot use Isabelle�s simpli�er� a special�purpose VDM�LPF simpli�er should be
constructed�

In addition� it might be useful to construct a number of special purpose tactics�
for example� for reasoning about arithmetic and for proving trivial type conditions�
which tend to clutter up proofs�

Compatibility

VDM�LPF is meant to be used to reason about VDM�SL and to be integrated with
existing tools� A natural question is whether or not all these are compatible� and
if not� what should then be changed� For example� is the proof system used sound
with respect to the ISO standard �static and dynamic� semantics of VDM�SL Al�
though no inconsistencies have been found in the proof system itself� preliminary
investigations suggest that there might be a problem with compatibility� For exam�
ple� it is currently possible to derive true or � as a theorem in the proof system�
but according to the semantics of VDM�SL this is unde�ned� Since the semantics of
VDM�SL is de�ned by an ISO standard it is perhaps most tempting to try to modify
the proof system to exclude theorems as the one above� However� the result might
be a proof system which is not suited for practical reasoning� This compatibility
issue requires further attention�
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Natural Deduction versus Sequent Calculus

The current instantiation is based on a natural deduction formulation of LPF� How�
ever� there are indications suggesting that a sequent calculus formulation of LPF
might be a better foundation� in particular for automating proofs�

Status of the Current Prototype

The current prototype does not completely integrate the Toolbox and the theorem
prover Isabelle� since the proof manager and the graphical user interface have not
been implemented� However� it does provide the bits and pieces to support the inte�
gration� One shell script generates and transforms axioms� another parses� reverse
transforms and pretty�prints Isabelle proof states� Proofs are presently conducted
by interacting with Isabelle directly� which is feasible since the Isabelle instantiation
supports a subset of the ISO standard for VDM�SL ASCII notation�

By exploiting transformations� we are able to treat essentially the full functional sub�
set of VDM�SL� We have not considered� for instance� constructs like let�be�such�
that expressions and union patterns� whose underdetermined semantics destroys
re�exivity of equality �	��� As in Mural� we can treat state de�nitions and implicit
operations� However� we have not yet considered explicit operations and statements�
which form an imperative subset of VDM�SL� but already existing work on formal�
izing Hoare logic in the HOL theorem prover may be useful here �	�� Features of
VDM�SL like exception handling have not been considered either�


�� Conclusion

In this chapter we have described the implementation of some central aspects of
a proof support tool for VDM�SL based on Isabelle and how this tool has been
integrated with the IFAD VDM�SL Toolbox� In particular we have illustrated the
formalization of existing LPF proof rules in Isabelle and new facilities for automating
proof search� which automatically proved essentially all of the 	�� propositional and
predicate logic derived rules listed in ���� We feel that our experiments have shown
Isabelle to be a very useful tool for quickly building specialized proof support for
new and even non�standard logics such as VDM�LPF� Moreover� Isabelle is relatively
easy to adapt to VDM�SL and to integrate with the IFAD VDM�SL Toolbox�

VDM�LPF supports only a subset of VDM�SL� and it is a major challenge to build
proof support for the full VDM�SL standard� The language was designed for writing
large speci�cations in industry� and this is re�ected in both its syntax and its data
types� On the syntax side� it supports pattern matching in for example let and
quanti�er expressions� and it has constructs such as cases expressions� again with
patterns� which are di�cult to represent in a theorem prover� On the data type side�
it has non�disjoint unions� record types with post�x �eld selection� and arbitrary�
length tuples that are not equivalent to nested pairs� Moreover� the underlying logic
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of VDM�SL is the non�classical three�valued Logic of Partial Functions� which makes
traditional classical approaches to� for example� proof search infeasible�

We are able to handle di�cult constructs of VDM�SL by transforming these to ex�
panded expressions in the VDM�LPF subset� However� the user needs never realize
the transformations while writing proofs� since we can reverse transformations and
provide a collection of derived proof rules which mimic the original expressions�
though these actually work on expanded expressions� The transformations are de�
pendent on the abstract syntax tree representation of expressions in the Toolbox�
and would not be possible in Isabelle�

As a further consequence of the fact that the Isabelle instantiation supports the
VDM�SL standard� we can use the Toolbox parser to read output from Isabelle� It
has only been slightly modi�ed to read proof rules� type judgements and subtypes�
which are not part of the VDM�SL standard� Similarly� an ASCII pretty�printer for
VDM�SL can be used to print abstract syntax both after it has been transformed
to a subset understood by Isabelle and after Isabelle output has been parsed and
reverse transformed to the original abstract syntax� Hence� no major changes or
additions were needed to the IFAD Toolbox� in order to build the present prototype
of an integrated system� Finally� as another consequence� the Isabelle instantiation
can be used directly to reason in a subset of VDM�SL�

A main feature of the integrated CASE and theorem proving tool is that testing and
proof for speci�cation validation can be employed at the same time� All facilities
of the IFAD VDM�SL Toolbox are available while conducting proofs� Moreover�
the user always works in the notation provided by the Toolbox and is not limited
by restrictions on syntax imposed by the proof component� Furthermore� it is pos�
sible to support industrial requirements like proof management� automation and
version control� which typically are not well�addressed in theorem provers� outside
the theorem prover in the proof support tool�

A generic framework like Isabelle allows quick implementation of powerful theorem
provers through reuse� However� we have seen some limitations to reuse when dealing
with a three�valued logic like VDM�LPF� In particular� the generic simpli�er and
classical reasoning package appear not to be easy to use with VDM�LPF� However�
in our implementation of a special purpose reasoning package we were able to reuse
many idea and even code from the existing package�
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��� VDM�SL Syntax in Isabelle

This appendix describes the formalization of VDM�SL syntax in Isabelle� using an
abstract and a concrete syntax and translations between them�

Abstract Syntax

We �rst provide a �avour of the core abstract syntax which is used internally in
Isabelle for reasoning� It is a higher�order abstract syntax �	�� in order to ensure
smooth and elegant handling of bound variables� This means that object�level vari�
ables are identi�ed with meta�level variables of a particular type� Meta�abstraction is
used to represent variable binding� and substitution for bound variables is expressed
using meta�function application� Isabelle�s ��conversion handles the variable captur�
ing problem� Moreover� typical side�conditions involving free variables are handled
using universal meta�quanti�cation and meta�application�

The abstract syntax has two central categories� one of expressions and one of types�
Consequently Isabelle�s typed lambda�calculus is extended with two new types ex
and ty respectively� These types are logical in the sense that they are meant to
be reasoned about� and new constants of these types are equipped with a standard
pre�x syntax�
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Expressions and types of VDM�SL are represented in Isabelle using constants with
result type ex and ty� Some examples of such constants are

not� 

 ex �� ex

forall� 

 �ty�ex �� ex� �� ex

eq� 

 �ex�ex� �� ex

natty� 

 ty

succ� 

 ex �� ex

These constants correspond to negation� universal quanti�cation� equality� the type
of natural numbers and the successor function� The constant for universal quanti��
cation is an example of a higher�order constant because it takes a function as its
second argument� Using such constants as above it is possible to write expressions
in a simple pre�x form in the abstract syntax� The constants are primed in order
to distinguish them from constants of the concrete syntax� The following example
is a boolean expression which states that adding one is not the identity function for
any natural number�

forall��natty��#x�not��eq��x�succ��x����

This example illustrates how meta�abstraction " is used to express variable binding
at the object�level�

Concrete Syntax

The purpose of the concrete syntax is to provide a user�friendly and familiar notation
for presentation� while the role of the abstract syntax presented above was to support
reasoning internally in Isabelle� The concrete syntax is based on the ISO standard of
the VDM�SL ASCII notation �	��� This makes Isabelle�VDM�LPF relatively easy
to use as a stand�alone tool for people who have experience with VDM�SL �and
proof�� Furthermore� it provides a standardized text�based format for exchanging
data with other software components� such as the IFAD VDM�SL Toolbox�

The VDM�SL syntax standard is expressed as a context free grammar with ad�
ditional operator precedence rules to remove ambiguities� The concrete syntax of
VDM�LPF is expressed as a priority grammar� i�e as a grammar where the nonter�
minal symbols are decorated with integer priorities �	
�� This priority grammar is
constructed by a systematic and fairly straightforward translation of productions
and operator precedence rules into priority grammar productions� In most cases the
base form of the priority grammar productions comes directly from the correspond�
ing production in the VDM�SL grammar� while the priorities of the production are
constructed from the corresponding operator precedences� Some simple examples of
such priority grammar productions are�

ex����� � not ex�����

ex����� � ex����� � ex�����

The structure of the above productions matches the corresponding declarations of
the abstract syntax� Consequently� in such cases the concrete syntax is implemented
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in Isabelle simply by adding a syntax annotation to the relevant constant declara�
tion of the abstract syntax� The constant declarations corresponding to the two
productions above are

not� 

 ex �� ex ����not �$�� ����� ����

eq� 

 �ex�ex� �� ex ���� � $��� ��������� ����

where the types correspond to nonterminals of the productions� The syntax anno�
tation in brackets consists of two parts� a quoted mix�x template followed by an
optional priority part� The mix�x template describes the terminals and contains
other printing and parsing directives �see �	
���

However� not all of the concrete syntax can be handled by adding syntax annota�
tions to the constant declarations for the abstract syntax� In cases such as multiple
binding quanti�ers� set comprehensions� if�then�elseif expressions� enumerated se�
quences� etc�� the structure of the concrete syntax di�ers from that of the abstract
syntax� Such situations are handled using separate syntax declarations which de�
clare a special kind of constants� These constants only serve a syntactic purpose
and are never used internally for reasoning� The syntax declarations below are those
needed for multiple binder universal quanti�cations�

�� 

 tbind �� tbinds �����

tbinds� 

 �tbind�tbinds� �� tbinds �����$ ����

tbind� 

 �idt�ty� �� tbind ���� 
$ ����

forall� 

 �tbinds�ex� �� ex ����forall$ � 
$ ��� ��������� ����

Unlike when using syntax annotations� the relationship to the abstract syntax is
not established automatically in such separate syntax declarations� Instead transla�
tions are de�ned to relate the abstract and the concrete syntax� as discussed in the
following section�

Translations

A simple example of a translation is the expansion of the special notation for not
equal �
 in the concrete syntax to negated equality in the abstract syntax� This
is implemented using Isabelle�s macro mechanism� A macro is essentially a rewrite
rule which works on Isabelle�s abstract syntax trees� In this case the macro is

�x �� y� �� �not x � y�

This translation means that not equal will behave just as a negated equality in
proofs� Another deliberate consequence is that any negated equality will be pre�
sented using the more readable not equal notation� In other words the original
formatting is not always retained� but instead the implementation tries to improve
it whenever possible�

Another more complicated example is that of universal quanti�cation with multiple
type bindings� In VDM�LPF such a quanti�er is viewed simply as a syntactic short�
hand for a number of nested single binding quanti�ers� The translation between the
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concrete external �rst�order representation and the internal higher�order abstract
representation is implemented using a mixture of macros and print translations�
However� these are too complex to be included here� During parsing� the e�ect of
these macros and translations is that concrete syntax such as

forall x
nat� y
nat 
 x � y

is automatically translated to the following abstract syntax�

forall��nat�#x�forall��nat�#y�eq��x�y���

Similarly� during printing� the abstract form is translated to the concrete form� Con�
stants such as tbind� and forall� of the previous section do not occur explicitly
here� since they are only used in the standard �rst�order syntax trees corresponding
to the concrete syntax� However� they are used in the relevant macros and transla�
tions� Other variable binding constructs are handled in a similar fashion to universal
quanti�cation�
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