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Summary

This chapter describes the construction of a theorem proving compo-
nent of a prototype integrated CASE and theorem proving tool which
combines the benefits of a general-purpose theorem prover called Isabelle
with those of a commercial software development environment for VDM-
SL—the IFAD VDM-SL Toolbox. The integrated tool supports proof in
the notation of the CASE tool by handling “difficult” constructs such as
patterns and cases expressions in a novel way using reversible transfor-
mations. Hence, it gives the user a consistent view on the modeling, the
model analysis and the proof processes as both pragmatic testing and
formal proof is supported in one notation. The chapter illustrates the
use of the theorem prover on two examples where automation of proof
support is a key issue and a challenge due to the three-valued nature of

the Logic of Partial Functions (LPF) underlying VDM-SL.

7.1 Introduction

A large part of industry’s reluctance towards theorem proving is caused by the “take
it or leave it” approach that has been taken when presenting the technology to in-
dustry. The focus has traditionally been on fully verified systems, and the theorem
prover has been the starting point of discussion. We suggest instead taking a more
pragmatic starting point, such as a CASE tool, and step by step “upgrading” this
tool with support for proofs. More light-weight use of theorem provers is to “de-
bug” specifications by proving various consistency conditions, such as type checking
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conditions in PVS [20] and type checker generated proof obligations in the IFAD
VDM-SL Toolbox [5]. More heavy-weight use is, for example, to prove refinements
of specifications.

This chapter presents the first steps towards building an industrial-strength proof
support tool for VDM-SL using this CASE tool oriented approach. Our starting
point is the [IFAD VDM-SL Toolbox [17, 8, 11], which is a commercial software de-
velopment environment that supports a range of development activities, including
various static checks, specification level execution and debugging and code gener-
ation to C++. We try to combine the benefits of this toolset with the benefits of
the generic theorem prover Isabelle! [18]. We do not build the theorem prover from
scratch since this is a far too time consuming task, and systems like Isabelle are
designed to allow fast construction of theorem provers for new logics. The chapter
focuses both on the construction of a theorem prover for VDM-SL in Isabelle, called
VDM-LPF, and on the integration of this “proof engine” with the IFAD VDM-SL
Toolbox in a way that gives the user a consistent view on the specification and the
proof process. QOur intended use of the combined tool is mainly for proving type
consistency proof obligations. Experiments have already shown this to be a powerful
approach to debug specifications [2] and to prove safety properties for operations in
state-based systems. However, it will also be possible to prove general correctness
requirements of specifications.

The first attempt to build proof support for VDM-SL was in the Mural project [13, 6],
and these results have been an important starting point for this work, in particular
the book [6]. However, our combined tool extends the subset of VDM-SL supported
in Mural with (at least) let expressions, cases expressions, patterns, enumerated ex-
pressions, quote types and the character type. Difficult constructs like patterns and
cases expressions are handled using reversible transformations and special-purpose
derived proof rules that mimic the original expressions.

LPF

The “Logic of Partial Functions” (LPF) is a well-established basis for reasoning
about VDM-SL specifications [12, 13, 6]. Consequently we have chosen to base the
theorem prover component of our system on LPF.

LPF is designed specifically to cope with “undefined values” resulting from partiality
of functions. Logics such as first-order classical logic are two-valued in the sense that
formulas are either true or false. In contrast, LPF is three-valued, allowing formulas
also to be undefined. Because many of the connectives are non-strict, a formula
can be defined even though its subformulas are undefined. For example, the formula
el or e2is true whenever one of its subformulas el or e2 is true even if the other is
undefined. To be false both subformulas must be false. In the remaining situations
the disjunction is undefined.

1A generic theorem prover provides a logical framework in which new logics can be formulated.
A new logic is called an instantiation, or an object-logic.
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The definition of LPF means that it has many nice properties. For example, both
disjunction and conjunction behave symmetrically. In fact, all inference rules valid
in LPF are also valid in classical logic. However, the opposite is not true. Most
noticeably, the law of the excluded middle e or not e does not hold due to the
third value representing undefinedness.

Isabelle

[sabelle [18] is a generic theorem proving system which can be instantiated to support
reasoning in new so-called object-logics by extending its meta-logic. The language
of the meta-logic is typed lambda-calculus. The syntax of an object-logic is imple-
mented by extending this language with new types and constants. The inference
rules of an object-logic are implemented by extending the meta-logic with corre-
sponding meta-axioms. Object-level natural deduction proofs can be carried out as
meta-level proofs using different forms of resolution to apply rules.

The Isabelle system contains a range of useful features. For example, it provides
unknowns, which are essentially free variables that can be instantiated gradually
during a proof by higher-order unification. It also provides syntax annotations,
syntax declarations and several translation mechanisms that are useful for handling
concrete syntax. In addition, it has a tactic language and generic packages to write
powerful proof procedures for object logics with little effort.

Organization of this Chapter

We first give an overview of our approach to build an integrated CASE and theorem
proving tool in Section 7.2. The following three sections, Section 7.3 to Section 7.5,
describe the Isabelle instantiation: syntax, proof theory and proof support (tactics).
Section 7.6 and Section 7.7 concern the integration, respectively the transformation
of expressions to fit into the subset supported by Isabelle and the generation of
“representations” of specifications as Isabelle theories. Section 7.8 presents future
work and Section 7.9 the conclusions. This chapter collects material from the two
papers [3, 4].

7.2 Overview of Approach

The overall idea of the integrated system is that a user writes a VDM-SL specification
using the [IFAD VDM-SL Toolbox to syntax check, type check and possibly validate
the specification. When the user wants to prove a property entered by hand or
a proof obligation generated by the type checker, he can start the Proof Support
Tool (PST), generate axioms from a specification and load these into a VDM-SL
instantiation of Isabelle. The PST will then provide a Graphical User Interface
(GUI) to Isabelle through which proofs can be conducted and managed in a flexible
way. This system architecture is illustrated in Figure 7.1. We call this a two-layered
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Figure 7.1: Overview of system architecture.

architecture in the sense that the theorem prover is the bottom layer, the “proof
engine”, and the proof support tool and its graphical user interface are the top layer.
In between the layers, transformation, parsing and pretty-printing occur.

7.2.1 Reading of Figure 7.1

The left hand side of Figure 7.1 concerns initializing the proof support tool for a
specification. The specification is written and then syntax and type checked using
the Toolbox. It must be type checked because axioms are generated on basis of this
assumption (see Section 7.7). The resulting abstract syntax tree representation of
the specification is communicated to the proof support tool (via a file link). From
the syntax tree, axioms are generated as proof rules whose hypotheses are stated
using abstract syntax for VDM-SL and type judgements. The expression parts of
axioms are then transformed to a subset of VDM-SL. This subset does not contain
for instance patterns and cases expressions. Finally, the transformed axioms are
printed together with signature information for new constants to an Isabelle theory

file.

The theory file generated as above is read into an instantiation of Isabelle, called
[sabelle/VDM-LPF, which contains a proof theory for the VDM-SL subset. The
right hand side of Figure 7.1 illustrates how proofs of theorems and proof obligations
are conducted by sending commands to Isabelle via the PST graphical user interface.
Such commands could tell Isabelle to start a new proof or to apply some tactic in
an on-going backwards proof. Proof states in backwards proofs are represented as
proof rules in Isabelle and the Toolbox parser has been extended to read Isabelle’s
notation for these. After parsing proof states to abstract syntax, a transformation
function is applied, which reintroduces for instance patterns and cases expressions.
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Finally, a VDM-SL ASCII pretty-printer produces concrete syntax which can be
displayed to the user. Both the generation of axioms, the transformation and the
pretty-printing are specified in VDM-SL itself. The underlying “programs” work by
executing specifications using the Toolbox.

7.3 Syntax

[sabelle is a generic theorem prover which provides distinguishing features for em-
bedding new logics (syntax and proof rules) and reasoning in these logics. Isabelle
has a meta-logic, an intuitionistic higher order logic based on typed lambda-calculus,
in which constructs of new logics become constants, primitive proof rules become
(meta-) axioms, and derived rules become (meta-) theorems. Moreover, it provides
a few, but powerful tactics for applying these rules, based on different kinds of res-
olution and generic packages for writing proof search procedures for new logics (see

Section 7.5).

When embedding a language such as VDM-SL in Isabelle, two sometimes conflicting
criteria must be met. Firstly, the language should allow smooth reasoning using
features of Isabelle. Secondly, it should provide a user-friendly and familiar notation.
These two goals are achieved by implementing an abstract and a concrete syntax
and by relating these using automatic translations.

Syntax issues are described in more detail in the Appendix. Here, we just illustrate
on some examples that, with our definitions, Isabelle is able to print and parse
exactly the VDM-SL concrete syntax such as the following?:

[3,1,2]

{x+ 1| x in set {1,2,3} & x >= 2}

forall x:nat, y:nat & x + y =y + x

let x=5,y=x+6,z=71iny + z

if n = 0 then 1 elseif n = 1 then 2 elseif n < 10 then 9 else n
mk_(x,5,z).#2 + mk_(1,2,3,4).#3 = 8

As illustrated in the last line, Isabelle’s syntax handling features support something
as exotic as arbitrary-length tuples and generalized projections.

7.4 Proof System of VDM-LPF

The proot system for VDM-SL axiomatized in Isabelle has been developed with
minor modifications from that presented in the book [6], where LPF is used as the
basis. In addition to primitive and derived rules for propositional and predicate LPF,
the book contains a large number of rules for datatypes such as natural numbers,
sets, sequences, maps, etc. As in many other formulations of LPF, these rules are

2Throughout this chapter we use ASCII syntax for VDM-SL in order to highlight the similarity
between the syntax used by the IFAD Toolbox and the Isabelle instantiation.
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formulated as natural deduction rules. This fits well with the choice of Isabelle
which supports natural deduction style proof particularly well.

The following two subsections describe part of the VDM-SL proof system and its
implementation in Isabelle. The axiomatization of, for example, datatypes is not
discussed since we do not contribute to the presentation in [6].

7.4.1 Proof Rules

The proof system of LPF contains most of the standard rules of propositional and
predicate logic. However, it is a three-valued logic so it does not provide the law of
excluded middle, and some rules have additional typing assumptions, for example,
in order to ensure that equality is defined.

Most of the rules of the Isabelle instantiation are taken from [6]. The adaptation
consists mostly of changing the syntax. For example, consider the rules:

P; Q Pv@, PR, QF R
true PAQ R
r: A, ~P(2) b:A; a=1b; P(b)
—(Jdz-:A-Px)) P(a)
These rules are translated into the following Isabelle axioms:
true_intr "true"
and_intr “[] P; Q |] ==> P and Q"
or_elim “"[| Por Q; P==>R; Q ==> R [|] ==> R"
not_exists_intr "(!!x.x:A ==> not P(x)) ==> not (exists x:A & P(x))"
eq_subs_left "[] a=b; P(b); b:A |] ==> P(a)"
In these axioms, ==> represents meta-implication while [| and |] enclose a list
of assumptions separated by ;. Note that variable subscripts for locally bound
variables in sequents are handled using meta-quantification '!. Apart from using

the concrete ASCII syntax of VDM-LPF (see Appendix), these examples illustrate
how the horizontal line and turnstile in the original rules are represented as meta-
implication.

In some cases, the order of assumptions is changed to make the rules work better
with Isabelle’s resolution tactics, which often use unification on the first assumption
to instantiate variables. In particular, type assumptions are often moved from the
front of the assumption list to the back, since these do not typically contain any
important information for restricting the application of rules. An example of this is
the last substitution rule above.

7.4.2 Combining Natural Deduction and Sequent Style Proof

In order to formalize proof rules as meta-level axioms in Isabelle it is necessary to
define a judgement relating object-level formulas to meta-level formulas in Isabelle’s
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higher-order logic. In the LPF variant used here, there is no distinction between
expressions and formulas. Hence, expressions (and formulas) are represented as
lambda-calculus terms of type ex. In Isabelle meta-level formulas are terms of type
prop. Consequently, the standard judgement relating object-level expressions to
meta-level formulas is the following lifting constant:

TRUE’> :: ex => prop (M) 5)

The concrete syntax associated with this constant in brackets specifies that TRUE’
will not occur explicitly in (meta-) axioms representing proof rules (5 is a prece-
dence). Hence, TRUE’ was invisible in the proof rules presented above.

The standard judgement TRUE’ is sufficient for implementing a natural deduction
system for LPF. However, in order to automate proving in VDM-LPF. it is advan-
tageous to be able to conduct (or simulate) sequent calculus style backward proof.
In classical logic this can be done by representing multiple conclusions as negated
assumptions. This issue is a consequence of the law of excluded middle. However,
LPF is a three-valued logic and does not satisfy this law. Instead, we have therefore
declared an additional judgement for this purpose:

FALSE’ :: ex => prop ("FALSE _" 5)

In this case the concrete syntax requires an object-level formula to be preceded by
FALSE (specified in brackets). The idea is that this judgement acts as a kind of non-
strict negation with respect to the third value of LPF. This form of negation, which
can only occur at the outermost level, allows multiple conclusions to be represented
as a “negated” assumptions. This is discussed further in Section 7.5.

There are two new rules for the FALSE judgement:

FALSE_dup "(FALSE P ==> P) ==> P"
FALSE_contr "[| FALSE P; P |] ==> Q"

The first rule allows a conclusion to be duplicated as a negated assumption using
FALSE, while the second rule is a contradiction-like rule. Together these rules imply
that FALSE behaves as desired.

The inclusion of the additional judgement FALSE to represent multiple conclusions
has interesting consequences for the proof system. For example, the primitive rule

(1Y y.y:A ==> def P(y)) ==> def exists x:4 & P(x)

becomes derivable, and it is no longer necessary or useful. This is fortunate since
the rule appears to be hard to apply properly, especially in automatic backwards
proof. An automatic proof of the rule is given in Section 7.5.2.

Soundness

We are confident, but have not formally proved, that the modifications of the proof
system discussed above are sound. We base this confidence on Cheng’s thesis [7], who
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has proved essentially this result for VDM-SL without datatypes. Cheng formulates
both a sequent calculus and a natural deduction proof system for predicate LPF
with equality and non-strict connectives®. Among other things, he proves that these
proof systems are equivalent in terms of what can be derived. However, he does
not consider datatypes like those of VDM-LPF. Hence, we should eventually extend
Cheng’s work to ensure that the VDM-SL datatype extensions of LPF do not violate
soundness. We have done some preliminary work on this.

7.5 Proof Tactics

Isabelle’s built-in tactics can be used immediately with VDM-LPF for fine-grained
proof. However, it is advantageous to build special-purpose tactics exploiting the
FALSE judgement as well as tactics for doing automatic proof search. This section
describes such basic tactics as well as proof search tactics.

7.5.1 Basic Tactics

In many cases Isabelle’s standard resolution tactics are suitable for applying the
rules of VDM-LPF directly. For example, consider a proof state with the following
subgoal:

1. Q and P ==> P or

The conclusion of this goal can be broken down using the standard resolution tactic
resolve_tac with the or-introduction rule or_intr_left, which will apply this rule
to the conclusion in a backward fashion. This can be written using Isabelle’s useful
shorthand br, where b stands for by:

- br or_intr_left 1; (* same as: by(resolve_tac [or_intr_left] 1) *)
1. Q and P ==> P

In a similar fashion the assumption of the subgoal can be broken down, this time
using eresolve_tacto apply the and-elimination rule and_elimin a forward fashion
on the assumption of the subgoal:

- be and_elim 1; (* same as: by (eresolve_tac [and_elim] 1) *)
t. [1Q P I]==>P

Finally, the remaining subgoal can be solved using assume_tac which simulates
proof by assumption in natural deduction:

- ba 1; (% same as: by (assume_tac 1) *)
No subgoals!

3The connectives, in particular definedness (for “true or false”), in our variant of LPF are all
strict.
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In addition to the above tactics, Isabelle has a few other basic resolution tactics for
applying natural deduction rules (see [18]).

There are a few situations where the above tactics are not suitable for applying the
rules of VDM-LPF. For example, consider the following subgoal where a multiple
conclusion is represented as an assumption using the FALSE judgement:

1. [| P and Q; FALSEP or Q |] ==> R

In this case resolve_tac cannot be used directly to apply or_intr to (part of)
the conclusion P or Q, since it is represented as an assumption. Instead we have
developed variants of the standard resolution tactics, which can be used in such
situations. The names of these are obtained by just adding an additional prime
on standard names, as in resolve_tac’. These tactics use the proof rules for
the FALSE judgement to allow a rule to be applied to conclusions represented in
assumptions using FALSE. In addition to these, a VDM-LPF variant of assume_tac,
called assume_tac’, allows one step proofs of subgoals like:

(I P[] ==>P
[| P; FALSEP |] ==> R
[l P; not P |] ==> R

The first case is just ordinary proof by assumption, the next covers the situation
where a conclusion appears in the assumptions due to FALSE, while the last case
deals with the situation where a proof branch is ended by an application of the
primitive LPF contradiction rule [l P; not P |] ==> Q.

7.5.2 Proof Search Tactics

[sabelle also provides a generic classical reasoning package for automating larger
parts of proofs than supported by the tactics above. However, VDM-LPF is not
classical and therefore it seems hard to use this package. Classical laws are used
for simulating sequents using natural deduction. Instead we have implemented a
new package designed specifically for VDM-LPF. This package combines ideas from
Cheng’s thesis on LPF [7] with ideas and code from the classical reasoning package.
As in Isabelle, the aim of this is to provide a practical tool and less emphasis is put
on completeness issues.

The proof search tactics in the packages are based on the same basic idea: do
sequent calculus style backward proofs using suitable rules to break assumptions
and conclusions of subgoals gradually down, until the conclusion is provable from
an assumption. In other words, natural deduction introduction rules are applied
as right sequent style rules, while elimination rules are applied as left rules. Our
package handles multiple conclusions using FALSE and by working as if using the
primed versions of the tactics. Rules for both FALSE and strict negation not are
required by the package. In contrast, the Isabelle classical reasoning package does
not make such a distinction since it uses just classical negation to represent multiple
conclusions (this is not possible in non-classical logics).
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Rules applied by the tactics are organized in rule sets and are supplied directly as
arguments of the tactics. As in Isabelle’s classical reasoner, a rule set is constructed
by dividing rules into groups of introduction rules, elimination rules, etc. For each
of these groups, the rules are further divided into safe and hazardous rules. Roughly
speaking, the idea is that a safe rule can always be attempted blindly, while a
hazardous rule might, for example, sidetrack the search (thus requiring backtracking)
or cause the search to loop. The search tactics generally try safe rules before the
hazardous ones.

In most cases, the grouping is fairly straightforward, for example, consider the fol-
lowing rules for disjunction:

or_intr_left "P ==> P or Q"
or_intr_right "Q ==> P or Q"

or_intr "[l FALSE P ==> Q |] ==> P or Q";

or_elim "] P or Q; P==>R; Q==>R [|] ==> R"

not_or_intr "[| not P; not Q |] ==> not (P or Q)"

not_or_elim "[| not (P or Q); [| not P; not @ |] ==> R [|] ==> R"

The first two rules are hazardous introduction rules, since they force a choice between
the two disjuncts. In contrast the third is a safe introduction rule using FALSE
to represent the two possible conclusions. The fourth rule is just the standard
elimination rule for disjunction. In addition to these, rules explaining how negation
behaves when combined with disjunction are needed. This is the purpose of the
last two rules. The reason why these are needed is that it is not possible to give
general rules for negation. These conjunction-like introduction and elimination rules
are both safe. The rule set prop_lpfs for propositional VDM-LPF contains all the
above rules, except the hazardous introduction rules which are replaced by the single
safe one.

In order to illustrate how the search strategy described above can be used to find
proofs, a sketch of a small proof following this strategy is shown below:

1. not (Q and P) ==> not P or not Q

- br or_intr 1;
1. [| not (Q and P); FALSE not P |] ==> not

- be not_and_elim 1;
[| FALSE not P; not Q |[]
2. [| FALSE not P; not P |]

-

> not
=> not

- ba’ 1; ba’ 1; (% same as: by (assume_tac’ 1) *)
No subgoals!

The tactic 1pf_fast_tac combines the strategy above and depth first search with
backtracking at suitable points (e.g. if more than one unsafe rule is applicable).
This is probably the most used tactic in the package. For example, when invoked
as 1lpf_fast_tac prop_lpfs 1, this tactic proves the above theorem in one step.
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Other similar tactics support safe steps only to be carried out (1pf_safe_tac), sup-
port the restriction of the depth of proofs (1pf_depth_tac), etc. So far these tactics
have been used to prove (in one step) essentially all of the 120 derived propositional
and predicate logic rules mentioned in [6].

Before we consider a “real” case study, we end this subsection by considering a
simple example where the assumption of the rule is itself a generalized rule:

val [asm] =

goal Pred.thy "(!'y.y:A ==> def P(y)) ==> def exists x:4 & P(x)";
by (1pf_fast_tac (exists_lpfs addDs [asm]) 1);

ged "def_exists_inh";

This situation is handled by adding the assumption to exists_lpfs, which contains
a number of rules about the exists quantifier and is one of the intermediate rule sets
used to build the theory of predicate VDM-LPF. Hence, the proof search tactics
provide a universal strategy which also works for most proofs about quantifiers as
long as a sufficient quantifier rule set is supplied as an argument to guide the search.
Moreover, this example shows that 1pf_fast_tac can be used to prove a quantifier
rule which is primitive in LPF (see Section 7.4.2).

7.5.3 Gateway Example

This section illustrates how the VDM-LPF instantiation works on an example VDM-
SL specification of a trusted gateway (provided by John Fitzgerald). Though the
example is small, it is inspired by an industrial case study on formal methods [10, 14].
Strictly speaking, we do not support reasoning about the specification itself, but
about an axiomatization of the specification which is automatically generated as
described in Section 7.7. The details of the axiomatization are not important for
this section.

In the following we first present excerpts from a specification of the trusted gateway
and then illustrate the use of our proof tactics to prove invariant and safety prop-
erties. We use ASCII syntax for both the Toolbox’s and Isabelle’s VDM-SL since it

is an important point that they are the same.

A Trusted Gateway

A trusted gateway connects an input port to two output ports, which are a high-
and a low-security port (see Figure 7.2). The purpose of the gateway is to prevent
accidental disclosure of classified or sensitive information on the low-security port.
The trusted gateway reads messages from the input port into an internal block where
it analyzes them according to two categories of high- and low-classification strings.
It must send messages containing only low-classification strings to the low-security
port and all other messages to the high-security port.

In VDM-SL we can model a trusted gateway as the following record type:
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High
Messages Trusted
—_—
Gateway | o
Low

Figure 7.2: A Trusted Gateway

Gateway:: input: Port
highOutput: Port
lowOutput: Port
high: Category
low: Category
block: Message
inv g == (forall msg in set elems g.highOutput &
classification(msg,g.high,g.low) = <HIGH>) and
(forall msg in set elems g.lowOutput &
classification(msg,g.high,g.low) = <LOW>) and
g.high inter g.low = {}

This type has an invariant which specifies correct behaviour of gateways, i.e. all
messages on the high-security output port must be classified as high, all messages
on the low-security output port must be classified as low, and the two categories of
high- and low-classification should not have any strings in common. A message is
modeled as a sequence of strings, a port as a sequence of messages, and a category
as a set of strings.

The different operations on the gateway are modeled as functions acting on elements
of type Gateway. These include a function for loading an element into the internal
block, a function for analyzing the contents of the block and a function for emptying
the block. For illustration, the specification of the analyze function is shown:

Analyze: Gateway -> Gateway
Analyze(g) ==
if classification(g.block,g.high,g.low) = <HIGH>
then mk_Gateway(g.input,
g.highOutput ~ [g.block],
g.lowOutput,
g.high,g.low,g.block)
else mk_Gateway(g.input,
g.highOutput,
g.lowOutput ~ [g.block],
g.high,g.low,g.block);

This function copies messages from the internal block to the appropriate output
port, depending on the result returned by the classification function. The definition
of the classification function is central:

classification: String * Category * Category -> (<HIGH> | <LOW>)
classification(s,high,low) ==
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if contains_category(s,high)
then <HIGH>

elseif contains_category(s,low)
then <LOW>

else <HIGH>

Note that the order of the if-conditions is important, and messages that contain
neither high nor low classified strings are classified as high for security reasons.

Invariant Properties

In order to be well-formed, functions such as Analyze must respect the invariant
of their result type. For Analyze, this means that its body must yield a gateway
assuming that its argument is a gateway. This is stated as follows in Isabelle:

g : Gateway ==>
if classification@(g.block, g.high, g.low) = <HIGH> then
mk_Gateway(g.input, g.highOutput ~ [g.block], g.lowOutput,
g.high, g.low, g.block)
else
mk_Gateway(g.input, g.highOutput, g.lowOutput ~ [g.block],
g.high, g.low, g.block)
Gateway

Note that essentially the same ASCII syntax is supported by Isabelle here and
by the VDM-SL Toolbox in the previous section, but object-level application in
VDM-LPF is written using @ instead of the usual juxtaposition (discussed further
in Section 7.7.1). Also note that postfix field selection is supported in Isabelle by
declarations such as

block’ :: ex => ex ("_.block" ...)
high’ :: ex => ex ("_.high" ...)

produced by the axiomatization. The above statement, which is generated auto-
matically using the proof obligation generator described in [5], has been proved
in VDM-LPF. However, due to lack of space it is not possible to show the entire
interactive proof here. Instead some central steps in the proof are discussed.

The first obvious step is to use case analysis on the conditional expression. Due
to the third value in VDM-LPF, we get three subgoals, the two obvious ones and
another which says that the test condition must be true or false (it could potentially
be undefined in some cases). Here we concentrate on the subgoal corresponding to
the first branch of the conditional:

[l g : Gateway; classification@(g.block,g.high,g.low) = <HIGH> |] ==>
mk_Gateway

(g.input, g.highOutput~[g.block], g.lowOutput, g.high,

g.low, g.block)
Gateway
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To prove this, we first unfold the type definition of Gateway in the assumptions and
the conclusion, then we prove some trivial type judgement subgoals automatically,
and what we obtain is the subgoal:

[l classification@(g.block,g.high,g.low) = <HIGH>; g.input : Port;
g.highOutput : Port; g.lowOutput : Port; g.high : Category;
g.low : Category; g.block : Message;

(forall m in set elems g.highOutput &
classification@(m,g.high,g.low) = <HIGH>) and
(forall m in set elems g.lowOutput &
classification@(m,g.high,g.low) = <LOW>) and
g.high inter g.low = {} |] ==>

(forall m in set elems (g.highOutput”[g.block]) &
classification@(m,g.high,g.low) = <HIGH>) and

(forall m in set elems g.lowOutput
classification@(m,g.high,g.low)

g.high inter g.low = {}

n &

<LOW>) and

The hardest part is clearly to prove the first conjunct of the conclusion, the other two
follow trivially from the assumptions. One tactic 1pf_fast_tac proves the above
subgoal:

by (1pf_fast_tac
(prop_lpfs addls [foralls_lemma] addEs [Port_elim]) 1);

Its rule set argument for guiding the proot search contains proof rules for propo-
sitional reasoning, a suitable lemma for the difficult conjunct and a single rule for
type checking ports. The lemma states how to break the quantification according
to the sequence concatenation, and it is proved from various properties about sets,
sequences and of course the set-bounded universal quantifier.

Safety Property

The safety property for a trusted gateway states that all messages on the low security
output port are given a low security classification:

g : Gateway ==>
forall m in set elems g.lowOutput &
classification@(m, g.high, g.low) = <LOW>

This has a single tactic proof:

by (1pf_fast_tac
(prop_lpfs addEs [Gateway_elim] addDs [inv_Gateway_dest]) 1);

The rule set argument supports propositional reasoning, unfolding of the gateway
type assumption and unfolding of the resulting gateway invariant. Inspecting the
property more closely, it is not surprising that the proof turned out to be that
simple, since the safety property is essentially a part of the invariant. Thus the real
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challenge is to prove that the invariant on Gateway is preserved.

7.6 Transformations

We have now completed the description of the VDM-SL proof engine based on
[sabelle. The following two sections concern aspects related to the integration of

this proof tool with the IFAD VDM-SL Toolbox.

As already noted, the proof tool supports a subset of VDM-SL, since VDM-SL
was designed for writing large specifications in industry with constructs that are
not designed for embedding in a theorem prover. This section describes how we
treat some of the complex constructs by transforming expressions down to expanded
expressions in the subset that has been formalized in Isabelle.

Throughout this section we use a record type R of the following form:

R :: a:T1
b:T2
c:T3

7.6.1 Pattern Matching

We represent pattern matching by transforming patterns to combinations of if and let
expressions where a boolean condition for matching is expressed using an existential
quantification. The user of the system does not see these expanded forms since the
expansion is reversed before showing output from Isabelle to the user (after this has
been parsed by the Toolbox parser).

In this section we illustrate how to treat patterns in let, quantified and compre-
hension expressions. In the presentation, we just use expression templates, but the
transformation does work for real specifications, see Section 7.7.

Let Expressions

The VDM-LPF instantiation of Isabelle supports only simple let expressions of the
form

let x = el, y = e2[x], z = e3[x,y] in expr

where x, y and z are variables. Note that the first variable of the let expression may
be used in the second expression, etc.

However, a VDM-SL let expression may contain general patterns in addition to
variables. Consider a let expression of the form

let mk_R(x,-,z) = el,
mk_((e),y) = e2
in body
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Here, x, z and y are pattern variables, - is the don’t care pattern and (e) is a value
pattern, i.e. the expression e is evaluated. The expression el must be a record of
type R for the first pattern to match, and for the second pattern to match, e2 must
be a tuple with two components where the first component is equal to the value of
e. If one of the patterns does not match, then the expression is undefined.

The above expression is transformed to an equivalent expanded expression contain-
ing if expressions, existential quantifiers and simple let expressions:

let new = el in
if (exists x:T1, z:T3, dc:T2 & mk_R(x,dc,z) = new) then
let X = new.a, Z = new.c in
let new2 = e2 in
if (exists y:Ty & mk_(e,y) = new2) then
let y = new2.#2 in body
else undefined
else undefined

This expression lies within the VDM subset formalized in Isabelle; undefined is a
constant symbol defined with no rules and represents a divergence from [6]. The
variables new, new2 and dc must be new identifiers generated by the transtformation
(see Section 7.7). The & ends a binding list and corresponds to “such that”. The
selector #2 takes the second component of a tuple. The type information on, for
example, y in the second exists is available in the Toolbox abstract syntax tree after
type checking. Note that we illustrate the transformation on concrete syntax due
to readability, but it is really performed on the abstract syntax tree.

Quantified Expressions

Patterns in quantified expressions are represented using an existential quantifier and
an implication =>. Consider for example

forall mk_(mk_R(x,-,z),(e)) in set s & exprlx,z]
which is transformed to:

forall new in set s &
(exists x:T1, z:T3, dc:T2 & mk_(mk_R(x,dc,z),e) = new) =>
let x = new.#l.a, z = new.#1.c in exprl[x,z]

For existential quantification we must replace implication by conjunction.

Comprehensions

Set, map, and sequence comprehensions can all be treated in the same way. For
example the set comprehension

{exprlx,z] | mk_(mk_R(x,-,z),(e)) in set s & plx,z]}
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is transformed to:

{let x = new.#l.a, z = new.#l.c in expr[x,z] | new in set s &
exists
x:T1, z:T3, dc:T2 & mk_(mk_R(x,dc,z),e) = new and pl[x,z]}

This is also illustrated in the example in Section 7.7.

7.6.2 Cases Expressions

Cases expressions are not supported in the instantiation of Isabelle. VDM-SL cases
expressions are transformed to certain combinations of if and simple let expressions,
in a way somewhat similar to let expressions with patterns. However, to the user
these combinations appear to be cases expressions since the transformation to ex-
panded expressions is reversed before expressions are displayed. Moreover, there are
proof rules which make the if-let combinations appear to be cases expressions.

Consider the following example which uses the same patterns that were used above:

cases expr:
mk_R(x,-,z) -> el,
mk_((e),y) -> e2,
others -> e3

end

This is transformed to the following expression:

let new = expr in

if (exists x:T1, z:T3, dc:T2 & mk_R(x,dc,z) = new) then
let x = new.a, z = new.c in el

elseif (exists y:Ty & mk_(e,y) = new) then
let y = new.#2 in e2

else e3

One difference between the expanded forms of let and cases expressions is the use
of undefined else branches in if expressions used to represent let expressions.

A number of proof rules has been derived to make the expanded forms mimic cases
expressions, i.e. these rules can be applied on let-if combinations in such a way
that it appears to the user that these are real cases expression (due to reverse
transformation ):

cases_match
"[I P(e); e:A; el(e):B |] ==
(let x = e in if P(x) then el(x) else e2(x))
cases_not_match
"[| not P(e); e:A; e2(e):B |] ==
(let x = e in if P(x) then el(x) else e2(x))
(let x = e in e2(x))"
cases_form_sqt

el(e)”
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U[| def P(e); e:A;
[l P(e) |11 ==> el(e):B;
[l not P(e) |] ==> let x = e in e2(x):B |] ==>
(let x = e in if P(x) then el(x) else e2(x)) : B"

Let us explain why these proof rules mimic cases expressions from the viewpoint of
a user. For simplicity we consider a slightly different example than above. Suppose
we are doing a proof where we would like to reduce a cases expression of the form:

cases ex:
mk_(n,m,m) -> n+m,
mk_(n,-,n) -> n,
others -> 0
end

Further, suppose that we expect the first pattern to not match. We would then use
the proof rule cases_not_match to reduce the cases expression. In conducting a
proof this rule would be instantiated to:

"[| not exists n:nat, m:nat & mk_(n,m,m) = ex; ex:A;
if (exists n:nat, dc:nat & mk_(n,dc,n) = ex) then n
else 0:B |] ==>
(let new = ex in
if (exists n:nat, m:nat & mk_(n,m,m) = new) then
let n = new.#1,
m = new.#2 in n+m
elseif (exists n:nat, dc:nat & mk_(n,dc,n) = new) then
let n = new.#1 in n
else 0)
(let new = ex in
if (exists n:nat, dc:nat & mk_(n,dc,n) = new) then n else 0)"

Isabelle would typically do this instantiation and the necessary -reductions auto-
matically, a user just tells it to apply the rule (by providing the name of the rule).
It is important to realize that the left-hand side of the equality is the expanded form
of the original cases expression and that the right-hand side of the equality is still a
cases expression, namely:

cases ex:
mk_(n,-,n) -> n,
others -> 0
end

Hence, the first cases expression above reduces to a cases expression where the first
pattern has been thrown away, if this pattern does not match. Note that the if-
then-else structure of the derived cases rules works because

if bl then el
elseif b2 then e2
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else e3
is just syntactic sugar for

if bl then el
else if b2 then e2
else e3

7.7 Generating Axioms: An Example

In order to support reasoning about specifications, we automatically generate axioms
stated as proof rules which formalize the meaning of the definitions in a specification.
These axioms are stated in Toolbox abstract syntax extended with a construction for
proof rules, type judgements and subtypes. Once the axioms have been transformed
to the Isabelle subset, they can be read into Isabelle and then used in proofs. We
shall not go into the details here of the specification of the axiom generator, which
was done in VDM-SL and developed using the Toolbox itself, as it is straightforward
and based on [6]. Note that in addition to axioms for specifications, Isabelle needs
the signatures of new constants. These are also straightforward to generate, again
the specification of this was done in VDM-SL using the Toolbox.

In this section we illustrate the working of the axiom (and signature) generator on a
small example, which is adapted from an example of a forthcoming book on VDM-
SL [9] and inspired by a real industrial system. The example concerns an alarm
paging system for a chemical plant. A safety requirement of the system is that for
any period of time and any possible alarm code (and location) there must be an
expert with the required qualifications to deal with the alarm on duty according to
a certain plan.

The specification below is stated in the expression (or functional) subset of VDM-
SL, but we could as well have used a state to model the plant and defined some of
the functions as implicit operations on the state (using preconditions and postcondi-
tions). The approach to state definitions and implicit operations is (also) borrowed
from the Mural project. A state definition is treated in essentially the same way as
a record and implicit operations are treated as functions on the state which take the
state as an extra argument and result.

7.7.1 Type Definitions

We shall model the chemical plant as a record type whose invariant specifies the
safety requirement:

Plant :: plan : Plan
alarms : set of Alarm
inv mk_Plant(plan,alarms) ==
forall per in set dom plan, alarm in set alarms &
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Qualifications0K(alarm,plan(per));

The record has two fields, containing a plan and a set of alarms respectively. The
function QualificationsOK defines the safety requirement and will be specified
later.

A plan is simply a map from periods to sets of experts:

Plan = map Period to set of Expert
inv plan == forall exs in set rng plan & exs <> {};

Period = token;

The invariant says that there should always be at least one expert associated with
any period. The data type of periods is left unspecified (using the token type which
just denotes an infinite set with equality).

An expert has an ID and a set of qualifications:

Expert :: expertid : ExpertId
quali : set of Qualification
inv mk_Expert(-,q) == q <> {};

ExpertId = token;

Qualification = <Elec> | <Mech> | <Chem> | <Chief>;

Qualifications are modeled as an enumeration type. An expert must have at least
one qualification.

The datatype of alarms is modeled as a record type with two fields, one for the
alarm codes and one for the location of the alarms:

Alarm :: code : AlarmCode
loc : Location;

AlarmCode = <A> | <B> | <C>;

Location = <P1> | <P2> | <P3> | <P4> | <P5> | <P6> | <P7>

A function is clearly needed to specify which qualifications are required for the
different alarms, this is done below.

We shall now consider the signature of new constants and axioms generated for these
type definitions. We cannot include all axioms in this chapter. Axioms are generated
by executing a shell script genax with the file name of our specification alarm.vdm
as an argument. The result is a file alarm.thy which contains the Isabelle theory
file for the specification. This is ready to be loaded into the Isabelle/VDM-LPF

instantiation, which is started by executing the binary vdmlpf in a shell.

The theory file starts with the signature of new constants. For a record type,
like Plant used for illustration in the following, a record constructor function is
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introduced:
mk_Plant :: [ex,ex] => ex

This means that mk_Plant is a function in the Isabelle meta-logic, which takes two
expressions as arguments, corresponding to the two fields, and yields an expression
as a result, corresponding to a record with these two field values. The field selectors
of the record type are defined in both an abstract and a concrete syntax version
which allows the concrete syntax to support VDM-SL field selection using a postfix
notation:

plan’ :: ex => ex ("_.plan" ...)
alarms’ :: ex => ex ("_.alarms" ...)

The primes are used on constants of the abstract syntax by convention. The paren-
thesis on the right specifies a priority grammar for the postfix notation, we shall
not go into details here. For a record type with an invariant, the signature of the
invariant function must also be included:

inv_Plant :: ex

In contrast to the constructor and selector functions this is represented as an object-
logic function. A special object-logic application operator is defined in VDM-LPF
and written using an @. The invariant function could be represented as a meta-logic
function but there are technical reasons for not doing this. VDM-SL map application
and sequence indexing have to be represented in the object-logic, since maps and
sequences are object logic values. And the application of invariant functions, as well
as many other functions, is not distinguished from these first forms of applications
in the abstract syntax tree of the IFAD Toolbox. Hence, different translations of
such equivalently represented constructs would be difficult.

After the signature declarations the generated axioms are stated as proof rules. The
definition axiom for the invariant function is stated as follows:

inv_Plant_defn
"inv_Plant@(mk_Plant(plan, alarms)) ==
forall per in set dom plan, alarm in set alarms &
Qualifications0K@(alarm, plan@(per))"

This is stated as a simple meta-equality rewrite rule. A number of formation and def-
inition axioms are introduced for record types. For the record constructor function,
the following two axioms are needed:

mk_Plant_form
"[| gax41l : Plan; gax42 : set of Alarm;
inv_Plant@(mk_Plant(gax41, gax42)) |] ==>
mk_Plant(gax41l, gax42) : Plant"

mk_Plant_defn
"gax5 : Plant ==> mk_Plant(gax5.plan, gax5.alarms) = gax5"
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The gax variables may look strange, they are automatically indexed by the axiom
generator. Each field selector of a record type yields two similar axioms:

plan_Plant_form
"gax5 : Plant ==> gax5.plan : Plan"

plan_Plant_defn
"[l gax41l : Plan; gax42 : set of Alarm |] ==>
mk_Plant(gax41l, gax42).plan = gax41l"

Many typing hypotheses appear in order to ensure definedness of object equality =.

Basic type definitions like the definition of Plan and AlarmCode yield fewer axioms.
Hence, for Plan just two definition axioms are generated:

inv_Plan_defn
"inv_Plan@(plan) == forall exs in set rng plan & exs <> {}"

Plan_defn
"Plan ==

<< gaxl : map Period to set of Expert & inv_Plan@(gax1l) >>"

The latter defines Plan as a subtype of a map type, restricted using the invariant
of Plan. The AlarmCode definition just yields one axiom

AlarmCode_defn
"AlarmCode == <A> | <B> | <C>"

but as a side effect axioms are also generated for each of the quote types, for example:

A_axiom
"CA> : <ADM

A_singleton
"gax47 : <A> ==> gax47 = <A>"

A_B_disjoint
"<A> <> <B>"

Disjointness axioms are needed for all pairs of quotes. In VDM-SL, the notation
<A> is used for both a quote type and its one element. This can be supported in
[sabelle since the corresponding constants of the meta-logic have different meta-
types. Ambiguities are resolved by the Isabelle type checker.

7.7.2 Function Definitions

We shall now continue the example from above by specifying a few functions. As
already noted we need a function to map alarm codes and locations to qualifications
required of experts. We also need a function to specify the safety requirement, and
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a function to page a set of experts to handle a specific alarm.

However, consider first a simpler function that tests whether a given expert is on
duty in a certain period:

OnDuty: Expert * Period * Plant -> bool
OnDuty(ex,per,plant) ==

ex in set plant.plan(per)
pre per in set dom plant.plan;

This function has as precondition that the period is valid, i.e. it is covered by the
plan. This ensures that the map application in the body of the function is defined.

All functions of specifications are represented as object-logic functions, just like
invariants. Hence, the signature of OnDuty is simply:

OnDuty :: ex

The signature of the precondition function pre_OnDuty is the same.

A function definition like this, with a precondition and in the explicit style, results
in two axioms, one defining the precondition and one defining the function:

pre_0nDuty_defn
"pre_OnDuty@(ex, per, plant) == per in set dom plant.plan"

OnDuty_defn
“"[| ex : Expert; per : Period; plant : Plant;
pre_OnDuty@(ex, per, plant) |] ==>
OnDuty@(ex, per, plant) = ex in set plant.plan@(per)"

Strictly speaking the latter should include a type judgement in the hypotheses saying
that the body of the function is well-typed, in order to ensure that the LPF equality
is defined. However, as mentioned in Section 7.2, we assume that the specifications
have been checked using the Toolbox type checker (extended with proof obligations),
and for convenience we shall therefore omit this condition. Note that we could
include the condition as a hypothesis, prove the hypothesis once and for all, and
then derive the above axiom. This integration could be taken further in a very
tightly integrated system where the Toolbox type checker could be integrated even
more with the proof process to “prove” type judgements arising in proofs.

The following function interprets alarms:

AlarmQualifications: Alarm -> set of Qualification
AlarmQualifications(alarm) ==
cases alarm:
mk_Alarm(<A>,-) -> {<Mech>},
mk_Alarm(<B>,loc) ->
if loc in set {<P1>,<P3>,<P7>}
then {<Chief>,<Elec>,<Chem>}
else {<Elec>},
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others -> {<Chief>}
end;

Alarms with code <A> require a mechanic, regardless of the location (specified using
a “don’t care” pattern). Alarms with code <B> at the locations <P1>, <P3> and <P7>
are more serious, they require three qualifications, including a chief. <B> alarms at
other locations require an electrician. The pattern variable loc is bound to the value
of the location field of <B> alarms. Finally, all other alarms require a chief (e.g. for
inspecting the situation).

The axiomatization of this definition is straightforward of course, it just yields one
axiom. However, the interesting aspect of the definition is the cases expression in
the function body, which is translated to nested let and if expressions:

AlarmQualifications_defn
"alarm : Alarm ==
AlarmQualifications@(alarm) =
(let tf21 = alarm in
if exists dc22 : Location & mk_Alarm(<A>,dc22) = tf21 then
{<Mech>}
elseif exists loc : Location & mk_Alarm(<B>,loc) = tf23 then
let loc = tf23.1loc in
if loc in set {<P1>, <P3>, <P7>} then
{<Chief>, <Elec>, <Chem>}
else {<Elec>}
else {<Chief>})"

The variables tf are generated automatically during the transformation. Again, as
discussed above, a type judgement for the function body should strictly speaking be
included in the hypotheses.

We can now define the safety requirement, which was stated in the invariant of
Plant, using the function:

Qualifications0K: Alarm * set of Expert -> bool
Qualifications0K(alarm,exs) ==
let reqquali = AlarmQualifications(alarm) in
forall quali in set reqquali &
exists ex in set exs & quali in set ex.quali

The axiomatization is obvious:

QualificationsOK_defn
"[| alarm : Alarm; exs : set of Expert |] ==>
Qualifications0K@(alarm, exs) =
(let reqquali = AlarmQualifications@(alarm) in
forall quali in set reqquali &
exists ex in set exs & quali in set ex.quali)"

Again, this is in principle a derived axiom.
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The function definitions above are all stated in the explicit style, which means that
an algorithm is given for calculating the results. VDM-SL also supports an implicit
style, where the result is just specified by a postcondition. The following function
definition is in the implicit style:

Page(a:Alarm,per:Period,plant:Plant) r:set of Expert
pre per in set dom plant.plan and
a in set plant.alarms
post r subset plant.plan(per) and
AlarmQualifications(a) subset
dunion {quali | mk_Expert(-,quali) in set r};

This function uses the plan of a plant to page a set of experts for a given alarm
and period. A valid implementation of this function could just calculate all experts
on duty for a certain period, regardless of the alarm, but a better implementation
would probably try to minimize the set in some way.

Implicit function definitions yield four axioms, two defining the preconditions and
postcondition respectively, and one definition and one formation axiom for the new
function:

pre_Page_defn
"pre_Page@(a, per, plant) ==
per in set dom plant.plan and a in set plant.alarms"

post_Page_defn
"post_Page@(a, per, plant, r) ==
r subset plant.plan@(per) and
AlarmQualifications@(a) subset
dunion {let quali = tf31.quali in quali | tf31 in set r &
exists qualli : set of Qualification, dc32 : Expertld &
mk_Expert(dc32, quali) = t£31 and truel}"

Page_defn
“[|l a : Alarm; per : Period; plant : Plant;
pre_Page@(a, per, plant) [|] ==>
post_Page@(a, per, plant, Page@(a, per, plant))"

Page_form
“[|l a : Alarm; per : Period; plant : Plant;
pre_Page@(a, per, plant) [|] ==>
Page@(a, per, plant) : set of Expert"

Note that the body of the postcondition is expanded slightly in order to treat the
pattern in the set comprehension expression. The Toolbox parser inserts true when
there is no restriction predicate in a comprehension expression. The Toolbox type
checker ensures that the third axiom makes sense by generating a satisfiability proof
obligation. Hence, also axioms for implicit functions are generated on the assump-
tion that specifications are type correct.
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7.8 Future Work

Although the current system can be used to reason about VDM-SL specifications,
it can clearly be improved in many ways. Some future work and improvements are
discussed briefly below.

Proof Rules

The proof system still needs work to be truly practical. Many of the rules for
the different VDM-SL datatypes seem quite ad hoc and more work is needed here.
Although often ignored, it is a major task to develop well-organized and powerful
proof rules for datatypes like those of VDM-SL. Moreover, such proof rules should
be organized in rule sets for the proof search tactics (if possible). This is also a
major and important task.

Tactics

The current version of VDM-LPF does not provide a simplifier. Unfortunately it
does not seem easy to instantiate Isabelle’s generic simplifier to support reasoning
about equality in VDM-LPF, since in order to do this we must justify that we can
identify the VDM-LPF object-level equality with Isabelle’s meta-level equality. If
we cannot use Isabelle’s simplifier, a special-purpose VDM-LPF simplifier should be
constructed.

In addition, it might be useful to construct a number of special purpose tactics,
for example, for reasoning about arithmetic and for proving trivial type conditions,
which tend to clutter up proofs.

Compatibility

VDM-LPF is meant to be used to reason about VDM-SI and to be integrated with
existing tools. A natural question is whether or not all these are compatible, and
if not, what should then be changed. For example, is the proof system used sound
with respect to the ISO standard (static and dynamic) semantics of VDM-SL? Al-
though no inconsistencies have been found in the proof system itself, preliminary
investigations suggest that there might be a problem with compatibility. For exam-
ple, it is currently possible to derive true or 1 as a theorem in the proof system,
but according to the semantics of VDM-SL this is undefined. Since the semantics of
VDM-SL is defined by an ISO standard it is perhaps most tempting to try to modity
the proof system to exclude theorems as the one above. However, the result might
be a proof system which is not suited for practical reasoning. This compatibility
issue requires further attention.
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Natural Deduction versus Sequent Calculus

The current instantiation is based on a natural deduction formulation of LPF. How-
ever, there are indications suggesting that a sequent calculus formulation of LPF
might be a better foundation, in particular for automating proofs.

Status of the Current Prototype

The current prototype does not completely integrate the Toolbox and the theorem
prover Isabelle, since the proof manager and the graphical user interface have not
been implemented. However, it does provide the bits and pieces to support the inte-
gration. One shell script generates and transforms axioms, another parses, reverse
transforms and pretty-prints Isabelle proof states. Proofs are presently conducted
by interacting with Isabelle directly, which is feasible since the Isabelle instantiation

supports a subset of the ISO standard for VDM-SI. ASCII notation.

By exploiting transformations, we are able to treat essentially the full functional sub-
set of VDM-SL. We have not considered, for instance, constructs like let-be-such-
that expressions and union patterns, whose underdetermined semantics destroys
reflexivity of equality [15]. As in Mural, we can treat state definitions and implicit
operations. However, we have not yet considered explicit operations and statements,
which form an imperative subset of VDM-SL, but already existing work on formal-
izing Hoare logic in the HOL theorem prover may be useful here [1]. Features of
VDM-SL like exception handling have not been considered either.

7.9 Conclusion

In this chapter we have described the implementation of some central aspects of
a proof support tool for VDM-SL based on Isabelle and how this tool has been
integrated with the IFAD VDM-SL Toolbox. In particular we have illustrated the
formalization of existing LPF proof rules in Isabelle and new facilities for automating
proof search, which automatically proved essentially all of the 120 propositional and
predicate logic derived rules listed in [6]. We feel that our experiments have shown
[sabelle to be a very useful tool for quickly building specialized proot support for
new and even non-standard logics such as VDM-LPF. Moreover, Isabelle is relatively

easy to adapt to VDM-SL and to integrate with the IFAD VDM-SL Toolbox.

VDM-LPF supports only a subset of VDM-SL, and it is a major challenge to build
proof support for the full VDM-SL standard. The language was designed for writing
large specifications in industry, and this is reflected in both its syntax and its data
types. On the syntax side, it supports pattern matching in for example let and
quantifier expressions, and it has constructs such as cases expressions, again with
patterns, which are difficult to represent in a theorem prover. On the data type side,
it has non-disjoint unions, record types with postfix field selection, and arbitrary-
length tuples that are not equivalent to nested pairs. Moreover, the underlying logic
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of VDM-SL is the non-classical three-valued Logic of Partial Functions, which makes
traditional classical approaches to, for example, proof search infeasible.

We are able to handle difficult constructs of VDM-SL by transforming these to ex-
panded expressions in the VDM-LPF subset. However, the user needs never realize
the transformations while writing proofs, since we can reverse transformations and
provide a collection of derived proof rules which mimic the original expressions,
though these actually work on expanded expressions. The transformations are de-
pendent on the abstract syntax tree representation of expressions in the Toolbox,
and would not be possible in Isabelle.

As a further consequence of the fact that the Isabelle instantiation supports the
VDM-SL standard, we can use the Toolbox parser to read output from Isabelle. It
has only been slightly modified to read proof rules, type judgements and subtypes,
which are not part of the VDM-SL standard. Similarly, an ASCII pretty-printer for
VDM-SL can be used to print abstract syntax both after it has been transformed
to a subset understood by Isabelle and after Isabelle output has been parsed and
reverse transformed to the original abstract syntax. Hence, no major changes or
additions were needed to the IFAD Toolbox, in order to build the present prototype
of an integrated system. Finally, as another consequence, the Isabelle instantiation
can be used directly to reason in a subset of VDM-SL.

A main feature of the integrated CASE and theorem proving tool is that testing and
proof for specification validation can be employed at the same time. All facilities
of the IFAD VDM-SL Toolbox are available while conducting proofs. Moreover,
the user always works in the notation provided by the Toolbox and is not limited
by restrictions on syntax imposed by the proof component. Furthermore, it is pos-
sible to support industrial requirements like proof management, automation and
version control, which typically are not well-addressed in theorem provers, outside
the theorem prover in the proof support tool.

A generic framework like Isabelle allows quick implementation of powerful theorem
provers through reuse. However, we have seen some limitations to reuse when dealing
with a three-valued logic like VDM-LPF. In particular, the generic simplifier and
classical reasoning package appear not to be easy to use with VDM-LPF. However,
in our implementation of a special purpose reasoning package we were able to reuse
many idea and even code from the existing package.
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7.11 VDM-SL Syntax in Isabelle

This appendix describes the formalization of VDM-SL syntax in Isabelle, using an
abstract and a concrete syntax and translations between them.

Abstract Syntax

We first provide a flavour of the core abstract syntax which is used internally in
I[sabelle for reasoning. It is a higher-order abstract syntax [19] in order to ensure
smooth and elegant handling of bound variables. This means that object-level vari-
ables are identified with meta-level variables of a particular type. Meta-abstraction is
used to represent variable binding, and substitution for bound variables is expressed
using meta-function application. Isabelle’s #-conversion handles the variable captur-
ing problem. Moreover, typical side-conditions involving free variables are handled
using universal meta-quantification and meta-application.

The abstract syntax has two central categories, one of expressions and one of types.
Consequently Isabelle’s typed lambda-calculus is extended with two new types ex
and ty respectively. These types are logical in the sense that they are meant to
be reasoned about, and new constants of these types are equipped with a standard
prefix syntax.
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Expressions and types of VDM-SL are represented in Isabelle using constants with
result type ex and ty. Some examples of such constants are

not’ i ex => ex

forall’ :: [ty,ex => ex] => ex
eq’ i [ex,ex] => ex
natty’ :: ty

succ’ i ex => ex

These constants correspond to negation, universal quantification, equality, the type
of natural numbers and the successor function. The constant for universal quantifi-
cation is an example of a higher-order constant because it takes a function as its
second argument. Using such constants as above it is possible to write expressions
in a simple prefix form in the abstract syntax. The constants are primed in order
to distinguish them from constants of the concrete syntax. The following example
is a boolean expression which states that adding one is not the identity function for
any natural number:

forall’ (natty’,%x.not’(eq’ (x,succ’(x))))

This example illustrates how meta-abstraction % is used to express variable binding
at the object-level.

Concrete Syntax

The purpose of the concrete syntax is to provide a user-friendly and familiar notation
for presentation, while the role of the abstract syntax presented above was to support
reasoning internally in Isabelle. The concrete syntax is based on the ISO standard of
the VDM-SL ASCII notation [16]. This makes Isabelle/VDM-LPF relatively easy
to use as a stand-alone tool for people who have experience with VDM-SL (and
proof). Furthermore, it provides a standardized text-based format for exchanging
data with other software components, such as the IFAD VDM-SL Toolbox.

The VDM-SL syntax standard is expressed as a context free grammar with ad-
ditional operator precedence rules to remove ambiguities. The concrete syntax of
VDM-LPF is expressed as a priority grammar, i.e as a grammar where the nonter-
minal symbols are decorated with integer priorities [18]. This priority grammar is
constructed by a systematic and fairly straightforward translation of productions
and operator precedence rules into priority grammar productions. In most cases the
base form of the priority grammar productions comes directly from the correspond-
ing production in the VDM-SL grammar, while the priorities of the production are
constructed from the corresponding operator precedences. Some simple examples of
such priority grammar productions are:

250) 250)

«— not eX(
(310)

GX(

(310) (311)

ex — eXx = ex

The structure of the above productions matches the corresponding declarations of
the abstract syntax. Consequently, in such cases the concrete syntax is implemented
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in Isabelle simply by adding a syntax annotation to the relevant constant declara-
tion of the abstract syntax. The constant declarations corresponding to the two
productions above are

not’ :: ex => ex ("(2not _/)" [250] 250)
eq’ :: [ex,ex] => ex ("(_ = /_)" [310,311] 310)

where the types correspond to nonterminals of the productions. The syntax anno-
tation in brackets consists of two parts: a quoted mixfix template followed by an
optional priority part. The mixfix template describes the terminals and contains
other printing and parsing directives (see [18]).

However, not all of the concrete syntax can be handled by adding syntax annota-
tions to the constant declarations for the abstract syntax. In cases such as multiple
binding quantifiers, set comprehensions, if-then-elseif expressions, enumerated se-
quences, etc., the structure of the concrete syntax differs from that of the abstract
syntax. Such situations are handled using separate syntax declarations which de-
clare a special kind of constants. These constants only serve a syntactic purpose
and are never used internally for reasoning. The syntax declarations below are those
needed for multiple binder universal quantifications:

oo :: tbind => tbinds ("_")

tbinds_ :: [tbind,tbinds] => tbinds ("(_,/ _)")
tbind_ :: [idt,ty] => tbind ("(_ :/ _O")
forall_ :: [tbinds,ex] => ex ("(2forall/ _ &/ _)" [100,100] 100)

Unlike when using syntax annotations, the relationship to the abstract syntax is
not established automatically in such separate syntax declarations. Instead transla-
tions are defined to relate the abstract and the concrete syntax, as discussed in the
following section.

Translations

A simple example of a translation is the expansion of the special notation for not
equal <> in the concrete syntax to negated equality in the abstract syntax. This
is implemented using Isabelle’s macro mechanism. A macro is essentially a rewrite
rule which works on Isabelle’s abstract syntax trees. In this case the macro is

"x <> y" == "not x = y"

This translation means that not equal will behave just as a negated equality in
proofs. Another deliberate consequence is that any negated equality will be pre-
sented using the more readable not equal notation. In other words the original
formatting is not always retained, but instead the implementation tries to improve
it whenever possible.

Another more complicated example is that of universal quantification with multiple
type bindings. In VDM-LPF such a quantifier is viewed simply as a syntactic short-
hand for a number of nested single binding quantifiers. The translation between the
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concrete external first-order representation and the internal higher-order abstract
representation is implemented using a mixture of macros and print translations.
However, these are too complex to be included here. During parsing, the effect of
these macros and translations is that concrete syntax such as

forall x:nat, y:nat & x = y
is automatically translated to the following abstract syntax:
forall’(nat,%x.forall’(nat,%y.eq’ (x,y)))

Similarly, during printing, the abstract form is translated to the concrete form. Con-
stants such as tbind_ and forall_ of the previous section do not occur explicitly
here, since they are only used in the standard first-order syntax trees corresponding
to the concrete syntax. However, they are used in the relevant macros and transla-
tions. Other variable binding constructs are handled in a similar fashion to universal
quantification.
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