Proof in VDM:
A Practitioner’s
Guide

by

Juan C. Bicarregui
John S. Fitzgerald
Peter A. Lindsay
Richard Moore
Brian Ritchie

®

Springer-Verlag
London Berlin Heidelberg New York
Paris Tokyo Hong Kong '
Barcelona Budapest

Juan C. Bicarregui and Brian Ritchie, Informatics Department
Rutherford Appleton Laboratory, Chiton, Didcot, Oxfordshire
OX11 00X, UK

John 8. Fitzgerald, Dependable Computing Systems Centre,
20 Windsor Terrace, The University,
Newcastle upon Tyne NE1 7RU, UK

Peter A. Lindsay, Software Verification Research Centre,
Department of Computer Science, University of Queensland, St Lucia,
Queensland 4072, Ausiralia

Richard Moore, Department of Computer Science, The University
Manchester M13 9PL, UK

Series Editor

Steve A. Schuman, BSc, DEA, CEng _
Department of Mathematical and Computing Sciences
University of Surrey, Guildford, Surrey GU2 5XH, UK

ISBN 3-540-19813-X Springer-Verlag Berin Heidetberg New York
ISBN 0-387-19813-X Springer-Verlag New York Berlin Heidelberg

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress in Publication Data
A catalog record for this book is available from the Library of Congress

Apart from any fair dealing for the purposes of research or private study, or
criticism or review, as permitted under the Copyright, Designs and Patents Act
1988, this publication may only be reproduced, stored or transmitted, in any form
or by any means, with the prior permission in writing of the publishers, or in the
case of reprographic reproduction in accordance with the terms of ficences issued
by the Copyright Licensing Agency. Enquiries concerning reproduction outside
those terms should be sent to the publishers.

© Springer-Verlag London Limited 1994
Printed in Great Britain

The use of registered names, trademarks etc, in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the
relevant laws and regulations and therefore free for general use.

The publisher makes no representation, express or implied, with regard to the
accuracy of the information contained in this book and cannot accept any legal
responsibility or liability for any errors or omissions that may be made.

Typesetting: Camera ready by author
Printed and bound by Antony Rowe Ltd, Chippenham, Wiltshire
34/3830-543210 Printed on acid-free paper

Foreword

Formal specifications were first used in the description of program-
ming languages because of the central role that languages and their
compilers play in causing a machine to perform the computations
required by a programmer. In a relatively short time, specification
notations have found their place in industry and are used for the
description of a wide variety of software and hardware systems. A
formal method ~ like VIDM - must offer a mathematically-based
specification language. On this language rests the other key
clement of the formal method: the ability to reason about a
specification. Proofs can be employed in reasoning about the
potential behaviour of a system and in the process of showing that
the design satisfies the specification.

The existence of a formal specification is a prerequisite for the
use of proofs; but this prerequisite is not in itself sufficient. Both
proofs and programs are large formal texts. Would-be proofs may
therefore contain errors in the same way as code. During the
difficult but inevitable process of revising specifications and devel-
opments, ensuring consistency is a major challenge. It is therefore
evident that another requirement — for the successful use of proof
techniques in the development of systems from formal descriptions
~ is the availability of software tools which support the manipu-
lation of large bodies of formulae and help the user in the design of
the proofs themselves.

Unfortunately, experience indicates that even the simultaneous
presence of formal descriptions and tools to support the con-
struction of proofs will not be enough to ensure that they are
instantly accepted. Learning from the previous technology transfer
difficulties, it is clear that it is necessary to modify the way people
think about systems and to teach them a whole new approach if
they are to reason successfully about their specifications and
designs. It is a key contribution of this book that it takes seriously
the challenge of teaching practitioners how to construct their own
proofs.

In 1977, Ole-Johan Dahl wrote a paper with the prescient title of
‘Can Program Proving Be Made Practical?’. His argument was
basically that, if each program proof is to be started on a blank
sheet of paper, the process will never become viable. It is necessary
that coliections of useful results or theories about data types are

Vi Lol

documented and made available to potential users of proof tools.
The system — mural — which the authors of this book built, placed
considerable emphasis on the development of theories. Some
organisations which have built their own theorem provers have
realised that the ‘theory base’ which has been developed with the
tools is a more valuable asset than the theorem prover itself.
Readers of this book should be grateful that the authors are
prepared to expose and make availabie the theories which they
have developed for the most important parts of VDM-SL.

The mural system put great emphasis on the design of a user
interface which would make it easier for people to employ a
computer in the development of proofs. It is difficult, within the
limitations of a textbook, to explain the process by which proofs are
constructed. The authors of this book have been successful in
conveying how one should tackle the task of designing the proof of
a theorem. Any reader who conscienticusly works through this text
should be in an admirable position to move on from the stage of
using formal specifications solely as a description of a system and be
prepared to use formal reasoning as a support both for ascertaining
praperties of a specification and for using proofs in the develop-
ment process.

Manchester Chiff Jones
September 1993

Preface

Recent advances in computing technology have led to an increasing
willingness on the part of engineers and innovators to entrust
critical operations to computing systems, both for reasons of safety
and for increased efficiency over older technologies. This has posed
a challenge to the computing community to develop ways of
engineering computer systems so that they meet the stringent
requirements placed upon them. There have been many responses
to this challenge, among them the exploitation of formal methods.

Formal methods involve the construction of a mathematical
model or theory of the required behaviour of a product in the early
stages of its development. Such modelling is widely employed in
more “traditional’” engineering disciplines to assist with analysing
the behaviour of complex systems: an aeronautical engineer, for
example, uses a mathematical model of lift and thrust on an aircraft
wing to help determine its optimum design. In a similar way, a
mathematical model, in the form of a formal specification, can be
used to describe the essential behaviour of a computing system at
an abstract level.

A major benefit of this approach over less mathematical tech-
niques is the degree of rigour which can be brought to arguments
about the behaviour of the system described by the model. A
formal specification can be shown to be consistent using mathema-
tical proofs. The same techniques can be used to help increase
confidence that the specification captures informally-stated
requirements. Design decisions can be checked for fidelity to the
specification as development progresses. In a number of formal-
isms (e.g. VDM {[Jon90], RAISE {RSL92], refinement calculus
[Mor90)) this is done as a staged process of refinement or reification
in which increasingly concrete designs and implementations are
shown to preserve the behaviour described in more abstract
specifications. :

Other benefits arise from the fact that the initial specification is
abstract as well as formal. The essential functionality of the desired
system can be described more concisely than would be possible if
implementation detail were included. As a result, the most import-
ant properties, such as safety, can be reasoned about at a stage of
the development when they are easier to understand and when any
errors are less costly to rectify than is the case if they are uncovered

viii Preface

in later stages of design or in testing. In this way formal methods
can be seen as one way of increasing the degree of confidence that a
computer system will exhibit both required and predictable behav-
iour.

Much research has gone into improving the accessibility and
practical applicability of formal methods. Effort has been put into
the standardisation of specification languages such as that of VDM
(VDM-SL. [BSI92]) and Z [BN92]. In addition, new languages have
been and are being developed. Some of these attempt 10 combine
the ideas of formal specification with those of other design
methods, for instance object-oriented design (e.g. RSL [RSL92],
Object Z [DKRS91]). Others attempt to incorporate the expressive
power required to specify such non-static properties of a system as
concurrency (e.g. VVSL [Mid90], CCS [Rob89], CSP [Hoa85]),
real-time constraints and fault-tolerance {(e.g. [Ost92], [Vyt92]).
Another important area of work has been tool support for formal
methods (e.g. the tools reports in [WL93]).

Numerous books and courses deal with these aspects of formal
methods, but comparatively few offer help to the practitioner or
student wishing to gain the full benefit of rigorous or formal proof
in the areas mentioned above. Texts which do cover proof tend to
present only sketch proofs, and give little indication of the process
by which a proof can be constructed. One of the authors of this
book {(RM) recently received a letter reflecting this view:

“There is an example of an adequacy proofon page. . . of . . .
However, I am unsure how to make use of it and I find it
difficult to follow. I have not created any proofs previously and
do not know how (o set about the process.”

The process of creating proofs is the main subject of this book.
The emphasis is on proof as an integral part of the system
developer’s toolkit, rather than as an onerous duty to be performed
in order to exhibit conformance to some set of mathematical
criteria in the form of proof obligations. It is demonstrated how
proof can be used to improve understanding of a specification or a
design step, how it can uncover errors, and how it can also be used
to show that the specified system exhibits the required properties.
An important lesson is that understanding why an attempted proof
has failed is often more valuable than knowing the details of a
successful proof.

It should be stressed at the outset that this is not a book about
VDM per se. Rather it is about proving properties of formal
specifications in general, with VDM used simply as a vehicle to
illustrate techniques which can just as easily be applied to other
specification languages. The book will therefore be of interest to
potential practitioners of formal methods who are seeking to
overcome the “prover’s block” exhibited by the correspondent
mentioned above. It will also interest those scientists working on
proof support systems for formal methods, as well as those
developing proof theories for other specification languages. The

Preface ix

tutortal nature of the text, including the exercises and substantial
case study, is intended to make it suitable for industrial and
university-level courses. Some familiarity with writing and under-
standing specifications in at least one formal specification language
is assumed. However, the first part of Chapter 1 gives a brief
sumnmary of VDM for those readers whose experience lies elsew-
here. The remainder of Chapter 1 provides an overview of the
logical framework on which the material of the rest of the book is
based.

Like other formal specification languages, VDM-SL provides an
underlying logic and a collection of primitive types (e.g. numbers,
truth values) and type constructors (e.g. sets, lists) out of which
specifications are built. Proofs about a particular specification will
therefore involve, at least in part, reasoning about these built-in
primitives, the properties of which are defined via a collection of
axioms. Part I (Chapters 2 to 9) gives axioms and definitions for the
basic VDM logic, data types and type constructors, and discusses
how such axiomatisations can be designed, as well as problems
which might be encountered. It also shows how theories of useful
results about these constructs can be built up by proof. These
chapters introduce important proof strategies, such as induction,
case distinction, and the technique of structuring proofs by using
subsidiary iemmas. They aiso demonstrate the use of informal
argument as a tool, both for determining whether a particular result
is provable and for determining the outline structure of a more
rigorous or formal proof. These points are illustrated with the help
of detailed worked examples, with explanations of the key stages in
the production of a proof and of the arguments used to determine
the best strategy for its construction.

Having developed a collection of useful results about the primi-
tive constructs of the specification language, the next stage is to use
these in proving properties of a specification or a refinement step.
This is the subject of Part II (Chapters 10 to 13). Chapter 10 shows
how to construct a theory from a specification, including the axioms
describing the essential properties of the specification and the proof
obligations representing properties that the specification must
possess if it is to be considered sound. Chapter 11 extends these
ideas to reasoning about refinements. The techniques discussed so
far are illustrated in Chapter 12, which contains a substantial case
study of an air-traffic control subsystem, including an abstract
specification and two levels of refinement. The case study also
shows how validation conditions can be used to discover errorsin a
specification and to help to demonstrate that a specification actually
exhibits the required safety properties.

Part I gives an axiomatisation of the most commonly used parts
of the VDM-SL language [Daw9l]. However, some constructs
(e.g. function types) have been omitted because their inclusion
renders the treatment of more familiar constructs less intuitive, or
because their own formal axiomatisation is complex. These con-
structs, and other advanced topics, are discussed in Chapter 13.

X Preface

The size of the VDM-SL language prevents full coverage of all its
constructs, and a few have been omitted for lack of space, but
these (e.g. many well-known arithmetic operators) are sufficiently
similar to the constructs treated in the text that the reader should
have littie difficulty arriving at a reasonable axiomatisation using
the techniques described. Chapter 13 also discusses issues relating
to the logical approach taken in the other chapters, for example
limitations of the logical frame and the axiomatisations chosen.

The final part of the book, Part III, contains a collection of useful
theorems for those readers wishing to apply the techniques learned
to their own examples.

It is worth stressing that the techniiques discussed throughout the
book can be applied equally to proofs done by hand and to proofs
constructed using a computer. Indeed, the logical framework and
proof style presented here have been shown to be suited to machine
support [JJLM91}.

Each chapter in the main text ends with exercises aimed at
reinforcing the lessons taught there. In the case study of Chapter
12, the exercises are an integral part of the study itself, and are
presented at appropriate points throughout the chapter. In addi-
tion, Part TII contains numerous derived results which can be used
as practice material. Chapter 13 can be considered ddditional
reading for those wishing a deeper understanding of some of the
more esoteric issues arising in connection with the axiomatisation
of a specification language.

Further material, including answers to exercises, is available as a
separate volume. Entitled *Proof in VDM: Readers’ Notes”, this
can be obtained by anonymous file transfer protocol (ftp) or in
hardcopy. The ftp version can be obtained from the University of
Manchester (ftp.cs.man.ac.uk) in the directory /pub/Proof-in-
VDM. The files are stored as compressed PostScript. Copies are
also available by post from the following addresses. A small fee will
be charged to cover printing and postage.

Dept. of Computing Science, The University of Newcastle upon
Tyne, Newcastle upon Tyne NE1 7RU, United Kingdom

Informatics Department, Rutherford Appleton Laboratory,
Chilton, Didcot, Oxon 0X11 0QX, United Kingdom

Software Verification Research Centre, University of Queensland,
St Lucia, Queensland 4072, Australia

This book represents a significant collaborative effort by a geo-
graphically diverse group of authors, all of whom have contributed
to the material presented throughout the book. Readers wishing to
make further enguiries are, however, invited to contact the authors
on the following basis: RM and JSF for the basic axiomatisation
and proof techniques presented in Chapters 2 to 9 and 14; JCB and
BR for theories of specifications and reifications discussed in
Chapters 10 and 11; PAL for the logical framework outlined in

Preface xi

Section 1.3, RM and PAL for the case study of Chapter 12; RM,
BR and JSF for the material presented in Chapter 13.

Acknowledgements

The authors owe a considerable debt of gratitude to Cliff Jones for
his thoughtful advice and support both in the production of this
volume and in the research which underlies it.

We are very grateful to Peter Gorm Larsen of the Institute of
Applied Computer Science (IFAD), Denmark for his valuable
review comments. Technical discussions with Peter have helped us
identify many of the issues relating to the extension of our work to
the full VDM-SL language (Chapter 13): we wish him well in taking
this work further in his doctoral research. In a similar vein, we are
grateful to our colleagues in the development of the mural system,
during the design of which many of the ideas described here were
originally formulated. Thanks also to lan Hayes for discussions
concerning early drafts of the air-traffic contro] case study, and to
Ralph Nelson, Senior Tower Controller at Brisbane Airport, for
advice on terminology.

This book has been some two years int the making. Our thanks
therefore to Linda Schofield and the staff at Springer-Verlag for
their patience and support, and to the anonymous referees for their
telling and constructive comments.

The authors gratefully acknowledge the technical assistance of
the Department of Computing Science at Newcastle University in
the maintenance of the book’s source text. Typesetting was done
using a version of the LATEX system set up by David Carlisie of
Manchester University, with mathematical and index macros by
Mario Wolczko and Brian Ritchie.

JSF would like to thank colleagues in the Computing Science
Department at the University of Newcastle upon Tyne for valuable
discussions and technical support; RM thanks the Department of
Computer Science, University of Manchester for financial support;
BR and JCB would like to thank colleagues at the SERC Ruther-
ford Appleton Laboratory; and PAL would like to thank collea-
gues in the Department of Computer Science and the Software
Verification Research Centre at The University of Queensland.

September 1993 Juan C. Bicarregui
John §. Fitzgerald

Peter A. Lindsay

Richard Moore

Brian Ritchie

Contents

I Introductionccovvvviiiieviiiiiiinin e
1.1 Backgroundcooiciiiiiii
1.2 How proofs arise in practice: an introductory example
1.3 A logical framework for proofs
1.4 Summary

...

I A Logical Basis for Proof in VDM

2 Propositional LPF
2.1 IntroductiOn .o.veviiverieiiit e iieriiere e e aaa e eaes
2.2 Basic axiomatiSationcoooviceeiiniiinniiii e,
2.3 Derived rules; reasoning by cases; reasoning using

CORLTACdICHON .ovirviiie et e
2.4 Using definitions: conjunctionocovevininiinnen
2.5 Implication; definedness; further defined constructs ..
2.6 Summary
2.7 Exercises

...

...

3 Predicate LPF with Equality
3.1 Predicatescoooviiiiiiiiiiniiii
3.2 Types in predicatesccooeevvieeiiiiiiniii e,
3.3 Predicate calculus for LPF: proof strategies for

quantifiers ...
3.4 Reasoning about equality: substitution and chains of
qUALILY .oviiiii e
3.5 Extensions to typed predicate LPF with equality
3.6 Summary
3.7 Exercises

...

...

4 Basic Type Constructors
4.1 Introduction
4.2 UNIOB LYPES 1cvniviaieerirniete et e erieeaniennnn.
4.3 Cartesian product tYPesccoeevinieiinieininiinnnn.,
4.4 Optional types

...

...

..

D WD RS e e

Riv Contents

4.5 Subtypesovciviiiiiic 67
4.6 A note on COMPOSILE LYPES vvvvivvivinnierrrioriianrinns 68
4.7 SUMMIATY oottt 69
4.8 EXErCISEs ...oviviiriiniiiieiiii e 69
5 Numbersooooiiiiiiiiiiiiii 71
5.1 Introductioncocevviiniiiiiiiiiinii 71
5.2 Axiomatising the natural numbers 72
5.3 Axiomatisation of addition and proof by induction ... 75
5.4 More on proof by induction ... 79
5.5 Using direct definitionso.cooviiiiiiininnnnnn. 81
5.6 SUMMAIY ..ooviiiiii e 84
5.7 EXETICISES ..ovviivvniiiiiiiiiiiiiinii i 34
6 Finite SEtscooviiiiiiiniiiiii e . 85
6.1 Introductioncooviviiiiiiiiiin e, 85
6.2 Generators for sets; set membershlp, set induction ... 85
6.3 Proof using set induction ... 87
6.4 Quantification over sets e aea s 99
6.5 Subsets; set equality; cardinality, 92
6.6 Other set CONSIUCIOTSovvvviiiernieiireiereeaerrneannn. 96
6.7 Set comprehension ... 99
6.8 Reasoning about set comprehension 102
6.9 SUMMALY ..oooviiniiiiinii e 104
6.10 Exercisescoovrviiiiiiiiiie e 104
7 Finite Maps ... 107
7.1 Introductionooovviiiiniiiii e 167
7.2 Basic axiomatisationc.ooceeiiiiiiiienien, 108
7.3 Axiomatisation using generatorsc.eun.. 109
7.4 Extraction and abstraction of lemmas 115
7.5 Using subsidiary definitionsoocoiiiinl, 119
7.6 Polymorphic subtypes and associated induction rules 122
7.7 Map comprehension ... 126
7.8 SUMIMALY ..ovvviirniiriiiiii et e, 129
7.9 EXEICISES ..ivvviiiiiiirieiiie e cenina i 129
8 Finite Sequencesccociiniiniiiiiinc 133
8.1 Introductionc.ocoooiviviiiiiiiiiie e, 133
8.2 Basic axiomatisationcooceieiiiiiininniinni. 133
8.3 DeSIIUCtOrS ..oovvvviiiiiiiiciiiniii it 136
8.4 Equality between listsocooiieiiniiiinnn.L, 136
8.5 Operators on listsoocoovviiiiiiiiniiiiiien, 136
8.6 An alternative generator setcccoeevennnn.... 145
8.7 SUMINALY ..evviiiiriiiiciiice e s 147

B.8 EXOICISES tivvriverriniiiitii i e et 147

Contents XV

9 Booleans ... 149
9.1 Introduchionccociivirniiiiiiiii 149
9.2 Basic axiomatisationccoccieriviiiiiiiniiiiniiiaen.. 149
9.3 Formation rules for boolean-valued operators 151

9.4 An example of a well-formedness proof obligation ... 154

0.5 SUMMIATY +\vveirniiniie e ineie et enecre s e e 158
9.6 EXErciSescoviiiiiiiiniiiiiiiiii e 158
11 Proof in Practice
10 Proofs From Specificationsoocoiiii, 161
10.1 Introductioncoooieiiiiieeniiic e 161
10.2 Type definitionscoooiviimiiiiiniiniiiinnei, 162
10.3 The State ...oovivurieneiieii e eas 166
10.4 Functions and valuescccovviiiiinnnicennnne. 167
10.5 Operations PSP 175
10.6 Validation proofsc....oceviiiiiiiiicic 177
10.7 SUMMALY ..ovvviiiiiieini 178
10.8 EXErICises ..ovceuiiiirimriieiinriiereineierres e eianreeeanns 178
11 Verifying Reificationscocoiiiiiiiiiniininnn 181
11,1 Introductionc..evviviniiiiiniini e, 181
11.2 Data reificationoeoveeeiriiiniii e 182
11.3 Operation modellingccooieriiiiiiniciiiinnne. 184
11.4 An example reification proof 186
11.5 Implementing functions ..., 189
11.6 Implementation bias and unreachable states, 190
11.7 Summary ..o e 191
11.8 EXEICiSes .vovveiiirinriniriiniieiarcniinirerniainsinnanns, 192
12 A Case Study in Air-Traffic Control 193
12,1 Introductioncoovvviviniiiniiiiiie 193
12.2 The air-traffic control systemcccovvieninianns 194
12.3 Formalisation of the state model 197
12.4 Top-level Operationsc.ccoviiviiviniinniinn.n, 211
12.5 First refinement StePoocovevviiviienivniiiieeinnan, 221
12.6 Second refinement SEEPvvvvrivrieiiiniiriienaa 240
12.7 Concluding remarksooviveiiiiriiiiiinriiiiinn, 241
13 Advanced Topicscoccoiiiiniiiii 245
13.1 Introductionccccooviiiiieeiiiiiiiiiicin e, 245
13.2 Functions as adatatypeooocviiiiiiiiinnn, 246
13.3 Comparing elements of disjoint types 247
13.4 Recursive type definitionscooeeneviniinnnen. 248

13.5 Enumerated sets, maps and sequences 252

xvi Contents

13.6 Patiernsociiiiiiieimiirie e 254
13.7 Other eXpressionscoovveeiiivriiiiciiriieniirieinns 256
13.8 Other typesooviiiiiiii e, 263

III Directory of Theorems

14 Directory of Theoremsooooiiiiiiiiiiiiiinnn.. 267
14.1 Propositonal LPF ..., 267
14.2 Predicate LPF with equalityccocovvvvienviniinnn. 273
14.3 Basic type cORStIUCOTSoovvvenveniinee e, 281
14.4 Natural numbersccooooiviiviiiniiiiniirinnen, 284
14.5 FiNite SEtS ...vvvvviviiiiiiiiieiiiiiiieiieeineiieiieinnennnnn. 287
14.6 FINHe mAaPs ovvviiiiii e 302
14.7 Finite SEqUENCEScoiiivirnriiriiircncererereenee. . 314
14.8 Booleans [T ROUUPUPIUR 319
14.9 Specificationscoveiiiieiiini e, 321
1410 Reificationsccovivieiiiiiiriirinnininiennenn 326
14.11 Case study I: abstract specification 327
14.12 Case study II: refinementcooeevvveeninnn, 333

Bibliography ..o s 343

Index ..o e 347

Index of Symbols ... 351

Index of RUles ...t it e iree e verereennas 353

Chapter 1

Introduction

1.1 Background

This book is about formal techniques for the specification and development of computing
systems. In particular, it addresses the role of proof as an aid in building specifications,
checking them and developing working systems from them. As a vehicle for this, the
specification and development techniques of VDM (the Vienna Development Method)
are used. Prior familiarity with VDM is not essential to an understanding of this text, but
a good working knowledge of the method can be gained from [Jon90], [AI91] or [WHY3].

VDM is a collection of techniques for the rigorous or formal development of computing
systems. It chiefly consists of:

A specification language: The language VDM-SL is used to present specifications in a
model-oriented style. A specification consists of a data model, defining an abstrac-
tion of the main data types with which the proposed system is concerned, together
with a set of operations which express the required behaviour of the system in an
abstract manner. A state type is usually defined as part of the data model, as an
abstraction of the internal state of the system, although many applications do not
in fact require a state. Each operation is defined as a relation between input and
output values of various defined types. When a state model is used, an operation
may also change the state of the system as a side-effect.

Data reification techniques; The data model defined in a specification is an abstraction
of the data types which will appear in the final implementation, and might be quite
different in form and structure. Data reification techniques allow the specification
to be progressively rewritten in terms of data models which more and more closely
approximate the data types of the implementation. As implementation detail is
introduced, each successively more concrete specification can be shown to exhibit
the behaviour defined by the more abstract specifications.

Operation decomposition techniques: In an abstract specification operations are spec-
ified as mathematical relations, but in the final computing system they are imple-
mented as programs. Operation decomposition technigues allow the staged intro-
duction of programming constructs (loops, conditionals, and so on) into operation
definitions, YDM-SL has a repertoire of predefined operation combinators for giv-
ing imperative-style operation specifications.

2 1 Introduction

This book concentrates on the specification and data reification techniques of VDM.

As motivation, Section 1.2 takes a simple example of a VDM development and illus-
trates the kind of reasoning involved in validating its correctness. Section 1.3 describes
a framework for conducting this reasoning.

1.2 How proofs arise in practice: an introductory exam-
ple

In this section, a simple specification is built and a small refinement step illustrated. This
highlights the need to reason about a specification as it is being written and developed,
exemplifying the kinds of facts one might wish to prove in the process.

1.2.1 Requirements

Here is an extract from a hypothetical informal requirements document sent by a client
to a specifier:

I am building a formally-developed debugger for a block-structured pro-
gramming language. As part of this, I need a symbol table which records the
names and values of all the variables in the program at any point. I need
operations to:

1. enter a block, stacking the outer block's variables;

2. leave a block, forgetting about its variables;

3. find the value of any variable accessible from the current block;
4. ...

A variable is in scope in all the blocks contained within the block where it is
defined, except where it is redefined locally.

The client has asked for other operations {e.g. to add and modify variables) but these are
not considered in this brief introduction.

1.2.2 Specification

The specifier reads the requirements and notices that the client has been good enough to
state what operations are required. The next step is to come up with a suitable model of
the symbol table. One approach is to treat the table as a stack of frames, a frame being a
tnapping from variables to values.

In VDM, models are built using primitive types and type constructors. There are, for
example, primitive types modelling the natural numbers and Boolean values (respectively
N and B), and type constructors modelling Cartesian product types (- x), disjoint union
types {. |), finite sets (.-se1), finite maps (. — ..) and finite sequences (%),

In the symbol table example, the type of frames can be modelled as a class of maps:

Frame = Var - Val

1.2 How proofs arise in practice: an iniroductory example 3

where Var and Val are types for variables and values respectively. The details of their
definitions are not relevant here.

The state of the symbol table can be modelled as a sequence of frames, most recent
frame first. Initially (before the first block of the program is entered), the symbol table is
empty:
state Symbol_Table of

fstack : Frame'
init mk-Symbol_Table(fs) 2 fs={]
end

The primitive types and type constructors of VDM-SL. have associated operators which
may be applied to values of the relevant types. For example, sequences have many pre-
defined operators, among them:

the empty sequence [] sequence enumeration [a,b,c,...]
sequence concatenation .7 . length of a sequence fen.

head of a sequence hd. elements of a sequence elems..
tail of a sequence ti. indices of a sequence inds..

Since a sequence has been chosen to model the symbol table, these operators can be
applied to it, allowing the specifier to describe the head, tail, elements, and so on, of the
symbol table.

In addition to the primitive types, type constructors and their associated operators, VDM
supports logical assertions composed from tertns using the operators. For example:

Assertion 1.1 If /5 is a non-empty symbol table, then the result of popping
the most recent frame off f5 is again a symbol table:

{fs:Frame® anfs+{]) = (Ifs).Frame"

The ability to make assertions about elements of the defined types and state space al-
lows the operations to be specified implicitly. An operation can be specified in VDM-SL
by defining its input and output variables, together with their types; the access (read-
only, read/write) it has to the so-called exrernal state variables; its precondition, which
describes those inputs and states for which the operation’s behaviour is defined; and its
postcondition, which describes the relationship between inputs and outputs and the effect
on the state.

For example, the operation for entering a block can be specified thus:
Enter_Block (frame: Var = Val)

ext wr fstack : Frame'
pre true

post fstack = [frame] " fstack

where the input variable frame represents the frame corresponding to the block being
entered. This operation updates the symbol table by pushing the new frame onto the

4 1 nooaqucaon

stack, In the postcondition, the variable fstack denotes the value of the state variable
when Enter_Block is invoked and fsrack stands for its value when the operation returns.

The implicit specification style of VDM allows the specifier to give just enough informa-
tion to describe the effects of an operation, without being over-prescriptive.

The operation for leaving a block can be specified as follows:

Leave-Block {)
extwr fstack : Frame'
pre fstack =[]

post fstack = tifstack

The behaviour of the Leave-Block operation is not defined when the symbol table is
empty.

‘What would the client, who knows little about formal specification, make of the specifier’s
work so far? This specification is unlikely to be helpful if it is offered simply as a piece
of text without some supporting argument that it is meaningful, self-consistent, and does
indeed describe the required system behaviour. In short, the specifier needs 2 semantics
for the specification language which supports reasoning about the behaviour it describes.
This is provided, in part, by the mathematical properties of the building blocks of the
specification: the primitive types, type constructors, operators on constructed types, and
so on. Using these, it is possible to make some assertions about the putative symbol table
specification and to discuss their validity.

VDM provides a number of proof obligations which, when discharged, show the math-
ematical self-consistency of a specification. For example, an argument should be given
10 say why the postcondition of Leave_Block is meaningful, since the ti.. operator is de-
fined only on non-empty sequences. Such a proof obligation is called a well-formedness
obligation. For the Leave_Block operation, the precondition gives a sufficient condition
for the postcondition to be well-formed, since it ensures that fstack is non-empty when
the operation is invoked.

Another kind of proof obligation is to show that operation specifications are satisfiable.
For the Enter.Block operation, this proof obligation can be formulated as follows:

Obligation 1.2: Given any input frame: Var — Vil and state fstack: Frame®
satisfying the precondition of Enter.Block, there is a state fstack: Frame®
such that the postcondition of Enter.Block is satisfied.

An informal proof of this obligation might go as follows:
The type of the input is frame: Var " Val,

so by definition of Frame Jrame: Frame,
and by properties of sequences {frame}: Frame®.

Next, it is given that fstack: Frame®,

s0 by properties of sequences [frame]” fstack: Frame*.

1.2 How proofs arise in practice: an introductory example 5

Let fstack be this new value: fstack = [frame]” fstack,

By substitution of equals Jstack: Frame®,
50 fitack is a state {(as required)
and the postcondition holds post-Enter.Block.

It remains to specify the operation for looking up the value of a variable. The visible
variables are those of the current block and all those of containing blocks whose names
have not been redefined in the current block. The specifier decides to write a function
curr.vars which takes a symbol table and extracts from it the collection of all currently
visible variables and their values:

curr-vars: Frame* — (Var = Val)

The specifier leaves the body of the function undefined tetoporarily in order to finish off
the specification of the look-up operation:

Lookup (v: Var) r;: Val

ext rd fstack : Frame'

pre v e domcurr_vars(fstack)
post r = (curr-vars(fstack))(v)

The function curr-vars is auxiliary: it is defined purely for convenience in writing the
specification; it is not an operation requiring implementation. A first attempt to define
the function might result in something like:

curr.vars 1 Frame™ — (Var = Vah
curr-vars(fs) & ifs =[] then {~+} else (hdfs) T curr_vars(ifs)

where {—} is the empty map and T is the map override symbol. However, as the reader
may have noticed, the specification of curr.vars given above does not define the desired
function because the arguments of the map override are the wrong way round. This means
that, where frames have variables in common, the more recent values get overwritten by
the older values, which is not what the client intended. The function body is well-formed
and agrees with its signature, so this error would not be spotted by a type-checker. In
fact, the error in curr.vars is not even one of internal consistency in the specification: the
Lookup operation is satisfiable, so discharging the satisfiability proof obligation will not
help in spotting the fault.

Such faults can easily arise in formal specification as the result of a misunderstanding of
the requirements, or of oversights in the definition. One way to overcome such problems
and improve confidence in a specification is to posit validation conjectures (or validation
conditions), which are statements of properties which the system is expected to possess,
then to show that these are logical consequences of the specification. For the example
above, one such validation conjecture might be:

Validation 1.3: Suppose that, after initialisation, Enter_Block({x — v;}) is
applied, followed immediately by Enter.Block({x ++ v;}); then the result of
Lookup{x) should be va.

By considering the effect the operations have on the state; this could be stated more

6 1 Introduction

formally as:
Courravars({{x v}, {x = W 1IN = w

Unfolding the definition of curr.vars, it becomes clear that Validation 1.3 cannot be
proved:

Let 57 stand for Hx— v}, {x i}l
and let sy stand for H{x—=wn}l

‘Then curr.vars(s;) is {x — va} ¥ curr_vars(s;).
Now, curr_vars(s) is {x — v} tcurrovarsll),
and curr-vars([]) is {—1,

50 by properties of maps,

curr_vars(s} equals {x+rwm}

Thus curr_vars(sz) equals {x = w}f{res v}
which simplifies to {x—wl,

again, by properties of maps.

Finally, (curr_vars(s; (0 is {x — vi }(x),
which equals Vi,
contrary to expectations!

This example illustrates that proof is a tool not only for showing internal consistency of
specifications but also for validating them against their requirements. Obviously it is still
possible to miss some “bugs” in a specification, since one may not suggest all the correct
validation theorems. Even extensive proof can only serve to increase confidence that a
specification conforms to its requirements. It is, in general, impossible to show perfect
conformance at this boundary between the formal and informal.

In the symbol table example, the specifier corrects the definition of curr.vars to read:

curr-vars : Frame® — (Yar = Val)
curr-vars(fsy £ itfs =[] then {i»] else curr.vars(tf5) t (hdfs)

With this new definition, it is possible to prove the validation conjecture above.

1.2.3 Data reification

The specification given above provides an abstract model of the system exhibiting the
required external behaviour, but it pays no attention to the efficiency of operations. For
instance, a direct implementation of the specification of the Lookup operation would be
particularly inefficient since the curr.vars function recursively traverses the whole of
the sequence of frames in order to build a map of the visible variables and their values.
Some improvement in efficiency couid be made by algorithm refinement. For example,
the succession of recursive calls could be stopped as soon as the required maplet is found
{namely, as soon as a frame is encountered which has the variable in its domain),

Algorithm refinement on its own, however, might still not deliver the required efficiency.

1.2 How proofs arise in practice: an introductory example 7

If it is known that Lookup is to be used very frequently, it might be better to choose a
new data model which brings to the fore the information it requires. The process of going
from an abstract data model to a more concrete one is known as data reification. One
possible reification of the data model given above would be to model the state as a map
from variables to stacks of values, where the head of each sequence is the current value
assoclated with that variable and its tail comprises the values that have been overridden
in the present context. With this model Lookup could be considerably more efficient,
though Enter.Block and Leave.Block become more awkward as a consequence.

The specifier might define the new, more concrete state as follows:

state Symbol.Table_2 of

vmap : Var % Val’
inv mk-Symbol_Table_2(vimap) & []e mgvmap
end

The invariant indicates that variables that are out of scope are modelled by omission from
the map.

With the new data model, the Lookup operation could be re-specified in what appears to
be a more efficient way as:

Lookup (v: Var) r: Val
extrd vmap 1 Var - Val*
pre v € domvmap

post r = hd vmap(v)

This operation has the same “signature” (that is, parameter and results types) as its abstract
counterpart, but does it describe the same behaviour? More generally, what is required
in order to show that an operation on the new, concrete state is a faithful representation
of the abstract operation? The reguirement is that it should exhibit behaviour that is ar
least as good as that of its abstract counterpart, that is, the concrete specification should
exhibit all the properties of the abstract one. Thus, it is possible to develop a system by
stepwise refinements and be assured that the development preserves top-level properties.

The key o dividing the justification of the system as a whole into a separate treatment for
each operation lies in establishing a correspondence between the two state spaces. Then
it is sufficient to show that each operation separately respects this correspondence.

One way to establish such a correspondence is to provide a retrieve function which maps
elements of the concrete data model back to elements of the absiract data model. Given
this, it is possible to compare the abstract and concrete versions of each operation indi-
vidually and define conditions under which the concrete operation’s behaviour is at least
as good as its abstract counterpart’s. The requirements are twofold, First, the domain
of termination of the concrete operation must be at least as wide as that of the abstract
one: that is, the concrete precondition must be weaker. Second, any non-determinacy
in the concrete operation must be contained within the non-determinacy of the abstract
operation: that is, the concrete postcondition must be stronger. These criteria are made
precise and formalised in Chapter 11. The process of developing more concrete versions
of operations is called operation modelling.

For the symbol table example, the retrieve function must construct a sequence of maps
from the map of variables to sequences:

8 1 Introduction

retrieve | (Var = Val') = (Var -2 Valy*
retrieve(m) &

But how is it to do this? On attempting to define the retrieve function one finds that
there is insufficient information in the concrete state to reconstruct the abstract state. For
example, the concrete state {x; — [wl.x2 — [wl.x3 = [vs3,v4]} could have arisen
from the initial state either by applying Enter.Block({x1 + vi,%3 — v4}) followed by
Enter_Block({x» — va,x3 — v3}), or by applying Enter_Block({x2 — v3,x3 — v4})
followed by Enter_Block({x; — v1,x; — v3}). Inthe first case the corresponding abstract
state is [{xo — vo.x3 — w3}, {x; = vi,x3 — v4}] whereas in the second case it is
[{x1 = vi,xs = w} {x o v, x5 v 1L

The problem arises since two different abstract states are being modelled by the same
concrete state. On further consideration, the specifier realises that when new variable
bindings are formed by Enter.Block the information as to which variables have just been
bound is thrown away, This will cause a problem for Leave.Block: how can it be known
which variable bindings should be released? Thus it is impossible to ensure that the
concrete operations faithfully reproduce the behaviour of their abstract counterparts, and
so the choice of concrete data model is inadequate. In this example, the problem was
revealed when trying to construct the retrieve function, Other chances to catch errors
occur when discharging the proof obligations associated with reifications (see Chapter 12
for an example).

1.2.4 Onwards ...

The exaraple above should begin to give the reader a feel for the kind of reasoning that
is involved in software development using VDM. Verification and validation techniques
such as those discussed above reveal errors in specifications and refinements and expose
oversights which might otherwise remain undiscovered until much later in the develop-
ment process. Attempting proofs is a good way to increase one’s understanding of the
system being modelled.

Informal proofs of the kind employed in traditional mathematics texts is heavily reliant
on human intuition: steps in the argument are omitted which the reader is expected to fill
in mentally or simply accept as valid. A formal proof, on the other hand, is one in which
every step is justified by some formal rule of inference. Such proofs can be seen simply
as exercises in symbol manipulation: checking the correctness of the steps in the proof
is reduced to pattern matching against established inference rules. This can be done
mechanically without any understanding of what the individual steps mean. Machine-
assisted construction and checking of proofs reduces the possibility of errors occurring
in proofs significantly beyond what can be achieved using pencil and paper.

The purpose of this book is to introduce the reader to techniques for building formal
proofs. In doing so, a great many questions must be settled first. For example, what does
it mean to appeal to one of the facts stated earlier “by substitution of equals”? What are
the permitted inferences? How does one appeal to definitions in the specification? The
first step in answering these questions is to define a logical framework within which they
can be posed. This is done in Section 1.3.

Once a logical framework is established, it is possible to embark on the task of codifying
and expressing useful properties of the specification language’s components: its logic,

1.3 A logical framework for proofs 9

primitive types, type constructors and their associated operators. This is dealt with in
Chapters 2 10 9. In Chapters 10 and 11 the focus returns to specifications and refinements,
with a clearer idea of how theorems are to be formally expressed and proved. The lessons
of these chapters are then brought to bear on a realistic problem, the specification and
development of an air-traffic control subsystem, in Chapter 12.

1.3 A logical framework for proofs

1.3.1 Introduction

In order to reason formally about specifications and refinements, three things are required:
a formal language in which assertions can be formulated; an interpretation of the mean-
ing of the expressions and statements of the formal language; and a set of axioms and
inference rules describing inferences which are valid for the given interpretation. These
three components are explained in turn below.

For a specification language like VDM-SL, the formal language consists of a collection
of symbols together with ways of combining them to form expressions and statements.
Some of these symbols form part of the basic specification language (e.g. +, A, Z), others
describe the types, functions etc. defined in a particular specification. Symbols are used
to represent values (e.g. [1, 3), value comstructors (e.g. -~ .), predicates (e.g. . =.),
types (e.g. N}, type constructors (e.g. .}, and so on. Statements built from the symbols
above include [17 [3] ={3]" [} and [3] : N*.

The interpretation of the symbols and expressions of a VDM specification can be found
in any standard text book on VDM. As examples, the symbol [] represents the empty
sequence, and . . represents sequence concatenation; the expression N* represents the
type of sequences of natural numbers, and [3] represents the singleton sequence whose
only member is the number 3; the statement [] ; N represents the (false) assertion that
the empty sequence is a natural number; and so on.

An inference rule is a rule which says how statements can be inferred from other state-
ments. An example inference rule is “If we assert a staternent of the form P = @ and
we also assert the statement P, then we can also assert the statement (7. This rule is
in fact a schema for a whole class of inference rules, because the symbols P and @ can
be instantiated to any statement. The exact form of inference rules used in this book is
explained below. An inference rule is velid if it is consistent with the interpretation given
to the statements of the formal language: that is, if all its hypotheses are true then its
conclusion is also true. In this book, an axiom is an inference rule whose validity is taken
to be self-evident.

Given a formal Ianguage, an axiom set and some rules of inference, one can set about
deriving theorems and new inference rules. If the axioms and rules of inference are valid
in the interpretation attached to the statements of the formal language, then any statements
which can be inferred from them must also be valid. Thus inference is reduced to an
exercise in symbol manipulation, and the correctness of reasoning can be checked purely
mechanically, independent of the particular interpretations given to the symbols. This is
the main principle on which formal reasoning is based.

The process of showing how the validity of one staternent is derived from others by

10 I Introduction

applying rules of inference is called proof, and the inference rule which summarizes the
outcome of the proof is called a derived rule. A theory is a collection of symbols, axioms
and derived rules which are related together in some way: the examples discussed above,
for instance, form part of a theory of sequences of natural numbers.

The following section informaltly describes the logical framework used to present the
logic in subsequent chapters. Readers interested in a more detailed, formal description of
the logical framework are referred to [JJTLM91]. Note that a number of example rules are
presented in this section for itlustration only and are not necessarily themselves applicable
to VDM. The rules for VDM are introduced in subsequent chapters.

1.3.2 Constants and expressions

The basic building blocks of proofs, inference rules and logical statements are expressions,
Three kinds of symbol are used in expressions:

¢ vgriables, which vary over values, e.g. vs, X, vy, V25

o constants, which correspond to value and type constructors, e.g. {1, [-], -7 -, O, N,
L]
e A and

¢ binders, which correspond to constructors which intreduce (and bind) new vari-
ables, e.g. V¥, 3, set comprehension.

A constant takes a fixed number of arguments, known as its arity. For example, the
constant [] takes no arguments, and the constant . ™ . takes two arguments.

Expressions are built from these components. An expression is either:
¢ a variable symbol;

+ a constant symbol together with the appropriate number of arguments, themselves
expressions, e.g. [0], hd ({vs] ™ fs); or

¢ a binder symbol with a variable {the variable it binds) and an expression repre-
senting the universe over which the variable ranges, together with the body of the
binding (itself an expression), e.g. Ve N- hd({n]™ ns) = n,

The scope of the bound variable is limited to the body of the binding. Variables not in the
scope of a binder are called free variables. Expressions are considered equivalent up to
renaming of bound variables (¢-equivalence): for example, the expression Vi N-xxx 2 x
is to all intents and purposes the same as the expression Vy:N . yxy 2 y.

A special notation for subtypes directly supports reasoning about data types with in-
variants. For example, the following type expression represents the type of all natural
numbers greater than three:

€ x:Nix>3>»

Subtypes are discussed in Section 4.5.

This book is very liberal regarding concrete syntax for the logic. Constants are presented
in prefix, postfix, or infix forms as seems most readable. Parentheses are often omitted
for commutative/associative operators such as - A - and . +.. The operator precedence
and association of [Daw91] is used throughout.

1.3 A logical framework for proofs 11

1.3.3 Hilbert-style inference
Inference rules and metavariables

The description of rules and proofs begins with a basic Hilbert-style system’. A (Hilbert-
style) inference rule consists of a list of Aypotheses above a horizontal line and a conclu-
sion below i1, The rule states that the conclnsion holds whenever the hypotheses hold.
Thus, in a theory of natural numbers, the following rule asserts that if 3 is a natoral number
then 3 + 1 is also a natural number:
N
3+ 1):N

Some rules have no hypotheses, for example the rule asserting that 0 is a natural number:

O:N

The two rules above refer to specific constants (0, 3, -+ -, 1, =i -, N), but clearly the first
rule would still be valid with any natural number in place of the 3. Instead of writing such
a rule for every number, symbols, called meravariabies, are used to represent arbitrary
expressions. For example, the following rule, in which n is a metavariable, states that if
an arbitrary expression r represents a natural number then so does the expression n+ 1:
mN
(n+ 11N

When rules arc used to justify steps in proofs, their metavariables are instantiared (i.e.
replaced by expressions). Note that each occurrence of the same metavariable must re-
ceive the same instantiation. Thus for example, the first rule given above is an instance
of the more general rule, obtained by instantiating # with the constant 3.

In the logical framework of this book, metavariables can also take arguments, in much the
same way as functions can take arguments. Consider the following rule, which describes
the substitution of equal values in an expression:

a=b; Pla)
P{b)

The metavariable P(.) can be instantiated by any expression having a “placeholder” for a
subexpression. For example, P{-) could be instantiated by Vx:N- _ =x v x > ., in which
case P{0) would then stand for that expression with {} in the place of the placeholder:
ViN-O=xvx>0Q

In the rule above, a and b are also metavariables. Thus the rule could be instantiated to
justify a step of reasoning such as “if 2 = 1+ 1 and is-even(2) then is-even(1 + 1)". The
appropriate instantiation replaces a by 2, b by 1+ 1, and P(_} by is-even(.).

Note that, in general, metavariables can have any number of placeholders. Thus P(a, b}
instantiates to 2 + 1 upon instantiating @ by 1, b by 2, and P{.,, .s) by -p + -4, Where
.i stands for placeholder i. Under the same instantiation, P{a, a} becomes 1 + 1. When
building instantiations, bound variables may need to be renamed in order to avoid capture

PThe reader is referred to Section 2.4 of [End72} for more information on Hilbert-style inference
systems,

12 1 Introduction

of free variables. For example, when instantiating P(-) by ZxN-2xx#_anda by x+x,
the expression P(a) becomes (something o-equivalent to) 3y:N-2xy#x+x.

Before moving on to consider the use of rules in proofs, a few syntactic points need o
be made. Each ruie may have more than one hypothesis, in which case the hypotheses
are separated by semicolons or appear on separate lines. A rule aiso has a name, which
is used when referring to it in proofs, This appears in a box to the left of the rule, and is
generally moemonic, following the informal conventions outlined in Section 1.3.7. Rules
which are axioms are marked on the right with the letters “Ax”. The following examples
illustrate these points:

PLP=0
(o) 522 o] A

Proofs

A {formal) proof is an argument that some conclusion can be inferred from a number
of assumptions. For example, suppose one wants 1o prove that, given some seguence
of natural numbers #s, concatenating the sequence [0] with it produces a sequence of
natural numbers. That is, from the assumption ns : N* infer that [0] " a5 : N*. In the
proof notation used here, the (incomplete) proof is written:

from ns:N*

infer {0} " ns : N° {77 justify 77)

The keyword from identifies a line recording assumptions, while the keyword infer iden-
tifies a line containing a conclusion. The marker “(77 justify ??)” indicates that the
justification of some assertion has not yet been worked out. The marker “...” indicates
where some lines may have to be inserted when constructing such a justification.

In completing this example proof, the following rules concerning the theory of sequences
of numbers are used:

, a:A spr At 5 A
[Ofom] 5 [snglfor] g7+ Com] A

The rule ‘O-form’ has no hypotheses, allowing the fact that O is a natural number to be
asserted anywhere. Applying it in the current proof gives a line containing its conclusion
as the assertion, justified by appealing to the rule:

from rs:N*
I ON O-form
infer [0] " ns : N (77 justify 77)

The new line contains a reference number (1), an expression representing the assertion
that the line purports to establish (0:N), and a justification indicating which inference rule
has been applied to justify the assertion (‘0-form’),

1.3 A logical framework for proofs 13

The rule ‘singl-form’ contains two metavariables, a and A. If g is instantiated to 0 and A
to N, the following instance of the rule results:
O:N
[O:N
Its hypothesis matches Line 1 in the proof, so the rule can be applied, allowing the infer-

ence that [0]: N*. The new line is justified by the name of the applied rule and a numerical
reference to the line on which the assertion matching its hypothesis occurs:

from ns:N*

1 0:N 0-form
2 [OLNT singl-form (1)
infer ([0 ns): N* {77 justify 77)

The proof is completed by applying -form’, instantiating s; by [0], 52 by ns and A by N
to yield the following instance of the rule:

[O1:N; ns:N*
(ORI
The completed proof is:
from ns:N*
1 0:N O-form
2 [OI:N singl-form (1)
infer ([0 nsi:N* “form (2, h1)

Lines are numbered sequentially between from and infer keywords. Assumptions are re-
ferred to by their position in the from line: *hl” for the first assumption, “h2” for the
second and s0 on.

The proof can be seen as either an exercise in symbol manipulation or an argument about
sequences of natural numbers. For this proof, the argument can be read as follows:

“Suppose ks represents a sequence of numbers (Assumption h1). Using rule
‘0-form’ it can be asserted that O is a number (Line 1). Using rule ‘singl-
form’” it follows from Line 1 that [0] is a sequence of numbers (Line 2).
Finally, using rule “"-form’ it follows from Line 2 and Assumption hl that
[017 ns is a sequence of numbers.”

Derived rules

The proof has established a new logical statement, [0] ™ as : N°, contingent on the as-
sumption that #s: N*. This can be stated formally as a new rule:

= ns: N
(01 foum | =5

14 I Introduction

A rule extracted from a proof as above is sald to be derived from the rules used in its
proof. Derived rules can be used in other proofs as required. A point to be noted is that
the derived rule itself has ns as a metavariable. Any metavariables which appear in the
staternent of the rule being proved must not be instantiated during the course of the proof:
instantiation of metavariables only takes place for the rules used in justifications in the
proof.

In this book, derived roles are sometimes also called lemmas or theorems.

Vatid proofs
A proof is valid precisely when:

¢ Justifications refer only to preceding lines.

» For each justification, there is an instance of the inference rule such that the hy-
potheses (of the instance) correspond to the assertions on the lines to which it refers
and the conclusion corresponds to the assertion on the line being justified.

s Ateach step, the instantiation is valid in the syntactic context of the proof. Roughly,
all symbols must be “in scope” where the proof is being constructed, or be metavari-
ables of the rule being derived.

A rule is regarded as proved when it has a valid proof with justifications referring only
to axioms and already proved rules.

1.3.4 Natural Peduction style

So far, a proof has been viewed as a sequence of justified assertions. While straightfor-
ward, this view is limiting. In order to give proofs a structure which more closely resem-
bles that of a natural argument, the idea of local scoping of assumptions is introduced.
This comes frotn Gentzen's system of Natural Deduction {Pra65, GLT89]. Consider, for
example, the following well-known inference rules:

Deduction Rule; “To prove P = (that is, P implies (), assume P then prove 0.

Case Distinction Rule: “If A v B (that is, A or B) is known, then in order to prove C it
suffices to prove C assuming A and also to prove C assuming B.”

In each of these rules, there is a reference to a subproof showing that some fact can be
derived from some local assumption (@ from P, C from A, and C from B). The local
assumption holds only in the subproof.

In order to capture this kind of inference rule, the logical framework incorporates the
symbol “F (called a turastile) to indicate derivation via a subproof. The statement

POFR

1.3 A logical framework for proofs 15

is called a sequens®. Its meaning is that the expression R is derivable from the local
assurnptions P and 0 in a subproof. Expressions to the left of the turnstile are called local
assumptions or local hypotheses; the expression to the right is called the local conclusion.
Local assumptions are separated by commas.

Using this notation, the Deduction and Case Distinction Rules are written as follows:

. PFQ AVB;AFC BIC
dCdUCUOHI““P—"“g'Q— IS

In order to use these rules, the syntax for proofs is extended to accommodate subproofs.
For example, consider the following rule:

P=20,0=R
P=>R

Its proof contains a step which is justified by appealing to the deduction rule, the sequent
hypothesis of which generates the subproof labelled ‘1"

fromP=>0: Q=R

1 fromP

1.1 o modus ponens (1.h1, h1)
infer R modus ponens (1.1, h2)

infer P = R deduction (1)

Subproofs are numbered it the same way as lines. Within a subproof, which may itself
contain subproofs, the from and infer keywords indicate the local assumptions and local
conclusion, and line numbering is nested and sequential. Local assumptions are referred
toin justifications by their position in the from line, prefixed by the number of the subproof.
Thus “1.h1” refers to the first assumption of Subproof 1. Recall that “h1” refers to the
first assumption of the whole proof.

For this proof, the argument can be read as follows:

“Suppose P implies O (Assumption hl) and @ in turn implies R (Assump-
tion h2). Assume that P holds (Assumption 1.hl). By ‘modus ponens’, it
follows that must hold (Line 1.1) and hence, again by ‘modus ponens’,
that R also holds.

Finally, since R has been shown to follow from P (Subproof 1), then by the
‘deduction’ rule it follows that P implies R.”

The notions of subproof and the notational conventions employed will become familiar
to the reader through many examples in subsequent chapters.

2The 1umnstile used here is specific to the Iogical framework of this book, and is subtly different from
the turnstile often used in Hilbert-style or Sequent Calculus systems. In particular, uniike conventional
Hilberi-style systems, it does not involve separate scoping of variables on the two sides of the - (see
Section 1.3.5).

16 I Introduction

Justification by sequent hypotheses

As indicated above, some rules have sequent hypotheses which represent inferences which
can be used in the rule’s proof. Consider, for example, the rule;

PvQ, PR
Rv(Q

one case

the proof of which is:

fromPv (; PR

1 fromP
1.1 R sequent h2 (L.h1)
inferRv left case (1.1}
2 fromQ
infer R v O right case (2.h1)
infferR v Q cases (hl, 1, 2)

The sequent hypothesis is used at Line 1.1 to infer R (its local conclusion) from P (its
Iocal assumption). The proof also relies on the following two inference rules:

P
Ueft case | 55~ [Fghieas] 2

1.3.5 Natural Deduction with local scoping of variables

Sequents provide local scoping of assumptions within formal proofs. The Edinburgh
Logical Framework (ELEF) [HHP87] extends Gentzen'’s Sequent Calculus so that sequents
can introduce and bind new variables. The logical framework of this book combines
the ELF idea with Natural Deduction, to allow local scoping of varighles as well as
assumptions within proofs. Consider for example the following inference rule:

Generalisation Rule: “To prove Vx: X - P(x) (ie. for all x of type X, P(x) holds), it
suffices to introduce a new variable & to stand for an arbitrary value of type X and,
assuming a: X, prove that P(a) holds.”

Nothing should be assumed about g other than the fact that it stands for a value of type
X. The Generalisation Rule is written:

a:X & Pla)

The subscript a on the turnstile indicates that the sequent variable a is “bound” throughout
the sequent in the same way that variables are bound by quantifiers like V and 3. Sequents
are considered equivalent up to renaming of their sequent variables, so that a: X | P(a)
is indistinguishable from b: X & P(b). This means that, when a sequent hypothesis with
sequent variables is applied in a proof (see previous section), the sequent variable(s) may
be renamed to match existing variables in the proof. This is illustrated in Section 3.3.1.

1.3 A logical framework for proofs 17

When the ‘generalisation’ rule is used to justify a step in a proof, use of a is restricted to
the subproof corresponding to the sequent hypothesis®. To see how such a rule is used in
proofs, consider a proof of the following rule:

YuA-¥YviB- P{u,v)
Yv:B VuA- P(u,v)

In order to establish the conclusion of the rule using ‘generalisation’, it is first necessary
to introduce a subproof with a new local variable, b say, and local assumption b: B, as
follows:

from Vi A - Yv: B - P{u, v)

1 fromb:R
infer Vu: A - P(u, b) (77 justify 77)
infer Vi B- Vi A - Pu,v) generalisation (1)

The local conclusion of Subproof 1 follows from another application of ‘generalisation’:

from Vie A - VviB - P(u, v)

1 tromb:B
1.1 froma: A
infer P(a, b) {77 justify 77}
infer Vi A - P(u, b) generalisation (1.1)
infer Vi B- Viz A P(u,v) generalisation (1)

Finally, the proof can be completed by two applications of the following rule for special-
isation:
t X, Vy:X POy

specialisation P

The completed proof is:

from Vi A - Yv:B - P(u,v)

1 fromb: B
1.1 fromg: A
1.1.1 Yv.B- Pla,v) specialisation (1.1.h1, h1)
infer P(a, b) specialisation (1.hi, 1.1.1)
infer Vi A - P(u, b) generalisation (1.1)
infer Vv:B - Vi A - Plu,v) generalisation (1)}

For this proof, the argament can be read as follows:

31f a rule with a sequent hypothesis is applied in a proof at a line where the sequent’s locat variable is
already in vse, the local variable must be renamed to avoid a clash,

18 1 Introduction

“Suppose Yu: A - Vv B P(u,v) (Assumption hi). Let b be an arbitrary ele-
ment of B (Assumption 1.h1). Now let @ be an arbitrary element of A (As-
sumption 1.1.h1). It follows from the main assumption by specialisation that
Yv: B - P{a,v) holds (Line 1.1). Hence, in turn, it follows by specialisation
that P(a, &) holds.

But since « stands for an arbitrary element of A, it follows (back in Sub-
proof 1) that Vu: A - P(u, b). Finally, since b is arbitrary, it follows (back in
the main proof) that Vv: B Vi A - P(u, v).”

1.3.6 Definitions

Sometimes a constant can be defined directly in terms of other expressions. For example,
the logical operator “and” can be defined in terms of “not” (=) and “or” (v) as follows:

ef
€y A C2 dz —!(—181 V-ﬂez)

where e; and e, are formal parameters standing for arbitrary expressions.

This definition introduces a new symbol {A) which can be considered to be a syntactic
shorthand for the expression that defines it. Thus e; A e always has the same value as
=1 (=12 v =1 e;) and any expression or subexpression matching one side can be replaced in
a proof by the corresponding expression matching the other side. Replacing an expression
matching the right hand side by one matching the left is called folding. The converse
process is called unfolding. These tertns appear within proofs as justifications. Consider,
for example, the following proof fragment:

5 a({(AAB)v 0O
6 a(={—=AvB)v-() unfolding (5)
T {(mAvaBal folding (6)

Here, Line 6 results from Line 5 by unfolding the subexpression A A B, and Line 7 results
from Line 6 by folding the whole expression.

Rules can be derived about the defined construct which can then be used to reason directly
about the defined symbol without using its definition. For example:

€] A€g €1 A€ €1; €2
€ ez ey ALy

Recursive definitions are also allowed. These are discussed in Section 8.5.

1.3.7 Rule naming conventions

Throughout this book some informal mnemonic naming conventions have been followed
in order to make rules easier to remember.

1.4 Summary 19

Rule names generally consist of up to three components, separated by dashes. The first
component lists the various symbols acted on, also separated by dashes. The main sym-
bot being acted on appears first, followed by any subsidiary symbols in turn. The secord
component indicates the type of the rule, for example “introduction”, “elimination”, “for-
mation”. The third (optional) component gives any subsidiary information about the way
the manipulation is being done (e.g. “left”, “right”™} or about separate cases of related
tules {e.g. = or #). The convention should become clearer by considering the following
examples. Note, however, that these conventions are not always followed.

“Zero Formation™:
oN A

The “0" in this rule name indicates that this is a rule about 0, the “form” that it is a
Jormation rule, that is that it gives typing information about its subject. The letters “Ax”
indicate that it is an axiom.

Other kinds of tule are: definition (defn) rules, which give {a case of) a definition of
their subject; introduction (1) and elimination (E) rules, which say respectively how 2
symbol can be introduced and eliminated; commutativity (comm) and associativity (ass)
rules, which say that a binary operator is commutative or associative; induction (indn)
rules, for certain data types; sarisfiability (sat) rules, which state that a given operation is
satisfiable.

“Or Introduction Right™:

In this rule the symbol v (for ‘or’) is being introduced, that is it appears in the conclusion
of the rule but not in the hypotheses. The new item e, is introduced to the right of the

< 1

or'.
“Membership of Intersection Elimination Left":

a.A; 51 A-sel; sy A-set, g€ 518
: - e

ae 5n

This rule is primarily about membership of intersection, hence the first two components
of the name € and M, It is an elimination rule because the intersection is in the hypotheses
and not the conclusion. Furthermore, it is a “left-hand” rule because the argument to the
left of the intersection has been eliminated.

Some rules appear without names at all. Such rules are not part of the axiomatisation as
a whole; indeed they may not even be valid. They are presented simply for the purpose
of discussion and do not appear in the directory of theorems (Chapter 14).

1.4 Summary

At this point, it is worth reviewing the main points of the chapter:

¢ A VDM-SL specification is model-oriented. Tt defines types to model the inputs,
outputs and internal state of a system. Value constructors and logical operators

1 Infrogucion

allow the definition of states, invariants, auxiliary functions and state-modifying
operations. These provide a basis for reasoning about specifications and refine-
ments,

» Opportunities for proof arise in a number of contexts in the formal specification
and design of computing systems:

- discharging proof obligations relating to internal consistency and satisfiability
of a specification;

- discharging proof obligations relating to the correctness of design decisions
in the reification process; and

- showing the truth of validation conjectures, which state expected properties
of the specification.

Performing such proofs increases confidence that a specification or reification step
is correct.

¢ Failure to complete a proof can be just as valuable as success: it indicates changes
which can improve a specification or design.

e A general framework for logic has been described which provides the basis for
the reasoning system for VDM defined in later chapters. A fully formal, detailed
description of the logical framework is given in [JJLM91].

e A formal language, axioms and rules of inference provide a basis for proof of
results, including obligations and conjectures.

» Axioms, theorems, lemmas and derived results are all written as inference rules, and
called rules for short. Axioms are distinguished by the letters Ax. Rules are really
rule schemas, with metavariables capturing genericity. Rules may have sequent
hypotheses representing local scoping of assumptions and variables.

e Proofs are block-structured, reflecting the structure of the rules applied. Blocks
within a proof are called subproafs. Subproofs can have local assumptions and
local variables.

Each step in a proof involves one of the following:

— instantiation and application of a rule;
— application of a sequent hypothesis; or
— folding or unfolding a definition,
Subsequent chapters give definitions and rules for reasoning about VDM specification

and refinement. They demonstrate a2 wide range of techniques for constructing proofs,
and show how to reason about specifications and reifications.

Part I

A Logical Basis for Proof in VDM

Chapter 2

Propositional LPF

2.1 Introduction

In general, a proof is a reasoned argument that some assertion {the conclusion of the
proof) is true under the assumption that certain other assertions (the hypotheses of the
proof) are themselves true. Each step of the argument is itself an assertion and represents
a valid deduction from preceding assertions in the sense that there should be some law
which justifies the step in the mathematical inference system being used to support the
reasoning. The basic logic of assertions, propositional logic, is the subject of this chapter.

One point worth noting before beginning is that, whilst the so-called “classical logic” is
probably the most familiar form of propositional logic, it is by no means the only form.
Indeed, VDM is based on a generalisation of classical logic called the Logic of Partial
Functions (LPF; see [BCI84]; {Ton90]; [Che86]), and it is this generalisation which is
discussed here. The proof techniques illustrated are, however, equally applicable to other
forms of propositional logic. Moreover, since LPF is a generalisation of classical logic,
all the inference rules which are valid in LPF are also valid in classical logic (though the
converse is not true).

The main aim of this chapter is to introduce in as simple a setting as possible the basic
ideas and general proof techniques which are needed in the following chapters. The
starting point is the definition of a basic set of axioms for propositional LPE This is
followed by a discussion of a very common proof technique, reasoning by cases, and
several worked exatnples are presented. These examples are also used to illustrate both
how one can try to convince oneself before starting a proof that a particular inference
rule is provable and how informal reasoning can suggest a structure for the formal proof.
Proof by contradiction is also discussed. The next section deals with extending a theory
by adding definitions, and shows how definitions are used to justify steps in a proof.
The example proofs in this section show how one car determine potentially useful proof
strategies by considering the form of the available inference rules. . The final section
introduces the notions of undefinedness and implication, and discusses the differences
between LPF and classical logic which these engender. The use of sequent hypotheses in
proofs is explained with the help of the examples.

24 2 Propositional LPF
2.2 Basic axiomatisation

The idea behind giving an axiomatisation of a theory is to define a set of symbols rep-
resenting the concepts one wishes to reason about in the theory, together with a set of
inference rules defining their most basic properties. This set of inference rules, the ax-
ioms of the theory, are taken to be true without proof. Other inference rules proved in the
theory (derived rules) are consequences of these basic axioms.

Propositional LPF can be described in terms of three basic logical symbols!, a constant
‘true’ representing truth and the logical constructors ‘—’ representing negation (not) and
‘v’ representing disjunction (or). Their fundamental properties are defined via a series of
axioms expressing the introduction and elimination rules for the simplest combinations
of them.

The easiest of these symbols to deal with is the constant “true’. Its properties are defined
by a single rule ‘true-I” which states that “true’ is true under no assumptions:

A

true X

Three axioms are required to define the basic properties of disjunction. The two intro-
duction rules “v-I-right’ and *v-I-left’ state respectively that the assertion ¢, v e is true
if the assertion e is true or if the assertion e, is true:

T €] €2
(e £, & [v-bitt] 7

The elimination rule ‘v-E’ is somewhat less intuitive and is the first example of a rule
with sequent hypotheses. It has the form:

eyve esbe eabe

Ax

e

The first hypothesis of the rule asserts that ¢; v e; is true, and there are only two ways that
this is possible, namely for either e, or e; 10 be true separately. The sequent hypotheses can
thus be considered as representing these two possible cases, with the rule being interpreted
as stating that if e; v e; is true and if it is possible to prove some assertion e first by
assuming that e is true and second by assuming that ¢; is true then the assertion e is true,
This rule thus represents (one form of) reasoning by cases, examples of which are given
in the next section (Section 2.3). That section also shows how using a rule which has
sequent hypotheses to justify a step in a proof leads to subproofs, with the hypotheses
of the sequent becoming the local hypotheses of the subproof and the conclusion of the
sequent its local goal.

Returning to the axiomatisation of propositional LPF, a further three axioms are needed
to describe the basic properties of negation. These are:

~1~ g — 2y; e
Ax ——ax [contradiction] - Ax
2

_1"1”1

—é

The first two (“~—-I" and ‘= —-E") are easy to understand and effectively amount to

! Axiomatisations based on other combinations of “primitive” symbols are possible.

2.3 Derived rules; reasoning by cases; reasoning using contradiction 25

saying that double negation of some assertion e has the same value as the assertion e
itself. Again, the third axiom is perhaps not quite so intuitive, as its hypotheses state that
both some assertion ¢ and its negation - ¢j are true. At first sight it seems that this rule
could therefore never be used as an assertion cannot be both true and false at the same
time. In practice, however, the rule is often used in proofs employing reasoning by cases
when one of the cases under consideration cannot actually be realised. This is illustrated
in the next section {Section 2.3).

Three more axioms are needed to complete the definition of propositional LPF, dealing
with the simplest possible assertions built from combinations of negation and disjunction.
The introduction axiom ‘-1-v-I” can best be thought of as stating that if each of the
assertions e; and e; is false then the assertion e; v ¢, is also false. The elimination rules
‘—-v-E-left’ and ‘--v-E-right’ state the converse of this, namely that if the assertion
€y v ez 1s known to be false then each of the assertions e; and e; must be false:

€1, —é
[y i

- (81 v 62)

—{e, v e) - ={e1 v &)
—-v-E-lefy | —————=— A w v-Eright | el 22
A L

2.3 Derived rules; reasoning by cases; reasoning using
contradiction

Whilst it would be perfectly possible to attempt to prove everything using just the basic
axioms, in practice this would lead to very long and intractable proofs. Rather it is better
to extend the reasoning power by stating and proving new rules embodying more powerful
valid inferences. These rules can be used in turn to prove rules which are more powerful
still, and a library of useful derived rules can be built up in this way. In essence, therefore,
a derived rule acts as a shorthand for its proof: any step in a proof which is justified by
appeal to a derived rule could instead be justified by multiple steps corresponding to all
the steps in the proof of that derived rule.

When constructing derived rules it is useful to keep in mind two general principles. First,
the rule should be stated in as general a form as possible. To put this another way, it is not
worth stating a derived rule which represents an instance of some more general derived
rule, Second, derived rules will ordinarily represent commonly used inference steps and
not inference steps which are specific to one particular proof and which are not likely to
be used elsewhere (though it is worth relaxing this second criterion if a particular proof
threatens to become excessively long and cumbersome}.

The next point to consider is how to avoid wasting time trying to prove a rule which is
unprovable, or, to put it another way, how to decide whether or not a particular rule is
provable simply by considering its staternent (that is without attempting a formal proof).
A good way of doing this is to reason informally about the rule, by using one’s intuitive
ideas of what the assertions comprising its hypotheses and conclusion mean to consider
the circumstances under which they are (separately) true. This is best illustrated by an
example.

2 Propositional LPF

Suppose one wishes to construct a rule stating that disjunction is commutative, that is that
the arguments of a disjunction are interchangeable. The obvious form for such a rule is:

€1 V €2
[|

Informally, this rule amounts to the statement that the assertion ¢; v e is true if the
assertion e; v e is true. Considering first the hypothesis of the rule, this can only be true
in two cases, namely if the assertion e; is true or if the assertion ¢; is true. In each of
these cases, the assertion 3 v ¢ is true, so the rule is provable.

The other advantage of such informal argument is that its structure generally mirrors that
of the corresponding formal proof. In this particular example, the facts that the informal
argument employed reasoning by cases and that a disjunction is amongst the hypotheses
suggest that the rule “v-E’ is likely to be useful. Applying this to justify the conclusion of
the proof yields two subproofs corresponding not only to the two sequent hypotheses of
the ‘v-E’ rule but also to the two cases considered in the informal argument, these cases
being represented by the local hypotheses of the subproofs:

frome; v ez
I frome

infer e2 v €1 {77 justify ?7)
2 fromen

infer ez v &) {27 justify 77}
infer ez v &y v-E (h1, 1, 2)

Each subproof is now easy to complete, being respectively simple instances of the rules
“v-I-left’ and “v-I-right’. The completed proof is thus:

frome; v e
1 frome

infer e2 v ey v-I-left (1.h1)
2 frome;

infere; v e; v-I-right (2.h1)
infere; v g v-E {(hl, 1, 2)

Another simple example is the rule ‘v-E-left-—";

&1 V €3, M€
B loftr — | e

€2

Again, one would start by reasoning informally about this rule.

As in the previous example, the hypothesis ¢, v e leads to the conclusion that either ¢;
or ¢z must be true. Here, however, extra information, namely that ey is false, is provided
by the second hypothesis. This means that the first of these two cases is ruled out, which

2.3 Derived rules; reasoning by cases; reasoning using contradiction 27

in turn means that 2 must be true. This shows that the rule should indeed be provabie.

Turning now to the formal proof, the facts that there is a disjunction amongst the hypothe-
ses and that the informal argument proceeded by considering cases again indicate that the
rule “v-E’ is likely to be useful, application of which yields two subproofs in exactly the
same way as seen in the previous example:

from e; v €35 —ey

1 frome

infer e; (7?7 justify 77)
2 fromey

infer e, {77 justify 77)
infer g3 v-E (hl,1,2)

The second subproof here is actually trivially true as its local hypothesis is the same as its
goal (it effectively amounts to proving that e; is true on the assumption that e, is truef).
Such subproofs are not shown in proofs in this book, Rather, the fact that a step in a proof
is justified by appeal to a trivially true subproof is recorded by referring to the symbol
“triv’ instead of some line number in the justification.

The first subproof has a hypothesis which contradicts the second hypothesis of the over-
all proof and corresponds to the case that was ruled out as impossible in the informal
argument. In the formal proof this subproof is justified by appeal to the rule ‘contradic-
tion". Note how this is used to justify the required conclusion in this “illegal” case. The
completed proof is therefore:

fromey v ez, — €y

1 fromej
infer ez contradiction (1,h1, h2)
infer ¢ v-E (hl, i, triv)

Clearly, an entirely analogous proof of the related rule *v-E-right-~’

— €] V 83} [4
v-E-right- _1__£S_2
1

could be constructed, except that in that case the first subproof would follow trivially
by assumption and the second would be proved by contradiction. A much simpler proof
can be produced, however, which makes use of the derived rule for the commutativity
of disjunction (‘v-comm’). The point to note here is that the rule ‘v-E-right--" can
be transformed into the rule ‘v-E-left-— ' by first commuting the disjunction in its first
hypothesis and then swapping ¢; and ¢; throughout. The proof which results from this
insight shows how the judicious use of derived rules can save work:

28 2 Propositional LPF

from ey v @35 g2
1 eve v-comm (hi)
infer ¢ v-E-left-—~ {1, h2)

Of course, one could just as easily have chosen to prove the rule “v-E-right-—" first,
afterwards proving the rule ‘v-E-left-—’ from that by using the commutativity of dis-
junction.

2.4 Using definitions: conjunction

Although any propositional assertion could in principle be expressed in terms of the three
logical symbols introduced so far (truth, negation and disjunction), assertions written in
this way not only become long-winded and unwieldy very rapidly but also fail to express
one’s intuitive understanding in anything like a natural way. For example, the notion
that two assertions ¢; and e; are both true would have to be expressed by saying that the
disjunction of the negation of e; and the negation of e; is false, that is as the assertion
—(— ey v —ey). This notion of conjunction {A, or and) does not add anything fundamen-
tally new to the theory of propositional LPE, however, as it can be expressed in terms of
the existing notions of disjunction and negation as shown above. It is therefore inappro-
priate to extend the theory by adding axioms to describe the properties of conjunction as
these should all be deducible from the properties of negation and disjunction. Rather one
makes a syntactic definition:

f
¢y A e d___@_ —(=ep v ey

This effectively defines the pattern ey A e; as a shorthand for the expression on the right-
hand side of the defining equation.

The standard introduction and elimination rules for conjunction
) sy €Y A€ ey Aey
Al j——— A-E-right | ~—mermemee S]

are provable from the above definition and the rules for negation and disjunction. Their
proofs are simple, but illustrate how definitions are used to justify steps in a proof.

Consider first the statements of these three rules. The introduction rule “A-I” asserts that
if e; and e; are both true then ¢; A ez s true, and the elimination rules ‘A-E-right” and
‘a-E-left” express respectively that if) A ey is true then ¢; is true and ¢; is true. These
properties exactly match one’s intuitive understanding of conjunction. Indeed, the whole
idea of stating such rules for a defined construct is that they should encapsulate the way
one naturally reasons about that construct. This means, however, that the technique of
planning the formal proof by using inforrmal natural reasoning does not work for rules such
as these which represent the most basic properties of defined symbols. Some different
approach is therefore needed here.

At this stage, no derived inference rules mentioning conjunction are available to help
with the proofs of the introduction and elimination rules. The only thing that is known

2.4 Using definitions: conjunction 29

about conjunction is its definition in terms of negation and disjunction. The only way the
proofs can proceed, therefore, is by making use of this definition to rewrite the assertions
containing a conjunction. This introduces two new forms of justification, folding and
unfolding of definitions.

Consider first the elimination rule ‘A-E-right’. The first step in the proof is to unfold the

definition of the conjunction in its hypothesis. This yields a new line in the proof justified
by unfolding:

frome; A ez
I a(erv-e) unfolding (h1)
infer e; (77 justify 77)

This has reduced the task 1o proving that e; is true if the assertion —(—e; v —e3) is true,
which still probably defies one’s intuition. However, the problem is now stated only in
terms of negation and disjunction, so it is clear that the only possible way to proceed is
to use rules relating to these. The question is, how does one choose which rule might be
the most useful to apply?

In fact, there are various considerations which can help with the selection of useful rules at
some point in a proof. The first step is to look at the current knowns and goals of the proof.
The knowns are all the assertions in a proof which could be used to match against the
hypotheses of any rule being applied. Typically this comprises all accessible hypotheses
in the proof {(including local hypotheses of containing subproofs) and anything that has
been proved from these by steps of forward reasoning. In the current proof, therefore,
the knowns are the assertions e; A ez and —{—¢; v —e3). The goals, on the other hand,
represents those lines of the proof which have not yet been justified. These therefore
represent those assertions which could be used to match the conclusion of the rule being
apphied. The only goal in the current proof is the assertion ey,

Next, consideration of steps already carried out in a proof can help to filter the set of
“useful” knowns. Forinstance, it was argued above that the only possible way of deducing
anything from the first of the knowns was by unfolding the definition of conjunction.
Since this has already been done 10 generate Line 1 of the proof above, there is nothing
further to be gained by considering it. It can therefore be discarded from the set of knowns,
leaving — (e v = ¢3) as the only useful known,

The next step in the procedure is to try to find those rules from the set of all available rules
which could be applied to these knowns and goals. It must be remembered, however, that
rules can be applied either forwards to knowns or backwards to goals, so that a particular
rule might be applicable in one direction but not in the other. The aim is thus to arrive at
a list of rules together with the direction(s) in which each can be applied.

Additional assistance with this process can be gained by looking at the structure of the
available knowns and goals. First, the only available known is a larger expression than
the only goal. Moreover, it contains references to two variables ¢, and e; whereas the
goal only refers to the single variable e;. This suggests that one should think either of
applying rules to the known to generate some smaller assertion, preferably independeat of
gy, or rules to the goal to try to generate something closer in form to the known. Because

30 2 Propusitional LPF

the goal is a single variable, however, it is not easy to get a good hint of what rule would
be most useful if applied backwards, so the choice reduces to selecting a rule to apply
forwards to the known.

At this stage of the development of the theory, the rules ‘true-T’, *v-L-right’, *v-L-left’, ‘v~

?) S I S =B, ‘contradiction’, ‘—-v-D7, ‘meveEBileft’, S -v-E-right’, ‘vecomm’,
‘v-E-left-— " and ‘v-E-right~—" are available. The rules ‘“v-E’, ‘~—-E’ and ‘v-comm’
can be rejected immediately as they do not have a hypothesis which matches the known.
Also, those rules with more hypotheses than the number of available knowns are unlikely
to be useful, so all rules in the list with more than one hypothesis can be ignored. This
reduces the selection of potentially useful rules to ‘true-I’, “v-I-right’, “v-L-left’, ‘= =1,
‘—wv-E-left’ and ‘- -v-E-right’. Pretty clearly, the first of these is unlikely to help as the
goal does not mention the constant ‘yrue’. Further, the next three rules in the list can also
be removed according to the criterion that the fact that the goal is smaller than the known
suggests applying a rule which generates some assertion which is smaller than the known.
The choice is thus between “— «v-E-left’ and ‘—-v-E-right’. Finally, the fact that the goal
is independent of e; points towards the rule ‘- -v-E-right’ being the correct choice. It is
worth pointing out here that a different heuristic which states that the most useful rule is
likely to be the one which matches the complex expression most closely (in the sense of
having the most common structure) would have led to the same choice of rule.

Applying this rule to the proof leads to:

frome; Aeg

1 ~t ("1 €1V 82) unfolding (hl)
2 —~t1 €] - “V-E‘fight (1)
infer e {17 justify 77)

which is easy to complete — the goal can be inferred directly from the new known (Line 2)
by using the rule ‘~~=~+-E’. The finished proof is thus:

from €1 A €2

i - (—1 1V 62) unfolding (hl)
2 g ~ -v-E-right (1)
infer) ——-E(2)

The proof of the other elimination rule ‘A-E-left’ is entirely analogous.

Turning now to the proof of the introduction rule ‘A-I", although two rules about con-
junction are now available (the elimination rules}, they are not going to be any help with
this proof as they have the conjunction as their hypothesis and not as their conclusion.
Again, therefore, the only possible starting step is to use the definition of conjunction.
In this case, this is applied backwards to the overall conclusion, which means that the
conclusion is justified by folding the definition from its expanded form as shown:

2.4 Using definitions: conjunction 31

fromey, &3
1 (e v —e) (9? jUSEify rﬂ)
infer e; A &2 folding (1)

The selection of potentially useful rules then proceeds as described above, except that in
this case the atomicity of the knowns suggests working backwards from the goal (Line 1).
Of the rules available, only ‘v-E’, ‘o= -E’, ‘contradiction’, ‘- -v-E-left’, ‘—-v-E-right’,
v, fv-Eeleft-— 7, “v-E-right-—°, ‘A-E-left’ and *A-E-right” have a conclusion which
matches the assertion on Line 1 (note how the rules ‘A-E-left’ and *A-E-right’ have be-
come available for use as derived rules). Again, consideration of the relative complexity
of the knowns and the goal, in this case that the knowns are all simpler than the goal,
leads one to reject rules which have hypotheses which are more complicated than their
conclusion. This reduces the choice to either ‘contradiction” or ‘—-v-I". As a general
rule, ‘contradiction’ is normally only useful in subproofs of proofs employing reasoning
by cases when the case represented by the subproof corresponds to some impossible situ-
ation, Since the current proof is not of this form, this points to using ‘—-v-I" as the next
step in the proof. Again, this could have been deduced from the facts that its conclusion
matches the goal most closely and that its hypotheses are simpler than its conclusion.
This leads to:

fromey; e

1 —1— €| (’79 justify 7?)
2 a-e {77 justify 77)
3 “1(—181 V~1€2) == (1,2)
infer ey A ez folding (3)

Again, the proof is now easy to complete as Lines 1 and 2 follow directly from the first
and second hypothesis respectively using the rule *~1—-1'. The completed proof is thus:

from ¢y; ez

1 €] — -] (hi)
2 —1=~& e | (h2)
3 '*-'1(—|81 v-1e2) —-v-1 (1,2)
infere; A ea folding (3)

Now that these basic introduction and elimination properties have been proved, most
future proofs involving conjunction will be constructed using intuition and informal ar-
gument, as illustrated above for proofs about negation and disjunction, and will not need
to make use of the definition of conjunction (see Section 2.3). As an example of this, the
rule ‘A-comm’ stating that conjunction is commutative:

2 Propositional LPF

el A€y
&2 A€y

submits to the informal argument technique as follows: its hypothesis asserts that) A e;
is true, which is only possible if both e, and e; are true, which in turn means that e; A e,
must be true. The corresponding formal proof follows in the obvious way by using the
introduction and elimination rules ‘A-I", ‘A-E-right” and ‘A-E-left’.

There are still a few occasions when the direct use of the definition is necessary, however,
one example being in the proofs of two of the so-called deMorgan’s laws. These rules
deal with the diswribution of negation over conjunction, and have the form:

Coatae] GV e [ConEa]—ane)

”“\(81/\82) —éy Ve

The definition of conjunction must be used because the introduction and elimination rules
‘a-E-left’, “a-E-right” and ‘A-1’ for conjunction given above do not incorporate any means
of reasoning about the negation of conjunction. To put this another way, none of those
rules have a hypothesis or a conclusion of the form ~{e; A e2), which means that none
of them can be used to reason about the expression of that form appearing in the deMor-
gan’s faws. Furthermore, of the other inference rules available, only those with a single
metavariable in the appropriate position (hypotheses or conclusion) offer any chance of
dealing with this expression, but, as indicated earlier in this section, these are unlikely
to be of any help because they always generate an expression more complex than the
one they are applied to. This points to the use of the definition as the only possible way
forward.

In fact, after applying the definition the proofs of the deMorgan’s laws are straightforward.
For example, that of ‘—-A-E-deM’ is:

from ~{e; A €2)
1 —=(—e v=e) unfolding (h1)
infer me; v ey —=-E(D)

The proof of ‘—-a-I-deM’ and the deMorgan’s laws “~-v-I-deM’ and ‘—-v-E-deM’,
which can be found in Chapter 14, are left as exercises for the reader.

2.5 Implication; definedness; further defined constructs

Other notions commonly used when reasoning about propositions are falsehood, impli-
cation, and equivalence, which are denoted respectively by the symbols ‘false’, ‘=’
(implies), and ‘<’ (is equivalent to, also called if and only if). These can be added to the
theory as defined constructs like conjunction (see Section 2.4 above). Their definitions
are:

false q——Ef —true

2.5 Implication; definedness; further defined constructs 33

€ =g = e Ve

e e B (o= e)ale = e)

Again, one can derive introduction and elimination rules for these using the definitions
and existing rules describing the properties of the symbols used in the definitions. Thus,
for example, the introduction rules ‘= -I-left-vac’ and ‘=-F-right-vac’ for implication
follow directly by expanding the definition of the implication in their conclusion and
applying the rules “v-1-left’ and ‘v-I-right’ respectively. Similarly, the elimination rules
‘=>-E-left’” (sometimes called modus ponens) and *=-E-right’ follow from the derived
rules ‘v-E-left-— " and ‘v-E-right-—".

€3 : e
=-1-left-vagc| ——— =-I-right-vac | ———-
e = éz €] = €3

g1 = £2; &4 — 8| = 81; —éz
2

2 —£]

One point worth noting here is that, although equivalence is defined in terms of impli-
cation and conjunction, which are themselves defined constructs, its introduction and
elimination rules are best proved in terms of the derived rules for conjunction and impli-
cation and not by expanding their definitions. Of course, expanding the definitions would
vield a valid proof, but this would be much longer and much more complicated than that
constructed by reasoning directly in terms of the derived rules.

Differences between classical logic and LPF begin to show up when one goes on 1o
consider other derived rules involving implication. For instance, rules such as the so-
called “law of the excluded middle”, often written in one of the following forms

e=>e eV e

are valid in classical logic but not in LPFE. This is because classical logic deals only with
assertions which are everywhere either true or false (as embodied clearly in the second
form of the above rule} whereas LPF supports reasoning about assertions which may be
undefined. For example, the assertion x = 0 v x/x = 1 is a perfectly valid assertion
about some number x in LPF even though the right-hand clause of the disjunction is
undefined when x is zero. Note, however, that the assertion as a whole is well-defined for
all nurnbers x — the left-hand clause of the disjunction is true where the right-hand clause
is undefined, which means that the overall assertion is also true at that point.

This distinction is formalised in LPF by introducing a new defined constant ‘8’ (delta)
into the theory of propositional LPE This is defined via:

be gef ev—e

and the assertion §e can thus be interpreted ag a statement that the assertion e is either
true or false (alternatively, that ¢ is defined). Classical logic can then be considered as
that subset of LPF which deals only with assertions e for which Se is true?, This subset

2Note how this corresponds to taking the second form of the law of the excluded middle given above

34 2 Propositional LPF

is treated more fully in the chapter on booleans (Chapter 9).

Another well-known technique from classical logic which is not valid in LPF is that
of using the so-called “deduction theorem™ to prove that an assertion in the form of an
implication holds:

€1 |"82
ey = €2

Here, the sequent hypothesis can be interpreted informally as & statement that e, is true
if e; is true. On the other hand, the implication in the conclusion of the rule, treated
informally as the disjunction of — e, and e, as suggested by its definition, is true only if
g; is false or if ¢; is true. This does not follow from the interpretation of the hypothesis,
so the rule is not valid in LPE.

In classical logic, however, additional information from the law of the excluded middle
is available, in particular that ¢; must be either true or false. Considering these two cases,
when ¢ is true the sequent hypothesis means that e, must also be true so the implication
is true too; on the other hand, when e; is false the implication is immediately true. Thus
the rule is valid in classical logic.

The above argument suggests that one can generate a version of the deduction theorem
which is valid in LPF simply by adding an extra “definedness” hypothesis 8e; to the clas-
sical logic rule to ensure that the assertion e is well-defined. That hypothesis informally
amounts to a statement that ¢; must be either true or false, corresponding to the additional
information needed to complete the argument above. This leads to the rule “=3-1":

dey; etk e
&1 = €2

=]

In fact, this process of adding definedness hypotheses to classical logic rules to construct
versions valid in LPF is a general technique, and the proofs of these rules rely on derived
properties of delta. The fact that delta is simply a specialisation of disjunction to the case
where one disjunct is the negation of the other means that the introduction and elimina-
tion rules ‘8-I', ‘8-I-— " and *8-F’ for delta are direct analogues of the introduction and
elimination rules *v-I-left’, “v-I-right’ and “v-E’ for disjunction:

Bl E=lge

56:; € F €2, —€] I—ez

€z

The last of these rules, ‘8-E’, offers a second means of reasoning by cases, in the special
case where one case is the negation of the other. It is particularly useful in conjunction
with rules such as *8-=-I" from the theory of equality (see Section 3.4) and ‘§-&’ from
the theory of sets (see Section 6.3) which allow one to deduce that a particular assertion is
everywhere defined. An example of its use in such situations is presented in Section 3.5.2.

As an illustration of its use in the proofs of rules with definedness hypotheses, consider the
rule *=»-1’ discussed above. Applying ‘6-E’ as the first step of the proof, as suggested by
the informal argument where the two possible cases for the value of e; were considered,
leads to:

as an axiom of classical logic.

2.5 Implication; definedness; further defined constructs

from 8eq; e F e
1 frome;

infer eq =» e2 {77 justify 77)
2 from=—-g

infere, = &3 {77 justify ?7)
infer e; = e; §-E (hl, 1, 2)

The second subproof is easy to complete using the ‘=>-I-right-vac’ rule. The first subproof
is more interesting as it illustrates the last basic form of justification, justification by
sequent hypothesis. As explained above, the sequent hypothesis amounts to an assertion
that e, is true on the assumption that e is true, and this-assumption is exactly the local
hypothesis of Subproof 1. Line 1.1 of the completed proof shown below is thus justified
by applying the sequent hypothesis to the local hypothesis of Subproof 1. The proof is
completed using the rule *=-I-left-vac”:

from e;; e b ey

1 frome;
1.1 & sequent h2 (1.h1)
inferg; = & =-I-left-vac (1.1}
2 from—e
infere; = &3 =-I-right-vac (2.h1)}
infer gy = ey S§-Ehl, 1,2

As a final point in this chapter, it is worth considering another informal technigue which
can sometimes be used to demonstrate very quickly that a particular rule is not valid. The
basis of this is the fact that a rule cannot be valid if some instance of the rule can be
shown to be invalid. Considering the (classical logic version of the) deduction theorem
as an example, if e is instantiated to ¢; the sequent hypothesis becomes e, F ey, which is
trivially true by the properties of sequents (since it would correspond to having to prove
that ¢; is true on the assumption that €; is true). At the same time, the conclusion of the
rule becomes the implication ¢; =» €1, 50 this particular instance of the rule effectively
amounts to the rule

2, = &

which is just an instance of the first version of the law of the excluded middle given
above, This particular instantiation of the deduction theorem would therefore enable one
to prove some assertion which is not necessarily true (because the assertion is undefined
when e; is undefined). This means that the instantiated rule is not valid, which in turn
means that the deduction theorem is not valid.

An extension of this technique is to consider particular values for the metavariables in a
rule. In this way, for example, if both ¢, and e; are taken to be undefined in the rule

Z rroposthonal LFE

21 = (e2 = &)

then the conclusion of the rule is undefined (because implication is undefined if both its
argurments are undefined). The rule is therefore not valid in LPE

In fact this example illustrates a general principle that must be strictly adhered to whenever
stating rules in LPF, namely that the conclusion of a rule can only be undefined if at least
one of the hypotheses is either undefined or false at the same time. This consideration
is particularly important where the rule has no hypotheses or where its hypotheses are
all typing assertions (see Chapter 3): since the hypotheses of such rules can never be
either false or undefined their conclusions must always be well-defined. Examples of
tules where all hypotheses are typing assertions occur in later chapters.

2,6 Summary
This chapter has dealt with the following topics:

+ Basic techniques of proof construction: application of rules, using sequent assump-
tions, and application of definitions.

¢ Using informal reasoning to determine whether a rule is provable and as a template
for a formal proof.

+ Using instantiation of metavariables as a way of seeing that a rule is not valid.
o Extending the level of reasoning by introducing derived rules.

+ Some heuristics for selecting appropriate rules when constructing proofs.

» Reasoning by cases using ‘v-E’ and ‘§-E’.

» Reasoning by contradiction to rule out impossible cases in case distinctions,

* Using symmetry to simplify proofs of pairs of similar rules.

Undefinedness in LPE.

2.7 Exercises

1. Using informal reasoning

Use informal reasoning techniques to determine which of the following rules are provable
and to construct proofs of those that are.

(a) {t
e = e alke 6] = ey e =6
€] =% &3 €] = €3

2.7 Exercises 37

«) {d) (e}
e =€ & ke €1 = e3
2] = €1 e = (e; = ¢3) € <> e

2. Associativity of disjunction

The fact that disjunction is associative is expressed via the two rules;
{e;ve)ve ey v (e v e3)
veags-fef} |~ -ass-right
e; v {esve;) n {e1 v ex) v es
Use the rule *v-E’ to prove the first of these. Prove the second without using ‘v-E’.

3. Contraposition of implication; reasoning about equivalence

Prove the rule
e = €3
oo
—€3 = gy
which allows the arguments of an implication to be interchanged if they are negated.
Use it to show that if two expressions are equivalent then so are their negations:

€y & €2

e — o] [e
—1€ &= 63

4. Reasoning about definedness

One of the distinguishing features of LPF is that an expression can be well-defined when
some sub-expression is undefined. For example, a disjunction is true if one disjunct is
true, even if the other is undefined, as embodied in the following rule:

66;; —£€] [582

(3-vinherit sat] Sy

Note that this requires one argument of the disjunction to be defined, but only requires
the second to be similarly defined if the first happens to be false.

Prove this rule. State and prove a similar rule dealing with the definedness of conjunction.
Note that 2 rule stating that a disjunction is defined if both its disjuncts are defined:

581, 562
(3] 5022

follows directly from the more general rule as the sequent hypothesis is discharged by
the assumption that its local goal is true. The proof is:

from dey, Oeq
infer §(ey v €2) &-v-inherit-sqt (h1, h2)

Chapter 3

Predicate LPF with Equality

3.1 Predicates

Chapter 2 introduced a calculus for reasoning about logical propositions. In this chapter,
the calculus is extended to allow logical statements about arbitrary values drawn from a
type. The limitations of propositional logic are apparent from a simple example. Consider
the following argument, concerning the availability of a value for a variable identifier in
a symbol table (like that introduced in Chapter 1):

1 The identifier “v” is in scope.
2 Any identifier in scope has a value.
3 Therefore the identifier “v* has a value.

This cannot be formulated (finitely) in propositional logic because it makes use of a
general assertion about variables (Assertion 2). This assertion stands for a whole class of
propositions, one for each possible variable:

If identifier “a’ is in scope then it has a vaiue,
If identifier “b” is in scope then it has a value.

“If identifier “zzz5” is in scope then it has a value.

Where there is an infinite class of possible values from which to choose, it is impossible,
let alone intractable, to write down all the necessary propositions. It is for this purpose
that predicates are introduced into the logic. A predicate describes some property of an
arbitrary value. For exarmnple, the predicate

in-scope(x)

describes the property of being in scope. Predicates may also define relationships between
vajues. For example, in a theory of numbers, the predicate

is-factor-of (x, y)

states that x is a factor of y. This allows one to write rules capturing properties of whole

40 3 Predicate LPF with Equality

classes of values, e.g.

in-scope{x}
has-value{x)

A predicate consists of a (mnemonic) name and a number of place holders or free variables
denoting the objects related by the property. A predicate with one free variable is termed
unary;, one with n free variables is n-qry. More elaborate predicates can be built from
simpler ones by means of the propositional connectives introduced already. For example:

prime(x) A even(x)

is a unary predicate to be satisfied by values which are both prime and even,

Instantiating the free variables of a predicate with actual values yields a proposition which
may be true {e.g. prime(2)), false (e.g. even(7)) or undefined (e.g. even([1)). In VDM,
predicates can be partial: they may not denote a logical value (true or false) if their free
variables are instantiated by values outside their domain of definition. In the example
above, evenness is a property of numbers, not of sequences, so the predicate even(.)
applied to the empty sequence {even([1)) is meaningless.

The rest of this chapter describes the calcualus for reasoning about predicates, enriching the
propositional calculus already introduced. Section 3.2 introduces the type membership
assertion as a way of describing the domain of definition of a predicate. Section 3.3
follows a similar pattern to Chapter 2 in that basic constructs such as the existential
quantifier 3’ are introduced first and their essential properties described via axioms. The
universal quantifier *V’ is defined in terms of constructs already given. Along the way,
strategies for proofs of assertions involving 2 and V are discussed.

In Section 3.4 the calculus is extended with a predicate denoting equality between values.
Rules governing the use of equality in proofs are given and illustrated in an example proof,
which shows the “chain of equality” style of reasoning.

Finally, Section 3.5 shows how the predicate quantifiers and equality can be used in the
definition of new kinds of expression, including conditionals and choice.

3.2 Types in predicates

In LPF, a predicate might be meaningless for some instantiations of its free variables.
The reason for this is related to the use of LPF in VDM specifications. In VDM, the view
is taken that specifications should not prescribe or limit system behaviour outside the
domain of definition of the functions and operations in the specification: error behaviour
should be explicitly specified. Improperly-applied predicates are therefore not ascribed a
logical value at all.

Since predicates can be partial, it is-important that axioms in the theory of a specification
record the domain of definition of a predicate. For example, a precondition should be
placed on the use of even to indicate that its argument must be a natural number;

x is a natural number
S(even(x))

The type judgement form “. :."” is used to record membership of a type. In effect, for

3.3 Predicate calculus for LPF: proof strategies for quantifiers 41

any type A, there is a predicate “x: A” denoting membership of the type. For the natural
numbers example, the rule above is written:
x:N
S(even(x))

A variable, expression or value which is known to be of a certain type is said to be
denoting.

The next section is devoted to building the calculus necessary to allow reasoning about
whole classes of values using predicates. The simple typing assertion and notion of type
introduced so far is sufficient for this. Later chapters cover properties of the special VDM
types (union types, finite sets etc.).

3.3 Predicate calculus for LPF: proof strategies for quan-
tifiers

It is often necessary to make assertions using predicates “for all” or “for some” values of
a free variable. For example:

Ax:N - is-prime(x) A even(x)
“There is some prime number which is also even.”

Vx:N-3y:N - is-prime(y) s is-factor-of (y, x)
“Every natural number has a prime factor,”

The calculus of predicate LPF is mostly concerned with the symbols 3 and V called the
existential and universal quantifiers respectively. Each quantifier binds a free variable in
the predicate which forms its main body, giving the variable a type.

The following sections discuss how to conduct proofs about assertions involving 3 and
V. In each case, the axioms and definitions necessary to define the quantifier’s basic
properties are first introduced. In producing these definitions, it is worth bearing in mind
the simjlarity between 3 and v, and V and A. For example, the assertion that there is an
even prime number could be thought of as the disjunction of all the possibilities:

(is-prime(0) A even(0)) v (is-prime(1) A even(1)) v (is-prime(2) n even(2)) v ...

3.3.1 Existential quantification

The axiomatisation of propositional LPF (Chapter 2) begins with disjunction, giving in-
troduction and elimination axioms. In predicate LPF, the axiomatisation begins with the
existential quantifier ‘3’, its properties given by axioms. The introduction axioms for
propositional disjunction state that, if one half of a disjunction is true, the whole disjunc-
tion is true. For 3, the introduction axiom should state that, if a predicate P is known to
be true at some value @ of some type A, then one may conclude that there does indeed
exist a value of type A such that P holds, for its existence has been demonstrated. The
axiom is

3 Fredicate LEPt with zquality
- a4 P(a) Ax
A - P(x)
This rule is often used in backwards reasoning: to show that a value exists satisfying

a predicate, one may produce a witness value and show that the witness satisfies the
predicate.

Recall the elimination axiom for disjunction (‘v-E"), the basis of case distinction. The
axiom for eliminating existential quantification is analogous: if a value satisfying the
predicate P is known, and if, for any value satisfying P, it is possible to prove some
assertion e, then one can conclude e:
Hx: A - P(x)
y: A, P(y) l; e

p

As indicated in Section 1.3.5, if the sequent variable y occurs as a free variable in the
expression instantiating e, the sequent variable should be renamed prior to instantiation
of the rule.

The other axioms for propositional disjunction describe interaction with negation. Again

the similarity with 2 holds. If one can show for an arbitrary x that P(x) is false, then there
cannot be an x for which P(x) is true. This is captured by the axiom:

xAb =P

If there does not exist a y such that P{y) holds, then given any a, P(a) is false:
a:A; (3 A P(x))

—|P(a) Ax

~-3E

Given these axioms, it is possible to start proving useful derived properties of 3, describ-
ing the guantifier’s interaction with the other features of LPF introduced so far, including
the propositional connectives. First consider substitution of the body of a quantified ex-
pression by a weaker predicate. If one knows that 3y: A P(y), and that holds wherever
P holds, then one certainly expects 3y: A - G(y):

Iy A P(y)
x:A, POk O
A 00)

Attempting the proof of ‘I-subs’ is instructive, chiefly because of the possibility of fol-
lowing a “blind alley”. Consider the construction of the proof step by step. Begin as
usual by writing the hypotheses and conclusion:

from3y:A- Py); x4, P(x) & O(x)

infer 3y: A - Q{3 {77 justify 77}

One possible strategy discussed in Chapter 2 is to examine the structure of the conclusion
and reason backwards to simplify the goal. Taking this approach, the conclusion should

3.3 Predicate calculus for LPF: proof strategies for quantifiers 43

be justified by ‘3-1", which requires introduction of a witness value. Updating the proof
yields the following:

fromdy:A - P(y); x:A, PO E Q00

1 aA (77 justify ?7)
2 Xa) {77 justify 77}
infer Iy: A - O(») 3-1(1,2)

Now one has to find the witness value 2. The reader may by now feel this is leading
up a “blind alley”, since the hypotheses give little clue to how it should be constructed.
Perhaps forwards reasoning from the hypotheses wiil help. The only available rule for
this is “3-E’, yielding the following:

from dy: A - P(y); x: A, P(x) k;, O(x)
1 fromz:4; P(2)

infer 777 {77 justify 77)
2 m 3-E (hl, 1)
3 aA {17 justify 77}
4 Q@ (?7 justify ?7)
infer Ay: A - O() 313, 4)

One can apply the sequent hypothesis within Subproof 1 by renaming the sequent variable
X to be the z introduced in the subproof:

from Jy: A - POy); x:A, P(0) & O(x)
1 fwomz:A; P(2)

1.1 Q) sequent h2 (1.hl, 1.h2)

infer 777 {77 justify 77)
2 m 3-El, 1D
3 aA {77 justify 77)
4 Oa) (77 justify 77)
infer 3y: A - Qy) 313, 4)

This is sufficient to conclude Jy: A - G(y) in Subproof 1, and therefore on Line 2:

3 Predicate LPF with Equality

from 3y: A - POY: x:A, PO O(x)
1 fromz:A; P(z)

1.1 O(z) sequent h2 (1hl, 1Lh2)

infer 3y: A - Q) 3I(Lhi, 1.1)
2 A0 J-E¢hl, D
3 aA {77 justify ?7)
4 QOfa) {77 justify ?7)
infer Jy: A - O0) 313,48

Now Line 2 asserts the conclusion of the whole proof. So it appears that the proof can
be concluded by ‘3-E’, without the use of the lines constructed by the initial attempt at
backward reasoning (3 and 4):

from3y:A- POY; x: A, P | Qo)
1 tromz A; P(z)

1.1 @) sequent h2 (Lhl 1.h2)
infer Iy: A - Q(v) 31 (LkL, 1.1)
inter 3y: A - O(y) J-E{h1, 1)

'Thus the conclusion follows by ‘3-E’ and not by “3-T’, as at first suggested by examining
the conclusion. This is a good point at which to recall that all the proof strategies discussed
in this volume are merely heuristic. In fact this combination of “3-E” and “3-I’, where
‘3-I” is placed within the ‘3-E’ subproof, is very common in proofs about the existential
quantifier. It can be used to prove many other useful results about 3 and the propositional
connectives {shown in the Directory: Chapter 14). For example, the result

3 A P(x)
xA L P = 00

e

can be proved using exactly the same strategy:

fromdx: A P(x); xtA L (P(x) = Q(x))
1 fromwA; P(y)

1.1 POy = 2 sequent h2 (L.h1)
12 oW =>-E-left (1.1, 1Lh2)

infer Ix: A - Q%) 3-I(1.h1, 1.2)
infer 3x: A - Q(x) 3-E (1, 1)

3.3.2 Universal quantification

As with propositional logic, one could derive results and conduct proofs using only 3
and the propositional connectives, but that would lead to intractable proofs and would

3.3 Predicate calculus for LPF: proof strategies for quantifiers 45

not reflect intuition about predicates. Just as propositional logic was extended by defini-
tions of A and other connectives, so predicate logic can be extended by adding universal
quantification. The V quantifier is defined in terms of — and 3. A predicate P holds
everywhere over a type A if there does not exist a value at which it does not hold:

veA P ¥ 3pA--pPw
This definition allows proofs of assertions involving ¥ 10 be reduced to proofs involving
the existential rules introduced already. For example, the introduction and elimination
rules for V follow from the axioms for =3 given above. Consider the ‘V-1" rule, which
is analogous to ‘A-I". If P(¥) can be shown to hold for an arbitrary y, the universal quan-
tification holdS'

Fl s

Vx A P(x)

The proof of this rule begins by using the definition of ¥ to modify the goal:
from y: A | P(y)

1 —3xA =Pk {77 justify 77}
infer Vx: 4« P(x) folding (1)

Now the rules of 3 and propositional logic can be applied. Working backwards from the
goal, “—-3-1" can be applied, opening a subproof:

from y: A £ P(y)

I fromziA
infer 1 (~P(z)) {17 justify 77}
infer Vx: 4+ P(x) folding (2}

The proof is easity completed by appealing to the hypothesis and ‘- —-I":

from y: A & P(y)

1 tromz:A

1.1 P(2) sequent hl (1.h1)
infer — (= P(z2)) —=-I1(1.D)

2 =FxndA-aP) =3I

infer Vx: A - P{x) folding (2)

The elimination rule for V is, not surprisingly, related to the elimination rule for —3. If
P(x) holds for any x in the type A, then it certainly holds for a particular value a of that

type:

3 Predicate LPF with Equality

atA; Vx:A- P(x)

. Pla)

The proof of this rule again exploits the definition of V. The V hypothesis is replaced by
its definition in terms of — 3 and the — 3 is eliminated:

from a: A; Vx: A P(x)

1 =3dxA--PKX) unfolding (h2)
2 a(=Pa) ~-3-E(hl, 1)
inter P(a) =~-E (2)

One could go on conducting proofs about ¥ by expanding its definition in the way just
shown, but of course that would lead to unnecessarily long proofs. A theory of useful
results about ¥V can be built up in much the same way as such a theory was built for . It
is then possible to use rules such as “V-I’ and V-E’ directly.

As in the case of 3, the theory can be extended to deal with the interaction of ¥V and
the propositional connectives. Here, instead of a ‘3-E/3-I" technique, the corresponding
V-I/V-E’ technique is valuable. As an example, consider the following rule, which
permits the substitution of a weaker predicate for a stronger one in the body of a universal
quantification:

Yy A P(y)
x:A, Px) L Q)
Vy:A - Q0)

Beginning the proof, it is apparent that littie forward reasoning can be done from the V
hypothesis since ‘V-E’ requires an example value. Instead, begin by reasoning backwards
using *V-I’:

from Vy: 4 P(y); x:4, P(x) b, Q(x)

I fromyA
infer O(v) {17 justify 77
infer Yy: A - O(») V-I(1)

Now the example value y is available within Subproof 1 and P(y) can be concluded by
‘Y-E

from Vy: A - P(y); x:A, P(x) k= O(x)

1 fromy:A

1.1 P(y) V-E (L.h1, h])
infer O(y) sequent h2 (1.h1 1.1)

infer Vv: A - O(y) v-1(1)

The same “V-I/V-E’ technique can be used in many of the proofs of the results relating
¥ and the propositional connectives shown in the Directory (Chapter 14).

3.3 Predicate calculus for LPF: proof strategies for quantifiers 47

The definition of ¥ in terms of 3 leads one to suppose that there are analogues of the
deMorgan laws for propositional disjunction and conjunction. In the same way as

oene)

—€1 V ey

one expects the following to be true:
~ (Va4 P(x))
a2
Since no rules for -V have yet been given, the proof must rely on the definition of V:

from = (Vx: 4 - P(x))
1 ——HcA- PR unfolding (h1)
infer Ix: A - 1 P{x) ——-E(1)

The complementary deMorgan law:
Yx:A- = P(x)
has a simple proof by ‘—-3-1";

from Vx: A - -~ P(x)

1 fromwyA
infer — P{y) V-E (1.h1, hl)
infer —(dx: A - P(x)) —=-3-1(1)

and the other two deMorgan laws, shown below, are proved similarly:
I A Px) =« (3x: A - P(x))
[EoovaMl— VA PG

The deMorgan laws can be used to prove useful properties of — V. Consider, for example,
the proof of the following rule:

a:A; - Pla)

Y-l —wrapay

The proof is straightforward using ‘4 — —-V-deM’. Note that it does not have 1o refer
back to the definition of V':

from a: A; = P(a)
1 FxA--PX 3-1 (h1, b2)
infer - ¥x: 4 - P(x) -5 —-V-deM (1)

3 Predicate LPE with BEquality

3.3.3 N-ary predicates and mixing quantifiers

The rules introduced so far generally concern unary predicates. Each quantifier binds a
single variable, so the formula

Iy B - Plx,y)
is a predicate with a single free variable {x}, while the following
Ix:A Ty B - Plx,y)
is & proposition, having no free variables. In cases where the variables are all of the same
type, an abbreviated notation may be used informally. Thus the formula
dx:A- 3y A-Px,y)
may be abbreviated to
x, v 4 Plx,y)
Of course, quantifiers can be mixed:
VA -3y B-Plx,y) A Q0
One should be able to develop rules to deal with expressions involving n-ary predicates.

Consider the case of binary predicates, The following rules concern values of x for which
Plx,x):

- Ax: A - Plx, x) VoA Yy A-Plx,y)
I—E_SE} ZxA-Hyid - Plx,y) Vx: A P(x,x)

The proofs use the 3-E/3-1’ and ‘V-I/V-E’ strategies. For example, consider the proof
of ‘J-split’. Applying “3-E’ in backwards reasoning mode, the state of the proof is:

from3dx: A - P(x,x)
1 fromx:A; Plx,x)

infer 1e:A - Jy: A - Plx,y) (77 justify 77)
infer Ix:A - Fyi A - P(x,y) F-E (h1, 1)

The conclusion of Subproof 1 follows by two applications of ‘3-I", one for each of the
bound variables:

from dx: A - P(x, x)
1 fromx:4; P(x,x)

1.1 3y A-P(x,y) 3-1(Lhl, 1.h2)
infer Ix: A - 3y: A - P(x,y) 31(Lh1, LD
infer Ix: A - Iy 4 - P{x,y) F-E (h1, 1)

The application of ‘3-I’ justifying Line 1.1 instantiates just one occurrence of the free
variable x in the binary predicate hypothesis P(x, x}, effectively matching the unary pred-

3.3 Predicate calculus for LPF: proof strategies for quantifiers 49

icate P(.) in the ‘3-I" rule with the unary predicate P(x,) in the proof. This form of partial
instantiation is intuitively reasonable: if P(x,x) is known then a witness value (namely x}
has been produced to justify Jy: A- P(x, ¥). Note that one could also conclude Zy: 4. P(y, x)
and 3y: A - P(y, ¥} by applying the same rule with different pattern matchings to the same
hypotheses.

Returning to the derivation of useful rules about n-ary predicates, the following show the
ability to reorder quantifiers:

e A-IvB - Plxy) VA -Vy:B-P(x,y)
Iy B-dxA-Pley) Vy:B-VxA-P(x,y)

30 AV B-Plx,y)
Vy:B + Bx:A . P(x,y)
These are proved using the usual strategies. Note that the converse of “3-V — V.3 is
not true.

The proofs of many of the rules discussed so far in this section involve stripping away and
adding quantifiers one-by-one using the appropriate introduction and elimination rules,
After a while, this process can seem repetitive for rules involving many quantifiers. This
suggests that some derived rules could simplify the proofs. For example, the following
rule describes substitution of weaker predicates in formulae with two existential quanti-
fiers :
oAy B P,y
x:A, B, Py} i, Ox,)

93-subs AcA-InB- 00y

A proof using the rules introduced so far is shown below. Note how the quantifiers are
introduced and eliminated one by one:

fom A -Fy:B-P(x,y); x4, y:B, P,y kK, O%x,y)
1 fromx:A; 3y B - Plx,y)
1.1 fromy: B, P(x,y)

111 Qi y) sequent h2 (Lh1, 1.1.h1, 1.Lh2)
1.12 3B O(x,y) 37 (1.1.h1, 1.1.D)
infer Ax: A -3y: B - Qlx,y) 3-1(1.h1, 1.1.2)

infer dx: A - y: B - O(x, y) 3-E (1.h2, 1.1}
infer x:A -3y B - Q(x,y) 3-E 1, D

The following rules allow the existential quantifiers to be removed and added in one go,
almost as though they were a single quantifier binding two variables:

A BB Pa.b A3y B-Pix,y)
a:A; biB; Pla,b) xA, y:B, P(x,y) I;'ye

dx:4 - 3y:B- Plx,y) p

Given these two rules, the proof of “33-subs’ is simpler:

50 3 Predicate LPF with Equality

tromAx: A -Jy: B - P(x,y); X:A, y:B, P(x,y) b, Q(x,5)
1 fromx:4; y:B; Plx,y)

1.1 oW, y) sequent h2 (L.h1, 1.h2, 1.h3)
infer dx: A - Jy: B - Qx,) F3-I (1.h1, L.h2, 1.1)
infer A - dy: B - O(x, v) J3-E (hl, 1}

The same approach simplifies proofs of the other substitution rules relating ‘33" and the
propositional connectives (A, v, etc.). The rules ‘3-3-comm’ and ‘I-split’ can also be
proved using *33-1" and *J3-E’. The rules ‘J3-I" and ‘93-E’ are themselves proved by
the more pedestrian rules for the single quantifier. A similar approach is of benefit in
dealing with multiple occurrences of V7,

Finally in this section, a note on quantification over empty types. A universally quantified
expression can be true if the type is empty: if there are no values of type A then certainly
P(x) is true for all x in A. One cannot therefore generally conclude 3x: 4 - P(x} from
Wx:A - P(x}. The rule governing this property has a hypothesis to ensure that the type in
question is inhabited:

Vx: A - P(x); inhabited(A)
dAx: A - P(x)
The constant inkabited is simply defined as follows:

inhabited™) % AT - e

A type is non-empty if some value of the type is known to exist. To show this by ‘3-I’
involves producing a witness value.

3.3.4 Definedness of gnantified expressions

In Chapter 2, the symbol 6, indicating definedness of an expression, was introduced.
When should quantified expressions be considered to be defined? Recall that a logical
expression e is defined (written §{¢}) if it is either true or false, i.e. one can prove ¢ v —e.

Consider now the definedness of the expression 3x:A . P(x). From the rules already
defined, if a witness value a can be produced to show P{a), then certainly 3x: A - P(x)
follows by “3-I’, and hence §(3x: 4 - P(x)} by *8-1'. Conversely, if it can be shown that
a witness value does not exist, then == A - P(x) follows by ‘~-3-I’ and once again
o(Ax: A - P(x)} is shown by *8-1-—’. However, there is a third case: the predicate P is
known to be defined at every value in the type A, but one has insufficient information
to either produce or refute the existence of a witness value at which P is tue. In this
case, one cannot prove either Ix; A - P(x) or —2x: 4 - P(x), but one does know that one or
the other is true, and so §(Ix: A - P(x)} is known. To cover this third case, the following
additional axiom is introduced:

x:A L SP(x)

From this, the corresponding result for ¥ can be proved:

3.4 Reasoning about equality: substitution and chains of equality 51

y A |- SP(y)

by appealing to the definition of V.

3.4 Reasoning about equality: substitution and chains of
equality

There are many ways of referring to the same value. For example, the natural number ‘9’
is the same number as that denoted by the expression ‘3% or 22+ 2x 3~ 1", or any of
a multitude of other expressions. If a property P is known to hold for the value denoted
by expression e, (written P(e;}) then it should be possible to conclude P(ez) for any e
which is equal to ;.

Within the logical frame used here, the equality symbol is a binary predicate, taking two
expressions as its arguments, Its properties are given by just a few axioms, the simplest
of which states that equality is reflexive:

EA i

a=a
The typing hypothesis may seem unusual. In LPF, equality (called weak equality in
[BCI84]) is defined only over denoting terms and is polymorphic (i.e. is defined for all
types).
The value of equality lies in the ability to substitute equat values in predicates. This is
captured by a collection of substitution rules, the first of which permits substitution of the
expression on the left of an equality by the expression on the right:

a:A; a=b; P(g)
P(b)

=-suhs-right(a) Ax
This axiom’s name is suffixed ‘(2)’ because the ain the rule is typed. Like other such rules,
it has a ‘(b)’ form, a derived result, presenied later. A complementary axiom describes
substitution by the expression on the left of the equality:

b A; a=b; P(b)

PO

The following axiom asserts that weak equality is defined when both of the operands are
denoting:

E a: A b A

“a=b
The axiom above states that equality is defined when both the arguments of ‘= are of the
samme type. What about equality between values of differing types? In the proof theory for
VDM presented here, values of different types can be ascribed a common supertype (the
union of their own types) so that equality is defined, although one may not have enough
information to work out whether the equality is true or false. This point is discussed

when type constructors are introduced in Section 4.2 and revisited as an advanced topic
in Section 13.3.

3 Predicafe LPF with Equality

The requirement in LPE that the arguments of equality be denoting leads to an abun-
dauce of typing hypotheses in rules relating to equality. Such hypotheses are tiresome,
but straightforward, to discharge in proofs. A mechanised proof support system could
take advantage of static type checking to reduce the need to manually discharge typing
assumptions.

If the axiomatisation of equality presented so far reflects intuition, it should be possible
to derive the three main properties of equality: reflexivity, symmetry and transitivity.
Reflexivity is an axiom already. The first rule for symmetry is:

ahA a=b

=-gymem(a) ~h=a

The proof is straightforward. Begin by writing down the hypotheses and conclusion in
the usual way:

froma:A;, a=b6

inferb=a {77 justify 77)

Given the axioms for equality, it is a safe bet that this proof will involve the application of
substitution. What predicate should form the subject of the substitution? The conclusion
of the proof suggests ‘. = @’ as a possibility. This would allow the conclusion of the
proof to match the conclusion of ‘=-subs-right(a)’, provided P(a) {i.e. @ = a) is available.
This follows immediately by reflexivity of equality. The final proof is therefore:

froma:A; a=»=
1 a=a =-seif-1 (h1)
inferb =a =-subs-right(a) (h1, h2, 1)

A similar rule, with a similar proof, allows for the case where b is known to have a type:

b:A; a=b
=g =a
Note that the typing assertion ‘. :." is itself a predicate, so substitution of equals can be

applied to it too, giving rules about simple inheritance of type across equality:
a:d; b=a b:A, b=aq

=-type-inherit-left -T =-type-inherit-right T

These are simply proved by applying the substitution rules, with the typing hypothesis
used twice. For example, ‘=type-inherit-left” has the proof:

froma:A; a=b
infer b: A =-subs-right(a} (h1, h2, h1)

The symmetry and type inheritance properties of equality allow the proof of two additional
substitution rules which complement the substitution axioms given above:

3.4 Reasoning about equality: substitution and chains of equality 53

a:A; a=b; P(b)

- - b:A; a=5, Pla)
P(a) P{b}

The proofs of these rules are very straightforward and use the type inheritance rules
introduced above. For example, *=-subs-left{a)’ is proved as follows:

=-subs-left(a)

froma: A, a="b; P(b)
1 b:A =-type-inherit-right (h1, h2}
inter P{a) =-subs-left(b) (1, h2, h3)

The proof of ‘=-subs-right(b)’ is similar.
Another important property of equality is its transitivity. For example:
@A, a=b b=c

Transitivity follows directly from the rules of substitution. In applying the rules, the
predicate P is set to correspond to equality with a third value, For example:

froma:A; a=b; b=c
inffera=c =.subs-left(a) (hi, h2, h3)

A variety of transitivity rules are provided in the Directory (Chapter 14) to cope with
various combinations of typing hypotheses and variously commuted equalities.

Finally in this section on equality, an example of some equality rules at work. This is
inspired by the squaring function on page 67 of [Jon90]. A function sq which squares
natural numbers has been defined recursively. The axioms corresponding to its definition
are:

mN, = {(n=0)
[sa-det0)— gy =g Ax s = sqn=D+2xn=1 ™

The proof that sg actually implements its specification (i.e. it returns the square of its
argument), is inductive over the natural numbers, but for this example the reader need
only be concerned with a part of the proof: the induction step. This requires a proof that,
if sq is correct at n, then it is correct at n+ 1, i.e.

nN; sqin) = n?
g+ D) = (i 1P

sq-ind-step
Although the class of natural numbers, N, has not yet been formally introduced, the reader

should be able to construct a straightforward informal argument that ‘sg-ind-step’ holds.
Begin by laying out the skeleton of the proof:

from m:N; sq(n} = n*

nfersgin+ 1) =(n+12 (27 justify 77)

54 3 Predicate LPF with Equality

Expand the definition of sg:

from n:N; sg(n) = n*
1 sgn+D=sqg((n+1)-D+2x(rn+1)-1 sg-def- -0

infer sg(n+ 1) = (n+ 1)* (77 justify 77)
Sirnplify the right hand side of the equality, appealing to the properties of natural numbers:

from n:N; sg(n) = n?

1 sgin+ D=sqgl(n+D)-D+2xn+1)—1 sg-def-—0
2 =sq(m)+2x(n+1)-1 N, 1
3 =sq(n)+2xn+1 N, 2
infersq(n+1) = (n+ 10?2 {77 justify 77)

The second hypothesis allows sg(n) to be rewritten as n®. Then the conclusion follows
by again appealing generally to the natural numbers:

from m:N; sq(n) = n®

1 sgin+D=sgi(a+1}-1)+2x{n+1)~1 sg-def-—0
2 =sq(n)+2x(n+1)—1 N, 1
3 =sgn)+2xn+1 N, 2
4 =n?+2xn+1 h3,3
infer ={(n+1)} N, 4

The informal proof shows clearly the “chain of equality” involved in Lines 1-4. When this
proof is made formal, the application of N has to be clarified and the chain of equality is
seen as a sequence of applications of substitution, transitivity and type inheritance rules,
For example, consider Line 1. To formalize this, the hypotheses of the ‘sg-def-- 0’ rule
have to be discharged:

from r:N; sq(n) = n?

i n+LIN Lemma 1 (hl)
2 =(n+1=0) Lemma 2 (hl)
3 sqln+1)=sql(nt D= D+2x(n+1)—1 sg-def-—0 (1, 2)
infer sq(n+ 1) = (n+ 1) (77 justify 72}

The reader has no information to hand about the theory of natural numbers. When a
formal proof is conducted in such a state of ignorance, it is good practice to record the
properties on which one relies as lemmas to be proved at a later stage. The assumed
properties of Lines 1 and 2 are recorded as follows:

3.4 Reasoning about equality: substitution and chains of equality 55

N nN
Lemma 1]~ & Lemma 2] — 2T =gy

The ability to record precisely the limits of one’s reliance on other theories is an advan-
tage of formal proof over rigorous argument. Carrying on with the example, the first
simplification of Line 3 replaces the expression (n+ 1) —1 by n. One of the substitution
rules is used:

from m:N; sq(n) = n*

1 a+I:N Lemma 1 (hl)
2 —@g+l=0 Lemma 2 ¢hl)
3 sglnt+ D =sg(ln+1)—1D+2x@m+1)-1 sg-def-—0 (1, 2)
4 (+D)~-1=n Lemma 3 (hI)
5 sgn+t1l)=sqn)+2x{n+1)-1 =-gubs-right(b) (h1, 4, 3)
infer sg(n+ 1) = (n+ 1) (27 justify 27)

where ‘Lemma 37 is:
[Lemma 3] ——w——-“*(,, oy

The proof is completed in a similar way. The remaining lemmas are as follows:

nN
ST 1= 250+ 1 =
mN 2N
[Lomma 6] 7 GF P =+ 2]

The completed proof is as follows:

from n:N; sq(n) = n?

1 n+1I:N Lemma 1 ¢h1)
2 =m+l=0) Lemma 2 (hl)
3 sgin+L=sqg{(n+D-}+2x(n+1)-1 sq-def-—0 (1, 2)
4 (n+D)—-1=n Lemma 3 (hl}
5 sgint+D=sgm)+2x(n+1)~1 =-subs-right(b) (h1,4,3)
6 2x(n+D)—-1=2xn+1 Lemma 4 (hl)
7 2xn+1:N Lemma 5 (hi)
8 sgn+D=sg(m)+2xn+1 =-subs-right(b} (7, 6, 5)
9 n:N Lemma 6 (h1)
10 sq(n):N =-type-inherit-left (9, h2)
11 sgln+ 1) =nl+2xn+l =-subs-right(a) (10, h2, §)
12 (n+ 1P = +2xn+1 Lemma 7 (k1)
13 (n+ %N Lemma 6 (1)

infer sg{n+ 1) = (n+ 1) =-trans-right(b} (13, 11, 12)

3 Predicate LPF with BEquality

In this example, it is possible to have considerable confidence in the informal proof.
Formalizing it is a tedious exercise, and one which would benefit from machine assistance.
Furthermore, the final form of the proof tends to hide the chain of equality which forms
the proof’s basis. A machine-based proof-support mechanism should allow the “chain of
equality” style of reasoning while ensuring that the underlying lemmas are recorded and
the substitution rules correctly applied.

The “chain of equality” style of reasoning centres on the rewriting of terms. In this
example, the rewriting has been chiefly to simplify the right hand side of an equality. The
more general case of rewriting terms on both sides of an equality is discussed when it
arises in an example from the theory of finite sequences (Section 8.5.4).

3.5 Extensions to typed predicate LPF with equality

Given all the logical constructs introduced so far, it is possible to add more operators to
the language. These range from the simple abbreviation for inequality (Section 3.5.1) to
the unique choice operator axiomatised in terms of the unique form of existential quantifi-
cation (Sections 3.5.2 and 3.5.3). Having equality in the logic also permits the definition
of conditionals (Section 3.5.4). A convenient notational extension to allow gquantification
over finite sets is introduced at a later stage (Section 6.4).

3.5.1 Inequality

The commonly used notation for inequality, ey # ¢3, can be formalized through a simple
definition:

g #ey gef (e, =€)

3.5.2 Unique existential quantification

The “exists unique” quantifier “31° records the fact that exactly one value satisfies a pred-
icate. The quantifier is defined as follows:

A P B A PO AVYRA PO) = y=x
As with other defined constructs, it is possible to build up a theory of unique quantification
which obviates folding and unfolding its definition in proofs. Example derived rules are:

xA-P(x)
YA, PO), V2A-P(z) = z=yk ¢

:

a:d; Play, Vv A -PW) = y=a
It x: A - Plx)

In Section 2.5 it was indicated that ‘8-=-1" could form the basis of useful case distinctions
in proofs. An example of this arises in the proof of properties about the 3! quantifier. The
following rule asserts that if two witness values satisfy a uniquely quantified predicate,

3.5 Extensions to typed predicate LPF with equality 57
then the witnesses must be equal:

a:A; b:As Pla), P(o), A xA - P()

a=b

Its proof proceeds by such a distinction.

froma: A; b: A; P(a), P(b); 31x:A - P(x)

1 8(a=»b) §-=-1(h1, h2)

2 from—a{a=5)

2.1 azb folding 2.h1

22 -3 A-P(x) =-31-1(h1, h2, h3, h4, 2.1}
infera=>5 contradiction (h5, 2.2)

iMera=>5b 8-E (1, triv, 2)

Observe that the first Jimb of the case distinction relies on the trivially true subproof that
a=hblta=>.

3.5.3 Unique choice

The 1 (iota) operator allows the selection of the unique element from a class of values
satisfying the predicate. Thus the expression

tx: A P(x)

is read as “that x of type A satisfying P(x)”. In terms of the logical frame, the t symbol
is a binder. Unlike 31, it is defined by axioms rather than direct definition, because it is
necessary to record the requirement that there should exist only one element satisfying
the predicate:

Itk A - P(x) AlxA-Plx)
Ay A-PON:A > [0 paya Py

As usual for definitions of operators yielding values of a given type rather than truth
values, the definition consists of a formation axiom giving the type of expressions formed
from the operator and an intreduction axiom showing when the operator can be used in a
proof.

Choice in the case where more than one value satisfies P is discussed as an advanced
topic (Section 13.7.1).

3.54 Conditionals

The “if a then b else ¢” construction describes simple choice. If the discriminator a is
true, the expression evaluates to b:

BAD
CORCIion (fathenbelsec) =6

When the discriminator is false, it evaluates to ¢

58 3 Predicate LPF with Equality

— ClA; —a
(fathenb elsec) =c¢
In order to be denoting, the discriminator must be defined, but the alternatives b and ¢
need only be denoting when they apply. The following formation rule is provable from
the axioms above {(and the rules for equality):

da
at biA
—akcA

form-
(i athen b else ¢): A

3.6 Summary
It is worth briefly reviewing the main points of this chapter:

+ Propositional logic limits ability to reason about arbitrary values. A predicate in-
volving a number of free variables allows properties of values or relationships
between values to be expressed.

« The quantifiers 3 and V bind the free variables in predicates, quantifying them over
classes of values or types.

¢ Proof strategies for the quantifiers have been shown (*3-E /3-I’ and *V-I/ V-E).

* Asin Chapter 2, rules have been given for defined constructs, reducing the need to
fold/unfold their definitions in proofs.

+ Rules (e.g. the deMorgan laws and the ‘33’ rules) have also been given for common
kinds of formula, which again simplify proofs involving these formulae.

¢ Equality is defined on denoting values of the same type (extenston to equality be-
tween values of different types is discussed in Section 4.2),

e Axioms and derived rules show equality to be reflexive, symmetric and transitive.
Substitution of equal values and type inheritance are supported.

¢ The “chain of equality” style of reasoning has been illustrated: the chain of equality
becomes a succession of application of substitution, transitivity and type inheritance
rules when formalised.

¢ The calculus has been extended with definitions of inequality, unique quantification,
uniqgue choice and conditionals.

3.7 Exercises

1. Distribution of 3 over A and v

Use the ‘J-E/3-I’ strategy to prove the following results:

3.7 Exercises 59

Ix: A - P(x)
XAE Px) < G

A O

x4 - P(x) A Q(x) ~ A A - P(x) A O(X)
dx A Q) AP
Use these rules to show that existential quantification distributes over conjunction:

’ A4 P(x) A QR)
Gy A PO A @A Q@)

The corresponding property for disjunction has a slightly more complex proof, but follows
the same style: reason forwards by ‘3-E’ and perform a case distinction (*v-E’) on the
P{x} v Q(x) due to the hypotheses.

_ I AP v OF)
G4 -PE) v @A - O)

2. Quantifier pair rules

Prove the following rules about double universal quantification:

XA yBE, Py a:A; b:B, Yx:A-Vy:B-Px,y)
B YV-E
VxA-Vy:B - P(x,y) Pla,b)

The following rule describes the substitution of a predicate in the body of an expression
quantified by 3V:

IcA- VY B-Ply)

x:A, y:B, Px,y) k;, Ox,)
InA-VvB- O(x,¥)

Prove the rule by application of the “3-E /3-I' and "V-1/V-E’ strategies. Posit a rule for
‘AV-I" and use it to (slightly) simplify the proof.
3. Equalify and Conditionals
Suppose that an operator fac is defined to represent the factorial calculation:
Jac() def ifi=0 thenl elsefuc(i— 1) xi

Part of the proof that this is denoting involves showing that, if fac(n) denotes a natural
number, then fac(n+ 1) also denotes a natural number:

n:N; fac(n):N

Jacn+ 1:N

This rule is proved informally as follows:

3 Predicate LPF with Equality

from m:N; fac{ny:N

I (n+D)-L=n N, hl
2 fac({n+1)—1:N h2, 1
3 {fac((n+1)-Dx(n+1):N N, 2, hl
4 (ifr+1=0then] else fac{(n+ 1)— D) x (n+ 1)) conditionals, 3
infer fac(n+ 11N defn. of fac, 4

Formalise the proof. There are a number of ways of doing this. One is to unfold the
conclusion and then apply ‘ITE-form-sqt’. Remember to record any assumptions about
natural numbers as lemmas.

4. Conditionals

The following rule is a stronger version of the formation rule for conditionals. Prove it
from the weaker one.

(" 3(!; b:A; A

athen b else ¢): A

Chapter 4

Basic Type Constructors

4.1 Introduction

The logic developed so far has been concerned primarily with reasoning about arbitrary
assertions: propositions or predicates. Although the concept of values drawn from a type
has been introduced (Section 3.2), the reader has only so far seen primitive types such as
the natural numbers N. Recall, however, that the logic being developed here is intended
for the interpretation of VDM specifications. Such specifications are based on models of
system states built using a rich repertoire of types and type constructors {e.g. sequences,
maps, sets). The logic developed so far needs to be extended to allow interpretation of
these types. The rest of Part I of this book describes such an extension.

In this chapter, basic constructors for building more elaborate types from basic compo-
nents are introduced. The reader also has the opportunity to practice some of the proof
skills gained so far on examples based on these constructors.

4,2 Union types

A simple way to build a2 more complex type from basic ones is to join them together by
constructing their union. In VDM-SL, the type definition

T=T1|T2

means that the type T is composed of all the values of types T1 and T2!. The union is
non-disjoint in that any values common to T'1 and T2 appear only once in the union type
T: they are not tagged or otherwise distinguished. The axioms describing type union
are straightforward. Introduction axioms simply state that an element of one type is an
element of the union of that type with any other. Separate axioms allow the new type to
be added on either side of the original type:

b:B - ad
(et Ty A By A

'In VDM-SL, a union type may be composed of an arbitrary number of types. Here the discussion is
restricted to binary unions, since the union constructor - | - is a constant in terms of the logical framework
used, and constants have fixed arities,

4 Basic Type Constructors

These axioms may suggest to the reader a similarity between type union and propositional
disjunction (v): if e: (A | B) then e: A or e: B. The elimination rule for union bears this
out, being similar in principle to the *v-E’ rule, but dealing with a predicate rather than a
proposition. If some property P holds for all elements of types A and B, then it holds for
any element of their union:

w(A|B)
a:A L Pla)
b:B E P(b)

b
[l —pgy— 4

The union operator is associative and commutative, as one would expect. Consider asso-
ciativity, described by the two rules shown below:

aA|B|C — @A |(BIC)
[l 2T GO st S ETB TC

The proofs are straightforward and use the elimination rule ‘|-E’ as the basis for case
distinction. Consider as an example the proof of ‘|-ass-left’. Begin by writing down the
hypotheses and conclusion. The hypothesis suggests the form of a case distinction based
on ‘I-E’. The proof so far is therefore:

froma:(A|B)|C
1 fromb:(AlB)

inferb: A (B|C) (77 justify 77)
2 fromaC

inferc:A | (B C) {?? justify 77}
infera:AF(B|C) FE(hi, 1,2)

The first subproof (Subproof 1) suggests a nested case distinction formed by a further
application of ‘}-E":

froma:(A|B)|C
1 fromb:(A|B)
1.1 fromd: A

interd: A | (B|O)
1.2 fromd: B

inferd: A (B)
infferb: A | (BIC)
2 frome:C

inferc:A | (B C)
infera:A | (B | C)

{77 justify 77}

{77 justify 1)
IE (Lh1, 1.1, 1.2)

{77 justify 77)
JE (11, 1, 2)

4.3 Cartesian product types 63
The subproofs are completed by simple application of the introduction rules:

froma: (A | BY | C
1 fromb(A|B)

1.1 fromd: A
inferd:A{(B|C) |-I-right (1.1.h1)
1.2 from d: B
1.2.1 d:{(B1() [-I-right (1.2.h1)
inferd:A|(B]1C) |-i-left (1.2.1)
inferb: A (B|C) -E (1.h1, 1.1, 1.2)
2 ftrome C
2.1 c:{B{C) |-I-Ieft (2.h1)
inferc:Af(BC) [-F-left (2.1)
infera:Al (B | C) -Ei, 1,2)

The parallel with disjunction in propositional LPF continues in that ‘]-ass-right’ can be
proved using ‘[-ass-feft’ and commuzativity, in much the same way as ‘v-ass-right’ follows
from “v-ass-left’ (see Exercise 2 in Section 2.7).

Union types are of importance in ensuring the definedness of equality. Recall that in
Section 3 4, the following rule for definedness of equality was introduced:

- aA; A

“S@=b)
This requires both arguments of an equality not merely to be denoting, but to have the
same type. It was indicated that the more general result shown below holds:

[Frem] S 28-

This can be proved from ‘8-=-I" by straightforward application of the union type intro-
duction rules. If a: A and b: B then both g and b are members of a common supertype
A | B and so equality between them is defined:

froma:A; b:B

1 aAlB) |-I-right (h1)
2 B(A|B |-I-left (h2)
inter 8{a = b) 8-=1(1,2)

Equality being defined does not imply that the rest of the theory of A and B actually gives
enough information to determine whether the equality is true or false. Equality between
elements of disjoint types is discussed further in Section 13.3.

4.3 Cartesian product types

The Cartesian product type A x B is the class of all ordered pairs (a,b) of elements of
A and B respectively. For an arbitrary pair p of type A % B, the elements of the pair are

64 4 Basic Type Constructors

extracted by the selectors fst and snd for the first and second elements respectively.

Three operators on elements of the cartesian product type have just been described: two
selectors (fst and snd) and a constructor (-, .). Axioms are given to fix the definitions
of these operators. In each case, a formation axiom indicates when an application of
the operator is well-formed, while a definition axiom gives its meaning in terms of other
operators. For example, consider fst. Its formation axiom states that its arguent is a pair
and fst returns an element of the first type of the product:

(o] 2L ax

The corresponding definition axiom relates fst to the pair constructor by defining fst to be
the first element of the pair:

(a,by:AxB.
defn | —r A L
fst-defn @b oa Ax
The axioms for the other selector are analogous:

prB (a,b):AxB
(etorm] X2 4n (et X

The pair constructor has formation and definition axioms relating it to the selectors as
follows:

@A b:B - p:AxB
m (a b)AXB Ax (fstprsmjp)=p Ax

Two pairs are equal if their corresponding components are equal:

PuAXB; parAXB; fstpy =1fstpo Asnd py =snd py
=

and vice-versa:
- . PLAXB, p1=ps
_=-gpl
fstpy =1fstpz Asnd py = snd pa

These results can be proved from the definitions given so far and the properties of equality
from Chapter 3. Consider the first, ‘pair-=-split’. The structure of the conclusion suggests
proof by ‘a-I":

frompyAXB; pr =

1 sty =1stpe (7?7 jusiify 77)
2 sndp;=sndp; (7?7 justify 77)
inferfstp, =fstpa Asnd py = sndpy AI(1,2)

Consider the equality in Line 1. From the first hypothesis, fst is well-formed on py.
Reflexivity of equality gives fst py = fst p; and since p; and p, are equal, substitution
gives fst py = fst po. A similar argument works for the second conjunct of the conclusion,
yielding the proof:

4.3 Cartesian product types 65

frompi:AxB: ;=

1 istp;:A fst-form ¢h1)
2 fstpy=istp, =-self-I (1)
3 fstpy=1stpy =-gubs-right(a) (hl, h2, 2)
4 sndp;:B snd-form (h1)
5 sndp; =sndp =-gelf-1 (4)
6 sndp;=sndp; =-subs-right(a) (hl, h2, 5)
inferfstpy = fstpa Asndpy =sndp; A1(3,6)

This proof raises an interesting point about proof technique. Notice how the arguments of
Lines 3-5 and 4-6 follow the same pattern. This suggests that it may be worth abstracting
a more general rule which can be used in similar circumstances in other proofs. In this
case, the following rule about substitution of equals in value expressions is suggested:

- a:A; a=b; E(@):B
E(@) = E(b)

Using this rule, the above proof would become:

frompi:AXB, pr=p

I fstpprA fst-form (h1)
2 fstpr=fstp =-gxtend(a) (kl, h2, 1)
3 sndpi:B snd-form (h1)
4 sndp; = sndps =-gxtend{a) (h1, h2, 3)
inferfst py =fstps Asndpy = snd py AL 2,4

The proof of ‘=-extend(a)’ itself encapsulates the use of ‘=-self-I" which was repeated in
the eriginal proof:

froma:A; a=b; Ea::B
1 E{a)=E(a) =-self-I (h3)
infer E(a) = F{b) =-gubs-right(a) (h1, h2, 1)

Note that the proof of ‘=-extend(a)’ would not be possible without the hypothesis that
E{a) is denoting. If E(a) is non-denoting, the conclusion could be ill-formed (given that
weak equality is undefined when either or both of its arguments are undefined).

It is also worth noting some differences between this approach to Cartesian products and
the product types of VDM-SL. The present form of YDM-SL allows arbitrarily long prod-
uct types {e.g. Ty x...xT,), the elements of which are n-tuples rather than pairs. Element
selectors hke fst and snd are not provided. In the formalisin described here, the number
of components is fixed, so to model VDM-SL exactly, a separate constructor would be
needed for each arity, with additional selectors {third, fourth etc.). “Associated” product
types such as (4 X B) x C can also be described in the formalism used here, since such
types are classes of pairs, the first elements of which are themselves pairs, However, the
logical frame used here prevents a completely general theory of arbitrarily long product
types being written, except insofar as long tuples could be “encoded” as pairs, the sec-

66 4 Basic Type Constructors

ond element of which is a tuple until the last pair is reached (thus mk-(a, b, ¢, d) of type
AxBxCxDis interpreted as (a, (b, (¢, d))) of type A x (B x{C x D})).

VDM-SL uses a tuple constructor called mk-(.). Thus an element of type A x B would
be written mik-(a,b). Since this notation is used primarily for tool support involving
automatic parsing of specifications, it is not employed here.

Section 4.2 above showed the use of type union to construct a common supertype so that
equality is defined on elements of different types. A similar approach to constructing
supertypes is needed for reasoning about types built using the other constructors. For
example, the following rules allow a pair to be an element of a larger type:

tAXB

pair-l-extend-left p(AIC)XB PAXB|O)

These are both derived rules with straightforward proofs, relying on the formation and
definition rules for the Cartesian product type. For example, the proof of the first rule
above is as follows:

fromp:AXB

1 fstp:A fst-form (h1)
2 tstp:(A] O [-I-right (1)
3 sndp:B snd-form (hl)
4 (istp,sndp) (A{C)xB pair-form (2, 3)
5 (stp,sndp)=p pair-defn (h1)
inferp: (A1 CYyx B =-type-inherit-right (4, 5)

There are similar rules for the other type constructors described in this and subsequent
chapters (see the exercises in Section 4.8).

4.4 Optional types

An optional type (written [A]) extends a type A with the additional value nil. It can be
thought of as a union type between the main type and a type containing only the nil value.
The first axiom states that nil belongs to any optional type:

WAX

The second axiom shows an optional type being introduced. The optional type [4] is a
supertype of A:

Lkl PR

Finally, an axiom for the elimination of the optional type, which shows the parallel with
union types: constructing an optional type {A] is just like forming a wnion between A and
a type containing only the value nit:

4.5 Subtypes 67

a: [A]; P(nil); b:A | P(B)

@) Ax

This permits proof of another rule, allowing elimination of the optional type when dealing
with non-nil values:

i & [Al; a=nil
-B-stnil | — =i ———
A

4.5 Subtypes

The subtype of A inhabited by only those elements satisfying a predicate P is written
< x:A | P(x) >. The subtyping construction binds a variable in the unary predicate
which forms its body. Subtyping properties are given by just three axioms. The first
returns a value to its supertype:

a:€ AP >

0

The elimination axiom allows the instantiation of the predicate on any value of the sub-
type:

L nAIPR) >
LR

The introduction axiom asserts that a value of the supertype satisfying the predicate in-
habits the subtype:

a.A; P(a)
I
FZ AP >
The predicate part of the subtype construction can be weakened:

a< AP >
y:A, POYE QO)
a€ 4]0 >

subtype-subs

The proof uses the axioms of subtyping:

roma: < x: A [P(x) > y:4, PG | QO)

I aA supertype (h1)
2 Fa subtype-E (h1)
3 a) sequent-E-gen (1, 2, h2)
infer . < x: A | Q(x) > subtype-I (1, 3)

Line 3 involves a rule which generalises the application of a sequent hypothesis with
sequent variables. Until now, sequents have only been applied directly in proofs: the
local variable of the sequent is matched only against local variables in the proof, not
to metavariables or other expressions. The more general application of sequents is de-
scribed by sequent elimination rules, which can be proved from the more restricted form

68 4 Basic Type Constructors

of sequent application. The most basic sequent elimination rule is ‘sequent-E-basic’:
@ d; x AL Pix)

oo Tbio| —— o ——

1t is proved simply by using the V quantifier to capture a as a variable:

froma: A; 1A | P(x)
1 VxA-P@E) ¥-1(h2)
infer P(a) Y-E (hi, 1)

The subtype constructor allows this to be conveniently generalised to the following rule:
a:A; Pla); x:A, P(x) t; O(x)

ent-E-gen
0@

Its proof uses ‘sequent-E-basic’, with the P property captured in a subtype of A:

from a: A; Pla); x:A, P(x) | O(x)

1 a<<xA|PXx) > subtype-1 (hi, h2})

2 fromy: < AP >

2.1 A supertype (2.h1)

2.2 P(y) subtype-E (2.h1)
infer Q(y) sequent h2 (2.1, 2.2)

infer J(a) sequent-E-basic (1, 2)

Other rules describing the replacement of the predicate part of the subtyping construct
are considered in the exercises (Section 4.8).

4.6 A note on composite types

This chapter has introduced the basic type constructors needed to reason about VDM
specifications. Later chapters deal with the more elaborate constructors such as sets,
sequences and maps, Composite types also play a vital role in VDM specification. They
are essentially tagged tuples. A VDM-SL type definition of the form:

Comp . a . A
b:B
c: C

defines a constructor mk-Comp which builds a Comp from an 4, a B and a C; and three se-
lector functions a, b and ¢, which extract the relevant fields from a Comp. The constructor
and selectors can be defined by formation and definition axioms. For example:

pA B rC
mk-Comp(p, q,r): Comp Ax

4.7 Summary 69

o:Comp
mk-Comp(c.a,6.b,60)=0C Ax

1t is not possible within the logical frame used here to give a completely general theory
of composite types. However, it is possible to give a theory for each composite type
definition in a particular specification. This is considered in detail in Chapter 10, which
deals with the means whereby a theory can be built for a given specification.

4,7 Summary

+ Basic type constructors from VDM-SL have been modelled. Axioms and defini-
tions have been given for type union, Cartesian product types and optional types.
The type constructors are represented by constants in the logical framework, so
they have fixed arity, in this respect differing slightly from their full VDM-SL
counterparts.

¢ The axioms of the subtype constructor have been introdoced. This is used to model
types restricted by invariants in VDM-SL.

* No general theory of composite types is given within the logical framework used
in this book. Each composite type in a specification is dealt with on its own. This
is discussed in depth in Chapter 10.

* The union type constructor . | . can be used to extend types in proofs. This allows
operators such as equality to be defined on elements drawn from different types.

¢ The section on Cartesian product types showed how spotting a repeated line of
reasoning in a proof often suggests a more general result,

4.8 Exercises

1. Type extension rules

Section 4.3 discusses the type extension rules for Cartesian product types. Prove the
following related rules for the other constructors of this chapter:

a: [A]

opt-|-extend-right m

<A Px) >
a<x(AlB) | P>

| sublype—l-extend-right|

Hint: In proving ‘opi-|-extend-right’, use 6(a = nil} and a case distinction.

2, Relating subtypes, type union and logical disjunction

Prove the following rule relating subtyping involving logical disjunction to union types:

4 Basic Type Constructors

@ LA PV OX) >
a (€ xA|Px) <A) »)

subtype-v-to-]

3. Sequent elimination rules

Section 4.5 shows the use of subtyping in the proof of a rule for generalised application
of a sequent. Construct a proof of the following sequent elimination rule, which deals
with sequents having two variables:

a:A; b B, Pla); Q(b)
XA, y:B, P(x), QO) K, R(x.Y)

sequent-E-gen-2 R@.D)

Hint: Follow the pattern of proof of the one-variable rile, by first proving the basic
version:

a:A; b:B
xA, y:BE, P(x,y)

-E-basic-2
mer

using straightforward application of the introduction and elimination rules for double
universal quantifiers (see Exercise 2 in Section 3.7).

Chapter 5

Numbers

5.1 Introduction

Amongst the basic data types provided in VDM-SL. are various classes of numbers: the
natural numbers 0, 1, 2, 3, ... and the positive natural numbers 1, 2, 3, ..., written re-
spectively as N and Nj; the integers (positive and negative), denoted by Z; the rationals,
comprising all positive and negative fractions and represented by the symbol Q; and the
real numbers, including all numbers, both rational and irrational, and denoted by the
symbol R. By and large these data types are so familiar and their properties are taken
for granted to such an extent that it is very difficult to contemplate constructing fully
formal proofs about them. For instance, it is generally accepted as being “obvious” that
if some number n, is greater than some other number ny then ny+1 is greater than n+ 1,
even though the proof of this fact is by no means immediate (see Exercise 2). In view of
this, this chapter does not attempt to give a full axiomatisation of all classes of numbers;
rather it uses the natural numbers and the positive natural numbers as a familiar basis
around which to discuss not only some widely applicable aspects of the axiomatisation
of theories but also some general proof techniques.

The chapter begins by discussing how to construct a model of the values of a data type
based on the ideas of generators and induction, using the natural numbers N as an example.
Section 5.3 explores ways of defining operators on the data type axiomatically and shows
how properties of such operators can be proved by induction. Section 5.4 goes on to
discuss further aspects of proof by induction, illustrating how induction can be applied to
rules in which the hypotheses involving the chosen induction variable are not all simple
typing assertions. Finally, Section 5.5 illustrates how the technique of direct definition,
used in Sections 2.4 and 3.3.2 above in the definition of logical operators like A and ¥,
can be applied to the definition of subtypes and of general operators on data types. The
positive natural numbers N; and the familiar ordering relations on numbers (>, <, etc.)
serve as examples here. This section also discusses some potential problems with using
definitions,

5 Numbers
5.2 Axiomatising the natural numbers

The goal in formalizing a theory is to come up with a set of basic axioms and defini-
tions which express sufficiently many properties of the domain being formalized to allow
reasoning to take place. It is important to aim for a small set of independent axioms,
to increase confidence in their correctness. There are two ways of doing this: first, by
keeping the number of primitive concepts to a minimum and by using direct definitions
as much as possible, and second, by defining orthogonal (non-interfering) concepts as far
as possible so as to minimize the chance of unintended interactions.

The first stage in this process is to consider the various new types that are to be introduced
in the theory. Here, two different types are required, the natural numbers N and the
positive natural numbers N;. However, the fact that the values of the latter are a subset
of the values of the former indicates that the positive natural numbers should be defined
as a subtype of the natural numbers (see Section 5.5). Thus, only one new primitive type
is required, the natural numbers N.

The next step is to consider how elements of the new primitive type(s) can be generated,
A good way of doing this for a data type with an implicit ordering like the natural numbers
is to give a definition of the “smallest” member of the data type and of an operator which
steps from one element of the data type to the next. In the case of the natural numbers,
the smallest element of the data type is the number zero (0) and the stepping function is
the function suce which simply adds one to any given natural number (succ(n) = n+ 1),
These concepts are formalised by giving formation axioms for each. The first states that
zero is a natural number:

[8-form| -5 Ax

the second that, if # is a natural number then so is succ(n):

succ{n): N

Clearly any given natural number can be constructed by adding one to zero sufficiently
many times {(alternatively by applying succ to 0 sufficiently many times). In addition,
this process only yields natural numbers. Zero and the successor function therefore form
a set of generators for the natural numbers. This means that an induction rule can be
formulated.

The induction rule also makes use of the implicit ordering relation. The basic idea behind
it is that if it is possible to prove on the one hand that some property P holds for the
smallest element of the data type and, on the other hand, that if P holds for some given,
arbitrary element of the data type then it also holds for the next element of the data type,
then that is sufficient to ensure that P holds for all elements of the data type. The first
of these two cases is called the base case of the induction, and for the natural numbers
involves showing that P holds for 0 (i.e. that P{0) is true). The second case is called the
induction step, which, for the natural numbers, corresponds to showing that if P holds
for some arbitrary value k then it also holds for succ(k) (i.e. that P(succ(k)) is ttue on the
assumption that P(k) is true; P(k) is called the induction hypothesis here.). The induction
rule for natural numbers is formalised in the following axiom:

5.2 Axiomatising the natural numbers 73

nN; P(O)
kN, P(k) b P(suce(k))

P(n) Ax

Induction is sometimes also called the “stepping stone principle” because its operation
can be pictured in terms of a line of stepping stones. The first stone corresponds to the
base case of the induction, and the induction step corresponds to stepping from one stone
to the next. In essence, the induction principle says that if the first stone can be reached
(corresponding in the proof to showing that the required property P holds for the base
case) and if from any arbitrary stone it is possible o reach the next stone (corresponding
in the proof to the induction step), then it is possible to reach any given stone simply by
starting at the first stone and stepping from one stone to the next sufficiently many times.

The induction rule is a great labour-saving device because it effectively makes it possible
to prove that some property is true for all elements of the data type by considering only
two cases, the base case and the induction step. Its use is illustrated in various places
below.

When developing an axiomatisation of a theory, it is important 1o know when to stop,
that is when the set of axioms is sufficient to provide a complete description of the data
type(s) being modelled. A useful technique for determining this is to check whether the
axioms are consistent with other unintended models.

In the case of the natural numbers, the intended model is a semi-infinite chain starting at
zero and with the successor function providing the means of stepping from one node of
the chain to the next (see Figure 5.1). The first three axioms given above are consistent
with this picture — ‘0-form’ defines 0 to be a natural number; ‘succ-form’ states that if n
is a natural number then so is suce(n); and the model clearly embodies the stepping-stone
interpretation of induction directly. However, they do not rule out another interpretation,
shown in Figure 5.2, in which 0 is the only element of N and suce{(0) = 0. (The induction
rule is consistent with this interpretation because if 0 is the only member of N then the
only possible valid instantiation for the induction variable » is 0 for which instantiation
the rule becomes trivially true as its conclusion becomes the same as the hypothesis P(0).)
The axioms given so far are therefore not sufficient to provide the intended mode! of the
natural numbers.

Figure 5.1: The desired model for N with 0 and suce.

Part of this problem can be avoided by adding another axiom stating that 0 and succ(n}
are distinct for all natural numbers »:
n:N

suee #0 suee(n) #0

74 5 Numbers

Figure 5.2: A possible model of the axioms with succ(0) = 0

However, the model depicted in Figure 5.3, in which there are only two distinct elements
0 and suec(0} of N {with suce(suce(0)) = succ(0)), is still a valid interpretation of the
axioms which means that even with this extra one they are still not adequate.

SHCC

suce

Figure 5.3: A possible model of the first four axioms for zero and the successor function.

One way of eliminating this unwanted model is to add another axiom stating that suce(n)
and n are different for any natural number n:
N
succ(n) #n

but, although this rules out all models with only two values (because @, succ(0) and
succ(suce(0)) all have to be different), it still admits a model in which these three values
are the only possible values, with succ(succ(succ(0))) = succ(0) (see Figure 5.4).

Another axiom would then be needed to eliminate the models with only three different
elements, and so on. This stepwise approach thus requires an infinite number of axioms
so is clearly unsatisfactory.

This leads one to the suspicion that there is a more fundamental property which could
be stated which captures the fact that applying the successor function repeatedly to 0
generates a new value each time. The best way of doing this is to recognize that the
successor function has to be injective (one-to-one): that is, suce yields different values
when applied to different arguments. This can be stated via the following axiom:

5.3 Axiomatisation of addition and proof by induction 75

suce SHCC

Figure 5.4: Another possible model, with suce(x) # x for all elements x of the model.

n N N osuce(m) = succr) Ax
R =na

suge-1-1

This axiom eliminates all the unwanted finite models illustrated above as it rules out any
loops (because no two links in the diagrams may terminate in the same node). On the
other hand, it is consistent with the intended meodel of the natural numbers under the
successor function, the semi-infinite chain depicted in Figure 5.1. However, the question
still remains: are these axioms sufficient to allow all the desired operators on the natural
numbers to be defined and their ¢xpected properties to be proved? The best way of
settling this issue is to attempt to define some of these operators and to attempt to prove
their required properties. This is done in the next section.

5.3 Axiomatisation of addition and proof by induction

Having developed a set of axioms which consistently model the values that natural num-
bers can take and rule out all the unwanted models that one can think of, the next step is
to formulate axioms describing operators acting on those values,

With a data type defined in terms of generators and an induction rule, the basic principle
behind axiomatising operators on that data type is to formulate an axiom defining the
operator for each of the generators. The idea behind this approach is that any element
of the data type can be expressed as some combination of the generators, so that these
axioms, together with the induction rule, are sufficient to define the operator completely.
However, care must be taken to ensure that the axioms are chosen so as to mesh appro-
priately with the induction rule in order that proofs about the operators, which are carried
out using induction, are facilitated. All these principles are itlustraied by considering the
axiomatisation of addition on the natural numbers and how the axioms can be used to
prove additional rules by induction.

The first step is to define addition for the two generators of the natural numbers, (and
succ. However, there are potentiaily several different axioms that one could write down
here. For {}, these might be:

N - miN
[+—defn-0—lef1}m— +-defn-0-right H+0=n

whilst for succ there are a number of possibilities, including:

76 5 Numbers

nN; npN
succ{ny) + 1y = succ(ng + ny)

+-defn-succ-left

[+-dofn-sucoight] s 2
2 Ay +succ{ny) = suce(n; + ng)

nyi:N; N
+-defn-suce-left-rev ! 2

succ(n;) + np = succ(na + my)

N meN
succ(r) + ng = ny -+ suceng)

[+-defn-suce-left-switch |

ni:N; nacN
succ{n) + ny = suce{ng) +m

[+-defn-succ-left-switch-rov |

niN; mN
m + succ(ne) = succ(ay + mp)

! +-defn-suee-right-rev |

nN; ngcN
ny +succ{ns) = succ{m) +nz

! +—defn-suoc—right-swilch|

n:N; nacN
ny 4+ succ(nz) = ny -+ suce(m)

l +-defn-suce-right-switch-rev]

How does one go about choosing which shouid be axioms and which are derivable?

A good way of getting some bints on this is to look at the proofs of some of the other
properties one would expect to be able to derive from the chosen axioms. The most
obvious of these for addition is the formation rule:

[iomm] LTS
(m+mkN
which states that the result of adding two natural numbers is itself a natural number. As

indicated above, such properties are proved using the induction rule, so consider the first
step in the proof of the formation rule, namely the application of the induction rule.

The natural number induction rule ‘N-indn’ is typical of all induction rules in that it has
a hypothesis of the form a: A, which assigns a type to the induction variable a, and a
conclusion of the form P(a), the induction goal, which represents an arbitrary expression
involving the induction variable. When applying an induction rule it is imperative that
both the induction variable and the induction goal should be determined. The induction
goal, being the conclusion of the rule, should be chosen from amongst the current goals
of the proof, The induction variable should be some subterm of the selected induction
goal which is known to be, or which can be proved to be, of the correct type.

Applying these principles to the proof of “+-form’ using natural number induction, the
induction goal has to be the overall conclusion of the proof (r + r2): N as this is the only
goal, and the induction variable » has to be some subterm of this expression which is of
the correct type M. There are therefore two possible choices for the induction variable,
namely my and nz. (Terms constructed by applying succ to either a; or np would aiso
be known 10 be of the correct type but these can be ruled out as there is no subterm of

5.3 Axiomatisation of addition and proof by induction 77

{n; + nz):N involving succ.) Consider each of the two possible cases separately.

If ny is chosen as the induction variable, the metavariable P in the induction rule must be
chosen so that P(n;) matches the induction goal (r) +n2): N, which means that P(.) must’
be (- + m):N. Instantiating the induction rule in this way yields:
aN; (04 n2k:N
BN, (k+m):NE (succ(k)+n)N
(n1 + nz)! N

applying which to the proof of ‘+-form’ leads to the following partial proof:

from n1:N; na:N

1 (O+m)N {77 justify 77)
2 fromk:N; (k+n):N

infer {succ(k) + nz): N {77 justify 77)
infer (m +n2):N N-indn (h1, 1, 2)

This proof represents induction over or on ny, with Line 1 corresponding to the base case
of the induction and Subproof 2 corresponding to the induction step. Looking first at the
base case, proving this clearly depends on being able to rewrite O+ ny to #2, from which
the required result follows because the type of n is known (hypothesis h2). This suggests
that the rule ‘+-defn-0-left’ is required as an axiom defining addition on zcro.

Turning now to consider the induction step, a similar argument suggests that being able
to justify the conclusion of Subproof 2 relies on being able to rewrite the expression
suco(k) -+ my 10 some expression whose type can be inferred, this latter being determined
by considering the combinations of &, #2 and succ whose type is known within Subproof 2.
Now the right-hand side of the equality in the conclusion of each of the suggested axioms
involves addition, and since the formation rule for addition is the subject of the current
proof it is not yet available for use. The only way of constructing some term which
involves addition and whose type is known is thus by applying a more fundamental op-
erator to some term involving addition whose type is already known. The only such term
is k++ny, and the only available function of the correct signature is the successor function.
Altogether, then, this argues that Subproof 2 can be completed by rewriting succ(k) + np
to succ(k + nz), pointing to the need to choose ‘+-defn-suce-left’” as an axiom defining
addition on the successor function. With these two axioms the proof of the formation
rule can be completed:

VIn fact there is strictly another possible instantiation of P, namely when it is independent of its parameter
(i.e, with P(.) = (m + np) N). This instantiation is never useful, however — when P is independent of its
parameter (0} in the hypotheses of the induction rule is identical to P(n) in the conclusion, so the rule
becomes trivially true and nothing is to be gained by using it.

78 5 Numbers

fromn N N

1 Q+m=n +-defn-0-left (h2)

2 (O+n)N =-type-inherit-left (b2, 1)

3 fromk:N; k+npN

3.1 suce(k+m): N succ-form (3.h2)

32 succ(k} + ny = succ(k + ny) +-defn-suce-left (3.h1, b2)
infer (succ(k) + na): N =-type-inherit-left (3.1, 3.2)

infer (n) + nz): N N-indn (hl, 2, 3)

Consider now what would have happened if #2 had been chosen as the induction variable
in this proof instead of »;. In this case, the first stage in the proof (after applying the
induction rule) would have been:

from py Ny oA

1 {(m+0rN {77 justify 77)
2 fromkN; (m kRN

inter (7 + succ(k)): N (77 justify 77)
infer (ny +) N N-indn (hl, 1, 2)

From this point, the argument would be entirely analogous to the one given above, except
that it would lead to the conclusion that *+-defn-O-right’ and ‘+-defn-suce-right’ should
be chosen as axioms. The question now arises, are both pairs required as axioms or is
one pair sufficient?

The way to determine this is to attempt to prove one pair of rules from the other. Consider,
for instance, trying to prove ‘+-defn-0-right’ from ‘+-defn-0-left’ and “+-defn-succ-left’.
The proof again proceeds by induction, the first step being:

from m Al
I 0+0=0 (77 justify 77)
2 fromi:N; £E+0=k

infer succ(k) + 0 = succ(k) (77 justify 77)
infern+0=n N-indn (hl, I, 2)

Here, Line 1 (the base case) can be justified directly using the rule ‘+-defn-0-left’ together
with *0-form’. In Subproof 2 (the induction step), the induction hypothesis £ +0 = k can
be used to substitute & + 0 for k in the right-hand side of the equality in the conclusion of
the subproof, whence the rule ‘+-defn-succ-left’ is sufficient to complete the proof:

5.4 More on proof by induction 79

from m: N

1 &N 0-form

2 0+0=0 +-defn-0-left (1)

3 fromkN; k+0=¢

31 succ(k} + 0 = suce(k + 0) +-defnn-succ-left (3.h1, 1)
infer succ(k)+ 0 = succ(k) =-subs-right(b) (3.h1, 3.h2, 3.1)

infern+0=n N-indn (h1, 2, 3)

The rule ‘+-defn-succ-right” can be proved in a similar fashion, indicating that it is suffi-
cient to take “+-defn-0-left’ and *+-defn-succ-left’ as axioms:
nN niiN; ng:
+-defn-O-left | —————— Ax +-defn-suce-left ! 2N
O+n=

Al
n succ{ny) + nz = succ(ny + mp) X

The symmetry of the rules means that one could equally have chosen “+-defn-0-right’ and
‘+-defn-succ-right’ as axioms. The real correlation is that the induction variable should
be chosen to be the same variable used in the defining axioms as the basis for the case
distinction on the generators.

Other rules about addition, for example the commutativity and associativity rules

niN; N
Foomm] —b s 2N e T
3

mt+m=m+m

npN; m N naiN
ma}+n3 = ny+ (n2 + na)

can be proved in a similar fashion, and the general techniques illustrated in this section
can be applied similarly to the axiomatisation of other operators, e.g. multiplication (see
Exercise 1).

5.4 More on proof by induction

In the previous section the rules on which proof by induction was demonstrated were all
somewhat special in that their hypotheses were all simple typing assertions. This section
investigates proof by induction for rules where this is not the case.

Consider, for example, the rule

nN; 2N By g =0

.'21——-0/\!’:2"—'0

which states that if the sum of two natural numbers is zero then each of the numberé
must itself be zero. Applying the induction rule as described above with n; chosen as the
induction variable? leads to the following partial proof:

2Since the rale is symmetric in n; and a2 because both A and + are commutative there is no loss of
generality in making this choice.

80 5 Numbers

fromny: N, N, mi+m =0

1 0=0Am=0 {77 justify 77)
2 fremkN; k=0An=0

infer succ{k) =0 Az =0 {17 justify 77)
inferm=0Any =0 N-indn (hl, 1, 2)

Looking at the induction step (Subproof 2) of this proof, the induction hypothesis states
that both & and # are zero, from which it must be proved that both suce(k) and ny are
zero. This is clearly false — it is known (from the rule ‘succ # (7 as well as from basic
understanding of numbers) that succ(k) cannot be zero. This means that the proof cannot
be completed from this point.

The problem is that applying induction as above effectively amounts to attempting to
show that the chosen induction goal, in this case the assertion ny = 0 A 5z = 0, is true
for all values of the induction variable, namely »,, which is patently false. Rather, the
assertion n; = 0 A 2 = 0 is true for all values of ny satisfying the condition ny + nz = 0,
the non-typing hypothesis of the rule. This hypothesis therefore has to be brought into
the induction in some way before the proof can be carried out successfully.

The way to do this is to first of all apply the rule *=-E-left’ to it and the overall goal,
This yields the following partial proof:

from niN; N i+ =0

1 m+m=0=m=0Am=0 (77 justify ?7)
infer my = 0 A np = 0 =>-E-left (1, h3)

This might seem like a retrograde step - it goes against one of the-heuristics for selecting
useful rules because the new goal it generates is more complicated than the original one.
However, this is necessary to bring the non-typing hypothesis into play.

Now applying the induction rule with the assertion on Line 1 as the induction goal and
ny as the induction variable leads to:

from N, noN, mp+ =0

1 O+m=0=0=0An=0 (77 justify 77}
fromiN; k+m=0=24=0Am=0

infer succ(k)+ ny = 0 = succ(k) =0 A ny =0 (77 justify 77}
3 mtm=0=n=0Anmn=0 N-indn ¢hl, 1, 2)
infern =0 A =0 =-E-left (3, h3)

5.5 Using direct definitions 81

The conclusion of the induction step is now an implication whose left-hand side is false
because succ(k) + nz cannot be zero (though this still needs to be proved). The base case
{Line 1) can also be discharged because both sides of the implication can effectively be
simplified to np = (. The completed proof is:

fromap:N; na:N, m+m =0

1 O+m=mn +-defn-0-left (h2)
2 (&N 0-form
3 0=0 =-gelf-I (2)
4 Bm=0) §-=1(h2,2)
5 frompg =0

inferG=0An =0 A-1(3, 5.h1)
6 m=0=20=0Amn=0 =-1(4,5)
T O0+m=0=20=0Am=0 =-gubs-left(b) (h2, 1, 6)
8 tfromiN k+m=0=2k=0Am=0
8.1 (k+m)N +-form (8.h1, h2)
8.2 succ(k) + na = suce(k + na) +-defn-succ-left (8.h1, h2)
83 succ(k+m) =0 succ 3 0 (8.1)
8.4 succlk+m):N succ-form (8.1)
8.5 succl(k) +m =0 =-gibs-left(b) (8.4, 8.2, 8.3)
8.6 — (succ(k}+ny =) unfolding (8.5)

infer suce(k) + nz =0 = suce(k) =0An, =0 =>-I-right-vac (8.6)
9 mim=0=n=0Amn=0 N-indn (hi, 7, 8)
inferny =0Am =0 =-E-left (9, h3)

It is worth remembering that this “trick™ of using ‘=>-E-left’ as the first step is necessary
when proving rules about other data types when those rules have hypotheses involving
the chosen induction variable which are not all simple typing assertions (see for instance
Section 7.6).

5.5 Using direct definitions

In Section 5.2 addition was defined axiornatically - by giving axioms which describe its
basic properties — and other properties were derived from these axioms and the axioms
for natural numbers. Wherever possible, however, it is preferable to give a definition
of a new concept directly in terms of other already defined concepts — the advantage of
this is not only that it keeps the number of axioms to 4 minirnum but also that adding a
new definition to a theory cannot compromise the soundness of that theory: a consistent
theory rernains consistent when a new definition is added to it. (Problems of retaining
consistency when adding new axioms are discussed in Section 6.7 in relation to the ax-
iomatisation of set comprehension.)

This section concentrates on definintg the positive natural numbers and the familiar or-
dering relations on numbers. As stated above, the fact that the first of these should be
defined as a subtype is suggested by the fact that the possible values of N; form a subset

82 5 Numbers

of those of the natural numbers N. This involves formulating some (total) predicate on
the natural numbers which is true for the positive natural numbers and false for all other
natural numbers. There are two obvious candidates: n# 0 and n> Q.

Using the first of these predicates, the positive natural numbers N; can be defined via:

def

N, ef < nN|nzl>

then the ordering relation > can be defined in terms of this via:
n>m dof Ny, -m+k=n

With the second predicate, however, the ordering relation would have to be defined in
terms of 0, + and succ. This might be done via:

R>m def Jk:N- m+sucelk) =n
with the positive natural numbers then being defined as:
Ny d;gf ZmNin>0>

However, these definitions are more complicated than the first pair given above, which
are therefore to be preferred,

The reverse relation “less than” (<) can be defined directly in terms of > via:
n<m dof m>n

The fact that N; is defined as a subtype means that the properties of subtypes (see Sec-
tion 4.5) can be used to deduce:

N N
s i

The first of these is very important because it means that all the properties of the natural
numbers, for instance the axioms and derived rules for addition, are valid for the positive
natural numbers as well. This is one of the major advantages of defining types using
the subtype construct. Of course, other rules which are special to the positive nasural
numbers can be developed, for instance an induction rule for Ny (see Exercise 3).

Unfortunately there is no such labour saving when operators are given by definition rather
than axiomatically. Proofs about > therefore rely on folding and unfolding of the defini-
tion, though they may make use of existing rules about the operators used in that defini-
tion. For instance, the proof that > is a total relation on the natural numbers:

- R, N Nz N
C8(m >
uses the rules ‘§-3-inherit’ and ‘8-=-I" for the definedness of the existential guantifier

and equality and is straightforward (left as an exercise for the reader). Other propertics
that can be proved are that > is irreflexive and transitive:

- . n:N niiN; naeN; naN my > np > m
>-irreflexive | ——— >-trang - : . :
- (n>n)

Hy > My

5.5 Using direct definitions 83

and that it defines a total ordering on the natural numbers (see Exercise 4).

A final point which is worth making at this stage is that, although definitions are a very
useful way of defining new operators, care must be taken when formulating them to ensure
that unwanted interpretations have not been included. One way in which this can happen
is when the definition contains a polymorphic operator like equality. For instance, one
might try to define the relation “greater than or equal to” (2) verbatim via:

nxm def n>mvau=m
The problem with this is that the polymorphism of the right-hand disjunct is partially
“inherited” into the definition of 2: since the rule ‘=-self-I’ implies that any denoting
term is equal to itself, the above definition implies in twrn that any denoting term is
greater than or equal to itself. This definition is therefore defining the operator 2 outside
its normal range (namely the theory of numbers) which may not be what was intended
when the definition was formulated®.

In this particular case this is not a problem as an alternative definition can be formulated
which does not rely on equality:

nem € N mak=n

Again the definition of the reverse relation is straightforward:

nEm d=e' mza2n
It is not always possible to find a reasonable alternative to the intuitive definition, however.
Consider, for instance the double rclation - < . < .. This might be defined via;

det
mSsmsn = MmME<mAmsSn

but again there is a problem because the value of the whole definition may be determined
by only one part of it, namely if one of the conjuncts is false. In that case, the whole
definition is false even if the other conjunct is undefined, more particularly even if the
third parameter is not of the correct type {for example the above definition would imply
that the expression true £ 4 <2 is false and not undefined as one might expect or wish).

In such a situation, the preferred solution is to define the operator axiomatically:
i:N; i'N, &N
iSjskeisiajsk &

Note here that, although the same intuitive definition is effectively being used in such a
rule, the problem described above does not arise — the type of the parameters is enforced
by the typing hypotheses of the rule. (See also the discussion of the proper subset relation
in Section 6.5.1.)

In conclusion, it is worth pointing out in passing that recursive definitions do not present

any special problems provided the recursion is well-founded. These are discussed in
Section 8.5.

*Indeed this goes agatnst the philosophy adopted in this book which would say that 2 should be unde-
fired if its arguments are not of the correct type.

84 5 Numbers
5.6 Summary

This chapter has discussed:

s How to determine a set of axioms for modelling a data type.

¢ A basic introduction to the principle of induction.

Examples of proofs using induction.

¢ How to axiomatise operators in terms of generators.

L

Proof by induction using the ‘=-E-left’ “trick™.

Some advantages and some problems with using definitions.

5.7 Exercises

1. The axiomatisation of multiplication

Use the techniques described in Section 5.3 to develop an axiomatisation of multiplication
on the natural numbers in terms of 0 and suce. Prove the formation rule for multiplication
from the axioms chosen.

2. The successor function preserves the > relationship

Prove the rule:

———— ni:N; N ny >

succ{n; } > succ(ny)

3. An induction rule for N;

The arguments used in formulating the induction rule for natural numbers could just as
easily be applied to the positive natural numbers, yielding the following induction rule
for N;:

Ny Plsuce(0))
k:Ny, P(k) | Plsucc(k))

Fn)

However, because the positive natural numbers form a subset of the natural numbers, this
rule can be proved from the properties of the natural numbers. Construct the proof.

4. The relation > defines a total ordering on N

Prove that > is a total ordering on N:

ni:N; n:N

N>V =mVn>nR

Chapter 6

Finite Sets

6.1 Introduction

A set is essentially just a collection of objects. There is no concept of order associated
with the objects in the collection, and no concept of multiple occurrences of an object in
the collection. This means that it is only possible to express the notion of whether or not
a particular cbject belongs to a set (is an element or member of a set), and not how many
times it occurs nor where it occurs,

In VDM, the notation 5: A-set is used to represent the assertion that s is a finite set, each
of whose elements is of type A. Thus, for example, the set {13,4,7} is of type N-set as
each of its elements is a natural number (is of type N).

This chapter begins by showing how an axiomatisation of finite sets can be given in terms
of generators and an induction rule. A worked example shows how the induction rule
can be used to prove properties of finite sets, and illustrates too how to develop derived
rules to correspond to the sort of arguments one uses in informal reasoning. The notion
of quantification introduced in Chapter 3 is then extended to cover gquantification over
sets. The next section introduces the idea of a subset and shows an example of where
problems can arise when giving definitions of new constructs instead of defining them
axiomatically. This section also deals with set equality and cardinality and shows how
a useful set of derived rules can be generated by considering special cases of a general
dezived rule. The standard set constructors are then introduced, and an example proof
shows how reasoning about set equality is done in practice. The final section introduces
the notion of set comprehension and points out potential pitfalls, due to considerations
of finiteness and definedness, that can arise when trying to decide on a reasonable set of
axioms for constructs defined by comprehension. Some examples involving reasoning
about set comprehension expressions are also discussed.

6.2 Generators for sets; set membership; set induction

As explained in Section 5.2, an ordered data type like the natural numbers can be axioma-
tised in terms of generators by defining the smallest element of the data type together with
a function which steps from one element of the data type to the next. Any element of
the data type can then be uniquely expressed as the stepping function applied to the base

86 6 Finite Sets

element the appropriate number of times, and an induction rule for the data type can be
formulated on this basis.

In fact, this technique is not just applicable to data types like the natoral numbers which
are completely ordered: it can also be applied to data types like finite sets which are
only partially ordered. Here, the idea is to define a set of operators (the generators) in
such a way that every element of the data type can be expressed in some not necessarily
unigue way as a finite combination of these operators. In general this means introducing a
concept to denote the smallest (or the largest) member of the data type, together with one
or more stepping functions, each of which adds (or removes) one new level of complexity
to any given element of the data type.

Applying these principles (o the axiomatisation of finite sets, the smallest member of the
data type is the empty set, represented by the symbol { }, and only a single stepping
function is needed, the function add which adds an element to a set. These form a pair
of generators for finite sets because any finite set is either empty or can be expressed as a
finite series of applications of add to the empty set. Thus, for example, the set {13,4,7} of
natural numbers can be expressed as add(13, add(4, add(7, { }))). This decomposition is
not unique, however, as any permutation of the order of the applications of add produces
the same result.

Developing an axiomatisation of these operators follows the principles outlined in Sec-
tion 5.2 in relation to developing an axiomatisation of the natural numbers in terms of
and suce. First, the formation rules for the generators are given. For the empty set, which
represents an empty collection of arbitrary type, the formation rule is:

[O-form | g ax

Note how the polymorphism of the empty set is captured by making the type A of the set
a metavariable.

The function add adds an element to a set, with the expression add(b, s) representing the
result of adding the element b to the set 5. If the set 5 is of type A-set and the element b
is of type A the resulting set add(b, s} is also of type A-set. The formation rule for add is
therefore:

aA; s5:A-set
form | 2 DI ay
add-fomm - Jdia, 5): A-set

The next step is to formalise the notion of membership of a set, This is expressed by the
symbol ‘e’, so that the expression @ € s represents the assertion that some object a is an
element of the set 5. The negation of this relation, namely that a particular object is not
an element of a given set, is denoted by the symbol ‘e’, defined simply as:

ae s def —{aeys)
Since a set is completely defined by the collection of elements it contains, defining the
membership relation for a newly-defined set is sufficient to define the set itself. Thus, the
empty set contains no elements, which can be formalised by saying that some arbitrary
object & is not a member of the empty set:

6.3 Proof using set induction 87

Further, an object a is a member of the set add(b, s) if, and only if, either a is alrcady a
member of the set 5 or a is the same as the new element being added (namely b). The set
add(b, s) is therefore defined by the membership rule:

a:A; biA; 5. A-set

ae addlb,sy e a=bvacs
This technique of defining sets by giving a formation rule and a membership rule is also
used later to define operators on sets (see Section 6.6).

Finally, the fact that { } and add form a set of generators for finite sets means that they
alsc form the basis for an induction rule. Generally, such an induction rule is founded or
the principle that in order to show that some property P holds for all elements of the data
type it is sufficient to show first (the base case) that P holds for the base element of the
data type and second (the induction step) that if P holds for an arbitrary element e of the
data type then it also holds for each of the generators applied to e. For finite sets, the base
case corresponds to showing that P holds for the empty set, the induction step to proving
that if P holds for some arbitrary set 5" then it also holds for the set add(a, s") where a is
some arbitrary new element. The induction rule for finite sets is therefore:

s:A-set, P({ D)
a:A, s A-set, P(s"), a ¢ 5"t , Pladd(a,5))
Ax

2

Note the additional local hypothesis @ & s5” in the sequent hypothesis {corresponding to
the induction step) in this rule, which ensures that the element @ is not already in the
set §'. This hypothesis 15 not strictly necessary but can be assumed without any loss
of generality. This is because if a is already in the set &° adding it again has no effect as
there is no concept of multiple membership of a set. In this situation the sequent becomes
trivially true because add{a, s} s the sarne as §', hence, by substitution of equality, its local
conclusion P(add(a, s") is the same as its assumption P(s"). The extra local hypothesis
therefore simply rules out the case where the sequent hypothesis is automaticaily true.

6.3 Proof using set induction

As an example of a proof using set induction, consider the rule ‘e-v-¢":

a:A; siA-set
aesvaes

€-V-i

This states that, given an arbitrary object a and an arbitrary set 5, either a is an element of
s or g is not an element of 5. The proof of this relies on set induction and the properties
of add. It is presented in some detail here in order to give some idea of how induction
proofs about sets are performed.

Using the “set-indn’ rule to prove ‘e-v-¢” yields two subgoals. The first of these is the
base case of the induction and requires that the expressiona e {} va ¢ {} should be
shown to be true. The other subgoal is the induction step. The induction assumption is
thata € 5" v a 2 5" is true for some arbitrary set s'. From this, the goal is to show that
a e add(b,s’) v a ¢ add(b,s") is true for some arbitrary new element b. After applying
this rule the proof looks like:

&8 6 Finite Sets

froma: A; 5: A-set

1 ae{}vae {} (77 justify 77)
2 trombA; s"Aset, gesvaes be s

infer a € add(b,s’) v a & add(b,s") {17 justify 77)
inferge svaes set-indn (h2, 1, 2)

Proving the base case (Line 1) is easy: the rule ‘{ }-s-empty’ implies that e ¢ {},
whencea € {} vae {} follows directly by “v-I-left’.

Proving the induction step (Subproof 2) is somewhat more complicated but not difficuit.
The first thing to note is that the goal effectively amounts to showing that a either is or is
not in the set add(b, s") from the assumption (the third local hypothesis of the induction
step) that @ either is or is not in the set §". Reasoning informally to start with, it is clear
first of all that if g is in the set 5” then it is also in the larger set add(b, s"). If a is not in
&', however, it is impossible to tell immediately whether or not it is in the set add(b, s} as
this depends on whether or not a is the same as b. This all suggests that a good strategy
for approaching this proof is to reason using two case distinctions. The first of thess case
distinctions is on whether or not q is in the set §”, the second on whether or not a is equal
to b, Note that this second case distinction is only needed in the case where a is not in 5,
however. The first case distinction comes from applying the ‘v-E’ rule to the third local
hypothesis of the induction step (a & 5" v a ¢ §), whilst the second arises from the rule
‘=-cases’ from the theory of equality.

Performing these two steps yields the following (still incomplete) proof:

from a: A; 5: A-set

1 ae{} { }-is-empty (h1)
2 ae{}vae{} v-L-left (1)
3 fromb:A;, s"A-set, ae s'vaes, be s
3.1 fromae s
inter @ € add(b,s”y v a & add(b,s") {27 justify 77}
32 fromag s
3.2.1 froma=25b
infera € add(b,s") v a ¢ add(b,s") {77 justify 77)
322 froma#b
infer a € add(b, s’y v a & add(b,s" {77 justify 7}
infera e add(b,s") v ae¢ add(bh,s") =-cases (hl, 3.h1, 3.2.1, 3.2.2)
infera & add(b,s) v a & add(bh,s" v-E {(3.h3, 3.1, 3.2)

inferae svae s set-indn (h2, 2, 3)

6.3 Proof using set induction §9

At this stage one would like to complete each of the subproofs (3.1, 3.2.1 and 3.2.2),
corresponding to the cases described above, in & way that mirrors the informal argurment,
However, this was based on an intuitive understanding of the notion of set membership, in
particular of the circumstances under which the element a is a member of the set add(b, 5),
which does not correspond directly to the only available inference rule describing this re-
lationship, namely the rule ‘e -add-defn’. This suggests that the next stage in the proof of
‘e-v-¢ " should be the development of a series of lemmas which express the member-
ship properties of add in a way which parallels the way one reasons about this construct.
This essentially amounts to promoting one side of the equivalence in the conclusion of
the membership rule ‘e -add-defn’, possibly negated, to become a hypothesis of a new
rule whilst making the other side of the equivalence, negated where appropriate, its con-
clusion. As part of the process the properties of conjunction, disjunction, and negation
thereof are used to simplify propositional expressions. This gives rise to the following
series of rules relating properties of &, b and s directly to assertions about whether or not
a is a member of the set add(b, s):

@ a:A, b:A; s:A-sel; a e add(b,s)
a=bvacs

=il a: 4; 5: A-set
e add(a, 5)

a:A; b:A; siA-set, ae s
a € add(b,s)

a:A; biA;, siA-set, a#b, ae s
i e addh s

a. A, b A, s A-set; a ¢ add(b,s)

a:A; b A, s:A-sel; a ¢ add(b, s)
azxb
A useful variant of the second of these is:
a:A; S:A-Se!; a=b
R e ae add(h,s)
The proof of each of these rules is trivial, following simply from ‘e -add-defn’ and the ap-

propriate ryle for introduction or elimination of equivalence. They are left as an exercise
for the interested reader.

Returning to the abandoned proof of ‘e - v - &, the missing details in the incomplete
subproofs are now easy to complete. In Subproofs 3.1 and 3.2.1 the first step is to prove
that @ is in the set add(b, s} (using the rules ‘e-add-I-set’ and ‘e -add-I-elemn-=" respec-
tively}, then the required conclusion follows by using the rule “v-I-right’ in both cases.
In Subproof 3.2.2 the rule ‘@-add-I’ is used to prove that a is not in add(b,), then the
required conclusion follows from the “v-I-left’ rule. The completed proof is thus:

90 6 Finite Sets

from a: A; s5:A-set

1 ae{} { }-is-empty (h1)
2 ae{}vae {} v-I-left (1)
3 fromb:A;, s Aset, aes'vaes; be s
3.1 fromac s
311 a e add(b,s) e -add-I-set (hi, 3.h1, 3.h2, 3.1.h1)
infer a € add(b,sy v a ¢ add(b,s") v-I-right (3.1.1)
3.2 fromge s
321 froma=»5
3.2.1.1 ae add(b,s’) €-add-I-elem-= (h1, 3.h2, 3.2.1.h1)
infera & add(b,s"} v a & add(b,s") v-[-right (3.2.1.1)
322 froma#b
3221 a¢ add(b,s’) ¢ -add-I (hl, 3.h1, 3.h2, 3.2.2.h1, 3.2.h1)
infera e add(b,s) v a e add(b,s") v-I-left (3.2.2.1)
inter @ & add(b,s"y v a ¢ add(b,s") =-cases (h1, 3.h1, 3.2.1,3.2.2)
infera & add(b,s) v a e add(b,s") v-E (3.h3, 3.1, 3.2}
inferae svaes set-indn (h2, 2, 3)

From this result and the definitions of ¢ and & it is easy to prove the related rule:
a: A; st A-set
Slae s}

stating that set membership is well-defined.

6.4 Quantification over sets

‘When dealing with a specification involving sets in some way it is often desirable to assert
that some predicate P(x) holds for some or for all elements x of one of those sets. This
can be done using the universal and existential quantifiers introduced in Chapter 3 by
asserting on the one hand that there is some x of the appropriate type A such that x is an
element of the set § and P(x) is true:

dxA-xe sAPX)

and on the other hand that for each x of type A, if x is an element of the set 5 then P(x) is
true:
Yx:d-xe s = Pix)

These expressions are rather clumsy, however, and reasoning about them can easily get
rather cumbersome. To simplify things, therefore, the notion of quantification is extended
to include quantification over sets. The assertion that there is some element x in the set s
for which P(x) is true is then written

3xe s-Plx)
and the assertion that P(x) is true for every element of the set s is written
Vxe s P(x)

6.4 Quantification over sets 91

Itis tempting to formalise these notions by simply giving axioms asserting the equivalence
of the two sets of expressions given above, for example
5: A-set A
Ax e s-Plx) e A d xe s APR) x

but this is incorrect as it allows one to deduce undefined <» undefined when the predicate
P(x) is undefined. Instead, following the procedure set out in Chapter 3, axioms are
defined for the introduction and elimination of the existential quantifier over sets and of
its negation:

s:A-get; Ix e 5+ P(x)
y:A yes Py e

-

a:4; s:A-set, g€ 5, P(a)
dxe 5 - Plx)

aA; s}:A-sel; aePs(;a)—que 5 Pix)) Ax

I-F-set Ax

s1A-set; xA, x e s - P(x)

~Ges PO Ax

Then, continuing the parallel, universal quantification over sets is defined in terms of
existential quantification over sets via:

Yx e 5- P(x) det “~dx g 5= P(x)

and introduction and elimination rules for this can be derived:
s:A-sel; »:A, ye § I; Py}

Vxe 5- P(x)

ad; siA-set; ae 5, Vxe 5-P(x)

s

In a similar way, unique existential quantification over sets can be defined by the obvious
extension of the definition given in Section 3.5.2:

txe s-Plx) def Ixes-PX)AVye s - Py) = y=x

and the counterparts of the introduction and elimination rules can be proved:

a:A; s:A-set, ae 5, Pla); Vye s P) = y=a
1.]-
Shie s P

s:A-set; dixe 5-Plx)
VA yes PO), Vxes-P)=x=yk ¢

-

Finally, the unique choice operator t over sets can be defined via axioms analogous to

Yl G Hnite dets

those given in Section 3.5.3:

s:A-set; Alx e s P(x) s:A-set; Nxe s-Px)
(yes POWA ™ Paye s Poyy M

Note that no axiom of the form _
siA-set; A, xe st 8P(x)

5 -6

analogous to the rule ‘8-3-inherit’, is required as this is provable from the above axioms
(see Exercise 3).

Rules relating quantification over sets to the corresponding expressions in terms of quan-
tifications over types are also derivable from the axioms and rules given above. These
are also the subject of Exercise 3.

6.5 Subsets; set equality; cardinality

6.5.1 Subset and proper subset

A set 5 is said to be a subser of a set 5; (written 5y < s7) if any object which is a member
of the set s, is also a member of the set 5,. This property is expressed via the ‘c-defn’
rule:

51: A-set; 52: A-set
-defn Ax
nCHmeVaes-ae 5

A simple specialisation of this rule can be obtained by considering the special case in
which both 51 and s, are the same set 5. Then the universal quantification reduces to true,
so the left-hand side of the equivalence must also be identically true in this case. This
leads to the following rule stating that any set s is a subset of itself:

st A-set
Sbesel

S8

Since one sometimes wishes to talk about sets which are strictly smaller than other sets,
the related notion of proper subset is introduced. This is written sy < 52 and denotes the
assertion that 5; is a subset of 57 but is not equal to it.

It is tempting to define proper subset directly in terms of subset using the above idea, via:
def
S1 T8 == HCHASIFSN

but this leads to problems due 1o the polymorphism of inequality. For example, 7 =7
is certainly true in the theory of natural numbers, from which it follows (using simple
propositional arguments) that 7 ¢ 7 A7 # 7 is false. The above definition would then
imply that 7 < 7 is false. However, this goes against the interpretation that proper subset
describes relationships between sets, which would require it to be undefined when the
arguments are not of the correct type (cf. the discussion of 2 in Section 3.5).

The problem with the above definition can therefore be attributed to the fact that it is
impossible to attach to it the information that it should only be used when s, and 5; are

6.5 Subsets; set equality; cardinality 923

sets. This means that if proper subset is 1o be defined in this intuitive way it has to be
defined axiomatically:

SI:A‘-Se", 5ot A-set

S1CH SHEHNANES

Note, however, that it is possible to make use of the intuitive meaning of proper subset
embodied in the above incorrect definition; the only difference here is that the hypotheses
of the rule can hold the required typing information on the parameters.

6.5.2 Set equality

Two sets 51 and 57 are equal if they have exactly the same collection of elements, This
can be expressed using the notion of subset introduced above: s, and s, are equal if 5
is a subset of 53 and if s is a subset of §; - the first of these conditions ensures that any
element of the set 51 is also an element of the set s, the second condition the converse.
The rule *=-set-defn’ expressing equality of sets thus has the form:

511 A-set; 5;:A-set
= :

N= SHCRAS2 G

A good way of deciding on useful variants of a rule is to consider special cases of its
parameters. Here, one might think about taking 5; to be the empty set. Naive substitution
into ‘=-set-defn’ yields:

si:A-set; {}:A-set

={lesc{ir{lcs

Since it is known (from *{ }-form") that the empty set is a set of arbitrary type, the second
hypothesis is always true and can therefore be removed. Next, consider the clause { } < 5
in the conclusion of this rule. This can in turn be simplified by considering the special
case of the ‘C-defn’ rule where 5; is the empty set. This yields the rule

{}: A-set; 5;: A-set
{lcsieVae {}-ae 5

The first hypothesis is always true as above, so can be removed. Moreover, universal
quantification over the empty set is identically true for any predicate, so the right-hand
side of the equivalence in the conclusion of the above rule reduces to ‘true’ and can
therefore be removed as well. This (after renaming 5, to 5) gives a rule stating that the
empty set is a subset of any set:

sAset
{}f;s

Returning now to the consideration of the special case of ‘=-set-defn’, this rule can be
used to reduce the right-hand side of the conjunction to ‘true’, and then the conjunction as
a whole can be replaced simply by its left conjunct. This, after renaming 5y to s, yields:
5: A-set
s={}esc{)

94 6 Finite Seis

Using the properties of equivalence this can be reduced to the following rule for deducing
that some set is empty:

s:A-set; s {1}

s=1{}

The process could, of course, stop here, but using this rule to prove that some set is empty
would mean proving instead that the set is a subset of the empty set which in turn would
require manipulation of the equivalence in the conclusion of the ‘c-defn’ rule. The point
here is that this manipulation would have to be done every time the equality rule was used.
Thus it is better (in the sense of saving repeating work) to perform these manipulations
on the basic rule and remove the expression involving subset from the hypotheses by
rewriting it in some way.

The first step in this process is to use the properties of equivalence to promote the lefi-
hand side of the ‘c-defn’ rule to a hypothesis in the same way as was described above
for the lemmas relating membership and the add operator (see Section 6.3). This yields
a rule of the form

$1: A-set; S3iA-set; Vae sj-ae s
St S92

for introducing subsets, which, after application of the rule “V-I-set’ toits third hypothests,
can be converted to
81: A-set; 52 A-set
a:A, ae sihae s

c-I

51 G 52

Considering the special case of this rule where 5; is the empty set, the conclusion of the
sequent hypothesis reduces to “false’ (by the * { }-is-empty” rule), which, combined with
the fact that the ‘§-e rule implies that its premise is defined, means that its premise must
also be false. This yields the following version of the above rule for showing that some
set is a subset of the empty set:

5 A-set
aAbags

seit

Finally, combining this with the last version of the rule aimed at deducing that some set
is equal to the empty set, yields

5 A-set
mAkaegs

Of course one can take this process further, for example rewriting the rule ‘=-set-defn’
using the familiar properties of equivalence together with the rule ‘-1’ to produce a ver-
sion of the general set equality rule which doesn’t simply reduce the problem to reasoning
about subset:

6.5 Subsets; set equality; cardinality 95

s1:A-set; 501 A-set
aAd, ae sibae s
A, besshbe s

51 282

All this might seem very informal, but it is worth remembering that this is the sort of
reasoning one ought 1o be using both to develop new rules and to convince oneself that a
given rule is provable before starting out on the formal proof. In fact given an argument
like any of the above it can easily be formalised as the steps described simply correspond
to intuitive application of one or more inference rles. The basic idea behind the process
described above is that in general it is helpful to develop a set of rules which express
the properties of some new construct (in this case set equality) directly in terms of some
old, well-understocd and above all primitive construct about which reasoning can be
performed directly and naturally (in the example above set membership). That the formal
proofs bear a close relationship to the informal argument can be seen from the following
proof of the ‘-1’ Tule:

from s1: A-set;- s2: A-set; @A, ge s bae s

1 52 Vies-xesn -defn (hi, h2)
2 VYxes-xesn V-I-set (h1, h3)
infer s C 5o <=>-E-right (1, 2)

6.5.3 Cardinality

The cardinality of a set is defined to be the number of elements it contains. This is a
meaningful concept as all VDM sets are assumed to be finite. Thus, the cardinality of
the empty set is 0, whereas the cardinality of a set of the form add(q, 5} for some set s
and some element a not already in 5 is simply one greater than the cardinality of the set
§. These properties are expressed via the rules ‘card-defn-{ }* and ‘card-defn-add:

feard-defn- 1]y =g A

a:A; s:A-set; ae s
card-defn-add

cardadd(a, 5) = succ(card s) Ax

From these it is simple to show (using set induction) that the cardinality of a set is a
natural number:

§: A-sel

cards: N

Other rules for cardinality can be found in Chapter 14.

6 Finite Sets
6.6 Other set constructors

The simplest sets other than the empty set are unit sets, that is sets which contain only
a single element. The easiest way of describing unit sets is by defining them directly in
terms of the empty set and the add operator via:

{a} ¥ adda,{)

From this it is easy to show (using the formation rules ‘add-form’ and *{ }-form’ for add
and the empty set) that {a} represents a set:

m {a} A set

Other operators which construct new sets from existing sets are defined axiomatically by
giving a formation rule and a rule defining the membership properties of the constructed
set. These include set union, set intersection, set difference, distributed union and inter-
section, and power set.

The union of two sets 5, and 5;, written s W 52, is the set formed by adding together all
the elements of 51 and all the elements of s;. An element g is therefore a member of this
set if it is a member of either §; or 52. In addition, if both 5, and 5, are of type A-set then
the resulting set §; U sy is also of type A-set. The rules “L-form’ and ‘e - -defn’ defining
set union therefore have the form:
51: A-set; s57: A-set
51U S A-set

a:A; sy A-set; 571 A-set

desiUnRSaAeEsTvVaAE 5

w-form

The intersection of two sets 5y and s;, written §; M s, is the set formed by selecting those
elements which are common to both §; and s2. An object a is thus a member of the set
51 M5y if it is a member both of sy and of 3. Again, if both 5; and 5, are of type A-set,
the resulting set 51 M sz is also of type A-set. Set intersection is therefore defined by the
rules ‘m-form’ and ‘e-r-defn’;

511 A-set; 531 A-set Ax

515 A-set

a:A; 51:A-set; 59 A-set
AESINHEAESFAQGE 5
The difference s, \ s, of two sets $1 and s» represents those objects which are elements of
the set 51 but which are not elements of the set 5. This directly defines the membership
rule ‘e -diff-defn’. The form of the formation rule ‘diff-form’ follows the pattern of those
given above for union and intersection:

a:A; s1:A-set; 51 A-set
e-diff-defn

AaeE N\ S ae H1AALE 5

51: A-set; sp: A-set
diff-form | — 2 Ax

s1\5; 1 A-set

6.6 Other set constructors 97

The distributed union ‘|J" and distributed intersection °(’ operators can best be thought
of as being generalisations of the standard union and intersection operators to an arbitrary
nurnber of sets. Distributed union takes a set of sets s as its single argument and returns
the set constructed by taking the union of all the elements in all the sets in 5. Thus, if
the argument s is of type A-set-set the resulting set {Js is of type A-set. Furthermore an
object is an element of the set | Js if it is an element of some set in 5. This leads to the
following rules defining distributed union:

5 A-set-set a: A; 5: A-set-set
A - i -
m L s5: A-set X €L defn ae Us«ﬁﬂtes‘aet‘“

Distributed intersection similarly takes a set of sets 5 as its argument, this time returning
the set formed by taking the intersection of all the sets in 5. Again, one would expect the
distributed intersection [5 to be of type A-set if 5 is of type A-set-set, and one might also
expect some object to be a member of the set (s if itis a member of all setsin s. Thereisa
problem here, however, in that, if the set 5 is empty, any object is automatically a member
of every set in s (by universal quantification gver an empty domain) and hence any object
would also be a member of the distributed intersection over the empty set (N{ }). Since
this collection of objects may be infinite, this contradicts the restriction that all sets must
be finite, leading one to the conclusion that the expression ({ } cannot represent a set.
This case has therefore to be ruled out in the axiomatisation, and the defining rules for
distributed intersection are thus:

s:A-set-sely s#{} @ A; s:A-set-set, s#{}
{1s: A-set Ax ac s Vies aet Ax

The last set constructor of this form is the power set, written Fs. This represents the set
of all subsets of the set s (including the empty set and the set s itself). Thus, if 5 is of
type A-set, its power set is of type A-set-set. Furthermore, some set s” of type A-setisa
member of the power set of 5 if it is a subset of 5. The power set constructor is therefore
defined by the following pair of rules:

51 A-set s1:A-set; 531 A-set
£ ————— . AX -pow-defi A
Frs: A-set-set 51 € fsz <P 5 52 x

6.6.1 Relating add and union

It should be clear from the definitions given earlier in this chapter that some redundancy
has been introduced as the expressions add(a, s), {a} W s, and s W {a} all represent the
result of adding the element a to the set 5. Thus one would expect to be able to prove the
following rules:

m a:A; 5. A-set a4; s:A-set
add(a,s) = {a} Us {alus=s5su{a)

However, it is also clear from the symmetry (in §; and 52) of the rules defining union that
union is commutative:

98 6 Finite Sets

51: A-set; 531 A-set
SilJS =855

so that the second of the rules above is simply a specialisation of this more general com-
mutativity rule to the case where s is a unit set. Its proof is therefore straightforward and
follows immediately from ‘w-comm’ and *{a}-form’.

The proof of ‘add — U’ is longer and is typical of proofs where one is trying to show
that two sets are equal.

Although several rules for showing that two sets are equal were introduced in Section 6.5.2
(and indeed others can be found in Chapter 14), it should be clear from the accompanying
discussion that one of the most useful in practice tends to be the sequent form ‘=-set-I-sqt’.
Applying this to the proof of *add — U’ gives:

from a: A; s: A-set

1 add(a,s). A-set {17 justify 77)
2 {a}lusiA-set {77 justify 77)
3 fromb:A; be add(a,s)

inferbe {alUs (77 justify 77)
4 fromed; ce {a}us

infer ¢ e add(a, 5) {77 justify ?7)
infer add(a,s) = {a} us =set-I-sqt (1,2, 3, 4)

The typing assertions (Lines 1 and 2) are easy to discharge using the formation rules for
add, union, and unit sets {*add-form’, “U-form’, and ‘{a}-form’). The strategy for the
two subproofs is to work on the second hypothesis of each to reduce it to atomic state-
ments about properties of b, a and s or ¢, a and s respectively using elimination rules
for membership of the appropriate composite set, ther to combine these using the intro-
duction versions of the membership rules as appropriate to deduce the conclusion of the
subproof. This requires the development of the series of rules describing the membership
properties of union and unit sets analogous to those for add discussed in Section 6.3. The
ones relevant here are

aA; s A-set; sA-sel, aeE S1US2

ae s vae s

a:A; s;A-set; sa1A-set; ae 5

ae §1\Us

- aA; si:A-set; 52:A-set, a€ 51
e-l-right
ac s\Us

a:A; b A be {a} ah; b=a
b=gq m be{a}

6.7 Set comprehension 99

Note that because the conclusion of the first of the above elimination rules contains a
disjunction, some intermediate reasoning by cases is also required. This leads to the
following complete proof:

from a: A; s:A-set

1 add(a,s): A-set add-form (hi, h2)
2 {a}):A-set {a}-form (h1)
3 {a}us:d-set w-form (2, h2)
4 fromb:A; be add(a,s)
4.1 b=avbes e-add-E (4.h1, h1,h2, 4.h2)
42 fromb=a
42.1 be {a} e-{a}-I-=(hl, 4.2.h1)
inferbe {a}us e-u-I-right (4.h1, 2, h2, 4.2.1)
43 frombe s
inferbe {alus e-U-I-left (4.h1, 2, h2, 4.3.h1)
inferbe {a}us v-E (4.1,4.2, 4.3)
5 frome:Ay ce {a}us
5.1 ce {a}vees e--E (5.h1, 2, h2, 5.h2)
5.2 fromec € {a}
521 c=4a e-{a}-E (ki, 5.h1, 5.2.h1)
infer ¢ € add(a, s} &-add-I-elem-= (5.h1, h2, 5.2.1)
53 fromce s
infer ¢ & add(a, 5) € -add-I-set (5.h1, h1, h2, 53.h])
infer ¢ & add(a, s) v-E(5.1,5.2,53)
infer add(a, s) = {a} Us =-get-I-sqt (1, 3, 4, 5)

6.7 Set comprehension

Quite often it is useful to define a set implicitly by stating some property that all its
elements are to satisfy. This idea is expressed via the following ser comprehension ex-
pression:

{x:A| PR}

which denotes all objects x of type A for which P({x) is true.

Care is needed when trying to write down formation and membership rules for this con-
struct, however. First, since VDM imposes the restriction that a set must be finite, it is
necessary to ensure that the formation rule does not allow the construction of infinite sets,
and second, it is imperative that the new axioms are consistent with the properties of sets
which follow from the axioms given so far,

The first of these potential pitfalls becomes clear when one considers a particular example
of the set comprehension expression in which P(x) is everywhere ‘true’ and the type A is
the natural numbers. Then the expression reduces to

{x:N | rue}

100 6 Finite Sets

which is to be interpreted as those natural numbers for which ‘true’ is true, which in turn
amounts to all the natural numbers. The problem is that the natural numbers are infinite,
so that the above construct cannot be regarded as a set.

The obvious solution here is to insist that there are only finitely many objects x for which
P(x) is true. One way of doing this might be to introduce some new primitive concept
embodying this notion of finiteness, but a neater way is to use the finiteness property of
sets and insist that there must be some set s which contains all those elements x satisfying
P(x). This method effectively amounts to showing that there is some set of which the set
comprehension expression is a subset. This leads to a hypothesis to the formation rule
for set comprehension of the form

Is:A-set -Vy:A - Ply) = yes

The second problem is somewhat more subtle. On the basis of the interpretation of the
set comprehension expression given above, it is tempting to define membership via the
predicate

ae {x:A|P(x)} < Pla)

which states that an element a is a member of the set {x:4 | P(x)} if P(a) is tue and
not a member of the set if P(a) is false. The problem here is that, assuming the set
comprehension expression does indeed represent a set, the rule ‘6-¢’ given above (see
Section 6.3) implies that the left-hand side of the above equivalence is either true or
false, from which it follows by simple propositional logic that the right-hand side must
also be either true or false. To put this another way, from the above membership predicate
together with the rule ‘8-€’ it is possible to prove 6P(a) on the sole assumption that the
set comprehension expression {x:A | P(x)} denotes a set. To avoid an inconsistency,
therefore, it is necessary to insist that the set comprehension expression only denotes a
set if the characteristic predicate P(x) is everywhere well-defined, that is if

Vx: A 8P(x)

This assertion then becomes an additional hypothesis of the formation rule, the correct
version of which is:

Vx A - SPx)
ds:A-set- Vy:A-P(y) = ye s
{x:A| P(x)}: A-set
The membership rule, with the predicate given above as its conclusion, requires the same

hypotheses in order to ensure that the set comprehension expression occurring therein is
well-formed:

a A
Vx:A- 8P(x)

dniA-set-Vy:A-Po) = ye s
[e-tbosedetn] =2 A T RGN & P@

In fact VDM admits a more general form of set comprehension than the one described
above. This is written

@ | A - P}

6.7 Set comprehension 101

and stands for all objects of the form f(x) generated from those objects x which satisfy
the predicate P{x)!. Of course, considerations of finiteness and consistency must be taken
into account here just as for the simplified case described above. Here, however, one
requires the additional constraint that f(x) must be well-formed for each x satisfying the
characteristic predicate P. This leads to formation and membership rules of the form:

Vx:A - SP(x)
x:A, POk fx):B

ds:B-set - Vy:4-P) = f(¥) e s
{f(x) | x::4 - P(x)}:B-set Ax

B
VxiA-8P(x)
xA, P& f(x:B

Js5:B-set - Vy:A-Py) = f(y)e s
be o) | #A - P & JaiA Play b =fla) ™

Note that these axioms do not insist that there are only a finite number of values of x
satisfying the characteristic predicate P(x), rather that these values of x generate a finite
number of different values of f(x). The first condition would be too restrictive as it is
perfectly possible for the number of different values of f(x} to be finite even if the number
of possible values of x is infinite,

The simple form of set comprehension described above can now be thought of as a special
case of this more general form, namely the case where f(x) = x, with the formal definition

(A PGY) def {x] xA - Pi)}

The formation rule ‘those-form’ and the membership rule ‘e-those-defn’ for this sim-
ple form can be proved from the rules ‘set-comp-form’ and ‘e -set-comp-defn’ for the
generalised form given above (see Exercise 4).

The notation can be further extended so that the quantification ranges over a set instead
of a type. This is written

{f) | xe 5 - P(0)}

1t is defined axiomatically via
5:A-set
Vxe 5§ 8P(x)
xA xes P(x) L f(x)::B
dr:B-set - Vye s-Py) = f(y) et

Foolxes P@OY={fx) | xA - xe sAPX)} Ax

A simplified form of the notation omits the predicate P(x) when it is identically true:

{f(x) |z e s} gef {fx) | xe 5 - trus}

“This notation can be further extended in the obvious way to allow f and P to depend on more than one
variable.
% Again, the extension to more than one variable is obvious.

102 & Finite Sets

Its formation rule, which is derivable from the more general rules given above, is tela-
tively simple:
s A-set
A, xeskf(x):B
3t:B-set-Vye s-f(y)et
{f(x}| x € s}: B-set

[set-comp-form-set-ident |

This can be further simplified to:

51 A-set
‘ | xARLfx):B
set-comp-form-set-ident-giobal
| x e 5}: B-set

when f(x) is of type B for all x of type A {(i.e. not just for those x in the set 5) as finiteness
is ensured by the rule

siA-set; Al f(x):B

finite-set-i
drB-set-Vxe s fixyet

Finally, for completeness, a shorthand notation for the case where the quantification is
over a type and where the predicate is identically true can be defined via:
x| xA) df e 1 x4 - true}

though its usefulness is limited as it is only finite if the type A is finite or if f(x) takes the
same value for all but a finite number of elements of A,

6.8 Reasoning about set comprehension

The fact that the formation and membership rules for set comprehension contain finite-
ness and definedness hypotheses which have to be discharged when reasoning about set
comprehension expressions can not only make this task seem somewhat daunting but can
also lead to much repetition of work if the proofs are not structured sensibly into lemmas.
The following example illustrates how this can be done.

A common specialisation of set comprehension is the interval (of numbers) or set range
expression. This is written {i,...,f} and denotes those natural numbers lying between
the natural numbers i and j inclusive, so that, for example, the interval {4, ...,7} denotes
the set {4,5,6,7}.

Intervals can be defined directly in terms of set comprehension via:
oot ¥ eNjiseg))

Reasoning informally to begin with, it is easy to see that the characteristic predicate in the
above set comprehension expression is well-defined for all natural numbers i and j, and
that there are finitely many values of r which satisfy it. This indicates that the expression

3n fact VDM has a wider notion of intervals than this whereby i and j can be real rather than natural
numbers, with the expression {i, .../} then denoting those integers lying between i and j, To describe this
would require a significant extension to the Himited theory of numbers presented in Chapter 5, however, so
this more generat form is ot discussed here.

6.8 Reasoning about set comprehension 103

does indeed represent a set and suggests that the following formation and membership
rules for intervals should be valid:

_ iN; N — N, N AN
o Noset ke fi..) & i<k<]

Turning now to consider the formal proofs of these rules, it is clear that the first step in
each must be expanding the definition of the interval, after which the formation or mem-
bership ryle for set comprehension (‘those-form’ and ‘e -those-defn’) can be applied as
appropriate. The point to note here is that the hypotheses of these two rules are identi-
cal, so that after these steps the proofs of both the formation and membership rules for
intervals reduce to discharging the same definedness and finiteness hypotheses. Whilst it
is true that there is not much to be lost by repeating the justification of the definedness
hypothesis, this being a simple consequence of the properties of natural numbers (in par-
ticular the rule ‘6- £ - <7}, the finiteness hypothesis is a different matter entirely as its
proof is far from immediate. The best strategy at this point is therefore 1o state a new
lemma asserting the finiteness property required. This has the form:

- - iN: i:N
ds:N-set - Ty

N-isysj=yes

The proofs about intervals are now easy to complete. That for the formation rule is:

from &:N; /iN

1 fromx:N

il Si<x<j) §-<-<(hl, 1.h1, h2)
infer Vx:N- 8(i s x <) V-I(1)

2 Js:N-set-VyN.isy<j>yes interval-finite (h1, h2)

3 {mN|isns }:N-set those-form (1, 2)

infer {i,...,j}:N-set folding (3)

That for the membership rule is similar, differing only in the last two lines:

fromi:N; /:N; kN

1 tromx:N

1.1 S(i<x <)) 6-£-5(hl, 1.h1, h2)
infer Vx:N- 8(ISx <)) V-I1(1)

2 3uN-set-VyN-isysj=yes interval-finite (h1, h2)

3 ke {mN|icsn<jleisks) e -those-defn (h3, 1, 2)

inferke {i,...,jl = igk<j folding (3)

The lemma ‘interval-finite’ can be proved by induction (left as an exercise for the reader).

104 O Finite Sets
6.9 Summary
This chapter has dealt with the following topics:

+ Proof using set induction.
+ Quantification over scts.

+ Constructing useful variants of a rule by considering special cases of its metavari-
ables.

+ Ensuring finiteness and definedness of constructs defined by comprehension.

¢ Reasoning about set comprehension expressions.

6.10 Exercises

1. A non-empty set is inhabited

Use set induction to show that a set which is non-empty containg some element:

s:A-set; 52 {}

[non-empty-set-inhabited | - EPry S

2. Distributed union

Show that the distributed union of the empty set is the empty set:

e Ol gry=1y

3. Relating quantification over sets and quantification over types

Use the rules and definitions given in Section 6.4 to prove the following rules relating
existential and universal quantifications over sets and the corresponding guantification
over types:

siA-set; A -x 6 5 APKX) siA-set; Ix e - Px)
dx e 5. Pix) dx:A-xe sAPRE)

s:A-sel, VxiA-xe 5 = P(x) s:A-set; Vxe 5 P(x)
Vxe s-Px) Vx:A-xe s = PXx)

Prove also the definedness rule for existential quantification over sets:
s:A-set; x4, xe 5k 8P(x)

SGre 5 PG

6.10 Exercises 105

4. The simplified form of set comprehension

Prove the formation and membership rules for the simplified form of set comprehension:

Vx: A 8P(x)
ds:A-sel- VyiA-PY) = ye s

A | PR} Aset

aA
Yx:A- OP(x)
Is:A-set-VviA- Py = ye s

a€ ATPOY} & Pla)

from the general forms ‘set-comp-form’ and ‘g -set-comp-defn’ and its derivatives.

Chapter 7

Finite Maps

7.1 Introduction

A map can best be thought of as a collection of associations or maplets recording some
relationship between objects, with, for example, the maplet associating the object b with
the object @ being written @ +— b. Here, a is called the domain value of the maplet
a — b and b the range value. Just as for sets, there is no concept of order agsociated with
the collection, but there is a restriction that no two maplets in the collection may have
the same domain value but different range values, that is a map cannot contain both the
maplet @ — b and the maplet a — ¢ when c 2 b.

In VDM, the notation n; A = B represents the assertion that m is a finite map whose
domain type is A and whose range type is B, that is a finite collection of maplets each of
which associates an object of type B with an object of type A. As an example, the map
{1+ false, 2 > true, 3 — true, 4 = false} is of type N —— B as the domain value
of each maplet is a natural number (of type N) and the corresponding range value is a
boolean value (of type B; see Chapter 9 for the full description of the boolean data type).
Note that it is possible for a map to associate the same range value with two different
domain values, as in this example,

The first section of this chapter gives a basic axiomatisation of finite maps in terms of
generators, anazlogous to the axiomatisation of sets in terms of the generators add and
{ } discussed above in Chapter 6, and presents the corresponding induction principle.
Together, these form the basis of the next section, which illustrates various ways of ax-
iomatising operators in terms of generators. Next, a worked example is presented which
illustrates how one can often structure a proof by spotting that a particular step repre-
sents an instance of some more general lemma, perliaps belonging in a more fundamental
theory. The following section discusses the use of subsidiary definitions when defining
new operators as specialisations of other operators, iltustrating this by developing a the-
ory of map union from properties of map override. The penultimate section then shows
how to define polymorphic subtypes, using bijective or one-one maps as an example, and
also shows how to formulate new induction rules on these subtypes. The chapter closes
with a discussion of map comprehension, with the problems of ensuring finiteness and de-
finedness encountered when considering set comprehension expressions (see Section 6.7)
again coming to the fore.

108 7 Finite Maps
7.2 Basic axiomatisation

By analogy with the discussion of sets in Chapter 6, axiomatising maps in terms of gener-
ators requires the introduction of a primitive object representing the empty map (written
{++}) and an operator for adding a new maplet to an existing map (written addm). Again,
the empty map represents the empty collection of maplets of arbitrary type (strictly of ar-
bitrary domain type and arbitrary range type). Its properties are embodied in the formation
rule ‘{~}-form”:

[oTA B A

The situation is slightly more complicated with the operator addm, however, as the re-
striction that no two maplets may have the same domain value means that one cannot in
general simply add an arbitrary maplet to an existing map.

There are potentially two ways one could proceed here, depending on how one interprets
the functionality of addm. One possibility is to say that the expression addm(a — b, m),
which adds the maplet @ — b to the map m, only represents a map if m does not already
contain a maplet whose domain value is a or if m contains the maplet @ + b already (in
which case addm{a — b, m) simply yields m). This ensures that the condition of non-
repeating domain values is maintained, and leads to a formation rule for addm having a
hypothesis ensuring that the relevant condition is met. In terms of the map domain and
map application operators to be introduced later (see Section 7.3), this has the form:

a:A; BB, mA — B; ae domm = m(a)=b
addm(a — b,m):A %+ B

The problem with this sort of treatment is that it is inextricably linking the definition of
addm with the definitions of map domain and map application, and since these concepts
will have to be defined in terms of addm, this sort of link can easily lead 1o tortuous
circularities in reasoning. Not only that, but every other rule involving addm would
need similar hypotheses to ensure the well-formedness of each occurrence of addm, thus
making those rules much more cumbersome to use.

The other way of interpreting addm is to say that the expression addm(a — b, m) always
denotes a map, but doss not simply add the new maplet a —» b to the map m, rather having
a value depending on the value of m. Again, there are two possible interpretations in the
case when m already contains a maplet of the form a — ¢ for some ¢: either one could
say that addm(a — b, m) does nothing in that case, or one could say that it replaces (or
overwrites) the maplet ¢ — ¢ with a — b {of course there is no difference between the
two interpretations if ¢ is the same as b). Both these approaches lead to the same simple
formation rule for addm:
a:A; b:B, mA -2+ B

addm{a v+ b,my A ~"s B Ax

the differences between them showing up in the basic axioms defining the properties of
addm.

In fact it generally turns out to be easier 1o write axioms for other operators defined in
terms of the generators if the element being explicitly added is actually present in the
composite object being construocted, as this enables one to reason about something whose

7.3 Axiomatisation using generators 109

explicit form is known. This argues for choosing the interpretation that addm(a — b, m)
overwrites any maplet of the form a ~ ¢ already present in the map m. This property is
captured axiomatically by considering the effect of successive applications of addm with
maplets having the same domain value. This yields a rule of the form:

addm-overwrite| addmia — bl,addm(a - bz,m)) addnia v i) X

Lastly, it is necessary to describe the unordered property of a map. Again this can be done
by considering the effect of successive applications of addm, this. time with the maplets
having different domain values. The lack of ordering is then expressed by saying that the
order of application of the two addm’s is unimportant:

@:A; b:B; c:A; d:B; mA " B; a#c
addm(a — b, addmic v— d,m)) = addm(cwdaddm(aHbm))

Clearly any finite map can be expressed as a finite series of applications of addm to the
empty map, with each application adding a different maplet. This suggests formulating
an induction rule based on the principle that, if some property P can be shown to hold
for the empty map and, further, if by assuming that P holds for some arbitrary map m it
can be shown that P also holds for the map constructed by adding a new mapletga — b
to m, then P holds for all finite maps. The only problem with the above statement is how
to express the fact that a new maplet is being added in the induction step as there is no
analogue of the set membership operator € for maps. The key to this is to realise that
it is sufficient to insist that there is no raplet already in m with the same domain value
(namely a) as that of the maplet being added. This leads to the introduction of the notion
of the dornain of a map (written domm), this being simply the set of all the domain values
of all the maplets in the map. Its defining axioms are given in the next section.

Now the fact that a new maplet is being added in the induction step can be expressed
using simple set membership, namely by saying that the domain value of the new maplet
is not in the domain of the map. The induction rule for finite maps therefore has the form

mo:A =5 By P({r})
@A b8, mA 2B, P(m), a¢ domm |-

abm
)

Note that, as for the local hypothesis # ¢ 5" in the induction step of the induction rule for
sets (*set-indn”), the local hypothesis a ¢ doms is not strictly necessary: it simply rules
out a case which can be reached by other means (namely by adding the mapleta — b to
the map obtained by removing the maplet with domain value ¢ from m).

Pladdm(a — b,m))

7.3 Axiomatisation using generators

A common way of axiomatising operators on data-types defined via generators is to give
a series of axioms which define the operator for the base elemnent (here, the empty map)
and for each of the generators (here, the maplet addition function addm). The parallel
with the induction principle is clear, and it should therefore come as no surprise to learn
that proofs about operators defined in this manner generally proceed by induction,

A simple example of how to proceed is provided by the domain operator dom. As ex-

JONRY /e idps

plained above, this represents the set of all the domain values of all the maplets in a map.
Considering first the base case, since the empty map contains no maplets the set of all
the domain values, and hence the domain itself, must be the empty set. This leads to the
following rule:

[dom-def-{—} | ey =Ty A

Turning now to the addm case, the idea is to define the domain of a map of the form
addmi{a +— b,m) for an arbitrary map m and an arbitrary maplet a — b (with ¢ and b
being of the appropriate type, of course). These parametexs, together with their types,
then form the hypotheses of the definition rule, the conclusion of which will be of the
form domaddm(a — b,m) = It remains to be decided what expression should form
the right-hand side of this equality.

One point worth noting is that, to maintain the paraliel with the induction rule (and in-
cidentally to make the proofs about domain more tractable), this expression should only
depend on a, b and domm. To put this another way, the aim is to express the domain of
the extended map in terms of the domain of the smaller map.

Because the value of addm{a — b, m) may depend on whether or not the map m already
contains a maplet whose domain value is a, both these cases must be considered when
determining the value of domaddm(a — b, m). In the first of these cases, the maplet g
b replaces an existing maplet of the form a — ¢ for some ¢, so the domain of the extended
map is the same as the domain of the smaller map (so that domaddm(a — b, m) = dommni).
In the second case, a maplet with a new domain value is added 1o m so the domain of the
extended map is simply formed by adding this new value {a) to the domain of m (so that
domaddm(a v+ b, m} = add(a, domm)). However, the first case can also be described by
this same expression — in that case a is already in the set domm, so adding it again has
no effect. Thus, the appropriate rule defining domain for the generator is:

@A b:B; mA B
b
dom-defn-addm domaddm{a — b.m) = addia, domm) Ax

Note here that the fact that domaddm(a +~+ b, m) can be expressed as add{a, domm) ir-
respective of whether or not a is in domm is important as it effectively “decouples” the
definition of domain and the induction rule for maps — although the basic propertes of
domain have to be proved by induction these proofs do not rely on the last hypothesis
of the induction step (@ € domm). This is illustrated by considering the proof of the
formation rule for domain:

mA -2 B
[omtom] A —2 B

domm: A-set

Note how the induction step (Subproof 4) uses the rule ‘dom-defn-addm’ and does not
depend on hypothesis 4.h5.

7.3 Axiomatisation using generators 111

from n: A ——s B

1 {}hA-set { }-form
2 dom{—}={} dom-defn- {—}
3 dom{r}:A-set =-type~inherit-left (1, 2)

4 froma:A; B:B; mpiiA 2 B: dommyg: A-sety a & dommg
4.1 domaddm(a — b, my) = add{a, dommy) dom-defn-addm (4.h1, 4.h2, 4h3)

4.2 add(a, domm;): A-set add-form (4.h1, 4.h4)
infer domaddm(a v b, my); A-set =-type-inherit-left (4.2, 4.1)
infer doms: A-set map-indn (hl, 3, 4)

A similar technique can be used to develop a set of axioms describing the range (mg) of
a map, that is the set of all the range values of all the maplets in # map. Again, the hase
case is simple as this set is empty

,mg-dcfn—{w} l W Ax

and the case for the generator involves determining the value of the defining expression
{which is here rgaddm(a — b, m)) in the two cases a ¢ domm and a € domm. For the
first of these two cases, a new maplet is being added to the map m and, although m might
or might not already contain a maplet with the same range value b but with a different
dotnain value (e.g. ¢ -+ b for some ¢ different from a), the properties of set addition once
more allow both these cases 10 be described by the same expression, namely add(b, rmgm).

Going on to consider the vatue of rmyaddm(a — b,m) in the case where @ € domm is
not so sisnple, however. The condition a € domm means that m contains a maplet of the
form a ++ ¢ for some ¢, which is overwritien when the maplet a — & is added, However,
although overwriting a — ¢ with a — b certainly means that b is a member of the range
of the extended map addm(a — b, m}, whether or not ¢ is present depends on whether or
not m contains some other maplet of the form d +— ¢ for some d. The problem here is
that there is no obvious way to describe this situation using the map operators introduced
so far.

However, the basis for axiomatising an operator using generators is that the axioms should
be sufficient to define the operator for all maps. Thus, the same principle used in formu-
lating the induction step of the induction rule, namely that any map can be expressed as
a finite series of applications of addm to the empty map with each application adding
a maplet with a distinct domain value, can be used here. This means that an operator
is completely defined by giving its value for the empty map and its value for the map
addm{a v+ b,m) for arbitrary values of ¢, b and m but assuming that ¢ is not already in
the domain of m (cf. the premises of the sequent representing the induction step in the
induction rule ‘map-indn’}. The rule ‘rng-defn-addm-¢’

(et |t s oy
mg-defn-addm- rng addm{a — b, m} = add(b, mgm) X

is therefore sufficient to complete the definition of the range operator, and the relevant
formation rule can be proved from it (by induction):

112 7 Finite Maps

(o] A2 B
g0 g . B-set

One might wonder whether there is ever any point in atternpting to write a single defining
rule covering both the cases a ¢ domm and @ € domm, as was done for the domain
operator above. In fact there is, as the resulting rule has fewer hypotheses than the corre-
sponding roles covering only one of these cases and can therefore be applied more widely.
This is not to say that rules representing the individual cases would never be used, of
course — for instance, if one wanted to deal in some proof with an expression of the form
domaddm{a ++ b,m) and it was known that a was in the domain of m then one or two
lines of reasoning could be saved by using a specialisation of the rule ‘dom-defn-addm’
of the form

aA: BB AL+ B: ae domm
dom-defn-addm-c

domaddm(a + b, m) = domm

instead of the general form ‘dom-defn-addm’ directly. This rule can easily be proved
from ‘dom-defn-addm’ using the properties of sets and equality.

The next question is how one might formulate and prove a similar rule for the range
operator. The key to the former is to notice that the map formed by adding the maplet
a +— b to a map m which already contains a maplet of the form @ + ¢ is the same as
the map which would be formed by adding the same maplet a ++ b to the map m from
which the maplet @ — ¢ has been removed. This operation is described by the domain
subtraction operator. The discussion of the range operator resumes after introducing this
and the analogous domain restriction operator.

Domain subtraction, which is written 5 ¢m, represents the map formed by removing from
the map m those maplets whose domain value is in the set 5. For example, the domain
subtraction expression {1,4,7} 4 {2 — true,3 — faise,4 + true} represents the map
{2 — true, 3 — false}. Note that the set 5 can contain elements which do not occur in the
domain of the map m, as in this example.

The axiomatisation of domain subtraction proceeds in the standard manner. Consider first
the case where the map m is empty. Here, whichever set s is chosen no maplets can be
removed by the domain subtraction since there are none in the empty map, so the defining
rule is simply

tA-
ot} ﬁ Ax

Note that the fact that s must be a set but can be of arbitrary type is captured by the
hypothesis 5: A-set.

Turning now to the addm case, the expression s addm(a — b, m) has to be evaluated for
an arbitrary maplet @ + b, an arbitrary map mand an arbitrary set s, all of appropriate type
(@A, b:B, m: A -+ B, 5: A-set for arbitrary types A and B). Since domain subtraction
involves removing any maplets whose domain value is in the set 5, the value of this
expression depends on whether or not the new maplet being added to m is going to be
removed by the domain subtraction, i.e. on whether or not @ € 5. These two cases
must therefore be considered separately. Further, in each case one must consider the two
subcases corresponding to whether or not g is in the domain of m.

It is sometimes helpfu! when evaluating this sort of defining expression to think “pro-

7.3 Axiomatisation using generators 113

grammatically”.Thus, considering the case a € s, in the first subcase (@ € domm) the
maplet @ — b is first added to the map m, overwriting an existing maplet 2 — ¢, then
it is removed by the domain subtraction. The same effect can be achieved by removing
the maplet g — ¢ directly from m by domain subtraction without first adding the maplet
a — b, so this first subcase is described simply by the expression s ¢ m. In the second
subcase {a ¢ domm) the new maplet @ +— b is first added to m then immediately removed
by the domain subtraction, so it might as well never have been added in the first place
and this second subcase can also be described by the expression 5 ¢ m. This leads to the
following rule describing the case a € &

a:A:; b:B; m:A T B; siA-set; a5
-defn-: - Ax
¢-defn-addm-¢ sdaddm{av+ b,m)=s54m

Turning now to the case a & s, the first subcase again replaces the maplet @ ~» ¢ with
the maplet a — & which is not removed by the domain subtraction. This effect can
be emulated by first applying the domain subtraction to m, during which process the
maplet a —» ¢ survives because a is not in 5, then overwriting the resulting map with
the maplet @ — b. (Recall that in all these cases of developing axiomatisations in terms
of generators the object 1s to express the operator applied to addm(a v+ b,m) in terms
of @, b and the operator applied to m.) This subcase can therefore be described by the
expression addmf{a — b, s4m). This expression also describes the second subcase because
addmi{a — b, m) adds a completely new maplet to m and this is not affected by the domain
subtraction so the order of application can be commuted. Thus, thecase a ¢ §is described
by the rule

a Ay BB, mA -Ta B stA-set; a & s ax
4 b sdaddm(a v b,m) = addm{a — b,s {m)

This completes the definition of dorain subtraction.

The axiomatisation of the domain restriction operator proceeds entirely analogously. This
is written 5 ¢/m and denotes the result of removing those maplets from the map m whose
domain value is not in the set s (alternatively of preserving only those maplets whose
domain value is in §). Its defining rules are

st A-set
ST e eT

A b:B; m:A "+ B; siA-set, a€ s A
—4- AN TS qaddmia v b,m) = addm(a s b,s qm)

aA; BB, mA - B; siAset ae s
sdaddmia— bm)=sdm Ax

Formation rules for both these operators

m:A -2 B; 5 A-set mA = B; s:A-set
sdm:ALB sqmA "> B

can easily be proved from their defining rules (by induction).
It is now possible to formulate a rule defining the range operator in the case where the

il4 / Pnle Maps

maplet being added overwrites an existing maplet with the same domain value, as the
notion of removing a maplet from a map can be expressed using domain subtraction and
the unit set {as {a} 4m). The required rule is therefore

adA; BB, mA =5 B, ae domm

mgaddm{a — b, m) = add(b, mg({a} 4m))

Its proof is covered in detail in Section 7.4

Operators analogous to domain subtraction and restriction can also be defined for range.
Thus, range subtraction which is written mp s, represents the result of removing from the
map m every maplet whose range value is in the set s, whilst range restriction, written
mbp s, similarly represents the result of removing the maplets whose range value is not in
5. In both these cases s must be of type B-set if mis of type A - B.

Axioms for these operators are developed in a way similar to that described above for the
corresponding domain operators except that this time the top-level case distinction for
the addm rules is whether or not the range value of the added maplet is in the subtracting
{or restricting) set. Also, the trick of domain subtracting the unit set to remove unwanted
maplets, which was described above in connection with the formulation of the rule ‘mg-
defn-addm-e ’, has to be used. This yields the following defining rules

s: B-sat
sz ™

@A b:B mA-T> B siBset bes
addm{g — b,m)ps={a} 4(mbs)

@A b:B; mA-T5 B, 5:B-set; be
addmi(a v+ b, m)b s = addm(a — b, mp 5)

5: B-set
Pttt | =355 o7 =ibs={=] ™

aA; b:B; mA 24 B; s:B-set: be s
addm(a v b,m}p s = addm(a — b,mbp 5)

p-defn-addm-¢

p-defn-addm-e

@A b:B, mA-"s B, s:B-set; beg s
addm{a — b)) bs = {a} 4(mb)

d-defn-addm-¢

from which the formation rules

m:A —+ B; s5:B-set mA — B: 5:B-set

mps:A "B mps:A "B

can be proved {again by induction).

The last operator to be dealt with in this section is map application, written m(c) and
denoting the range value of that maplet belonging to the map m whose domain value is
¢. This clearly has to be treated somewhat differently from all the examples discussed
50 far as it certainly cannot be defined for the empty map (as this contains no maplets).
Map application therefore represents a partial function which is not well-defined for all

7.4 Extraction and abstraction of lemmas 115

maps. More specifically, the expression m(c) is only well-defined if ¢ is in the domain of
the map m. Note that this condition automatically ensures that the map is non-empty.

In actuality, this example is not so different from the earlier ones as it might appear. These
all proceeded with the aim of developing a series of rules defining a particular operator
for all maps, using as a basis for this the fact that any map can be written as a (possibly
empty) series of applications of the generator addm to the empty map. Taking a broader
view, however, one could instead think of this process as developing a series of rules
defining an operator for all those maps for which it is well-defined, with all the operators
considered so far being well-defined for all maps (fotal functions). This is in fact the
correct way of looking at things and forms the basis for the treatment of partial operators.

For the case of map application, it is therefore necessary to construct a series of rules
which define m{c) for all values of m and ¢ for which the expression is well-defined,
namely when ¢ € domm with m non-empty. Now the most general way of representing
a non-empty map is as addm applied to some other map, say as addm(a — b, m), and the
element ¢ is in the domain of this map if ¢ is the same as ¢ or if ¢ is in the domain of
m but is different from a. In the first of these cases the range value associated with the
appropriate domain value is b, whilst in the second case it is simply the map m applied
directly to ¢ (note that the fact that ¢ has been assumed to be in the domain of m in
this case means that the expression m(¢) is well-defined). The basic rules defining map
application are therefore

a A, b:B; mA —T—>B A
T addm(a v b,m)@) = b

@@ a:A; b:B; c:A; A - B: c#a; ¢ € domm A
Coh-acdn 2 addmia — b, m)(c) = m(c) X

The proof of the formation rule
ad; mA -2 B, ae domm
B

proceeds in the by now familiar way.

Map application is the final ingredient required for the definition of equality on maps. The
basic idea here is that two maps m; and my are equal if they contain the same collection
of maplets. This condition is satisfied if the domains of the two maps are equal and if,
for all domain values in the maps, the result of applying m to some domain value is the
same as applying »z; to that domain value. This property is encapsulated in the defining
rule

miA s B, myA -2+ B

domp = dommy; Va € domm - m{a) = mia)

7.4 Extraction and abstraction of lemmas

Quite often when developing a proof, whether a proof about maps or one about something
entirely different, one reaches a point where the particular step under consideration actu-

116 7 Finite Maps

ally represents an instance of a rule which could itself have been proved from the other
rules available but which simply had not been thought of up to then. This step could, of
course, be completed “in-line” in the current proof, but doing so would mean not only
that one would be losing generality by proving an instance of a useful rule instead of the
more basic form but also that work would have to be duplicated if some later proof also
contained a step representing an instance of this same rule. Not only that, but proofs con-
structed in this manner would be longer and more complicated, and hence more difficult
0 understand, than they need be, Thus, although the technique of matching knowns and
goals against the hypotheses and the conclusion of available rules is often useful when it
comes to deciding how to progress in a proof, it should not be applied indiscriminately.
Rather one should additionally consider whether it might be possible to formulate some
new rule which would help with the curreat proof and which might be useful in later
proofs too. These “subsidiary” rules or lemimas can arise naturally in the course of con-
structing a proof, but can also come to light simply by considering the plan of the proof.
Both these situations are illustrated by considering two different approaches to proving
the rule ‘rag-defn-addm-e’ introduced in the previous section.

In the first approach it is assumed that the proof is begun by searching for matching
rules. Of the available rules about maps only ‘map-indn’ offers any chance of progress,
but, as has already been seen in Section 5.4, the presence of the non-typing hypothesis
a € domm means that this cannot be applied immediately as the appropriate instance of
this hypothesis is required in the induction step of the proof. This means that the trick of
applying ‘=3-E-left’ to transform the goal into an implication is needed again. The first
stage of the proof is therefore:

froma: A, B, m:A -+ B, a e domm

1 ;a & domm => mgaddmia — b, m) = add(b, mg{{a} ¢m)) {17 justify 77)
infer g addm{a — b, m) = add(b, g ({a} ¢m)) =-E-left (1, hd)

Now the induction rule can be applied, The base case of the induction involves showing
thata € dom{—} = mgaddm(a — b, {—1) = add(b,rmg({a} 4 {—})) which is entirely
trivial because the left-hand side of the implication is false.

One point worth noting here is that, although this step corresponds to a single deduction
as far as one’s intuition is concerned, justifying it actually requires several lines of proof:
first, ‘dom-defn-{+}" and ‘{ }-is-empty’ would have to be used to deduce dom {+—} = { }
and —{a € { }} respectively, then the desired result follows from these by substitution of
equals. This suggests defining a new rule embodying this step:

. aA
@E —{a & dom {+s})

which has a proof as outlined above and which can be used directly in the justification of
the base case in the proof of ‘rng-defn-addm-e ” as shown:

7.4 Extraction and abstraction of lemmas 117

from a:A; b:B; mA -5 B: g e domm

I —(ae dom{—}) —-&-dom-{—}-I (h1)
2 aedom{—}=
rgaddm{a — b, {~+}) = add{b,mg({a} 4 {—1}) =3-[-right-vac (1)

3 fromaA; b B, mp:A = B,
a e doemm; = mgaddm{a — b,m)) = add(b,mg ({a} 4mpD);
a; & dompny

infer a € domaddm{a; — by, my) =
ing addm(a v b, addmia; — b1, m)) =

add(b, mg({a} addm(a, — b, m))) {77 justify 77)

4 ge domm =
mgaddmia — b, m) = add(b,mg({a} 4m)) map-indn (h3, 2, 3}
infer mg addm(a — b,m) = add(h, mg ({a} ¢m)) =-E-left (4, h4)

Turning now to the induction step (Subproof 3 in the above incomplete proof) the first step
is to use ‘=-I" to justify the conclusion, generating 8§{a e domaddm(a — b1, m)) as a
new goal, together with a new subproof having ¢ € domaddm{a, s by, m;) as its hypoth-
esis and rngaddm(a v b, addm(ay — by, my)) = add(b, mg{{a} daddm(a; — by, m:)))
as its conclusion (the left- and right-hand sides of the implication respectively). The
definedness goal is straightforward to justify, and could also be split off as a lemma

a4 dz:A; b:B; m:A LB
L &(a) € domaddm(a; — b,m))

In the subproof, the hypothesis can be used to deduce that either a = a; or @ € dommy,
again via a lemma

api:A; apA; b:B; m:A -5 B; ay € domaddm(ay — b,m)
€ -dom-addm-E
a =a v a e domm

or a different lemma, making use of the induction hypothesis a; ¢ domm;, might be used
to deduce additionally that ¢; must be different from g in the second case

ap:A; ayA; b:B; m:A -+ B
a, € domaddm(a; — b,m); a; ¢ domm

ay=ayva € dommadad#a
Either way there are two cases to consider, a =) and a# @ A a € domum,. In the first of
these cases, afier substituting a; for @ in the required goal the rule ‘addm-overwrite’ can
be used to rewrite addm{a, w+ b, addm{a, ~+ by, m)) to addm{a; — b,m,) in the left-
hand side of the equality, then the resulting term sngaddm(a; + b, m;) can be rewritten
to add(b, mgmy) using the rule ‘rng-defn-addm-¢ ’ because a; ¢ dommy. Similarly the
right-hand side of the equality can be rewritten to add(b,mg({ai} 4 m) using *4¢-defn-
addm-e* (because @; € {a1}). It therefore remains to be shown that add{b,mgm) =
add(b, mg ({a1} {m).
Orne could of course proceed to show this directly, but the similarity in the structure of
the two sides of the equality is an indication that some more general rule might be found.

118 7 Finite Maps

In such a situation, the aim is to find the smallest subterms of each expression which are
equal in the current context, and the appropriate strategy is to look first at those subterms
which are different on the two sides of the equation. If these can be shown to be equal
then their equality represents the required rule. If not, larger and larger containing terms
must be considered until a provable equality is discovered.

In the current example, the subterms which are different on the two sides of the equation
are my and {a;} ¢ my, and since it is known that a; € domm; these two subterms are
equal. This saggests proving a lemma of the form

a:A; mA -T2 By a g domm
ddelntate Taldm=m

whence the required equality follows easily by substitution.

In the remaining subproof (@ # a1 A @ € dompmy) the left-hand side of the equality in
the goal can be rewritten to rngaddm(a; — by, addm(a — b, my)) using the rule ‘addm-
comm’, then the fact that @) ¢ domaddm{a — b, n) (because ay2aq and a; ¢ dommy) can
be used, together with the rule ‘mg-defn-addm-¢ °, to yield add(b;, rng addm(a v b, m;)).
Meanwhile the right-hand side of the equality can be rewritten in a similar manner, first
to the expression add(b, mgaddm{a, — by, {a} 4m;) using a lemma

apA; ar A, b:B; mA -2+ B: aj#a;
{a1} daddm{az — b,m) = addm(ay — b, {a; } ¢m)

which is easily proved from ‘¢-defn-addm-¢’, thence to add(b, add(b;, mg ({a} 4m;))),
again using the fact that a; & dom({a} 4m) together with the rule ‘mg-defn-addm-z .
Substitution of the induction hypothesis and the commutativity of add (rule ‘add-comm’
from set theory; see Chapter 6) completes the proof.

An alternative proof of the rule ‘mg-defn-addm-e ' might involve trying to identify useful
new lemmas right at the start. In that case, the earlier discussion, which led to the obser-
vation that overwriting an existing maplet in a map using addm yields the same map as
woukd be obtained by applying addnm to the map from which the maplet to be overwritten
has been removed, suggests that a useful lemma might be

aA; B, mA =R
@‘E@ addm(a — b,m) = addm{a — b, {a} 4m)

The conclusion can be rewritten to mgaddm(a — b, {a} 4m) = add(b, rog({a} 4m) using
this lemma, and this follows directly from the rule ‘rng-defn-addm-¢ ’ in conjunction with
a lemma stating that a is not in the domain of {a} ¢m:

a:A; mA—B
ae dom({a} Qm)

The completed proof is:

7.5 Using subsidiary definitions 119

froma: A; b:B; m:A =4 B; ae domm

1 addm{a— b,m):A -~ B addm-form (h1, h2, h3)
2 {a}: A-set {a}-form (k1)
3 ({a}gmpA"B 4-form (h3,2)
4 ae dom{{a}4m) g-dom-¢-I-{a} (h1, h3)
3 addm(a — b,m) = addm(a — b, {a} ¢m) addm-defn-4- {@}-= (h1, h2, h3)
6 mgaddm(a — b, {¢} 4m) = add{b,mg({a} 4m)) rmg-defn-addm-¢ (h1, h2,3,4)
infer rg addm(a v b, m) = add(b, g ({a} 4m)} =.gubs-left(a) (1, 5, 6)

Note that, although this proof is significantly shorter than the first attempt discussed
above, all the work has been factored out into the lerama ‘addm-defn-¢-{a}-=". This
is of course good technique, especially if that lemma can be similarly proved in a few
lines by applying similar principles to identify other useful lemmas, as it leads to much
clearer and much more manageable proofs. Not only that but the new lemmas identified
in this way are likely to be useful in future proofs, thus making those proofs easier to
discover and correspondingly simpler.

Note also that the above proof does not actually depend on the final hypothesis @ € domm,
That hypothesis can therefore be removed yielding a proof of the stronger rule:

i @A b8 mA- DB
g addm{a v b, m) = add({b, g ({a} 4 m))

7.5 Using subsidiary definitions

Just as one generalises the generator add of set theory to obtain the binary set union
operator which represents the result of adding each element of one set to another set,
so one can also generalise addm on maps to obtain the notion of map override, written
my T rp and denoting the result of overwriting the map m with each maplet from the map
my, Map override can be axiomatised in terms of the generators for finite maps exactly
as described in Section 7.3 above, and is in fact described by the rules

, mA B
[t-defo- (gt A

a:A; b:B; my:A =3 B; my:A 24 B
m T addm(a v+ b,my} = addm{a — b, m;Tmz)

It shares many of the properties of set union, for examnple idempotence, associativity, and
that the empty generator is an identity for it

. mA-"4B mpA 2B, mp A5 B, my:A-2sB
mim=m (my tmg) ¥ my =yt (mz T m)

mA-2 B
Ermr e

120 7 Finite Maps

but is not in general commutative due to the fact that the maplet addition may replace
maplets in the map »1 with those from my having the same domain values. It is commu-
tative, however, in the special case where every value a which is common to the domains
of the two maps my and my has the same associated range value in both maps, that is if
mi{a) = mz(a) for every a in domm, mdommy. Two maps which satisfy this condition
are said to be compatible, and they can be combined using a commutative map merge op-
erator = which is a specialisation of the override operator and which is a direct analogue
of set union.

From the description given above one can easily formulate an axiomatisation of map
merge via a rule

mizA 29 B, mp: A 25 B, Va e dommy mdomeny - my(a) = rma(a) o
my e g = my T

where the third hypothesis represents the condition that the two maps must be compat-
ible for the map merge to be defined. However, this rather cumbersome compatibility
hypothesis means that proofs using this rule will involve reasoning about that long ex-
pression. This is avoided by introducing a subsidiary definition representing the notion
of map compatibility into the theory. A set of rules describing its essential properties can
then be developed, and these can in turn be used 1o reason about map merge.

Because of the inability to record essential typing information, map compatibility can-
ntot be introduced by direct definition and must instead be defined axiomatically. The
appropriate rule simply makes use of the defining predicate introduced above and is

T mid =B, mpA - R A
compauble-dein compatible(m;, mz)} < Va & dommm M dommz - r(a) = ma(a)

Simple introduction and elimination rules can then be proved from this using the basic
properties of equivalence:

mA -2 B mpA -2 B

- Ya e dommy M dommz - my(a) = m(a)
compatible-1 ;
compatible(my, my)

mA " By myi A <" By compatible(pmy, mz)
ompatibie- Ya e domnmn Ndomm - my(a) = m{a)
The next step is to develop a library of rules about compatibility. Obvious ones, suggested

by the fact that the defining predicate s symmetric in #y and mz and is also trivially true
if either sy or m is the empty map, are

i myi:A "4 By my: A e B; compatible(my, my)
-
compable(ma, my)

mA —— B
compatible({r}, m)

[compatible-defn-{-—}-loft

mA = B
compatible(m, {— 1)

[compatible-defa-{-) -right|

7.5 Using subsidiary definitions 121

Also it is clear that the defining predicate is everywhere well-defined, suggesting a rule
of the form

5 o] A o Bmad B
6(companble(m1,m2))

Two other useful rules, which are perhaps not quite so obvious but which arise naturally
as lemmas when addressing proofs about map merge, are:

mpA - B omp A -2 B omp AT B
Compﬂﬂble(m],fn3); Compatlble(mz, FH3)
compatible(my + ma, m)

miA = B mp A =5 B; macA — B

i compatible(my, my); compatible(r, m
compatible-1-I-right P (b 2) p {11, m3)

compatible(m,, mg T ms)

The main point to note here is that, although one of these rules has to be proved us-
ing the basic definition of compatibility, the other can be proved much more easily by
making use of the first in conjunction with the commutativity property of compatibility.
Thus, assuming ‘compatible-1-I-left’ has been proved from basic principles, the proof of
‘compatible-T-I-right’ is:

frommpA T By mptA -Ze By migt A -4 B
compatible(my, ma); compatible(m, ma)

1 mimgA=B +-form (h2, h3)
2 compatible(my, m) compatible-comm (hl, h2, h4)
3 compatible(ms,m)} compatible-comm (h1, h3, h5)
4 compatible(my T ms, my) compatible-t-I-left (h2, h3, hl, 2, 3)
infer compatible(my, my T ma) compatible-comm (1, hl, 4)

Now the map merge operator can be defined in terms of compatibility via the rule

myA 29 B, mypA 2 B companble(m],mz)
W i = ‘i' n

and its properties follow easily from the properties of compatibility and those of map
override. Thus, for example, rules defining compatibility and override for the empty map
(‘compatible-defn-{+—}-left’, ‘compatible-defn-{—}-right’, ‘t-defn-{r+}-left’ and ‘}-
defn-{— }-right) lead to counterparts “e~defn-{— }-left’ and “e-defn- {}-right’ defin-
ing map merge with the empty map:

mA 2B - mA - B
[erdetn- o] =g edeln-) right) = o) =

and rules defining compatibility of map override (‘compatible-{-1-left” and ‘compatible-
+-I-right’), together with the associativity rule for map override (*1-ass"), lead to an as-
soclativity rule for map merge:

122 7 Finite Maps

miA — B mp A 2o B macA —— B
compatible(my, my); compatible(my, ms); compatible(my, ms)
(my W mg) womg = my @ (g \© ms)

The proofs of all these rules follow a similar pattern, as illustrated by the following proof

of ‘w-ass”:

from my A - By mgi A -2 By mat A - B, compatible(m;, my),;
compatible(my, ms); compatible(my, ms)

1 mim:A-"SB t+-form (k1, h2)
2 mtmpA-ToB t-form (h2, h3)
3 mt(mim):A-"5B $-form (hl, 2)
4 pmwmi=mim w-defn (h2, h3, hS)
5 mwewm=mtitm w-defn (hl, h2, h4)
6 compatible(my, my T ms) compatible-f-I-right (h1, 42, h3, h4, h6)
7 miw(mtm)=mTm0tm w-defn (hl, 2, 6)
8 compatible(my T ma, ms) compatible-T-I-left (h1, h2, h3, k6, h3)
9 (m; t m;) @ g = (?m I mz) ¥ s w-defn (1, h3, 8)
10 (mtm) T =m T (nz T ms) t-ass (h1, h2, h3)
11 (m f)@ ms =my ¥ (my T ms) =-trans(c) (3, 9, 10}
12 (mm) wim = my o (ma T ms) =-trans-right(c) (3, 11, 7)
13 (mwen)wm=mw(mtm) =-gsubs-left(b) {1, 5, 12)
infer {my W my) @ ms = my @ (mp '@ my) =-subs-left(b) (2, 4, 13)

The proof of the commutativity of map merge would seem at first sight to require a
different strategy as map override is not commutative in general. However, a little thought
reveals that, by formulating 2 more specialised rule which relies on the fact that map
override is commutative if the two maps are compatible

mi:A T By mpiA T B; compatible(my, my)
my Ty =mytm

the same strategy illustrated above can be followed. The proof of the commutativity of
map merge

my:A = B; mp: A = B; compatible(m,my)
my W = my iy

is then easy. The rule “t-comm’ is proved by induction.

7.6 Polymorphic subtypes and associated induction rules

1t is quite common when writing a specification to define an invariant on a type defini-
tion or on a state declaration which effectively amounts to a statement that only those
elements of the type which have a particular property are of interest. In many cases these
invariants contain clauses which place restrictions on basic data-types or straightforward
type constructors, for example that a pacticular natural number should be non-zero, and

7.6 Polymorphic subtypes and associated induction rules 123

some of these restrictions can be quite common, occurring in a whole range of different
and unrelated specifications. identifying these common restrictions and developing new
theories for the subclasses of the basic types they correspond to can save a lot of work
as the rules describing the properties of the subclass of the type are useful when it comes
t0 proving properties of all specifications which use it. One example of a restriction t¢
a basic type has already been seen in Chapter 5, where the data-type N; corresponding
to the positive natural numbers was introduced. This section illustrates how to define a
subclass of a type constructor.

The basic idea here is to formulate a predicate on the basic type constructor which charac-
terises the required property of the subclass, then the new type constructor is defined as a
subtype (see Chapter 4) of the basic type constructor with that predicate. As an example,
consider the type of bifective or one-one maps. A bijective map is one in which no two
maplets have the same range value, which can be stated as a predicate

Va,be domm-mi@y=mb)=>a=b

where the shorthand notation for multiple quantifiers has been used.

On the basis of the lessons learned in the previous section, it makes sense to introduce a
subsidiary definition to represent this predicate to save having to manipulate the compli-
cated expression when reasoning about bijective maps and to bring the formal theory into
line with one’s fundamental understanding. Thus, a predicate is-1-1 is introduced and is
defined axiomatically via the rule

mA =B

I51-1(m) <5 Y,y € domm - mH) =m(y) S x=y

The bijective map type, written A «—s B, can then be defined in terms of this via

4B © A B il >

Note that the definition is polymorphic as it is parameterised on the types A and B.

From this definition and the properties of subtypes it is easy to prove the following basic
rules about bijective maps:

[Fimep sepecipe| o5 [E] 5 it

A -2 By is-1-1(m)

e

One could of course stop here and convert every proof involving bijective maps into a
proof involving only maps in general by using these three rules together with primitive
introduction and elimination rules for the predicate is-1-1:

m:A - B
- Vx,y € domm-mxy=my) =x=y
is-1-1{m)

o 5 Em:A oy B iS"l“l{m)

domm-m{x)=m(y) =>x=y

124 7 Finite Maps

This approach Jeads to much repetition of work, however, and it is far better to develop
a theory of bijective maps in their own right.

A particularly useful strategy when constructing a theory describing some subtype of a
type which has an associated induction rule is to develop a specialisation of the induction
rule for that subtype. In general, formulating this rule amounts to putting additional
constraints on the induction step (in the form of extra premises in the sequent hypothesis
which represents it in the rule) to ensure that it steps from one value of the subtype to
the next. Also it is necessary to modify the typing information throughout the rule, and
possibly the base case as well if the base case for the main type is not a member of the
subtype. For bijective maps, it is easy to see that the induction step can be restricted to
step only between bijective maps if an additional constraint is imposed 1o the effect that
the range value of the maplet being added should not already be in the range of the map.
It is also easy to see that the base case need not be altered because the empty map is
bijective. The induction rule for bijective maps is therefore

my:A = B; P({—})
a:A, b:B, mA < B, |- P(addm(a — b,m))
abm

P(m), ae domm, be mgm lap
bimap-indn .
Blomo)

This rule can be proved from the ordinary induction rule for maps as follows. The first
stage is to apply the rules ‘bimap-supertype’ and ‘bimap-E’ to the typing hypothesis to
deduce mp:A 25 B and is-1-1(mp) respectively. The ordinary map induction rule can
then be applied after is-1-1(mg) has been introduced into the induction step using the
standard technique of applying ‘=-E-left’. Doing all this leads to

from mp: A = B; P({—})
a:A, b:B, m:A «"+ B, P(m), a & domm, b e mgmt;, . Pladdm{a v b,m))

1 mpA-B bimap-supertype (h1)
2 is-1-1{mo) bimap-E (h1)
3 is1-1({m)) = P} (77 justify 77)
4 tromayd; by By myA -2 By is-1-1(m) = Piny); @, € dommy

infer is-1-L(addm(a) — b1,m1)} = Pladdmiay ~ by, m1)) {77 justify 77)
5 is-1-1(mp) = P(mg) map-indn (1, 3, 4)
infer Pmag) =>-E-left (5, 2)

The base case (Line 3) is easy to complete, following directly from the hypothesis P({++})
by vacuous implication introduction (rule ‘=s-I-left-vac’). Moreover it is clear that the
induction step has to make use of the sequent hypothesis, and, since the right-hand side
of the implication in the conclusion of the induction step is the same expression that
appears as the conclusion of the sequent hypothesis (after suitably renaming variables),
this suggests that an appropriate strategy is to first apply ‘=2-I" to the conclusion of the
induction step, then to use the sequent hypothesis to justify the conclusion of the resulting
subproof. This yields

7.6 Polymorphic subtypes and associated induction rules 125

trom mg: A+ B; P({b—}})
a:A, b:B, mA <> B, P(m), a ¢ domm, be mgm#t,, Pladdm(a — b,m))

1 muA B bimap-supertype (h1)
2 is-1-1(mg) bimap-E (hl)
3 is-1-1{{—~D = P{{—}) =-F-left-vac (h2)
4 fromapA; b B, mpA o By is-1-10m) = P(ru);, a) ¢ dommy
4.1 a(is-1-1{addm(a — by, m1))} (77 justify 77)
4.2 from is-1-1{addm(a; — by, my))
42.1 mp A< B {77 justify ?7)
422 by & rgm; (77 justify ?7)
423 P(my) {77 justify ?7)
infer P(addm(a; — by,m;)) sequent h3 {4.hl, 4h2, 42.1,4.2.3, 4.h5, 4.2.2)
inter is-1-1(addm(a; +— b1, m)) = Pladdm{a; — by, m)) =-1(4.1,4.2)
5 is-I-1{mg) = P(my) map-indn (1, 3, 4)
infer P(my) =-E-left (5, 2)

Now Line 4.2.1 follows from ‘bimap-form’, generating a new goal is-1-1(m). This,
together with the induction hypothesis is~1-1(m;) = P{m,), justifies Line 4.2.3, The
remaining goals can easily be made the subject of lemmas about is-1-1 following the
strategies discussed in Section 7.4. The finished proof is:

from mo: A <2 B; P({—})
a:A, b:B, m:A <~ B, P(m), a ¢ domm, b & mgm ., . Pladdm(a — b,m))

1 meA-5B bimap-supertype (h1)
2 is-1-1(my) bimnap-E (h1)}
3 i 1-i{{—h = P =-I-left-vac (h2)
4 tomaypA; BBy mp:A = By is-1-10m) => P(m); a; ¢ dommy
41 addmia; = by, m):A -2 B addm-form (4.h1, 4.h2, 4.h3)
4.2 8(is-1-Uaddm{a; — by,m))) 8-is-1-1 (4.1)
43 from {s-1-1(addmi{a, ++ b1, mi))
431 is-1-1(my) is-1-1-addm-E-¢ -map (4.h1, 4.h2, 4 h3, 4.3 11, 4.h5)
43.2 A e B bimap-form (4.h3, 4.3.1)
4.3.3 b1 & mgm is-1-1-addm-E-2 -rng (4.h1, 4.h2, 4 h3, 4.3.h1, 4.h5)
434 P(my) =s-E-left (4.h4, 4.3.1}
infer Pladdm(ay) — by, my)) sequent h3 (4 h1, 442, 432,434, 4.h5,4.33)
infer is-1-1{addm(a, — by, m)} = Pladdm{a) — by, m;)) =»-T (4.2, 4.3}
5 is-1-1(mp) = P(my) map-indn (1, 3, 4)
infer P{mp) =-E-left (5, 2)

The following lemmas have been used:

126 7 Finite Maps

mA-—B
st e oy

a:A; BB mA =+ B
‘ is-1-Haddm(a — b,m)); a ¢ domm
i bhermgm

[is-l-l-addm-E-e -m

a:A; b:B; mA -+ B
is-1-1(addm(a — b,m)); a ¢ domm
J is-1-1(m)

[is-1-1-addm-E-¢ -map

“This induction rule can now be used to prove new rules about bijective maps.

7.7 Map comprehension

The notion of set comprehension described above in Section 6.7 effectively provides a
means of defining a set implicitly by giving a predicate which all its members should
satisfy. A similar mechanism, map comprehension, allows maps to be defined in an
analogous way.

The map comprehension expression’

flay gla) | a:A - P(a)}

represents the collection of maplets with domain value f(@) and range value g{a) for all
values a satisfying the predicate P(a). Just as the analogous set comprehension expression
does not necessarily represent a set, so this map comprehension expression does not
necessarily represent a map. The first condition that has to be satisfied if the above
expression is to denote a map of type B - (is that f{a) and g(a) must respectively be
of types B and C for all values of a satisfying P(a). This leads to hypotheses of the form:

a:A, Pla); f(a). B a:A, Pla)t gla):C

The next constraint arises as a result of the condition that no two maplets in 2 map may
have the same domain value but different range values. This effectively means that if
there are two (or more) distinct values a; and g, which satisfy the defining predicate P(a)
and which are equal under f (i.e. if fa;) = f(a2)) then they must also be equal under g
(ie. gla1) = g(ay)). This is expressed by a hypothesis

Yay,ax: A Pla)) A Plaz) Af(ay) = fla) = glay) = glan)

Two final constraints arise in a similar way to the corresponding ones on the set com-
prehension expression. The first is that the predicate P(a) must be well-defined for all
values of @ in order that the contents of the map be well-defined. The second is that the
number of maplets in the map must be finite. Note that this latter condition is expressed
by saying that the number of different possible domain values (that is values of f(a)) is

! Again, the extension to the case where f, g and P involve more than one variable is obvious,

7.7 Map comprehension 127

finite, making the domain of the map finite, That the range of the map is also finite is a
consequence of this (see Exercise 5 below). Together these constraints give rise to two
more hypotheses:

Vx: A 6P(x)

Js:B-set-Va: A -Pla) = fa) e s

The formation rule for map comprehension is therefore:
Vx:A- SP(x)
x4, Pk foo:B
xA, Pt gl C
ds5:B-set- Vy:A-P(y) = f(y) e s

Vay, a2 A P(aa) A Plag) Aflay) = flaz) = glen) = 8(02)
{f0 = g} | x:A-P}:B = C

Of course defining the formation rule alone is not sufficient to define map comprehension
entirely — that only allows one to show that some map comprehension expression denotes
some map, but says nothing about which map that might be. The latter is best defined
by linking map comprehension to the definition of map equality. Since this is defined in
terms of domain and map application, defining both of these for the map comprehension
expression is sufficient to define it completely.

The domain of the map comprehension expression is very easy to define, being simply the
set of all possible values of f{a). This is expressed most easily using set comprehension:
Vx:A- SP(x)
xA P)E f(x):B
XA, Pyt gx): C
ds5:B-set-VyiA-P(y) = f(y) e s
Va,;m:A - Plan) APla) nfan) = flay) = glay) = glag)
dom {f(x) — g(x) | x: A - P{x)} = {f(x) | x: A - P(x)} Ax

Map application is harder to define, however, and needs to make use of the unique choice
operator of Section 3.5.3. This description works because it is known from the discussion
of the formation rule above that all values of a which generate the correct domain value

yield the same range value. The rule describing the application of a map comprehension
expression is therefore:

b:B
Vxi A 6P(x)
xA, PO Efx):B
x4, Pk glx):C
ds:B-set. Vy:A-PO) = fyle s
Vay,ax A Pla) A P(a) Af(ar) =flaz) = glay) = glaz)

b e dom {f(x) — g(x} | x: A P(x)}
(F& ™ g®) 1A - POOY0) = Ax
10:C- VXA -PX)Ab=fx) = ¢ =g{x)

Other forms of the notation, analogous to those given for set comprehension at the end
of Section 6.7, can be formalised. Thus, the variant of the general form in which the

128 7 Finite Maps
quantification ranges over a set instead of a type, which is written

{f@) g | xe s - P}

is defined axiomatically via:

5: A-set
Vie s-3P(x)
x:A, xe s POk fix):B
xA xes POk gl C
Ar:B-sel-Vye s-Py) = f) et

Vai,ay € 5+ Plag) A Pla) Af(a) =fla) = gla) = glaz)
o= g xe s PO = ~
ey — g | x:A-x e s AP(X)}

and the specialisations of both forms to the case where the predicate P(x} is identically
true are directly defined by:
) glx) | x e s} gef {flXy—gx) 1 xe 5 - true}

o e g x4} B @ g® | x4 - e}

Again, the first of these special cases has a relatively simple formation rule, particularly
when f(x) is of type B for all x of type A:
5: A-set
XALfGRYB
XA xe st gx:C

Va, @ € s flay) = flaz) = glar) = g(ay)
)~ gx) |xe shB 2 C

| map-comp~form-sc[«ident]

and the usefulness of the second is limited by considerations of finiteness.

7.7.1 Reasoning about map comprehension

As might be expected from the complexity of the axioms, reasoning about the general
form of map comprehension described above is even more tortuous than reasoning about
set comprehension, Again, the best strategy is to divide the task up into a series of lemmas.
In this way, expected properties of map comprehension can be proved, for example that
applying the map to a domain element of the form f(a) yields g(a):
a A; P(a)
Vx:A- 8P(x)
xA, P Ef(x:B
A Pk glx):C
Is:B-set- Yy A- P = f(es
Vay, a: A - Plar) A Plas) Aflan) = flaz) = glan) = glan)
) g [A - POO}Sf(@) = gla)

at-defn-map-comp-f (a}]

7.8 Summary 129

and that the range is formed from the set of possible values of g(x):
Yx:A- 8P(x)
xA, P fx):B
xA, Pk glx):C
Js:B-gset - Vy: A - POy = f(¥) e s
Vay, a2: A - Play) A P(az) Afl) = flaz) = glan) = g(az)
mg {f(x) — gx) | x:A- P} = {g(0) ixA- P(x)}
Reasoning about special cases of map comprehension can be much simpler than this,
however. For example, the map comprehension expression
{x=fx)|xe s}

is described by the following rules:

5 A-set
XA xe st f(xp:B
-+ f(x)|xe s}:A —B

|map~comp-fonn-left—seﬂ {x

5: A-set
x:A xe sk f(x):B
dom{x— f(x) |xe s} =5

dom—defn«map-comp-lcf{~set]

a:A; s:A-set, ae s
xA xez5 ';f(x):B
[at-defn-map-comp-feft-sct | {x—flx)x e sia)=fla)

An example of the use of these rules appears in Exercise 4 in Section 12.5.3.

7.8 Summary

Points covered in this chapter include:
¢ Axiomatising operators on a data type in terms of generators.
¢ Structuring a proof into lemmas.
+ Introducing new concepts to help with reasoning.
e Developing induction rules for subtypes.

¢ Map comprehension expressions.

7.9 Exercises

1. Map composition and distributed map merge

Two map operators which are sometimes useful but which have not been described above
are map composition and distributed map merge.

130 7 Finite Maps

Map composition, written sy o m, represents a map which is constructed from the map
my by applying the map my to the range value of each of its maplets (Icaving the domain
value untouched). For example, the expression

{b1 = cr.by > 03, by ca} o {ay v b ey o by}

represents the map

{ay = ey, a3 = 2}

If the map m; is of type A —— B and the map rm is of type B = C then the composed
map m; o my is of type A — C. Map composition is a partial function which is only
well-defined if rngm ¢ dommy.

Distributed map merge, written merge s, generalises the binary map merge operator @
inroduced above (see Section 7.5) to a set of maps s {(compare the set union and the
distributed set union operators on sets described in Section 6.6), This represents the map
formed by combining all the maplets from all the maps in the set of maps s, and is only
well-defined if all the maps in the set are compatible.

{a) Use the techniques described in Section 7.3 of this chapter to develop an axiomatisa-
tion of these two operators.

(b) State and prove the appropriate formation rules.

2. The proof of ‘addm-defn-¢-{a}-=’

Use the techniques described in Section 7.4 of this chapter to develop a set of subsidiary
lemmas to prove ‘addm-defn-4-{a}-=’.

3. The proof of ‘is-1-1-addm-E-¢ -rng’

Prove the rule ‘is-1-1-addm-E-¢ -rng’. Hint: use ‘e-rng-E’ and ‘contradiction’.

4, Map inverse

The inverse of a one-one map m is written ! and effectively reverses each mapletin m so
that the domain value becomes the range value and vice versa. It is defined axiomatically
via:

. m
el Ax

m = {m(a) — alae domm}

Prove:
(a) that the range of the inverse map is the domain of the map:

e mA < B
rng(m’“l)z-domn;

(b) that the domain of the inverse map is the range of the map:

A — B

dom(m™") = mgm

7.9 Exercises 131

(c) that the inverse map is of type B «Z— A if the map is of type A <= B:

A« B

5. The range of a map comprehension expression is finite

Prove the rule
a:A; Pla)
Vx:A- §Px)
x:A, P(x) & fx):B
XA, PG E glx):C
d5: B-set- Vy:A - Py} = f{Y) & §

Vay,ad - Play) A Pla) af(ar) =f(@) = g(a) = gla
Le ~dom-map-comp-1+1 (a)] f(a§ e}dom({f()x) J,:E ;zx) {)([iz . P(f)(})= £e)

Use it to prove
Vx A 8Px)
xA PR fx)B
XA, Px) L gl C
35 B-set - Vy: A-P(y) = f(y)e s
dom-ﬁnitc:mg-ﬁnitej Yo ot 'gi%?;ﬁgigﬂgg;g?aié”,(al) =4@)

Chapter 8

Finite Sequences

8.1 Introduction

This chapter introduces the theory of finite sequences, sometimes simply called fiszs. A
sequence is an ordered collection of elements, with repetitions allowed. In VDM-SL, the
expression A* stands for the type of finite sequences of elements drawn from the type A.
For example, N* consists of lists of natural numbers, T** consists of lists of lists of values
of T, and so on.

Section 8.2 gives the basic axiomatisation of lists in terms of generators and an induction
rule. A worked example illustrates the proof of a useful derivative of the induction rule.
Section 8.3 introduces the partial hd and tf operators, and equality is defined on lists in
Section 8.4. This basic repertoire of operators is expanded in Section 8.5, which also
affords opportunities to illustrate a number of proof strategies including rewriting both
sides of an equality, the use of lemmas corresponding to limbs of a conditional, and an
extension to strategies for proof by induction. Section 8.6 shows how consideration of
alternative sets of generators for a data type can simplify some proofs.

8.2 Basic axiomatisation

Lists can be given explicitly by listing their members in order: [4,3,3] for example. In
order to reason effectively about lists, however, it is necessary to develop a slightly more
abstract notation which allows general rules about lists to be formulated independently
of their length and contents. To do so, it is first necessary to choose a set of generators
for the type of lists,

One particularly simple set of generators for A* consists of the empty list [] and the
operator cons which appends a single element onto the front (feft-hand end) of a list. For
example
[5] = cons(5, [1)
{3,7.9] = cons(3, cons(7, cons(9, [1))

Since any finite list can be built up by sufficiently many applications of cons and [], these
two operators are generators for finite sequences. There are many other possible choices
of generator set, one of which is discussed in Section 8.6, but this choice is probably the
simplest and most familiar to many people.

134 8 Finite Sequences

The axtomatization of this theory starts with formation rules for the generators:

[)-form A Ax

The empty sequence is polymorphic: the same value [] is used to represent the empty
list of numbers, the empty list of lists of numbers, the empty list of characters, and so on.
The symbol A* stands for the type of non-empty lists over A and is defined by

At def <A s[>

The formation axiom for cons states that the generator produces a non-empty sequence:

f a:A; st A* A

‘:cons' Orm::l"‘%qu consla, 5): AY

The following rules can be proved by application of the rules of subtyping (Section 4.5):
a:A; st A"

@A 5 AT
[eonsom] o cons(a,) 71

Having chosen a set of generators, the next step is to formulate the appropriate induction
rule. Recall that, in the induction rule for natural numbers (Chapter 5), the base case
of the induction corresponds to zero and the induction step to going from k£ to suce (k)
for arbitrary k. The rule was valid because every natural number can be generated by
applying the successor operator to zero sufficiently many times. The analogous induction
rule for lists is
s: A% P[]
A, A, P(D) ;. P(cons(h, 1))

) Ax

The base case corresponds to the empty list. The induction step corresponds to going from
t to cons(h, 1) for arbitrary & and ¢ of agreeing types. More precisely, given an arbitrary
element & of type A and an arbitrary list ¢ of type A®, the induction step is to prove
that P(cons{k, £)} holds under the assumption that P(f) holds (the induction hypothesis),
Examples of the use of ‘seg-indn’ are given below.

The following “head normal form” rule is a simple consequence of the induction rule:
A
h:A, 1A Iy, P(cons(h, 1))

"

It says that, in order to prove that P holds for any non-empty list 5, it suffices to consider
lists of the form cons(h,). The proof of *seq+-hnf’ is by sequence induction. Because
the hypothesis 5: A* really represents the two hypotheses 51 A® and s #[], the ‘=s-E-left’
strategy of Section 5.4 is employed. Recall that this centres on the use of the induction
rule to prove an implication with the non-typing hypotheses appearing as antecedents, In
this case, the implication to be proved is

s#[)1 = P(s)

The skeleton of the proof is therefore:

8.2 Basic axiomatisation

froms: A% mA, £ A B Ploons(h, 0)

1 54 seq+-supertype (hl)
2 s#[] seq+-E (hl)
3 sl =P (?? justify ?7)
inter P(s) =-E-left (3, 2)

135

Now the object is to prove the implication on Line 3. The assertion on Line 1 allows
‘seg-indn’ to be applied, yielding the following:

from s: A*; h:A, A" b P(cons(h, 1))

1 s:A* seq+-supertype (h1)
2. s=[] seq+-E (hl)
3 U=[=P0D {27 justify ?7)
4 fromh"A; 1A% P[] = P

infer cons(i,) # [] = P(cons(i, 1)) (77 justify 77)
5 s#[]=P@) seg-indn (1, 3, 4)
infer P(s) =-E-left (5, 2)

The antecedent of the base case on Line 3 is false, suggesting that it should be justified by
‘=»-I-right-vac’. The induction step is also straightforward: the sequent hypothesis (h2)
is directly applicable to the local assumptions of Subproof 4. The finished proof is as

foliows:

from s:A*; kA, A" F, Plcons(h, 1))

1 54 seq+-supertype (hl)
2 s#[] seq+-E (h1)
3 (LAY [J-form
4 =({]1=[D —-#-self-1 (3)
5 [1=[1=~P0D =-I-right-vac (4)
6 fromkiA;, AN 2] = P
6. Plcons(K', ') sequent h2 (6.h1, 6.h2)
infer cons(k’,t") = P(cons(#’, ")} =>-I-left-vac (6.1)
7 s#[]=Pb seq-indn (1, 5, 6)
infer P(s) =-E-left (7, 2)

Note that the induction hypothesis (6.h3) has not been used in the proof. This should make
the reader suspicious that the proof need not necessarily be done by induction. In fact, the
induction rule has merely been used as 2 way of introducing names for the head and tail
of the list 5. The concept of a destructor operator allows one to reason directly about the
constituent parts of a list in & less contrived way. The next section introduces destructors,
while Exercise 1 (Section 8.8) affords a comparison of proofs with and without the use
of destructors.

136 8 Fimite Sequences
8.3 Destructors

Operators which build new values from other values are called construciors. Operators
which break constructed values into their constituent parts are called destructors. The
destructors corresponding to cons are called hd (for kead) and 11 (for tail). When applied
to a non-empty list, hd returns the leftmost element in the list and # returns the remainder
of the list. For example:

hdix,y,z} = x

tiix, 2] =[x 2]
The axioms defining hd and tl are
ad; s A aA; s: A"

000N | oo e A tl-defncons | ————
hd-defn-cans hdcons(a,s) =a ticons(a, §) = $ Ax

The hd and tf operators are not defined on the empty list. From these the following
formation rules can be proved using ‘seq+-hnf":

-+

5 A st A*
[Ba-form] - [t-form] <=

Destructor operators are the “inverse” of constructor operators in that a value can be
reconstructed from its constituent parts. Thus, it is possible to derive the following Tule
by a simple application of ‘seq+-hnf’ and the axioms above:

s At
St A

cons{hds, tis) =5

8.4 Equality between lists

Two lists are equal if and only if they contain exactly the same elements in exactly the
same order. The following rules are consequences of the definitions already given:

ariA; apid; siA*; s AT
cons(d, §1) = cons(ds, 52) &> Ay =da A S = 5

A]
e S1 =5 & hds) =hdsy Alls =5

8.5 Operators on lists

This section gives definitions of some standard operators on lists in VDM-SL and illus-
trates how to reason about them. Some proof techniques of more general applicability
are discussed.

8.5 Operators on lists 137

8.5.1 The singleton list

The singleton list constructor [-] denotes lists with only one element. Its direct definition
is very simple:
[& cons(a,)

The following rules are proved from the the rules given already by folding the definition
of the singleion:

a4 a4 A
(o] o (RSl or o =11

8.5.2 The length of a list

The length of a list is given by the fen operator. Its direct definition is as follows:

lens def ifs=[] thenQ else succ(len(tis))
This definition is “recursive” in the sense that unfolding lens in a proof yields another
expression in terms of len, It is important to check that it is well-founded. This can be
done by proving the formation rule, which states that the fen operator always returns a
denoting value:
5 A"

len-form | ~———pt
len-form | ==

The proof proceeds by induction on s

from 5:4°
1 fen[L:N (77 justify 77)
2 fromh:A; £ A lent:N

infer lencons(h, : N (77 justify 77)
infer lens:N seg-indn (hl, 1, 2}

The base case is straightforward, eliminating the conditional in the definition of ien be-
cause the condition is true:

from s: A*

1 N (-form
2 [ha [}-form
3 (it[]=[]1then O else succlen(ti[1))) =0 condition-true-ident {2, 1)
4 len[]=0 folding (3)
5

len[]:N =-type-inherit-left (1, 4)

138 § Finite Sequences

The induction step is similar. In order to eliminate the conditional, one must show
—(cons(h, 1) = [1) and succ(len(ticons(h, 1))):N. The former follows from the defini-
tion of equality on sequences, and the latter from the induction hypothesis and formation
rules of succ, tl and cons. Since the length of a sequence is a natural number, the proof
relies on some elementary properties of natural numbers, as discussed in Chapter 5. The
rest of the proof is as follows:

from s: A*

6 fromhA; 1A% lenN

6.1 ticons(h,) =1t ti-defn-cons {6.h1, 6.h2)

6.2 lenticons(h, H: N =-subs-left(b) (6.h2, 6.1, 6.h3)

6.3 succ(len (tcons(h, ()N succ-form (6.2)

6.4 cons(h, }#[] cons-#-[] (6.h1, 6.h2)

6.5 ~{cons(h, 5} =]} unfolding (6.4)
6.6 (if cons(h, £} = [] then O else succ(len (Ncons(h, 1)) =

succ(len{tlcons{h, £))) condition-false (6.3, 6.5)

6.7 len cons(k, £) = succ(en (tcons(h, 1)) folding (6.6)

infer lencons(h, £):N =-type-inherit-left (6.3, 6.7)

infer lens: N seq-indn (hl, 5, 6)

8.5.3 The set of elements in a list

The operator efems gives the set of elements in a list. It is defined recursively as follows:

elemss def 4 s=[]then {} else add{hds, elems (ils))

The following formation rule is proved in an analogous way to ‘len-form’ above:

. AR
ks

elems 5: A-set

8.5.4 List concatenation
The operator ~ concatenates one list onto the front of another list. For example:
[9,23,51719,41=[9,23,5,9,4]

A direct definition such as

st s [} thent else cons(hds, tis™ 6
is ‘unsatisfactory since it places no type restrictions on ¢ and thus allows nonsensical
staterments such as ({17 0) = 0 to be deduced. (Similar problems were encountered with
the definition of < in Chapter 6.) Since s ¢ should be undefined when either s or ¢ is
not a list, an axiomatic definition is more appropriate than a direct definition here. The

8.5 Operators on lists 139

axioms are as follows:

[} s=s

— a:A; 51:AY s AT
_defn-cons-feft Lot 72 = AX
cons{a, 51} sy = cons{a, s §2)
From these axioms can be derived rules such as

= S1IA" s AT - - s AT
orm oA defn-[)-rig =5

and the associativity of 7, as well as the following rules which relate various operators
defined so far and the theories of sets and natural numbers:

P L CA*
SiAY s A

len{s; " $2) = lens; +lens;

p A% s AT
il

Lol
elems (51" 53) = elems 5 U elems sy

The proof of ‘len-defn-"" provides an opportunity to discuss the use of the rules introduced
so far in the context of a proof based on rewriting of terms. The proof proceeds by
induction on $;:

from s1: A% 5247

1 len{[} " s)=Ilen[]+lens, (77 justify 77}
2 tomhA; nA" len(t”s) =lent+lensy

infer len (cons(h, 1)~ s2) = lencons(h, £) + lensy {77 justify 77)

inferlen (s, " 52) = lens; + lens; seq-indn (b1, 1, 2)

The proofs of both the base case and induction step are essentially done by rewriting the
conclusions. For example, if one were presenting an informal proof of the base case, the
argument might take the following form. The base case involves proving that

len([17 s2) = len[] +lens;
which can be done by first rewriting the left-hand side to lens; because []7 52 = 52
tensy =len[}+lens:
Then the right-hand side rewrites to 0 + lens; because len[} = 0, giving the following:
lens: =0 +lens;

This final result is known to be true because lens; is a natural nomber and n = 0+ # for
any natural number 7.

140 & Finite Sequences
In the formal framework used here, each rewriting step is a backwards application of an

‘=-gubs’ or related (*=-trans’ or “=-type-inherit’) rule, with the relevant equality coming
from forwards reasoning from the hypotheses. Consider the base case again:

from 512 AY s AY

I den{({1” s2)=lenfl+lens, (77 justify 77)

The first rewriting is of len ([1™ s2) to lens;. This is formalised as follows:

from s;:A*; 52:A4"

1 lensz =len[l+lens; {77 justify 77)
2 len([]7 sy) =lenf]+lens, =-5bs-7? (7, 1)

The validity of the rewriting depends on showing [17 sz = 52, which follows by applying
“".defn-{]-left’ to hypothesis h2:

from 1. A% 520 A”

1 (17 s2=5 “-defn-{ }left (h2)
2 lensp=len{]+lens; (77 justify 77}

3 ten([]7s) =ten[]+lens, =-subs-left(h) (h2, 1, 2)

The second rewrite proceeds similarly, using ‘len-defn-[]:

from 531 A% 5. A"

I [ITsn=5 ~.defn-f J-left (h2)
2 O:N O-form
3 ten[]=0 len-defn-[]
4 lens; =0+lens; {77 justify 77)
5 lensy =ten[]+lens =-subs-left(b) (2, 3, 4)

6 len([}” s)=len[}+lens; =-subs-left(b) (b2, 1, 5)

The base case is completed by appealing to the theory of natural numbers and the forma-
tion rule for len, as suggested by the informal argument. The completed formal proof of
the base case is:

8.5 Operators on lists 141

from s1:A%; 531A"

1 [1Ts=5n “-defn.[]-left (h2)
2 ON 0-form
3 len[]=0 len-defn-[]
4 tensuN len-form (h2)
5 lensy =0+iensy +-defn-0-left-rev (4)
6 lense =len[]+lens, =-gubs-lefi(b) (2, 3, 5)
7

len{[17 $2) = len{ }+lens, =-subs-left(h) (h2, 1, 6)

A similar process leads to completion of the induction step, the goal of which is as follows:
ton (cons(h,)™ 52) = (lencons(h, 1))+ (ens)

The left-hand side of this expression can be rewritten to lencons(h, ¢~ 52) by “"-defn-
cons-left’, thence to succ(len(t ™ s,}) by ‘len-defn-cons’, and finally to succ(lens + lensy)
by the induction hypothesis. The right-hand side of the induction goal can be rewritten
to succ(lens) +lens; by ‘len-defn-cons’, and thence to succ(fent +len s;) by “+-defn-suce-
left-comm’ from the theory of natural numbers, The formal proof of the induction step
is as follows:

8 tromkA; A% len{t” s) =lent +lensy

3.1 s AT “-form (8.h2, h2)
8.2 cons(f, 1™ s2): A" cons-form (8.h1, 8.1)
8.3 cons(i, £ &2 = cons{h, ¢ 52) “_defn-cons-left (8.h1, 8.h2, h2)
8.4 lent ™ sa:N len-form (8.1)
8.5 succ len(t™ s N succ-form (8.4)
8.6 lencons(h, t™ 52) = succ len (1™ $;) Ien-defn-cons (8.h1, 8.1)
87 lenz:N len-form (8.h2)
8.8 suce lens:N suce-form (8.7)
8.9 ten cons(h, £) = suce lent len-defn-cons (8.h1, 8.h2)
8.10 succ(len+lensy) = succ lens+lens; +-defn-succ-left-comm (8.7, 4)
8.11 succ{lent+ lenss) = lencons(h, I) + lens, =-subs-left(b) (8.8, 8.9, 8.10)
3.12 succlen (f 7 52) = lencons(k, £) + len s =-subs-left(a) (8.4, 8.h3, §.11)
8.13 lencons(h, £ 53} = lencons(h,) + lens; =-trans(b) (8.5, 8.6, 8.12)

infer len (cons(k, £) ™ 52) = lencons(h, {) + lens, =-subs-left(b) (8.2, 8.3, 8.13)

It is interesting to compare this proof based on rewriting terms to the example of a “chain
of equality” proof in Section 3.4. The “chain of equality” style of reasoning is a special
case of the more general rewriting of terms on both sides of the equality discussed in this
section. In fact, the proof in Section 3.4 could be given the same systematic freatment
that ‘len-defn-" has received here,

1944 & rinie Sequences

8.5.5 Distributed concatenation

The distributed concatenation operator cone, when applied to a sequence of sequences s,
returns the concatenation of all the sequences in 5. For example:

conc [[1,3],[51,[1,1311=11,3,5,3]

The conc operator is defined recursively in a way by now familiar to the reader;
concs 38 s = [1 then [} else (hds) ™ concltis)

The appropriate formation rule is as follows:

. REE
[sano om0

conc s: A*

Its proof by induction is in principle straightforward, but is made difficult to follow by
the introduction and elimination of the conditional expressions corresponding to the ex-
pansion of conc. The proof is as follows:

from 5: A"

i []:4 []-form
2 (t[1={1then[]else hd[] ™ (concti[1) =[] condition-true-ident (1, 1)
3 concl=[] folding (2)
4 conc[l:A” =-type-inherit-feft (1, 3)
5 tromA AT, nA™; conc A

5.1 {h” (conc £3): A° ~-form (5.hi, 5.h3)
52 ticons(f,) = ¢ tl-defn-cons (5.h1, 5.h2)
53 hdcons(h, 1)} = A hd-defn-cons (5.h1, 5.h2)
54 cons(h, 1) =[] cons-#-[] (5.h1, 5.h2)
55 ~{cons(h,) ={]) unfolding (5.4)

5.6 (it cons{h,) =[] then [] else B (conc £)) = (k™ (conc 1))
condition-false (5.1, 5.5)
57 (if {cons(h,) = [1) then [] else (R (conc £)): A*
=-type-inherit-left (5.1, 5.6)
58 (if (cons(h, £) = {]) then [} else (hdcons(k, £) " (conc £))): A
=-subs-left(b) (5.h1, 5.3, 5.7}
59 (it (cons(h, £} = [1) then [] else (hdcons(h, 1)~ (conc ticons(h, H)))): A*
=-subs-lefi(b) (5.h2, 5.2, 5.8)
infer {conc cons(h, 1)): A* folding (5.9
infer conc 5: 4™ seq-indn (hl, 4, 5)

In many cases where an operator is defined via a conditional, proofs can be simplified
by using lemmas corresponding to the application of the conditional in cases where the
condition does and does not'hold. In the case of the conc operator, these lemmas are as
follows:

8.5 Operators on lists 143

Leone ot U] o= T

S AY s AY
conc-defn-cons LEo s
cone cons(sy, $2) = §; coONe 53

The proof of ‘conc-form’ {and any number of other proofs) can now exploit the lemmas,
insiead of expanding the definition of cong, resulting in the simpler proof shown below:

from s: 4™

1 {EA* [}-form

2 sonc[]l=1[] conc-defn-[]

3 concfhA* =-type-inherit-left (1, 2)

4 fromiA*, nA™; concrA*

4.1 (A" conc £: A* “.form (4.h1, 4.h3)

42 conc cons(k, &) = h " conc ¢ conc-defn-cons (4.h1, 4.h2)
infer (conc cons(h, H): A" =-type-inherit-left (4.1, 4.2)

infer cong 5: A* seg-indn (hl, 3, 4)

8.5.6 Sequence application

When a sequence is applied to a non-zero natural number i, the result is the ith element
of the sequence. Sequence application is therefore only meaningful for a non-empty
sequence and numbers up to the length of the sequence. These restrictions on the use of
sequence application mean that, as in the case of sequence concatenation (Section 8.5.4),
a direct definition is not appropriate. Instead, application is defined axiomatically. If the
{non-empty) sequence is applied to the number 1, the head is returned:

appi-defn-hd ——S—ét——Ax
L S(1) = hds

If 5 is applied to § and { is an index of s not equal to 1, the result is the (i—1)th element of
the tail of 5:

s:AY BNy i# 1 i<lens
S®=a96-10

The formation rule is as follows:
s: AT BENp i Slens

S(I)A

The proof of ‘appl-form’ is not presented in full here. However, it does illustrate an
important extension of the ‘=>-E-left’ strategy for proofs by induction. Using this strategy
on ‘appl-form’, one expects to prove

iglens = s{i):A

by induction on s. However, an attempt at proving this fails in the induction step because
the value of { is related to the sequence 5 introduced in the global hypothesis of the proof

144 8 Finite Sequences

rather than to the sequence introduced in the induction step. At the induction step, the
knowns are:

s At BN i <lens
The step itself introduces an & and ¢ along with the induction hypothesis. The skeleton is
as follows:

S:AY Ny iSlens
from b A; ¢ A% i<lent = (i) A

1 8(i < lancons(h, 1)) {77 justify 77}
2 from i £ lencons(h, 1)
infer cons(h, £)(i): A {77 justify 77)

infer § < lencons(h, 1) = cons(h, £){i): A =-1(1,2)

The body of the step proceeds by ‘G-E’ on 8(i = 1). The case where i = 1 is completed
easily from ‘appl-defn-hd’. In the case where [# 1, the defining axiom ‘appl-defn-tl’
indicates that cons(f, 1) = 1{i— 1). However, there is no information relating to (i—1) in
the knowns. In particular, the induction hypothesis cannot be applied because it relates
i, and not (— 1) to r. This suggests that the induction hypothesis should state that #(j): A
for all j among the indices of r. The formula to be proved by induction should therefore
be Vi:N; - S lens = s(f): A. The ‘=»>-E-left’ strategy is therefore extended to include a
‘V-E’. The reader should bear this extended strategy in mind where metavariables other
than the subject of the induction {such as i) are linked to the subject of the induction by
hypotheses in the rule to be proved. Employing the extended strategy, the skeleton of the
proof is as follows:

from s: A% &Ny i <lens

1 ViNp - j<Slen]] = [1():4 (17 justify 77)
2 fromhA; tAY ViNg-f<lent = () A
2.1 from k: Ny
2.1.1 8¢k < tencons(h, 1) {77 justify 77}
2.1.2 from k < lencons(h, ©)
infer cons(h, £X(k): A {?? justify 77)
infer k < len cons{h, £) =+ cons(f, H{k): A =-I(2.1.1,2,1.2)
infer VE:N; - k < lencons(h, 1) = cons(h, (k) A V-1¢2.1)
3 ViN; - j<lencons(h) = s(j):A seq-indn (1, 2}
4 i<lencons(h.f) = s(irA V-E (h2, 3}
infer s(i): A =-E-left (4, h3)

The base case follows vacuously. The induction step is based on “6-E’ over §(k = 1).

8.6 An alternative gencrator set 145

Where & = 1, ‘appi-defn-hd’ is applied; where k # 1, the induction hypothesis and ‘appl-
defn-t1” are used. The reader should be able to complete the proof.

8.5.7 The indices of a list

In the rules for sequence application, the fact that i is a valid index for a sequence s
is expressed by stating that &:N; and { < lens. The same fact can be expressed more
succinctly by using the inds operator, which returns the set of valid indices. One could
give a definition in the style used for sequence length and elements:

inds s det s={] then {} else add(succ(len{ils)}, indstls)

However, a more direct definition can be given in terms of the set range construct intro-
duced in Section 6.8:

. f

inds s del {1,...,tens}
Proofs may now use results from the theory of set range. For example, the proof of the
formation rule for inds:

.A'

_ 5
inds 5: N; -set

follows directly from the rule ‘initial-interval-1-form™:

— mN
| initial-intervat-1-form| 1, TnT Ne-set
The proof is simple:
from 5: A*
1 dens:N len-form (k1)
2 {l,...,lens}: Ni-set initial-interval-1-form (1)
infer inds 5: N folding (2)

Induction is not required, the base and induction cases having been considered in the
proof of the rule from the theory of set range. In particular, where lens = 0, the set range
constructor returns { }, as required by the semantics of inds.

8.6 An alternative generator set

The empty sequence [] and cons do not form the only possible set of generators for lists.
An alternative set is [], [-] and ”. The relevant induction rule using these constructors
has two base cases, corresponding to the empty list and singleton lists. The induction
step takes two arbitrary lists ; and s, and, assuming P holds for each of them, requires
proof that P holds for their concatenation 5, ™ $2:

146 8 Finite Sequences

s:A* P([D
AL P(lal)
s A, 5: A%, P(sy), P(sy) & Ps1” 52)

-
PG)

The proof of ‘seq-"-indn’ is siraightforward and is 2 good illustration of the use of sequent
hypotheses:

froms: A*; P([1); a:A b, P(fal);
5147, 52:4% P(si), Pls2) b, o, Pls1” s2)
1 from i A; LAY P(2)

11 [RE A" [a]-form (1.h1)
1.2 PR sequent h3 (1.h1)
1.3 PR 1 sequent-E-gen-2 (1.1, 1.h2, 1.2, Lh3, hd)
1.4 [A 7 A “form (1.1, L.h2)
1.5 cons(h,) = [R] "t [-]-"-cons (1.h1, 1.h2)

infer P{cons(h,) =-subs-left(b) (1.4, 1.5, 1.3)
infer P(s) seg-indn (hl, h2, 1)

In some cases the new induction rule is more convenient than ‘seg-indn’. As an example,
consider the proof that the reverse of the reverse of a sequence is the same as the original
sequence. The operator for reversing the order of the elements in a sequence can be
defined directly':

rev(s) def ts={1
then []

else rev(tls) ~ [hd 5]

The following rules can be proved from the definition:

s A aA
[revtom] s [revwtell] ooy et bl opr
S

rev(s; 52) = rev(sz) " rev(si)

The theorem to be proved is formally stated as follows:

- 5 A*

SO ETS

Consider the proof using the new induction rule. The base case for the empty list requires
showing that rev(rev{[1)) = [], which follows from the lemma ‘rev-defn-[}’ and the rules
of substitution. The base case for singleton lists requires proving revirev(al) = [al for
an arbitrary element a of type A, which again is straightforward using the ‘rev-defn-[_}
lemma above. For the induction step, suppose 5; and s; are arbitrary lists of type A*
and assume the induction hypotheses that rev(rev{s1)) = 5, and rev(rev(s;)) = 5. The

The rev operator is not strictly part of the VDM-SL. language. It is introduced here for illustrative
piposes.

8.7 Summary 147

following chain of equality completes the proof:

revirev(s, " s2)) = rev{rev(ss) " revis)) by rev-defn-"
= rev{rev(s;))” rev(rev(s,)) by rev-defn-"
=5 5 by induction hyps

A proof using ‘seq-indn’ is much more clumsy.

8.7 Summary

+ The notions of constructor and destructor for a data type have been introduced and
illustrated on sequences.

*

The following operators on sequences have been defined: the singleton list, list
length, list elements, concatenation, distributed concatenation, sequence applica-
tion and indices.

The definition of operators by recursive direct definition has been illustrated,

¢ Lemmas describing the limbs of a conditional definition are useful in simplifying
proofs using the definition,

& Formalisation of proof by “rewriting” has been shown.

+ An alternative generator set has been illustrated for sequences.

TFwo VDM-SL constructs relating to finite sequences have not been considered: sequence
comprehension and the extraction of subsequences. The latter is the subject of an exercise
below. Sequence comprehension is complex enough for it to be beyond the scope of this
tutorial text. Briefly, the notation

[fi) [m:N- P(n))

is the sequence of f(n) formed from taking each natural number » which satisfies P in
order. Thus:
[P+1|mN-n<5]1=[12,510,17]

As well as describing this, an axiomatisation for sequence comprehension should ensure
that the result sequence is finite and that f(n) is denoting for each applicable n. Fuli
VDM-SL has a more general form of sequence comprehension, in which # may be drawn
from a set of real numbers.

8.8 Exercises

1. Separability of sequences

The induction proof of ‘seq+-hnf’ as discussed in Section 8.2 does not use the induction
hypothesis. Prove the rule using the following lemma instead of ‘seq-indn’, using only
rules introduced in Section 8.2:

148 8 Finite Sequences

SA
SR | s = (v IR A 3 A 5 = cons(h,)

Now prove ‘seq-sep’ by “seq-indn’, using only the rules of Section 8.2 (i.e. without using
hd or tl). The introduction of hd and l obviates the need to use induction just to provide a
name for head and tail components of a list: prove ‘seq-sep’ using the destructors, basing
the proof on a case distinction over s = [].

2. Induction on non-empty sequences

Prove the following rule for induction over non-empty sequences using the ‘=-E-left’
trick:
s A*
a:AL P{laD)
h:A, A%, P(t) b P(cons(h, 1)

K

The proof is similar to that of ‘bimap-indn’ in Section 7.6. Also see Exercise 3 in Chap-
ter 5.

3. Subsequences

The expression s(i, ..., /) refers to the subsequence of sequence s beginning at index i
and ending at j. Write axioms defining the subsequence operator where the indices are
natural numbers greater than zero. If the sequence s is empty, s{i, ..., f} = []. Otherwise,
if j exceeds the length of 5, the subsequence from i up to the end of s is taken. If i > j,
then (i, ... ,J) = []. Consider the various possible cases for { and j, as was done in the
axiomatisation of domain and range subtraction and restriction in Section 7.3.

Sketch the proof of a formation rule for the subsequence operator.

Aside: VDM-SL has a wider definition of subsequence than this: { and j can be real
rather than natural numbers, with the expression s(i, ..., j) denoting those s(k) for which
k is a positive integer lying between i and j and less than lens. As with the extension to
set range discussed in Section 6.8, to describe this would require a significant extension
to the limited theory of numbers presented in Chapter 5, so the more general form is not
discussed here.

Chapter 9

Booleans

9.1 Introduction

The boolean data type B consists of the two values true and false, so that the elements of
B are those propositions which have well-defined values. In logics which admit no con-
cept of undefinedness (such as classical logic), all propositions are well-defined, so that
boolean logic is indistinguishable from the basic logic of propositions. In LPF, however,
propositions may also be undefined, so that those which are either true or false essentially
constitute a subset of all possible propositicns, namely those propositions e for which 8e
is true. All the axiorns and rules which hold for propositional LPF, therefore, are also valid
for boolean-valued propositions, though those involving § can generally be simplified.
In specifications there are typically two places where booleans are used — first as aba-
sic data type from which other type definitions or state definitions are constructed, and
second as the implicit type of preconditions and postconditions of operation and function
definitions and of invariants (see Chapter 10). Proofs involving booleans thus almost
invariably involve showing that a given expression is boolean-valued (of type B).

The first section of this chapter gives axioms for booleans and shows that they represent a
two-valued subset of propositional LPE Formation rules for the primitive boolean-valued
operators are then discussed, and it is shown how boolean-valued propositions which are
constructed from subterms which may become undefined are dealt with. This section
is also used to show examples of how conjectures are constructed. The final section
illustrates these techniques by working through an example of a well-formedness proof
such as typically arises as a proof obligation from a specification.

9.2 Basic axiomatisation

The link to the defined subset of propositional LPF is most easily formed by identifying
boolean-valued with definedness (delta) via the two rules:

é aB

5B o Ax B-d 52 Ax

These effectively allow one to deduce that any defined proposition is boolean-valued and,
conversely, that any boolean-valued proposition is defined.

150 9 Booleans

The link between propositions and values (that is ‘true’ and ‘false’) is provided by a third
rule

aer b

a=b

==

which states that boolean values are equal if they are equivalent. Note that this rule does
not require typing hypotheses a:B or b:B as these are deducible from the equivalence
using the rule ‘6 — B’ and the rules

ey & ey - &1 & ey
o =
from proposttionat LPFE.
Note also that a rule relating equality and equivalence in the other direction
aB: a=b
-y | ——————
aer b

can be proved, though this does require a typing hypothesis a: 8 to ensure that the equiva-
lence in its conclusion is well-defired. (Without the typing hypothesis the polymorphistn
of equality would induce polymorphism in equivalence so that, for example, it would be
possible to prove len [} & 0, which is clearly meaningless.} The proof is straightforward,
using ‘B — §°, ‘< -self-I’ and substitution of equals:

froma:B;, a=b

1 ba B -+ & (hl)
2 avea &r-self-1 (1)
infera & b =-subs-right(a) (hl, h2, 2)

9.2.1 B is two-valued

The fact that the type B has only two values true and false is embodied in the rule ‘B-eval™:
=3

a=true v g = false
The proof is fairly straightforward. Clearly there is only one possible choice for each of
the first two steps, namely first to apply ‘B — &’ to the hypothesis, then to apply ‘6-E’ to
reason by cases. The first subproof then has a as its local hypothesis, which means that
it is necessary to prove a = true. A backwards application of ‘<> — =" yields a new goal
of a ¢ true, which follows casily from the rules for equivalence in propositional LPE
The other subproof is entirely analogous.

9.3 Formation rules for boolean-valued operators 151

froma: B

1 éa B~ & (hl)

2 fromu

2.1 true true-I

2.2 a4 < true &-1(2.41,2.1)

2.3 a =true <o =(22)
infer (a = true) v (a = false) v-I-right (2.3)

3 from—a

31 - false - ~false-1

3.2 a & false <-I-— (3.h], 3.1)

33 a = false < - =(3.2)
infer (a = trug) v (a = false) v-I-eft (3.3)

inter (a = true} v (a =false) $-E(1,2,3)

9.3 Formation rules for boolean-valued operators

As stated above, most of the proofs involving booleans which arise in specifications have
to do with showing that a particular expression is boolean-valued. These proofs typically
use the derived rules discussed in this section. The conclusion of each of these rules is of
the form x: B, where x is some expression. Rules where x only involves propositional op-
erators are dealt with in the first subsection. The second subsection deals with guantifiers
and relations.

9.3.1 Basic formation rules for propositional operators

The overall aim of this section is to define a basic set of formation rules for the proposi-
tional operators. Each of these rules will have a conclusion of the form x: B, where x is
the simplest possible expression that can be constructed out of a particular propositional
operator, that is x will contain only one operator and only one occurrence of that operator.
Thus, there will be rules with conclusions true: B, (—e):B, (e; A e2):B, (€1 = €2):B, and
so on. It is instructive to look at how to decide what the hypotheses of such rules should
be.

First, consider the constants true and false. Their formation rules will have conclusions
true: B and false: B respectively, and it is clear that these represent true statements in their
own right. The rules therefore need no hypotheses and simply take the form

true: B false: B

It is also clear that the formation rule for negation must have the form

a:B
[atom]| =55

152 9 Booleans

as the only way to ensure that — ¢ is either true or false is to make e either true or false.

The rules for the binary operators are, however, perhaps not quite so obvious, Consider,
for example, the formation rule for disjunction (v). It will have a conclusion of the form
(e; v eq):B, which amounts to the statement that e; v & is either true or false. It is
certainly the case that if both e; and e; are either true or false then so is &3 v &3, giving a
formation rule

m €1: B €. B

(er v er):B

but is this the best one can do? Well, &1 v ez is only false if both ¢, and e; are false,
which is covered by the above case, but it is true if either e; or ¢; is true even if the other
is undefined. On the other hand e; v e; is undefined if both ¢; and e; are undefined. This
suggests a stronger form of the formation rule which requires that one of the arguments
is defined but only requires the other 1o be defined in the case where the first is false. The
second hypothesis thus becomes a sequent, and the more general form of the rule has the
form:

B —e FelB

(el V] 32):|3

Note that the rule ‘v-form’ above follows immediately from “v-form-sqt’ as e2: B dis-
charges the sequent e; b ;: B directly (see Exercise 4 in Section 2.7 for a similar exam-
plel.

The proof of the rule “v-form-sqt’ follows the by now familiar pattern: after reducing the
goal to 8(e; v &2) by a backwards application of the rule ‘8 —» B, deduce Se; frome,: B
using the rule ‘B — &°, then use ‘8-E’ to consider the two cases. The sequent hypothesis
is used in the second subproof to deduce e:B, which is treated in the same way. Simple
propositional logic completes the proof.

from ey:B; —e; - ex:B

1 8e B8 (h)
2 fromey
infer 8(e, v e2) S-v-T-right (2.h1)
3 from-—e
3.1 B sequent h2 (3.h1)
32 ey B8 3.1
33 from ey
infer 8{e; v &3) 8-v-I-left (3.3.h1)
34 from — ez
34.1 —(e) v e2) —-v-1(3.hl, 3.4.h1)
infer 8{e| v e3) §-I-— (3.4.1)
infer 8(e; v e2) 8-E(3.2,33,34)
4 Sleyver) §-E(1,2,3)
infer (e) v &2):B 6 —B(4)

The rules for conjunction and implication are treated similarly to those for disjunction

9.3 Formation rules for boolean-valued operators 153

given above. Again, there are two forms of each:

e1:B; e:B e;:B; e; euB

A-form | —————e -form- OO .
(e1 A e2):B A-forme-Sqt (e1 Agz):B

et B; ey B 81:[3; 3 }'82:3
-f - - —_— e
o (e1 = e2):B (e1 = e

Their proofs are simpler, however: first, the conjunction or implication is replaced by its
expanded definition, then the proof is completed using the formation rules for negation
and disjunction already proved.

The formation rule for equivalence is the odd-one-out in this set as the equivalence is only
defined if both its arguments are defined, There is thus only one form of the equivalence
formation rule and this has hypotheses stating that both arguments must be boolean-
valued:

(o] (2B
(e1 & e7):B
Its proof is straightforward and follows directly from the definition of equivalence and
the (non-sequent forms of the) formation rules for implication and conjunction.

9.3.2 Basic formation rules for quantifiers and relations

The quantifiers ¥, 3 and 3! and relational operators like € and < are also boolean-valued
and have similar formation rules. In the case of the quantifiers it is easy to sce that the
quantified expression is boolean-valued if its predicate is boolean-valued everywhere.
Thus the formation rule for V¥ is

yiA L P(y):.B

m (V:A-P(x)):B

with similar rules for 3! and 3.

Versions of these rules dealing with quantification over sets, for example
5t A-set

y:A, ye sH PyxB

V-form-sct (Vxe s P(x))::B

can be derived.

For the relational operators the situation is even simpler as it is known from rules like
‘8-’ (see set theory, Chapter 6) that they are always defined. Thaus, rules like

a:A; s:A-set
(ae s:B

are immediate consequences of the corresponding definedness rule and ‘8 — B'.

154 9 Booleans
9.4 An example of a well-formedness proof obligation

As an example of how proofs involving booleans arise in practice, consider the following
simple and partial specification of a parts store:

Store :: parts : Part «~ Partld*
configs : Config <= (Part «=— Partld)
inv (parts, configs) & Vm e mgconfigs - Vn & domm -
n e domparts A m{n) € elermsparis(n)

In this specification, the first field of the composite type records the different versions
of each part which are available, whilst the second records how particular versions of
different parts can be combined. The use of non-empty sequences (see Chapter 8) and
one-one maps (see Chapter 7) in the definitions of the fields means that there must be
at least one version of cach part and that it is not possible to build a configuration using
different versions of the same part. The invariant imposes the additional constraint that
configurations must be composed of existing parts.

As is explained in more detail in Chapter 10, associated with a type definition which has
an invatiant there is a proof obligation to ensure the soundness of the definition, namely
that the invariant must be a boolean-valued function of its variables. For the example
above, this is expressed by the rule

parts: Part «+~ Pardd*; configs: Config +™ (Part <= Partld)
(Vm e mgconfigs- Vre domm . n e domparts Am(n) € elemsparts(n)): B

The proof of this rule follows a pattern which is typical of those of “well-formedness”
proof obligations in general (invariants, preconditions, postconditions and initialisation
conditions; see Chapter 10). The basic strategy is always to reason backwards, first
using the formation rules for the boolean-valued operators and quantifiers given earlier
in this chapter to eliminate the propositional operators and the quantifiers, then using the
formation rules for relations on the resulting subgoals to generate a new set of subgoals
which do not involve the boolean data-type, and finally using the standard formation rules
for the basic operators on sets, maps, sequences and numbers to complete the proof.

Generally, these proofs are simple in that for a given subgoal there is only one of these
rules which can be applied, namely the formation rule associated with the main operator
of that subgoal. Thus, returning to the example, the main operator of the overall goal is
a universal quantifier over a set, so the first step is to apply the rule ‘V-form-set’, giving:

from parts: Part —» Partld®; configs: Config < (Part «— Partld)

1 rngconfigs: (Part +— Partld)-set {77 justify 77)
2 fromm: Part 2 Partld, m & g configs

infer (Vn e domm - k€ domparts A m{n) € elemsparts(n)):B {77 justify 77)
infer (Ym € mgconfigs- Vn e domm -
n € domparis Am(n) € elemsparts(n)):B V-form-set (1, 2)

9.4 An example of a well-formedness proof obligation 155

Line 1 follows directly from the formation rule for range on one-one maps (‘rng-form-
bimap’), and the only other goal again involves showing that a universal quantification
over a set is boolean-valued. The rule ‘V-form-set’ is therefore applied to this, yielding:

from parts: Part «— Pardd*; configs: Config «"~s (Part +—s Parild)
1 mgconfigs: (Part <= Partid)-set rng-form-bimap (h2)
2 from m: Part — Partld;, m e ingconfigs

2.1 domm: Part-set {77 justify 77)
22 from n: Part, n e domm
infer (n e domparts A m{n) € elemsparts(n)): B {?7 justify 77)
infer (Vn e domm -
n e domparts Am(n) € elemsparts(n)): B V-form-set (2.1, 2.2)
infer (Vm & mgconfigs - Vn e domm -
n € domparts Am{n) € elemsparts(n)): B V-form-set (1, 2)

The first of the resulting subgoals is easy to discharge using the formation rule for domain
for one-one maps (‘dom-form-bimap’). In the second, however, it must be shown that
a conjunction is boolean-valued, and there are thus twe formation rules which could be
applied, ‘A-form’ and ‘A-form-sqt’. Here, and in all cases where there is a choice between
a basic formation rule and its corresponding sequent form, the choice is determined by
considering whether or not the separate operands are boolean-valued. If so, then the basic
formation rule should be used, if not the sequent form is required. In the case in guestion,
the right-hand operand is clearly undefined, and hence not boolean-valued, if # is not in
the domain of the parts map as the map application parts(n) is undefined in that case, so
the sequent form of the rule must be used. This leads to the following partial proof:

from parts: Part += Partld*; configs: Config «—— (Part «== Partld)

1 mgconfigs: (Part <~ Partld)-set g-form-bimap (h2)
2 fromm: Part +— Partld: m € mgconfigs
2.1 domm: Part-set dom-form-bimap (2.h1}
22 from m; Part, n € domm
221 (n & domparis): B {77 justify 77)
222 from n & domparts
infer (m(r) € elemspares(n)):B (77 justify 77)
infer (n & domparts Am(n) € elemsparts(n)): B ~-form-sgt (2.2.1, 2.2.2)
infer (V» € domm -
n ¢ domparts A m(n} € elems parts(n)):B V-form-set (2.1, 2.2)

infer (Vm & mgconfigs- Vn e domm
n e domparts A m(n) € elemsparts(n)):B V-form-set (1, 2)

156 9 Booleans

It is worth noting at this point that there was an important correlation in the step just
discussed between the form of the sequent formation rule for conjunction and the order
in which the various subterms appear in the expression comprising the invariant, namely
that both are written in such a way that any undefinedness always appears in the right-
hand conjunct. At the same time, the left-hand conjunct forms a guard to ensure that the
right-hand conjunct is defined where the value of the whole expression is not determined
solely by the left-hand conjunct. Thus, the formation rule has ¢;:B and) Fep:B as its
hypotheses and the appropriate subterm of the invariant follows the same ordering, being
written as n e domparts A m(n) € elemsparis(n). Consider, however, what would have
happened if the subterms in the invariant had been written in the opposite order, namely
-as m(n) € elemsparts(n) A n € domparts. The proof up to the previous step would
be identical to that already constructed, except that now the second of the two subgoals
would be (m(n) € elemsparts(n) A n € domparts):B. In this simple case, of course, it
would be straightforward to prove a “comrmuted” form of the sequent formation rule

e;:iB; &2 - 6'1:!3
(61 Aez)!fB

and then to use this to discharge that subgoal. One might even think that having this
additional rule would be an advantage in that the two rules together would mean that the
order of the subterms in the specification would be immaterial. In fact this is far from the
truth, and the process of adding new formation rules to cope with different combinations
of subterms soon gets out of hand.

To see how this happens, suppose that one wishes to show that the expression

(m(m(a)) = b A a & domm) A m{a) € domm

is boolean-valued, where a and b are both of type A and m is of type A -2+ A for some
type A, In this case, although the whole expression is clearly boolean-valued, neither
of the separate conjuncts in the main conjunction is itself boolean-valued so neither the
standard sequent formation rule ‘A-form-sqt’ nor the commuted form mentioned above
can be applied. This means that to deal with this case one would need either to prove
a new rule dealing specifically with this particular combination of subterms or to prove
rules, for example

lanb)ac)B (anb):B
lanbac))B bara)yB

which allow the associativity and commutativity of conjunction to be used to rewrite
the expression into a form to which the original version of the sequent formation rule
{*-form-sqt’) can be applied.

The lesson to be learned here is that it is often possible to make the task of proving proper-
ties of a specification simpler by giving some thought to the way in which the specification
is actually written, The more specific lesson is that when writing invariants, preconditions
and postconditions, this simplification is achieved by ordering their subterms in such a
way that any undefinedness always appears in the right-hand operand of binary proposi-
tional operators, at the same time structuring the left-hand operand to ensure that, in the
case where its value does not determine the value of the overall expression, the right-hand
operand is well-defined.

9.4 An example of a well-formedness proof obligation 157

Returning now to the original example proof, the two remaining subgoals are both justified
using the refational formation rule ‘e -formy’, yielding:

from parts: Part «=— Parild*; configs: Config +— (Part +Z— Parild)

1 rngconfigs: (Part <= Partld)-set rng-form-bimap (h2)
2 fromm: Part «= Partld, m e rogconfigs
2.1 domn: Pare-set dom-form-bimap (2,h1)
2.2 from n: Part, n € domm
221 domparis: Part-sel {77 justify 77}
222 {n € domparts). B e-form (2.2.h1, 2.2.1)
223 from n € domparts
2.23.1 m{n): Partld {77 justify 77
2232 elems parts(n): Partld-set (77 justify 77)
inter (m{n) € elemsparis(n)}).B e-form (2.2.3.1, 2.2.3.2)
infer {(n € domparts » m(n) € elemsparts(n)): B -form-sqt (2.2.2, 2.2.3)
infer (Vr e dompa -
n € domparts A m(n) € slemsparis(n)): V-form-set (2.1, 2.2)
infer (Vm e mgconfigs - ¥n e domm -
n e domparts A m(n) € elemsparrs(n)).B V-form-set (I, 2)

and the proof is completed using the formation rules for domain, map application and
elements from map theory and sequence theory (see Chapters 7 and 8):

from parts: Part +—— Partld*; configs: Config +— (Part <= Partld)

i rgconfigs: (Part <= Partld)-set mg-form-bimap (h2)
2 tromm: Part <= Parild; m € mgconfigs
2.1 domm: Part-set dom-form-bimap (2.h1)
2.2 from n: Part, n e domm
2.2.1 domparis: Part-set dom-form-bimap (h1)
222 (ne domparts). 8 e-form (2.2.h1,2.2.1)
223 from n & domparts
2231 m(n): Partld at-form-bimap (2.2.h1, 2.h1, 2.2.h2)
2232 parts(n): Partldt at-form-bimap (2.2.h1, hi, 2.2.3.h1)
2233 elems parts(n). Partld-set elems-form-seq+ (2.2.3.2)
infer {m(n) € elems parts(n)):B e-form (2.2.3.1, 2.2.3.3)
infer {n € domparts A m{(n) € elems parts{n)):B A-form-sgt (2.2.2, 2.2.3)
infer (Vr e domm -
n e domparts Am{n) & elemsparts(n)):B V-form-set (2.1, 2.2)

infer (Vm & mgconfigs - ¥n e domm -
r & domparts A m(n} & elemspartsin)): B V-form-set (1, 2)

158 5 Booleans

9.5 Summary
The following points have been discussed in this chapter:

+ The relationship between boolean values and well-defined propositions.
¢ Taking account of undefinedness in the formulation of formation rules.

» Using sequent forms of formation rules to reason about the well-formedness of
partial functions.

s A standard proof strategy for dealing with well-formedness proof obligations.

« How treating undefinedness in specifications and rules systematically can lead to
saving work in proofs.

9.6 Exercises

1. Substitution of equivalent values

Substitution of equal values was discussed above in Section 3.4. Analogous rules permit
the substitution of equivalent values:

a < b; P(b) a & b, Pla)

[Smbsrof] -+ 5= [-swbsigt] =5
Prove these rules.

2, The proof of ‘=-form-sqt’

Prove the rule ‘=-form-sqt’.

Part II

Proof in Practice

Chapter 10

Proofs From Specifications

10.1 Introduction

The preceding chapters have dealt with the construction of proofs about the mathematical
objects of the underlying logic and data types used in VDM specifications. These theories
provide the basic context where it is meaningful to reason about specifications in general.
Building on this platform, it is now relatively straightforward to define the mathemati-
cal constructs corresponding to the constructions arising in each individual specification.
These further theories provide the context where reasoning about individual specifica-
tions can take place. This chapter deals with how these theories are built and how they
are used in proofs concerning specifications.

A VDM specification is a formal model which describes the behaviour of a system. Nor-
mally, the concern is a software system, but the use of VDM to describe the behaviour
of hardware systems, human processes or other systems is not precinded. At the heart
of a VDM specification are usually a model for the state of the system and some state-
transforming operations. The description of the state model is supported by the language
for defining the basic data types and type constructors of earlier chapters; the model for
operations is given by the use of predicates which describe possible state transitions.

From a purely syntactic viewpoint, a VDM specification consists of a series of definitions:
definitions of types, a state, some functions, constants and some operations. This chapter
considers reasoning about each of these forms of definition in turn. Well-formedness and
satisfiability of a specification cannot be guaranteed by syntactic correctness alone, and
in general can only be shown by construction of proofs. Each VDM specification has
a number of associated proof obligations, which are statements of properties that must
hold true of the specification. Proof obligations also arise in reification, as described in
the following chapter.

The main aim of this chapter is to describe the definitions, axioms and proof obliga-
tions which arise from a specification. Proof obligations are expressed as rules to be
derived from the axioms and definitions. To avoid unnecessary detail, however, the main
principles are illustrated on abstract examples. Chapter 12 contains numerous, specific,
applications of the approach presented here.

162 10 Proofs From Specifications
10.2 Type definitions

A substantial part of the design of a VDM specification is the choice of type definitions.
The aim is to construct types that “paturally” model the state and the values passed and
returned by the operations and to construct a specification that whilst formal is also at a
Ievel of abstraction suitable for the Teasoning one wishes to perform. The basic types and
type constructors described in previous chapters are used to form type expressions which
are the building material for the types to be used. Type definitions are used in specifica-
tions 10 name particular types relevant to the problem domain that is being specified.

This section discusses the use of type expressions in simple and composite type definitions
and how invariants can be given to restrict these types. Note that composite types and
invariants can only be used in type definitions whereas the previous type constructions
can be used wherever a type is expected.

Discussion of recursion in type definitions and the construction of induction rules to rea-
son about recursive types is deferred to Section 13.4.

10.2.1 Simple type definitions

A simple type definition associates a new name with some type expression. Consider an
example similar to that Chapter 1:

Frame = Var -2 Loc

This specifies the type name Frame as a synonym for the type of maps from Var to Loc,
For a simple type definition of this form, there is no need for any explicit formation or
definition rules. The corresponding definition in the logical framework is:

Frame def Var = Loc

in the theory of the specification. Folding and unfolding the type definition can be used
to reduce proofs about Frames to proofs about maps. However, not all forms of type
definition can be treated in this way and the following sections deal with some of these.

10.2.2 Invariants

Of crucial importance in the definition of sufficiently abstract types for modelling a sys-
tem is the idea of type invariants. A type invariant (or simply invariant) is used to restrict
the possible values of a type. For example, one may wish to give a model for the even
numbers, ordered sequences or possible positions in the game of chess. For such defini-
tions it is convenient to first describe a supertype which includes the values required and
then eliminate the unwanted values from that type by giving a property that holds just for
the desired values. The invariant s thus a predicate on the values of a type defined by a
type expression.

In narrowing down the possible values of the type, the invariant can help the reader of
a specification to understand quickly and precisely how the type models the system in
question. In particular, when used in a state definition, the invariant can be thought of as
an assertion that certain states are unreachable and so can save the reader or verifier of

10.2 Type definitions 163

the specification needless concern about cases that never occur. In practice, the choice of
type model and invariant can be a powerful tool in aiding understanding of the system
being specified.

In VDM, the type invariant is considered 10 be part of the type definition and so asserting
type membership is implicitly also asserting that the invariant holds.

Consider a simple example, the type Even of even numbers:
Even=N
ve £ emod2=0

It is convenient to introduce a definition for the invariant:
inv-Even(n) def nmod2 =0

particularly when the predicate is long. The type Even is treated as a subtype of the
natural numbers, with the invariant forming the defining predicate:

Even def < e:N | inv-Even(e) >

From this definition and the rules for subtypes (Section 4.5} it is possible to derive rules
that explicitly give properties of the even numbers to be used in proofs. Firstly, instantiat-
ing the rule ‘subtype-I’ for the above definition gives a rule saying that a natural number
that satisfies the invariant for Even is also an even number:

N, inv-Even(n)
n: Even

Furthermore, instantiating the rule ‘supertype’ yields a rule which states that all even
numbers are natural numbers, and ‘subtype-E’ shows that all even numbers satisfy the
inv-Even predicate:

e: Even e: Even
e

inv-Even(e)

These three rules give the defining properties of even numbers. However, as with the
primitive types from earlier chapters, it is worthwhile constructing a library of lemmas
about the type Even that will raise the level of reasoning in proofs. For example, one
might prove a lemma stating that the sums and products of even numbers are even. Once
a sufficient number of such properties have been shown it should be possible to reason
entirely at the level of evenness rather than remainders.

Of course, there is 2 well-formedness obligation on the type definition which states that
the invariant shouid be total and boolean-valued over the supertype:

- miN

inv-Even(n): B
A simple validation condition that may be proved, without which the definition of a simple
type with invariant is unlikely to be useful, is that the type is inhabited:

[Bveninhab] e ey

This is not an obligation, as VDM-SL. does not insist that every defined type is inhabited.

164 14 Iroots From speciiicatons

10.2.3 Composite type definitions

Composite type definitions allow the construction of types that are akin to Cartesian prod-
uct types, but where the composite type has a named constructor function and each com-
ponent {or field) has a named selector function. For example, one might wish to specify
that Iocations are composed of a segment address and an offset:

Loc :: segment : Even
offset N

In addition to defining the type name Loc, this also defines a constructor for locations
mk-Loc, and selectors (destructors) for each field ..segment and ..offset. The type defi-
nition also gives rise to formation rules for the constructor and selectors:

5. Even; o:N
mk-Loc(s, 0): Loc Ax

I Loc I Loc

t-form | —————=——A offset-form | ——————— Ax
Lsegment: Even * Loffset:N

These rules can be thought of as defining the following signatures for the constructor and
selectors:

mk-Loc: Even xN — Loc
-.segment. Loc — Even
-offset:Loc = N

Two further axioms give definitions of the selector functions, ..segment and _.offser,
which extract the relevant components of a Loc:

mk-Loc(s, o). Loc Ax
M mk-Loc(s, 0).segment = 5

mk-Loc(s, 0): Loc
i

Note that the typing assertion mk-Loc(s, 0): Loc is used to ensure that mk-Loce(s, o) is
well-formed, that is 5: Even and o:N,

It can be shown from these axioms that each element of a composite type has a unique
representation in terms of the mk-function for that type, that is, it is possible to prove:

mk-Loc(s1, 01): Loc; mk-Loc(sz, 02): Loc
mk-Loc{sy, 01) = mk-Loc(sy, 02)
M =8 A 0L=0

One further axiom is required to ensure that ..segment and . offset together give enough
information to reconstruct a Loc:
Iloc

mikLoc-detn |~ T segment, Laffoed) =1 2

This ensures that a Loc is characterised completely by its segment and offser selectors,
that is, there is no “hidden™ information in a Loc which the selectors cannot reveal.

10.2 Type definitions 165

Used judiciously, composite types have a number of advantages over Cartesian products.
The field names are available as mnemonics for the components and can be used as selec-
tor functions to “extract” the fields without the designer needing to remember the order
in which they occur; and the constructor function easures that values of the composite
type cannot be confused with values of the product type that might be used elsewhere.

10.2.4 Composite types with invariants

In the same way that invariants can be used to restrict simple type definitions, they can
also be used with composite types. One way that this can be done is to first make a type
definition giving a name to the unrestricted type (often a subscript ‘0’ is added to the
type name for this “proto-type™). Then the desired type can be defined by giving the
invariant as a predicate on the proto-type. The rules for reasoning about such a construct
simply reflect its two stage definition. The unrestricted type is defined as a composite type
without an invariant, then the restricted type is defined as a simple type with invariant.
An alternative, more direct, approach is often preferred, particularly when it is convenient
to write the invariant as a predicate on the separate fields. For this form some adaptation
of the rules for composite types is required.

Consider again the above example and suppose that an invariant is added to Loc:

Loc :: segment . Even
offser N
inv mk-Loc(s,0) £ (sx2%+0)< 2%

Here, the invariant is defined in terms of a pattern mk-Loc(s, 0). It could also be defined
in terms of a single variable of type Loc, though this would be less convenient for the
present approach.

As was done for invariants on simple type definitions, it is convenient to introduce a
definition:

inv-Loc(s, 0) def (sx2%+0) < 2%

which, just as for simple types, should be boclean-valued over the cross-product of the
field types:

- st Even; o:N
(i Lactom) 520 ON

inv-Even(s, 0):B

The formation axioms for the selectors, “segment-formy’ and ‘offset-form’, are as before
but there is an extra hypothesis in the formation axiom for the constructor, ‘mk-Loc-form’,
which asserts that the invariant holds for the values being composed:

s Even; 0:N; inv-Loc(s, 0)
mk-Loe(s, 0): Loc Ax

Similarly, the introduction axioms ‘segment-defity’, “offset-defng’ and ‘mk-Loc-defn’ are
as before but an additional axiom for asserting the invariant is required:
mk-Loc(s, 0): Loc

inv-Loc(s, 0)

inv-Loc-1

166 10 Proofs From Specifications

Together, these axioms capture the idea that the expression mk-Loc(s, 0) has type Loc
precisely when s: Even, o: N and the invariant holds for s and ¢. They also state that all
values of type Loc can be formed in this way.

As for simple types with invariants, it is worthwhile demonstrating that the defined type
is inhabited.

Note that the rules of the previous section (before invariants were considered} can be
recovered as special cases of the rules of this section where the invariant is universally
true.

10.3 The state

As described in Chapter 1, a VDM specification defines a state machine with Iabelled
transitions. The type constructions are used to give a model for the state space and the
transition system is implicitly defined by the operations. This section describes how
reasoning can be performed about the description of the state.

In VDM, the state is described as a composite type with an optional invariant. The
separate fields of the type might be thought of as state variables and the invariant as
a description of which states are of interest. As this may be an abstract specification,
there is no requirement that these variables should correspond to the variables that will
eventually appear in the implementation of the specification. (See data reification in the
next chapter.) There may also be an initialisation condition describing the initial states
for the system.

Consider the following simple state definition:

state § of

a:A

b: B
inv mk-S{x,y} & Py
init mk-S(x, ¥} & Q@)
end

This defines a state § which consists of two components a and b of types A and B re-
spectively. The invariant and initialisation are given in terms of a pattern mk-S{x, y) that
matches the structure of the state model: the invariant is expressed as a predicate P{x, ¥)
in x and y; similarly for the initialisation Q(x,).

Clearly, § is a form of composite type with invariant. The same definitions and rules that
appear in Section 10.2.4 apply. However, there is an extra dimension introduced by the
initialisation predicate.

10.3.1 Initialisation

As for invariants, it is convenient to make a definition for the initialisation predicate. Un-
like the definition for the invariant (which is defined as a predicate in the components of
the state) the initialisation is defined as a predicate in the entire state. In the VDM-SL def-
inition of § above, the initialisation is defined (like the invariant) via a pattern mk-S(x, y)',

10.4 Functions and values 167

and the definition of inir-§ in the logical framework uses the selector functions:

inie-s(o) ¥ 0(6.a,0.8)
Obligations for well-formedness and satisfiability of the initialisation predicate are also
required. Well-formedness requires that the initialisation predicate be boolean-valued
over the state type:

Yo S§- init-S(c6):B

which can be formulated as a rule:

— o8
s

Satisfiability requires the existence of a state for which the initialisation predicate holds:
S —
d0: 8 - init-5{c)

This last condition also demonstrates that the state type is inhabited, and reduces to in-
habitedness when there is no initialisation given, that is, when the predicate is simply
true.

10.4 Functions and values

In VDM, avxiliary functions are used together with type definitions to model concepts that
arise in applications. Proving properties of these functions can help with reasoning about
the specification by raising its level from that of the primitive constructs of the language
to that of the auxiliary funciions. Thus the use of auxiliary constructs in a specification
is akin to the use of definitions in mathematics. Some work needs to be done to correctly
formalate useful functions, and further work must be done to establish properties of these
functions, but then reasoning can be conducted at the level of the defined concepts rather
than those used in the definitions.

In YDM, functions can be defined either explicitly by giving an expression that evaluates
the result in terms of the parameters, or implicitly by stating a relation between the result
and the parameters. Constants, or vaiue expressions, can be thought of as functions
without parameters.

10.4.1 Explicit function definitions

As a first example, consider a simple explicit function definition with no precondition:

f:EvenxN >N
floyy & xx2%+y

In order to be able to reason about the above function a rule is required that enables
“folding™ and “unfolding” of its definition. Such a rule is simple to state:

1See Section 13.6 for further discussion on pattems.

168 18 Proofs From Specifications

- x: Even; y:N
f{x’y)mxx24+y

but to give such a rule as an axiom would be dangerous. For example, if the body of
the function were ill-formed, then the value of the function might be undefined and the
equation in the conclusion would introduce an inconsistency (see the discussion of weak
equality in Section 3.4).

Thus, before asserting such an equality, it is necessary to ensure the well-formedness of
the function body, that is to show:

x: Even; y:N
XTI AN

Once this has been shown, the ‘f-defn’ rule given above can be used.

This requirement to show well-formedness before using the definition rule is formalized
by giving as an axiom a version of the definition rule with a “one-point™ version® of
well-formedness as an extra hypothesis:

x:Even; v:N; {(xx2*+y):N
FfaxV=xx2%+y Ax
Now the “working version” of the definition rule given above can be justified by proving
the general well-formedness rule and using it to discharge the exira hypothesis:

from x: Even; y:N
I xx2%4+yN f-wif (hl, h2)
infer f(x,y) =xx2*+y f-defnp (h1, b2, 1)

In this way, the well-formedness of the function body has been shown for once and for
all and the axiomatic form of the definition rule with the extra hypothesis need never be
used again.

Note that even if a parameter is not mentioned in the body of the function, it is still
included as a typing hypothesis to maintain strictness. For example, consider a function
which only uses the first of its arguments, say:

g2:NxN-=N
glxyy & xx2

This gives the axiom:
N N (xx 2N

g0y =X 2

Even though the type-soundness of the body of g only depends on g’s first argument, this
axiom permits the replacement of g(e;, e2) in an expression by ; x 2 only if both ¢; and
¢, are of type N, Consequently, an expression such as g(0, 1/0) cannot be replaced by (

2The temm “one-point” is used because in order to deduce {using the axiom ‘f-defng’} that £(x.) is
defined for some particular x and y, it is sufficient to show that the body expression is well-formed for
those particular values of x and y, i.e. for one point of the domain of £. It is not necessary 10 show that the
body of f is well-defined throughout the (claimed) domain of f.

10.4 Functons and values 169

and hence the type of g{x,y) cannot be inferred.

This requirement explains why functions are not treated as definitions. Such a function
would present a number of problems if interpreted in the obvious way as a definition:

g0oy) B xx2

Firstly, at the syntactic level, unfolding the definition would lose information and so it
would be impossible to fold it again:

2(1,2)=2% = g(1,7.

But even if some way were found to circumvent this, at the semantic level such a definition
would be non-strict. For example, one could derive:

21, /0 = (1 x 2N

even though 1/0 is undefined.

Such problems could perhaps be avoided by some mechanism that introduces a superfin-
ous mention of the unused parameter, for example one might define:

2(x,y) def lety=yinxx2*

but such a “syntactic trick™ is unnatural, and the axiomatic interpretation is preferred.

10.4.2 Preconditions

Both explicit and implicit function definitions can have preconditions. The precondition
is used to place restrictions upon the domain of applicability of the function, in addition to
the typing constraints of the function signature. Function definitions with preconditions
say nothing about the behaviour of a function when applied to values that do not satisfy
the precondition (the function is not even guaranteed to terminate). To formalize this,
the precondition can simply be added to the hypotheses of each of the above axioms and
rules.

In order to prevent having to write the precondition expression repeatedly, it is convenient
to make a definition for it. If the example given above had a precondition:

f:EvenxN—N
floy & xx2%+y
prex <2 Ay <2t
the following definition would be made:

pre-f(x,y) gef y<at Ay<2l

and the axiom ‘f-defny’ would have the precondition as an extra hypothesis:

x: Even; y:N; pre-f(x,¥); (xx 2% +y):N
fay)=xx2+y ax

and similarly for the rules ‘f-wff’ and ‘f-defn’:

/o 10 Proots From Specifications

x: Even; y:N; pre-f(x,¥)

fowit (xx 27+ y):N

x: Even; y:N; pre-f(x,y)
f,y)=xx2%+y

Once again, care should be taken to guard against possible ill-formedness of the precon-
dition. It should be total in the arguments to f (that is, over EvenxN) and boolean-valued:

x: Even; y:N
Again there is the issue of how to handle the case where a parameter is not mentioned. In
this case the approach taken is to make the precondition a definition with fewer param-

eters, ensuring that wherever the definiendum is used the correct arguments are selected
to be used as parameters,

10.4.3 Implicit function definitions

The treatment of implicit functions is not too dissimilar to explicit ones. The same ex-
ample might have been written implicitly as:

f G Even,y:N) N
prex <216 Ay <216
postr=xx2%+y

Definitions are introduced for the precondition and postcondition. The definition for
a postcondition is similar to that for the precondition, with an extra parameter for the
result:

pre-f{x,y) dof o6 Ay <26

post-f(x,v,r) def o 28 +y

Well-formedness amounts to saying that, given arguments of the correct types satisfying
the precondition, the postcondition must be a boolean-valued expression:

x: Bven; y:N; r:N; pre-f(x,y)
et post£(x,3.7):B

A working formation rule can be given, stating that f(x,) is well-typed if the arguments
are of the correct types and satisfy the precondition:

N, Ny pre-fix, y)
FxyN

with the intention that this should be proven using the axiom ‘f-formy’ (given later).

As f is implicitly defined, it is not possible, in general, to give a precise value z such that
flx.¥) =z f is said to be under-specified (see Section 10.4.5.) The most that can be said
is that f(x, y) satisfies its postcondition (given the same conditions as above);

10.4 Functions and values 171

xN; y:N; pre-f(x,)
~defi
postF06, 3. 06,3)
Before these rules can be used, the satisfiability proof obligation for f should be dis-
charged (otherwise, there is no guarantee that the expression f(x, ¥) denotes a value). The
satisfiability obligation can be described as the rule:

x:N; wN, pre-f(x,y)
Ir:N- post-fix, v, 1)
Proof of satisflability for this example should present no problems. After some unfolding
of definitions, a witness has to be chosen for the application of exists introduction. In

effect, this requires one to build an expression which could be an explicit definition of
the function. In this example, it is clear that one must choose x X 2% -+ y as the witness.

Another way that one might be tempted to proof satisfiability could be to choose the
expression f(x, y) itself as the witness. The proof would then be completed by recourse
to the ‘f-defn’ rule given above. Of course, such an argument would be quite circular
and completely invalid, Clearly, satisfiability must be proved without using the function
itself in constructing the witness expression.

In preference to requiring this meta-logical constraint on the proof of satisfiability, as
for explicit functions, the working rules *f-form’ and ‘f-defn’ are not given as axioms.
Rather the axioms incorporate “one-point” versions of the satisfiability obligation, as for
the explicit function example:

1N, yiNs pref(x,y);, Ir:N- post-f(x, y,7)
7N Ax

x:N; ¥:N; pre-fix,¥); IriN- post-f(x,y.r)
. post-f(x,3.f(x,))

Ax

Thus, before any properties of an expression which applies f to a particular x and y can be
derived, it must be shown that f is satisfiable for those particular arguments. The working
versions can be proved from these using the satisfiability rule *f-sat’.

10.44 Recursive functions and satisfiability

It is interesting to see how the above axiomatisation deals with functions defined using
recursion, As might be expected, for these functions reasoning tends to rely on induction.
In this section, the proof of satisfiability for a recursively defined function is outlined.

Consider the function sum on sequences of natural numbers, defined implicitty via®:

sum (s:N*) r:N
postif g =[] thenr =0 else r =hds+ sum(tls)

Using the scheme given previously, this generates two axioms and a definition for the
post-condition:

:N'; Ir:N- . 3
=N 3N postan(s)
sum(s):N

3Clearly this function could have been defined explicitly, In fact the same issues arise in either case.

172 10 Proofs From Specifications

5:N*; 3r:N . post-sum(s, r) Ax
post-sum(s, sumis))

post-sumis, r) def ifs =[] thenr=0 else r = hds+sum(tis)

The task is to prove the following satisfiability obligation:

&N
3r:N - post-sum(s, r)

From this, the working versions of the formation and definition rules can be proved:

. N J* .« R
[surorm] S ___ L

sum{shN post-sum{s, sum(s))
As might be expected, the proof proceeds by sequence induction. The point of interest

is how the existential hypotheses in the axioms are discharged when they are used in the
induction step.

The first stage is to apply sequence induction backwards to the conclusion to give:

from 5:N°
1 3rN-post-sum{[1,1 (7?7 justify 77)
2 from N, &N 3N post-sumit, r)

infer Jr:N - post-surn{cons(h, 1}, 1) {77 justify 77)
infer A7:N - post-sum(s, r) seg-indn (hl, 1, 2)

The base case is simple to justify by choosing the witness r to be 0, unfolding the definition
of post-sum and using ‘condition-true’. The induction step is justified by ‘3-I’ choosing
h + sum(t) as witness. Progress can also be made by working forwards from the local
hypotheses of the induction step by using the ‘sum-defny’ axiom on t. Notice how the
local hypothesis generated by the induction step is exactly what is required to be able to
discharge the existential hypothesis in ‘sum-defny’. Performing these two steps gives:

from s:N°

1 Ir:N-post-sum([1,7} (7? justify ?7)

2 fromk:N; £:N*; 3r:N. post-sum(i, r)

2.1 post-sumt, sum(t)) sum-defng (2.h2, 2.h3)

2.2 B+ sum(e):N {77 justify 1)

23 post-sumicons(h,), h+ sum(z)) {77 justify 77)
infer Ar:N - post-sum{cons(h, 1),) A-1(2.2,2.3)

infer Ir:N - post-sum(s, r} seg-indn (hi, I, 2)

The fact that 1+ sum(z) is a natural number can now be proved using ‘+-form’ and “sum-
formy’. Note once again, that the existential local hypothesis is exactly what is needed to

10.4 Functions and values 173

be able to use ‘sum-formy’.

The remaining part of this proof, to justify post-sum({cons(h,),h + sum(t)} from
post-sum(t, sum(1)) is straightforward once the postconditions are expanded.

One can see now why one-point versions of the satisfiability obligations are used to guard
the formation and definition axioms. An alternative formulation which could be suggested
would be to use the full satisfiability obligation as 2 sequent hypothesis in the axioms.
Although this is perfectly satisfactory for non-recursive functions, the approach does not
work for recursive functions. The induction in a proof such as that above becomes trapped
in a “satisfiability loop™: to show that swm is satisfiable at an arbitrary point s, it must be
shown to be satisfiable throughout its domain. {See Exercise 5.)

10.4.5 Looseness in function definitions

In VDM, looseness in the definition of functions is interpreted as under-specification {also
known as under-determinism) rather than non-determinisin. That is to say that it can be
assumned that the function always evaluates to the same result even though the precise
value may not be fully determined.

This looseness can arise either from the use of implicit functions where the body does
not fully determine the result or from the use of loose expression constructs in explicit
functions. (Loose expression constructs are discussed in Chapter 13.)

For example, consider the function:
FNyN) rN

prexsy
postxSrarsy.

Clearly it is easy to discharge well-formedness (‘post-f-form’) and satisfiability (‘f-sat”).
The latter can then be used with ‘f-formy’ and ‘f-defng’ to prove ‘f-form’ and ‘f-defn’.
In this example, pre-f can be unfolded in ‘f-form’ to give:

xN;, N, x<y
fGy):N
This can be used with ‘=-self-I" to prove:

XN, N xSy
W fryy =fxy

Thus, applying f to the same values always produces the same {(natural number) value,
or in other words, f is deterministic.

Similarly, post-f can be unfolded in ‘f-defn’ to obtain:

xN N, x<y
PO X <Fey) A Fy Sy

This captures the fact that the specification of f is loose: the most that can be said about
£ is that it returns a number that lies between its arguments.

174 10 Proofs From Specifications

10.4.6 Polymorphic function definitions

Many of the predefined functions in VDM-SL are polymorphic. For example, ‘i’ can
be applied to sequences of any type X. It is also possible to define new polymorphic
functions in VDM-SL, whose signatures can contain one or more type variables.
Polymorphic function definitions must be explicit, and when such a function is applied,
any type variables in its definition must be instantiated to specific types (which can be the
type variables of an enclosing function). As an example, the following defines a function
which returns the last element of a non-empty sequence of items of arbitrary type:

last [@elem]: @elem® — @elem
last(ly £ iflenl =1 then hd! else last[@elem](tt])

Here, the phrase ‘[@elem]’ in the signature introduces a type variable ‘@elent’. When
last is applied recursively, this type variable must be instantiated, in this case by itself.
Now last can be used to define the function addlast, which adds the last elements of two
non-empty sequences of natural numbers:

addiast 1Nt xNF =N
addlast(h, 1) & last{NJ(1) + lasgN)(L)

Here the type variable in the definition of Jast is instantiated by N in each application.

A polymorphic function definition can be handled in the theory of a specification much
like any other explicit function definition: the only difference is that the pelymorphic
type variable becomes a metavariable For example, the formation rule for last is:

last-form —I—-E"E%
lasi(l). Elem

where Elemn is a type metavariable in the rule, not the name of a type defined in the theory.

When proving properties about an application of a polymorphic function, instantiation of
the type variable is handled as part of the instantiation of the metavariables in applying (for
example) the formation rule. (Consequently, there is no need for the explicit instantiation
in VDM-SL polymorphic function application to be duplicated in the logical frame.} An
example of this occurs in the following proof of ‘addlast-form’;

from [Ny I NF

1 lasl{l):N last-form (h1)
2 last{l):N {ast-form (h2)
3 last(ly)) + last(B):N +-form (1, 2)
4 addlast(ly, ;) = last{l)) + last(l) addlast-defng (h1, h2, 3)
infer addlast(l;, L):N =-type-inherit-left (3, 4)

In the use of the rule “/ast-form’ in Line 1, the type metavariable Elem is instantiated by
N, in the same manner as [is instantiated by [,

Note that the logical frame supports the definition of polymorphic types as well as poly-
morphic functions. For example, it is possible to define a type of non-repeating sequences
of an arbitrary element type via:

10.5 Operations 175

is-non-repeating(xs) d=ef Yy, m € indsxs . (xs(m) =xs5(m) = ny = ny)

NonRepSeq(X) def & x3: X" | is-non-repeating(xs) >

However, such a definition has no direct counterpart in VDM-SL, where only explicit
function definitions can be polymorphic. Instead the specification must define a separate
type for each instance of the polymorphic type required, for example:

is-non-repeating [(@elem); @elem® — B
is-non-repeating(l) £ ¥y, m € indsxs . (xs(m) = x5(ng) = my = ny)

NonRepNatSeq =N’
inv ns & is-non-repeating[N){ns)

16.4.7 Value expressions

As stated earlier, value expressions, or constants, can be thought of as special cases of
function definitions; simply explicit functions without arguments or precondition. Thus
the value expression:

vT=E
has the following associated axiom:

v-defng ET Ax
= E

where the hypothesis can be discharged if the expression is well-formed.

As In the case of functions, it is useful to prove well-formedness separately:
v-form |~z
B

and then prove a working version of the definition rule:

10.5 Operations

Operations describe the possible changes in the state. Like functions, they can be given
implicitly or explicitly, This section is concerned only with implicit operation definitions.

An implicit operation defines a set of possible state transitions. For each state, the choice
of state transition may depend on the values of arguments to the operations, The operation
may also return a result, Where there is more than one possible transition from a given
state, the operation specification is considered o be truly non-deterministic. That i§ to
say that impiementations may deliver different resulting state values each time they are
called, even given the same parameters.

Precondisions and postconditions play similar roles to those played in implicit functions
except that they constrain the before and after states as well as the parameters and results.

176 10 Proofs From Specifications

Externals clauses specify the read and write frames of the operations and bind the state
variables thai appear in the predicates.

The simplest case to consider is an operation with no arguments or resul; its only action
is to transform the state:

OP

ext rdr : R
wrw @ W

pre Pr(r, w)

post Po(r, W, w)
As for implicit functions, definitions are made for the precondition and postcondition:

pre-OP{(r, w) def Prinw)

post-OP(n 7, w) ¥ Polr W, w)

These definitions can now be used in the conjecture and proof of validation theorems and
proof obligations about the specification. Detailed examples appear in the case study.

10.5.1 Satisfiability

As in the case of implicitly specified functions, it is necessary to show that an implicitly
specified operation can be implemented. It is desirable to demonstrate this before devel-
oping a detailed reification, to avoid wasted effort in trying to implement in inherently
unsatisfiable operation specification. The satisfiability obligation is a rule that guarantees
that the operation is imiplementable, without the need to develop a detailed implementa-
tion as a demonstration.

The usval satisfiability obligation, written in terms of the whole state ¢: Z might be given
as!
‘&I, pre-OP(G)
Jo: % post-OP(T, 6)

However, this formulation has two problems. Firstly, it is not always well-formed, be-
cause in general pre-OF and post-OP can be predicates in only some of the components
of the state. But even apart from that problem, the rule has ignored completely the infor-
mation in the externals clauses of the operation,
A first attempt to rectify these problems might be to restrict the obligation to the compo-
nents in the read and write frames, for example:

R, Wi W; pre-OP(r, W)
Fw: W - post-OP(r, w,w)

However, this form is not correct either, for this does not ensure that the operation main-
tains the invariant.

Thus the obligation should be written in terms of the whole state, but also distinguish-
ing the individual components for the predicates. Supposing that the state is actually
composed of the two components already introduced and additionally a third “unread”

10.6 Validation proofs 177

component, ¥, then the obligation can be stated as:

R, WeW, w U invE(n W, u), pre-OP(r, W)
W - inv-Z{nw 1) A post-OP(r,'w ,w)

or, alternatively, using a pattern for the state:
mk-Z(F, W, W T, pre-OP{F, W)
~5at — — oy
= Imk-S(r,w,u): Z - post-OP(r, W, w} A r="F A= U
where the invariant is hidden by use of the state type Z. The last two conjuncts arise, of
course, because the variables outside the write frame, » and u, must be unchanged. This

form of the satisfiability obligation is clearly the component by component version of the
usual whole state obligation given earlier.

The astute reader may still be slightly concerned by this formulation. Although it dis-
tinguishes between read-only and read-write state components, no distinction is made
between the read-only and unread components. In fact this is in agreement with the in-
terpretation of externals clauses in VDM-SL which does not make a semantic distinction
between read and unread components. A discussion of the role of the read and write
frames in operations, including an alternative formulation of the satisfiabitity which takes
the unread nature of variables not mentioned in the externals clauses into account, can be
found in {Bic93].

10.5.2 Parameters and results

In the case where the operation has parameters and a result these are incorporated in the
obvious way. For example, if the above operation had additionally a parameter x; X and
aresult y: Y the satisflability role would be:

X, mk-Z(F, W, W)L, pre-OP(x, 7, W)
Ty Y, mk-Z(r, w, u): X

post-OP(x, 3., W, WA r=TF Au="T

10.6 Validation proofs

For any particular specification, there may be some specific propositions about an oper-
ation that can be postulated, or more general propositions may be stated about the speci-
fication as a whole. Some examples of this kind of validation condition are discussed in
the case study in Sections 12.4.3 and 12.4.6.

There are also some other more general properties that it might be useful to show of
any specification. For example, one might wish to show that there is always at least
one operation that can be applied, i.e. that the disjunction of the preconditions of all the
operations is true for all values of the state type. Or one may prove that certain states
are unreachable by proposing a stronger invariant on the state and showing that if is
maintained by the operations. In this way validation can not only serve to check that a
specification exhibits properties that are desired for the system, but also, by helping the
understanding of the model given, it can suggest improvements to that model or even

178 10 Proofs From Specifications

alternative models 0 consider. What appears to be a great deal of extra work - to try an
alternative specification - may well pay dividends when proofs are being constructed.

One possibility for validation arises from VDM's implicit maintenance of the invariant by
the postconditions. Often there is & choice of how much of the information implicit in the
invariant should be repeated in the postcondition. There is often some tension between
the most concise form of postcondition that relies on properties of the invariant for its cor-
rectness, and a longer, but more explicit, form that includes some redundant information.
This choice can be seen as an opportunity to prove the stronger forms from the weaker.
Which formulation of the postcondition is chosen may make a significant difference to
the complexity of the proofs: the form that most clearly conveys the information may not
be the form that will be most useful in proofs. Indeed, the stronger form is more likely
to be helpful when the specification is being proved to be a reification of another, and the
weaker form when it is itself being reified.

By building a theory of proved properties of a specification in this way, some of the burden
of proof that would otherwise arise when trying to justify a refinement, can be discharged
in an environment where one only has to consider a single specification. Clearly itis easier
t0 reason in the context of a single specification than that of a refinement which relates a
pair of specifications. The following chapter will discuss reasoning about refinements.

10.7 Summary
This chapter has dealt with the following topics:

¢ Definitions and axioms for reasoning about elements of VDM-SL specifications:
type definitions, the state model, explicit and implicit functions, value definitions,
and implicit operations,

» Treating type invariants as subtype restrictions integral to the type definition.
» Introducing definitions for invariants, preconditions and postconditions.
¢ The use of well-formedness guards on definitional axioms.

¢ Proof obligations: well-formedness; satisfiability of implicit functions and opera-
tions.

« Validation proofs, e.g. that a type definition is inhabited (has at least one value).

10.8 Exercises

1. The role played by invariants in proofs
Consider the function ‘double’, defined as:

double :N — Even
double(n) & 2xn

10.8 Exercises 179

(a) State and prove the formation rule ‘double-formy’, analogous to ‘f-form’ in Sec-
tion 10.4.1,

{b) Repeat Exercise 1(a) for the function ‘Aalve’, defined as:

halve : Even ~-> N
halve(e) & 1mN-n+n=e.

(c) Suppose instead that the above functions had the signatures:

double:N — N
halve:N - N

How does this affect the proofs of ‘double-form’ and ‘halve-form’? What roles did the
invariant on Even play in the original proofs?

2. A satisfiability proof

Prove the satisfiability obligation for the function f as defined in Section 10.4.3:

F (x: Even,y:N) r:N
prex < 215 Ay < 216
post r=xx2%+y

%N, ¥»:N; pre-f(x,y)
IriN- post-f(x,y,r)

Remember that the proof must nor use ‘f-defn’.

3. An experiment in recursive function definitions
Consider the explicit recursive function definition:

sum N - N
sum(s) 2 ifs=1]]
then 0
else hd s + sum(tls)

Suppose that instead of the form suggested by Section 10.4.1, the definition axiom is:
s:N' 5 5Nk (it sy =[] then O else hd sy + sum(tis,)):N
sum(s) = if s =[] then Q else hds + sum(tls)

where the sequent hypothesis corresponds to showing that the body of sum is well-defined
for all N*.
(a) Try to prave that the body of sum is well-defined, namely:
5N
(it s = {] then 0 else hds + sum(tl)} N

Why does this fail?

15th LU Froots rom speciiicaaons

(b) Repeat the attempt, this time using the axiom:
£:N'; (it s =[] then O else hd s+ sum(tls)): N

sum(s) = if s =[] then O else hds + sum(ils)

4. Alternative definitions of pre- and postconditions

In the semantics of VDM-SL, the pre- and postconditions of an operation are predicates
in the whole state of the specification, rather than just the components read and/or written
by the operation.

(a) Given the state definition:
state T of

r . R

w. W

w U
inv mk-20n w 1) 2 Pilrw,)
end

and an operation specification as in Section 10.5, that reads r, writes w and ignores w:

or

ext rdr : R
wrw @ W

pre Prrw)

past Po(r, W, w)

how might pre-OF and post-OP be defined in terms of X7
pre-0P(s) &

post-OP(5,6) &

Take care not to forget the role of the write frame.
{b) Re-state the obligation ‘OP-sat’ (page 10.5.2) in terms of these new definitions.

{¢) Repeat (a) and {b) for one of the operations in the case study, and construct the proof
of the satisfiability obligation. Compare this against the original.

Chapter 11

Verifying Reifications

11.1 Introduction

Chapter 1 introduced the broad principles of reification. It described how data reifica-
tion and operation modelling combine to provide a more concrete specification which
is in some way closer of an implementation whilst still exhibiting external behaviour
compatible with that of its abstract counterpart. A fuller explanation of the principle of
reification can be found in [Jon90]. There are many issues associated with formalising
the idea of retfication, some of which are discussed here and others as they arise in the
case study. The primary objective of this chapter is to describe a set of formally-stated
proof obligations for reification, the proof of which provides a sufficient justification for
the preservation of external behaviour. The case study in the following chapter provides
the major dermonstration of how these proof obligations are applied in practice.

There are many ways in which a specification can be reified in order to bring it closer to
an acceptable implementation. The example in Section 1.2.3 discussed how a new data
model for the state can be chosen in order to bring information required for more effi-
cient implementation of the operations to the fore. It also mentioned how the operations
themselves can be refined by the reduction of possible non-termination or the reduction
of non-determinacy. Often, more than one of these forms are combined in a reification.
in order to record the most general form for the proof obligations that arise in reification,
the exposition in this chapter uses an abstract example.

The next section deals with the reification of the state model. It formalises the idea of
the retrieve function and describes the requirement for adequacy of the concrete model.
It also deals with reification of the initial states. Section 11.3 considers the operation
modelling that arises as a consequence of such a data reification, giving the domain and
result proof obligations in general format, There then follows (Section 11.4) a small
example showing how the general proof obligations are specialised for a particular case
and giving some example proofs, Section 11.5 discusses rules for reasoning about the
satisfaction of implicit functions by explicit definitions. The last section briefly discusses
how the form of reification presented here can be insufficiently general in some cases and
how this can be overcome.

This chapter, and indeed this book as a whole, restricts attention 1o what may be termed
“data-centred” reification, namely those forms of reification that concentrate upon the
consequences of changing data representations. Reification of actions, that is, the process

182 11 Verifying Reifications

of operation decomposition in VDM, is a large enough subject to merit a separate volume
in its own right and is not addressed here.

11.2 Data reification

The key element in justifying a data reification in VDM is the retrieve function. This acts
as the formal link between the data models of the abstract and concrete specifications. The
abstract model was chosen to simplify kigh-level reasoning about the problem domain;
now reification introduces some degree of implementation detail and with this comes an
increase in the compiexity of reasoning. Demonstrating the validity of a data reification
is often a difficult task, however because reification is transitive, it can be performed in
several stages where each step introduces a small amount of implementation detail and is
refatively simple to justify. Although this does not reduce the complexity of the overall
design, it has the benefit of structuring the design and verification process.

Setting aside until the case study (Chapter 12) motivation for how and why one might
choose a particular data model, this section describes the form of definitions and obliga-
tions introduced by a data reification, This is done by reference to an artificially general
pair of specifications which simply introduce names for the components of the state mod-
els and operations that are used in the definitions and obligations.

11.2.1 Retrieve functions

Consider the following pair of specifications. For convenience in the definition of the
operations that follow, it is assumed that the abstract and concrete states each have three
componeats. The names of these components are chosen to reflect their use in the exter-
nals clauses of the example operation in section 11.3, thus r stands for read-only, w for
read-write, and u for unread. Arbitrary predicates in the state components are given for
invariant and initialisation.

Abstract State Concrete State

state S, of state 5, of

r. . R, re R,

wa @ W, w, 1 W,

Ua U, u. U,
iV mk-8a(ra, Wa, tha) D inva(ra, wa, Ua) inv mk-8o(re, we, o) 2 inve(re, we, i)
init prke-Sara, Wa, ta) £ inity(ra, wa, ;) init mk-Sc(re, we, 1) B init(rs, we, i)
end end

Note that, although the abstract and concrete state models have the same number of com-
ponents with similar names, this is not meant to suggest that retrieval need be defined
component-wise, More generally, retrieval is defined between the whole states S, and
S,- It is not intended that there need be any correspondence between the individual com-
ponents of the states, nor indeed that there be the same number of components in each
state.

The first step in showing that §, is a reification of S, is to construct a retrieve function.
This should have the following form:

11.2 Data reification 183

retr-§ 1 8. = Sq
retr-S(s::Se.) 2 body-expression

The same verification conditions that apply to any function definition (Section 10.4.1)
also apply to retrieve functions. In addition, the retrieve function must be total over the
concrete state model, This is formalised by the fact that it has no precondition. Note that
the invariants of the abstract and concrete models have been “absorbed” within the type
definition, as described in Section 10.2.

One extra requirement for a retrieve function is to ensure that the concrete data model is
adequare. Adequacy requires that every value of the abstract state model has a corre-
sponding value in the concrete model. This obligation can be written as:

o
A TS, - retr-S(s,) = 5a

The importance of demonstrating these properties of the retrieve function cannot be over-
stated. Attempting their justification can highlight many problems with a design which
might not otherwise become apparent until much later. This might not only be the in-
dication of a point of failure, but a proof that is difficult or ungainly may suggest an
improvement to the concrete model, the retrieve function, or even in the abstract model.
For example, in attempting a proof of adequacy, it may transpire that some abstract values
have no concrete counterparts. This might be because the concrete model is inadequate,
or it may be that the retrieve function is not correctly defined. However it could also
indicate that the abstract model is insufficiently abstract. Such situations are discussed
further in Section 11.6.

11.2.2 Reifying initialisation

In addition to showing that the concrete data model is an adequate representation of
the abstract one, there is also a constraint on the initialisation conditions. Reifying the
initialisation condition is rather like the modelling of an operation but a little simpler.
Where unique states are defined by the initialisation predicate, then clearly they must
be states which correspond under the retrieve function, That is, the abstract initia)] state
should be the image under the retrieve function of the concrete initial state. Where there
are a number of possible initial states that satisfy the initialisation condition, the criterion
is that the concrete initialisation should exhibit no more non-determinacy that the abstract.
This is formalised by saying that the image under the retrieve function of the set of states
satisfying the concrete initialisation must be contained within the states satisfying the
abstract one. This is formalised in the following obligation which describes “adequacy
of initialisation™:

Sai8a; So18c

S, = retr-S(s.)

T inf['Sc(Sc)
PTRATS)
As suggested, this is a special form of the result obligation that arises in operation mod-
elling which is discussed in the next section. (See Exercise 11.8.1))

184 11 Verifying Reifications
11.3 Operation modelling

11.3.1 Modelling behaviour

Once a new state definition is given for the concrete specification, new cperations must
be defined that model the operations of the abstract specification. In order o preserve
external behaviour, there must be a concrete operation for each abstract operation and
furthermore the argument and result types of corresponding operations must be the same,
However, the body of each operation must be redefined in order to accommodate the new
state type.

In some cases the systems described by abstract and concrete specifications behave identi-
cally but this is not an absolute requirement. Operation modelling is based on a definition
of satisfaction. A concrete operation satisfies an abstract one so long as the behaviour of
the concrete operation is in a sense compatible with that of the abstract operation. The
definition of compatible behaviour is such that a user of the system should not be able
to ascertain whether the system is behaving in accordance with the abstract or concrete
specification,

As stated eardier, the difference in specified behaviour can arise in two ways. First it can
result from an increase in the domain of termination of the operation and second it may
arise from a reduction of non-determinism. This leads to a closely-linked pair of proof
obligations, the domain and result obligations. These two obligations are formalised in
the next two subsections.

Again in order to explore the most general case, the treatment is based on an abstract
example. Consider a pair of corresponding operations acting on the abstract and concrete
states given above:

Abstract Operation Concrete Operation
OP, (a: Ay T OP (@A) T
ext rdr, @ Ry, ext rdr, : R,
wrw, : W, wrw, 1 W,
pre Pa{a, ra, wa) pre P.a,r, w.)
post Qa{a, £, 7, oy Wa) post O.(a, 1, 1., We, W)

Note that the operations have comresponding names — albeit with different subscripts -
and the same **visible types”, that is argument and result types. Sufficient generality for
the present discussion is provided by assuming that each operation accesses one state
component in read-write mode, one in read-only mode, and does not access the other at
all. Recall that there is not necessarily any correspondence between the individual com-
ponents of the states. Preconditions and postconditions are given as arbitrary predicates
over the relevant state components.

11.3.2 Reducing undefinedness

It is enough to show that a concrete operation is no less defined than its abstract coun-
terpart, The negative is chosen carefully. An abstract operation specification does not
say that the operation cannot be invoked outside of its precondition, only that the con-
sequences of so doing are not defined at this level of abstraction. An implementation of

11.3 Qperation modelling 185

-that operation may be defined over a wider domain, but its behaviour over the “extra”
domain is not constrained by the abstract specification. Nonetheless, it is essential that the
concrete operation should be defined at least wherever the abstract operation is defined.
This is captured in the domain obligation which states that the concrete precondition must
hold whenever the abstract one does. As the two operations are defined over different
state models, the retrieve function is used to yield an “abstract view™ of the concrete
operation’s domain. The domain obligation can be stated as follows:

aA; 5.1 5;; 508,
5q = retr-8(s.)

re-OP . (a,8,.7g, Sa.W,
OP-dom-obt P (s SaFar Sa-Wa)
pre-OP{a, §;.5 s, 5..W;)
This formal statement of the obligation uses one metavariable for each of the concrete

and abstract states. An alternative formulation might introduce metavariables r,, w,, etc.
with hypotheses of the form:

mk'Sc(rm W, Ue): S

A metavariable for the abstract state, together with the hypothesis equating it to the re-
trieved concrete state, is given here as its use simplifies the statement of the abstract
precondition.

One consequence of this “satisfaction-based” approach is that the precondition should
not be interpreted as defining a domain outside which the operation cannor be invoked.
Rather it says that for such invocations any outcome is possible. Requirements of this
nature should be described directly in the postcondition by giving the exceptional result
of such an invocation.

11.3.3 Reducing non-determinacy

In an abstract specification, the postcondition of an operation may well be “Joose™. That
is, given a particular initial state there may be many possible final states that satisfy the
refation. An implementation of this operation has the freedom to reduce this looseness by
narrowing the choice of possible states. Indeed, as looseness in operations is interpreted
as true non-determinism, an implementation that chooses different final states on different
invocations is also valid so long as the postcondition is satisfied.

The looseness available in implicitly-specified operations is a useful tool in developing
abstract specifications. However, as progress is made towards an implementation, it is
often natural to “tighten up” the postcondition of an operation, moving from a specifica-
tion of the relationship between the initial and final states towards a description of how
the final state can be constructed from the initial state. Another way to state this is to say
that the concrete operation may reduce the non-determinacy of its abstract counterpart.

The concrete operation should not break the postcondition of the abstract operation, so it
is to be expected that the concrete postcondition should ensure the abstract postcondition
(under the retrieve function, naturally). In other words, given a concrete state s, which
satisfies pre-OP,, a condition something like the following should held:

post-OP (57, 5.) = post-OP (retr-S(57), retr-8(s.))

However, recall that in the abstract specification any behaviour is allowed for the op-

186 11 Verifying Reifications

eration outside its precondition. Thus it is sufficient to consider only cases where the
abstract precondition holds. Taking this into account, and moving to an inference rule
presentation, leads to an obligation of the form:

580 508,
pre-OP,(retr-5(5.))
post-OP.(s; ,s.)
post-OP(retr-S(5.), retr-S(s.))

There are three ways in which this statement is still a little inaccurate, First, it omits
consideration of the arguments and result of the operations. However these are trivial to
incorporate. Second, the preconditions and postconditions have been given as predicates
on the entire state, whereas elsewhere they have been treated as predicates in the separate
state components. Third, the permissible final states are determined not only by the
postconditions but also by the externals clauses of the operations. In particular, state
components outside the “write frame” of each operation must not be changed.
Taking these three considerations into account yields the following form for the result
obligation:
aA, T
$a:8a S1 8¢ 84 = retr-8(sc)
Sa1Say 50i8c 52 =rer-S(50)
pre-OPa(a, 53 1a, 54 Wa)
POSE-OP A, 1, 855,70, Se WerSo.Wed A Sefe = 5o Fe A Sell, = 5o e
POSE-OP{a, t, 52 a1 55 Way SaWad A Sala = Sala A Sally = 55 .4,

Although apparently rather ungainly in the form presented here, this obligation is often
relatively concise for particular examples.

11.4 An example reification proof

This section presents a exarple illustrating the domain and result obligation for a simple
specification and implementation. The example concentrates upon an operation PULL
which removes and returns an element from a collection.

The abstract specification pulls an arbitrary element from a set:
state §, of

s 1 X-set
end

operations

PULL, O x: X

extwrs : X-set

pres={}

postxe 5 A s=§\{x}

Natarally, the full specification would also include other operations.

11.4 An example reification proof 187

One data reification that might be considered would be to replace the set of X in the state
by a sequence and an index into that sequence which defines the element that should be
“pulled”. An auxiliary function helps to make the definition of the operation concise:

state 5. of
I X"
i:N
inmk-S(L,0) A #l=[]theni=0 elseie inds/
end
functions

remove Ny x Xt - X*
remove(i,} & K1,...,i-0)"I(E+1,..,lend

prei € inds/
operations
PULL, () x: X
extwrl 1 X*
wri @ N
prei=Q

—

post x = T(T) A= remove(T, D)

The postcondition does not specify the new value of /. Thus any new index satisfying the
invariant is arbitrarily chosen. The invariant ensures that { is a valid index of / when [is
not empty and O otherwise. Thus, in the precondition for PULL,, the test for emptiness
on [can be replaced by the test whether i = 0. Note however, that although this may be a
more efficient test to implement, its use in the precondition will increase the complexity
of reasoning required to show the domain and result obligations.

It is claimed that the following is a valid retrieve function from S, to S

retr .S, — S,
retr(mk-S.(L, D) 2 mk-S,(slems])

‘This claim should be supported by constructing well-formedness and adequacy proofs.
These are left as simple exercises.

Following the recipe in Section 11.3.2, the domain obligation for modelling PULL, by
PULL, is:

Soi 800 84284

5a = retr(s,)

s;85#1{}
PULL-dom-obl | ————F=—
[POLL-dom-obt] =5

In order to discharge this obligation, it is necessary to use the invariant of S,. Since the
empty list has no elements, s../ cannot be [], and so 5. cannot be 0. The following
informal sketch of a proof indicates how the domain obligation can be discharged. The
reader should by now be able to fill in the formal details:

188 11 Verifving Reifications

from 8.1 S Sa:8ar 80 = retr(s,); sa5#4{}

1 5, =mk-Ss(elemss,.D) defn. of retr (h3)
2 elemss.#{} rewriting (1) with (h4)
3 s I#[] since elems[J={ } ()
4 s.ie indss.d (3) and inv-5,
infer s..i 0 seq index non-zero (3, 4)

The result obligation for PULL can be given as follows:
x: Xy mk-Sa(s): Sq; mk-S.(1, i) S,
mk-Su(TY: Sz kST, T)8,
1tk-Sa(s) = retr(mk-Se(l,) mk-Sa('T) = retr(pk-SLT, 7))
Tellx= Tyl =remove(T, 1)
xe T as=T\{x}

Rather than using one metavariable per state as in the domain obligation above, one
metavariable per state component has been used here. Although this makes the proof
obligation a little more untidy, it improves the presentation of the proof. Definitions of
precondition and postcondition have been expanded. Both PULL, and PULL, write the
entire state, so there is no need for “rest unchanged” extensions to the postconditions.
An informal partial proof of the result obligation, omitting typing issues and some detail,
brings the main issue to light:

from mk-So('F) = retr(mic-S(T, T)); mi-Sa(s) = retr(mk-So(l, D);
FTal{}x= Ty Al =remove(T, 1)

.

1 § =elems ! (h1), retr-defn, s-defn
2 s=elems] (h2), retr-defn, s-defn
3 x=1(1) A-E-right (hd)
4 I=remove(7, 1) A-E-Jeft (h4)
5 elems remove(T, T) =elems [\ {T(T)} (77 justify 77)
6 s=7\{x} rewriting (5) with (2, 4, 1, 3)
7 xe5 (7? justify 77)
inferxe 5 As="F\{x} A6, T

At this stage it is worth considering how the proof might proceed. Lines 5 and 7 need to be
justified. Rewriting Line 7 using the equanons in Lines I and 3 gives T (i)e elems T.

This follows 1f IE can be shown that T & inds | which follows from the invariant
inv-S(mk-S([i)) provided T is not empty. The invariant comes from the typing

11.5 Implementing functions 189

hypotheses, whereas T not being empty follows by Line 1 and h3.
Now consider informally a strategy for the justification of Line 5:

elems remove(T, T) =elems { \ {II_(A":‘M)}

For this to hold, T(T) must not occur in remove(T, T). Developing the reasoning a
little further, unfolding the definition of remove gives:

T e dems(T(L,..., T\~ T(T +1,....1en 1))

Inother words, the { thelementof ! mustnotoccur anywhere else in { . Unfortunately,
this is not guaranteed by the concrete specification and the present obligation cannot be
proved.

If the state definition S is modified by extending the invariant to ensure that / is non-
repeating, then the proof can be completed. The invariant is then sufficient to ensure that

remove(i ,) does not contain 7 ({). It is useful to prove some lemmas concerning
non-repeating sequences including the following:

i:Ny; 1 X", non-repeating(l); i € indsl

non-repeating(remove(i, D)

Alternatively, the concrete specification could define a type of non-repeating sequences,
and then define remove over this type (with the same body as before). The above lemma
would then be discharged as part of the well-formedness obligation on remove. Either
way, this would assist in proving that the final concrete state mk-S,.(/, i) is well-formed,
which now involves the extra effort of having to show [is non-repeating.

Ideally, the flaw in the original specification could have been detected earlier, perhaps
through careful inspection of the design, or by any other software engineering practice.
However, it is not guaranteed that such a design error will be detected by any of these
means. Here, the proof process has revealed the error — more exactly, the error was
revealed through careful consideration of the possible next stages in the proof. In this
sense, the process of developing a proof acts as a filter for sifting out design flaws that
can be used alongside other processes such as parsing, type-checking and animation,

A formal proof of some property of a specification or reification is an extremely rigorous
argument that the property does indeed hold. However it is always possible that there is
an ervor in the proof itself or even a flaw in the proof system being used which will render
it invalid. On the other hand, failure to prove the result may indicate a design flaw, but
could equally have occurred because the correct approach to the proof was not tried, or
becanse the proof system itself was incomplete. Thus neither proof nor failure to prove
should be considered to be an end in itself. Rather it is the proof process that is important
as a means to structure and document the justification of a design step.

11.5 Implementing functions

The previous sections have concentrated upon those obligations that arise through data
reification. This section considers obligations that arise through the need to provide ex-
plicit definitions of implicitly-defined functions.

190 11 Verifying Reifications

A VDM specification describes the external behaviour of a system through the set of op-
erations which act upon some internal state. All that can be observed is the outcome of
a sequence of operation invocations invelving values passed as parameters and returned
as results. Given such a viewpoint (cf. [Nip86, Sch86]), the functions of a VDM spec-
ification can be considered to be merely “auxiliary”, that is, they are defined simply to
permit the succinct statement of the predicates in the specification. However, the values
passed as arguments to operations can also be constructed through function applications.
Thus at some stage in the development, an implicitly defined function may well have to
be replaced by an explicit one.

Taking the view that the argument and result types of operations are the “visible” types
of the specification and are thus not reified during development, there is no need to con-
sider data reification in function satisfaction. Hence only “direct” satisfaction of implicit
functions by explicit ones is of relevance. The issues arising are thus just reduction of
undefinedness and increase in determinism.

Again abstract examples are used to convey the general formulation. Consider an implicit
specification f; and a candidate implementation f,:

Implicit Function Explicit Function
fitatAYyriR fiiA- R
pre Pi{a) f@ & Ko
post Qi(a, 7) pre P.(a)

In addition to weli-formedness, it is necessary to show the counterpart of the domain
obligation, namely that f. is defined at least whenever f; is. This is formalised as:

a. A; pre-f{a)
~prefid)

Tt is also necessary to show that over the domain required by the implicit function, the
explicit function satisfies the implicit postcondition:
a: A; pre-fi{a)
of-satn | —— =t
Sl o5t (a1 @)

11.6 Implementation bias and unreachable states

Before proceeding to exercise the above techniques in a more realistic example in the
next chapter, a brief word of caution about the treatment of reification presented here. It
should be noted that there are occastons where, although there is preservation of external
behaviour in a reification, it is not possible to define a suitable retrieve function between
the data models.

Two situations in which seemingly valid data reifications cannot be justified through the
use of a retrieve function are where there are unreachable states or implementation bias
in the abstract model. This section gives a very brief indication of what these terms mean,
and one possible route to overcome such difficulties. A useful tutorial on data refinement
which covers these matters in far more depth is [Cle93].

Implementation bias in a specification means that different states cannot be distinguished

11.7 Summary 191

by observing the subsequent external behaviour of the system. Such specifications are
unduly biased towards a particular data model in the sense that an alternative model that
coalesces the two indistinguishable states would exhibit the same external behaviour, If
an abstract specification of a system has implementation bias that is not present in a con-
crete specification of that system, then no retrieve function can be found between them
as different abstract states will correspond to the same concrete state. Such situations can
be handled by using relational retrieve associations as described for example in [Nip86],
however the resulting proof obligations are somewhat more difficult. An alternative ap-
proach is to redesign the abstract specification to remove the implementation bias.

Unreachable states arise where no combination of applications of operations can lead
to the establishment of a particular value in the state. If there are unreachable states in
the abstract model but, on the other hand, all the states in the concrete specification are
reachable then there will be no retrieve function that is both total and adequate’. This is
because the existence of an adequate retrieve function would imply the existence of a con-
crete state that corresponds to an unreachable abstract state. However, this concrete state
would then need to correspond to the reachable abstract state that arises by undergoing the
same sequence of operations that achieves that state in the concrete specification and thus
the retrieve function would not in fact be a function. Where there are unreachable states,
strengthening the invariant to exclude them does not change the meaning of the specifi-
cation and is generally a useful technique that helps to convey quickly an understanding
of the system. In many cases the stronger invariant also allows simpler postconditions in
the operations.

This concludes the presentation of data reification in an abstract setting. The next chapter
shows how it is used in practice.

11.7 Summary
This chapter has dealt with the following topics:

» The retrieve function which provides the correspondence between the state models
of the abstract and concrete specifications.

s Totality and adequacy of the retrieve function.
* Adequacy of initialisation.

¢ Operation Modelling which is the definition of operations in the concrete specifi-
cation which have behaviour compatible with the operations in the abstract speci-
fication.

¢ The characterisation of compatible behaviour by the domain and result obligations
which formalise the requirements for reduction in undefinedness and reduction in
non-determinism respectively.

IStrictly speaking the situation is a little more complicated than this. Where there are operations with
non-trivial preconditions, their behaviour outside the precondition is completely free and so they coutd es-
tablish any state. This complicates the notion of unrcachable states and in some cases, where preconditions
are weakened in the concrete specification, does admit the possibility of a valid retrieve function. However
the practicat advice given here about strengthening the invariant still holds.

192 11 Verifying Reifications

* How the process of formalising the reification can lead to the discovery of errors
even before fully formal proofs are attempted.

+ Implementing implicit functions by explicit ones.

¢ The concepts of implementation bias and unreachable states.

11.8 Exercises

1, Modelling state initialisation as an operation

In Section 11.2.2 it was stated that the initialisation adequacy obligation can be consid-
ered as a special case of the operation modelling result obligation. Suppose that instead
of a state initialisation clause for 5, there is a corresponding “abstract initialisation™ op-
eration:

INIT, ()
extwrry 1 R,
Wa @ Wo,
u, » Ug
pre true

post init-8,(mk-8.(rs, Wa, tz))

Note that init-S does not mention the previous state mk-S,(75, Wa, iz).
(a) Define a corresponding operation IN/T, for 5.
(b) State the result obligation for modelling INIT, by INIT..

(c) Derive (i.e. prove) the initialisation adequacy obligation given in Section 11.2.2 from
this result obligation.

2. Correcting an incorrect design

Redo the example in Section 11.4 according to one of the suggested corrections:
(a) by strengthening inv-S. to add that / is non-repeating, or
(b) by defining the type of non-repeating sequences.

Formulate and prove some lemmas concerning non-repeating sequences. Fillin the details
of the domain and result proofs.

3. An alternative formulation of the resulf obligation

Restate the general result proof obligation in the form given for the result obligation for
PULL in Section 11.4. (One metavariable per state component, etc.) Show that the two
forms are equivalent.

Chapter 12

A Case Study in Air-Traffic Control

12.1 Introduction

The purpose of this chapter is to illustrate, on an example which is neither trivial nor
unrealistic, how the techniques of formal proof discussed in Chapters 2 to 11 can be
applied in practice to help with the design and the analysis of formal specifications and
formal developments. Amongst other things, it is shown how attempting to discharge
the proof obligations of a specification or of a development step can reveal errors in the
design which may otherwise go undetected until much later in the development process.
It is also shown how the formulation and the proof of validation conditions can be used to
demonstrate that the essential requirements of a system have been captured by the formal
specification, even though they might not be explicit in the specification.

The case study presented here concerns the allocation of aircraft to air-traffic controllers
within an Air-Traffic Control (ATC) region. In particular, the specification deals with a
simple systems management tool, such as might be used for overseeing communications
between pilots and controllers (Fig. 12.1). Such a tool could, for example, act as a sup-
plementary safety system, put in place alongside existing procedures and used to raise
an alarm if certain safety constraints are violated, In addition, it could be configured for
anything from air-traffic control of & metropolitan airport to a major international ATC
centre, so it is to that extent generic. Formal development of this system is a realistic
consideration because of its appreciable safety-critical element.

The layout of the chapter follows the basic stages one might go through in a formal de-
velopment, although it must be stressed that in practice this process is rarely as linear
as this layout might suggest. Section 12.2 can be thought of as the initial “requirements
definition” of the system, in that it gives an informal description of the air-traffic control
system under consideration and describes both its required properties and some simplify-
ing assumptions which are made. This informal model is then formalised in Section 12.3,
which gives a VDM state definition and outlines the associated theory and proof obliga-
tions. This section also shows how staternents taken from the informal requirements
can be captured as validation conditions and discusses some representative proofs. The
functionality of the ATC subsystem is then given in Section 12.4 via a series of VDM
operations on the basic state, and again some proof obligations and their associated proof's
are discussed. This section also illustrates how these proofs can help to uncover errors in
the specification. Section 12.5 describes a possible data reification of the basic abstract

- AAm E R AU RTINS AR A RS A FERARALW RSASAARS s

Figure 12.1: Air-traffic control subsystem showing major components: airspaces (e.g.
NS-2, RA-1, RWY-1), controllers (Roger, Igor, Keis), and aircraft.

state, and gives a corresponding concrete counterpart of one of the operations from the
abstract specification. The theory of the refinement and the proof obligations and their
proofs are also discussed. A second possible data reification is outlined in Section 12.6,
and the chapter closes with a summary and some concluding remarks,

12.2 'The air-traffic control system

12.2.1 Description

In general terms, an air-traffic control system and the air-traffic controllers who run it are
responsible for directing aircraft safely through a particular ATC region. It is assumed
that this region is subdivided into a number of smaller component airspaces, possibly
overlapping physically, each of which is the responsibility of a single controller. It is
further assumed that any aircraft within the ATC region as a whole is at any time under
the direction of a single controller who is responsible for it whilst it crosses his or her
particular airspace. However, as an aircraft moves through the region it will move from
one airspace to another, at which potnts its controller will change.

A number of aspects of a full ATC system are beyond the scope of this case study and so do
not feature in the model discussed here, though they might be included in a specification
of a more elaborate system. First, only a single ATC region is considered; an additional
level of functionality would deal with the transfer of aircraft between regions. Second,
details of the physical shape, arrangement, etc. of the airspaces making up the ATC region
are omitted at this level of abstraction, The specification is not, therefore, concerned with
constraints regarding the movement of aircraft between airspaces, for example that an

darrde X AN G THE AL VUL O SYSICITT 17D

aircraft can only move from one airspace to an adjacent airspace. Third, details of an
aircraft’s flight data (speed, elevation, etc.) other than its identity are not included.

1n addition, at this level of detail it is not specified what is meant by either an “airspace” or
a “controller”. In particular, no attempt is made to distinguish between different types of
airspace or different types of controller. Thus, for example, the abstract term “airspace”
may indeed denote a physical region of space, but may equally denote an airport runway
and its surrounds or ground areas such as taxiing routes or parking bays. Similarly, “con-
troller” might represent any of airport approach, arrivals, surface movement, departures,
tower, ot en-route coniroller.

This is of course a gross simplification of the realities of an air-traffic control system.
However, the systern described here should not be thought of as a tool which deals with
the full complexities of air-traffic control. Rather it should be regarded as a system which
could be used in conjunction with existing air-traffic control procedures to oversee and
maintain high-level safety properties. Indeed, viewed in this way, the overall picture is
not totally unrealistic (cf. [IEE, Cha81, Cho88]).

A single air-traffic controller is therefore responsible for ensuring the safe separation of all
the ajrcraft within his or her allotted airspace and for keeping track of the flight paths, the
elevation and the speed of each of those aircraft, while the subsystem is responsible for
ensuring that each aircraft is allocated a controller and that the transfer of aircraft into the
ATC region from an external region, between airspaces within the region, and out of the
region to another region, is all handled correctly. In addition, the subsystem ensures the
continuity of control as controliers come on and go off duty, and limits the responsibility
of each controller, albeit rather crudely, by placing an upper bound on the number of
aircraft that can occupy a given airspace. In this way, it might limit the capacity of an
airspace according to its size or its location (for instance it might impose a restriction that
at most one aircraft may occupy an airspace containing an airport runway) or change its
capacity to take account of changing weather conditions, for example.

12.2.2 Analysis

On the basis of the informal description given above, the following basic components of
the subsystem can be identified:

s the controllers currently on duty;
» the airspaces comprising the ATC region,

¢ the aircraft occupying the ATC region.
The essential relationships between these objects are:

¢ cach airspace has at most one controller;
e cach aircraft has exactly one controller;
» cach aircraft occupies one airspace;

¢ the number of aircraft that can occupy any given airspace is limited.

IO 1£ A LdSC DLUQY I A RIELUIC VALY

The following terminology is introduced in order to facilitate the description of the func-
tionality and the safety properties of the system:

commissioned An airspace is said to be commissioned if it is a component of the ATC
region. This term is preferable to “controlled airspace™ which is an official legal
term carrying connotations not intended here (for instance, that an aircraft cannot
enter a controtled airspace without official clearance). For the purposes of this spec-
ification it is assumed that an airspace is commissioned if and only if its capacity
is known.

activated An airspace is said to be activated if a controller is assigned to it.

deacfivated An airspace is said to be deactivated if it is commissioned but has no as-
signed controller. For example, an airspace relating in whole or in part to an airport
may become deactivated when the airport shuts down for the night.

utilised An airspace is said to be utilised if it is occupied by one or more aircraft. An
airspace may be activated but not currently utilised, but not vice versa.

assigned The current controller of a particular airspace is said to be assigned to that
airspace. A controller is simply assigned if he or she is the controller of some
airspace within the ATC region.

available A controller who is on duty but not currently assigned is said to be available.

known An aircraft is said to be known if it is utilising some airspace in the ATC region.

The basic functionzlity of the system concemns the assignment of controllers to aircraft
and the correct management of these assignments. This behaviour is described by the
following operations on the model:

* operations to commission and decommission an airspace, and to reset its capacity;

operations describing controllers coming on and going off duty;
¢ operations to activate, deactivate, and reassign control of an airspace;

+ operations to add flight data to and remove it from the system, and to hand over
flight data from one airspace to another.

Finally, the following are identified as requirements on the system:
R1 Only on-duty controllers can control airspaces.

R2 An airspace can be activated only if it is commissioned.

R3 All utilised airspaces in the ATC region are activated.

R4 The capacity of each utilised airspace is not exceeded.

RS A controller cannot be assigned to two different airspaces simuitaneously.

Cedes e A ks TTESAS A WA RS ALY LIS L

Ré6 Each known aircraft has a unique controller.

R7 Each known aircraft occupies a unique airspace,

R8 Each activated airspace has a unique controller.

R9 An airspace which is not activated contains no aircraft.

R19 The controlier of a known aircraft is on duty.

Note that this is not meant to be an exhaustive Iist of requirements.

12.3 Formalisation of the state model

12.3.1 The state of the system

The formalisation of the model begins with the introduction of primitive types (or pa-
rameters) of the specification corresponding to the basic components of the subsystem
identified in Section 12.2.2 above. These are:

» Controller, representing all possible air-traffic controllers;
¢ Space, representing all possible airspaces; and

¢ Aircraft, representing all possible aircraft.

Their definitions are unimportant here.

The overall state space of the ATC subsystem then has four state variables constructed
from these primitive types:

1. onduty: a set of Controllers, representing the controllers who are currently on duty,
although not necessarily assigned.

2. control: a one-one map that records which controtler is assigned to which airspace.
The domain of the control map thus represents the currently activated airspaces, its
range those controllers who are currently assigned.

3. capacity: a map which gives the number of aircraft each airspace can safely ac-
commodate. Its domain represents the commissioned airspaces.

4, location: a map that associates an aircraft with the airspace it currently occupies.
The domain of the location map represents the known atrcraft, while its range
denotes the currently utilised airspaces.

The state space, without invariant and initialisation condition as yet, is written in VDM
as follows:

L0 dde £ AOV JTEUM Y AT SR ARGV A ASALL SR

state ATC of

onduty : Controller-set

control : Space «= Controller

capacity : Space — N

location : Aircraft - Space
inv ...
init ...
end
The invariant on the state has 1o be sufficiently strong to ensure that afl the requirements
R1 to R10 are actually properties of the formal specification. One way to do this, of
course, is to simply make the invariant the conjunction of all the requirements, suitably
formalised. The problem with this approach is that, because the requirements are gener-
ally not all independent, the invariant then tends to be much larger than necessary, making
any proofs which depend on showing that the invariant holds (e.g. satisfiability proofs;
see Section 12.4) much longer than they need be. The trick then is to identify some smail
subset of the requirements, satisfying which is sufficient to ensure that all the other re-
quirements are also satisfied. The invariant is then formed from the conjunction of the
subset of the requirements thus chosen, and the remaining requirements become valida-
tion conditions on the specification, to be proved at some later stage (see Section 12.3.4).
Here, the first four requirements R1 to R4 are chosen as the basic subset from which
the invariant is to be constructed, and RS to R10 are treated as validation conditions.
On the basis of the description of the relationship between the informal concepts and the
various parts of the state components given above, these four requirements are formalised
as follows:

R1 Only on-duty controllers can control airspaces:

mg control < onduty

R2 An airspace can be activated only if it is commissioned.

domcontrol & domcapacity

R3 All utilised airspaces in the ATC region are activated:

mglocation < dom control

R4 The capacity of each utilised airspace is not exceeded:
Vs e mglocation - numOfAircrafi(s, location) 5 capacity(s)
and the invariant is simply the conjunction of these four expressions.
The auxiliary function numOfAircraft determines the number of aircraft in an airspace:

numOfAircraft : Space x (Aircraft — Space) — N
numOfAirerafi(s,loc) & card (dom{loch {s}))

12,3 rormaiisation of the state model 199

In order to define the initialisation condition on the state, it is assumed that an off-the-
shelf ATC subsystem has all fields empty. For this, it is sufficient to insist that the onduty
set and the capacity map are both empty as the state invariant then implies that the control
and Jocation maps must also be empty.

The complete state definition is thus:

state ATC of
onduty : Controller-set
control : Space «+=» Controller
capacity : Space —— N
Iocation : Aircraft = Space

inv mk-ATC(cs, con, cap, loc) £ mgeon C cs A domcon C domceap A
rgloc & domcon A Vs € mgloc - numOfAircrafi(s, loc) < cap(s)

int & & o.onduty = {} A o.capacity = {—}
end

12.3.2 Axiomatisation of the abstract state

Following the procedures set out in Chapter 10, the theory describing the above state
definition consists of:

e type symbols Space, Controller and Aircraft corresponding to the primitive types
of the specification;

* a type symbol ATC representing the state;
¢ a symbol mk-ATC representing the mk-function for the state;

¢ symbols ..onduty, ..control, _.capacity and _location representing the selector
functions for the state components;

o adefined symbol inv-4TC for the state invariant, defined via:

inv-ATC{cs, con, cap, loc) def mycon C ¢s A domcor C domeap A
g loc © domcon A Vs € mgloc - numOfaircrafi(s, loc) < cap(s)

+ a defined symbol init-ATC for the initialisation condition, defined via:
init-ATC(0) det o.onduty = { } A G.capacity = {+}
o a symbol numQfaircraft(., _) representing the auxiliary function;

s axioms giving the formation and definition rules for the mk-function:

cs: Controller-set; con: Space «—— Controller
cap: Space =~ N; loc: Aircraft = Space

oodTCeseom e
- or mk-ATC{cs, con, cap, loc): ATC X

o ATC
mk-ATC{c .onduty, ©.control, G.capacity, ¢ location) = © Ax

20 12 A Case Study in Aw-1ralfic Confrol

mk-ATC(cs, con, cap, lo¢): ATC
inv-ATC(cs, con, cap, loc)

+ axioms giving the formation and definition rules for each of the selector functions.
Those for the selector onduty are given below and are typical. Those for the other
selectors are analogous and are given in Section 14.11.

G ATC

duty-fi A
o.onduty: Controller-set X

mk-ATC(cs, con, cap, locy: ATC

mk-ATC(cs, con, cap, loc).onduty = cs Ax

¢ an axiom defining the auxiliary function numOfAircraft:

5:Space; loc: Aircraft -— Space

. card (dom(loc d {s]I:N
numOfAircrafi(s, loc) = card (dom{locd {s})) Ax

The proof obligations are stated as rules to be proved in this theory. For the state definition
these are: :

Proof obligation I The auxiliary function numQOfdircraft is well-defined:
_ s:Space; loc: Aircraft - Space
numQOfAireraft(s, loc): N

Proof obligation 2 The state invariant is well-defined:

cs: Controller-set; con: Space «= Controller

_ cap: Space = N, loc: Aircraft = Space

inv-ATC(cs, con, cap,loc): B

Proof obligation 3 The initialisation condition is well-defined:
— o ATC
Proof obligation 4 The initialisation condition is satisfiable:

So: ATC Tni ATC(0)

Requirements R5 to R16, which become validation conditions, are treated just like the
proof obligations in that they are stated as Tules to be proved in this theory. However,
the statements of these validation conditions make use of some of the terminology from
Section 12.2.2, which ways introduced to help to describe the systemn in terms correspond-
ing to one’s informal thinking. For this reason, it is useful to formalise the appropriate
parts of this terminclogy as additional auxiliary functions in the specification. Thus, an
activated airspace is one which appears in the domain of the control map:

mier A asddddegEORUES LA LHG JLAIC THIOUCT U1

is-activated : Space xATC — B
is-activated(s,c) £ s5e dom(c.control)

and a known aircraft is one which is in the domain of the location map:

is-known : Aircraft x ATC — B
is-knownip, ¢} & pe dom{c.location)

The controller of some known aircraft can then be defined via the function controllerQf:

controllerOf : Aircraft x ATC — Controller
controllerOf(p, 6} & &.control{c location(p))

pre is-knownip, 0)

The theory described above must now be extended to incorporate descriptions of each of
these new functions. This requires new symbols is-activated, is-known, and controllerOf
to represent the functions, a new defined symbol pre-controllerOf for the precondition of
the auxiliary function controllerOf, defined via:

pre-controllerOf (p, o) dof is-known(p, C)

and a defining axiom for each function (cf. the treatment of numOfAircraft above):

: ; 0:ATC, . :
s. Spac:e, o:ATC; (s &€ dom{C.control}): B Ax
is-activated(s, &) = (s € dom(0.control))

IM p.Aircraft, 0. ATC; {p € dom(c.location)): B Ax

----- is-known(p, ¢) = (p & dom(o.location))

p: Alreraft, 0:ATC; pre-controllerOf (p, 6}
(o.control(c location(p))): Controller
controllerOf(p, 0) = 6.control{c location(p)) Ax
Additional well-formedness proof obligations are also required for each of these new
fonctions. These are:

Proof obligation 5§ The auxiliary function is-activated is well-defined:

s:8pace; o ATC
4

is-activated(s, c):B

Proof obligation 6 The auxiliary function is-known is well-defined:

- piAireraft; 0: ATC
is-known(p, o):B

Proof obligation 7 The precondition of controllerOf is well-defined:

piAireraft, o ATC
pre-controllerOf (p, ¢):B

l pre-controllerQf-form l

Fasra L4 A A0 oLl AT AL Fralidec UL

Proof obligation 8 The auxiliary function controllerOf is well-defined:

T pAlreraft, o2 ATC; pre-controllerQf(p, o)
M controllerQf(p, o): Controller

The validation conditions corresponding to requirements RS to R10 can now be formu-
lated as the following rules:

Validation 1 A conwoller cannot be assigned to two different airspaces simultaneously:

s1:Space; s3:8pace; ¢:ATC, is-activated(s;, 0)
is-activated(s;, &), ©.control(s)) = o.control(sa)
Sy = 82

fno-double-assignment

Validation 2 Each known aircraft has a unigue controller:

p:Aircraft, 0. ATC; is-known{p, o)
Ve: Controller - ¢ = controllerOf (p, &)

| aircraft-controlicr-unique | 5

Validation 3 Each known aircraft occupies a unique airspace:

pAircraft, a:ATC; is-knownip, @)
3t s: Space - s = ¢.location(p)

|aircraft-in-unique-space

Validation 4 Each activated airspace has a unique controller:

§:Space; ¢:ATC; is-activated(s, ¢)
Atec: Controller - ¢ = o .control(s)

[airspace-controller-unique|

Validation § An airspace which is not activated contains no aircraft;

s:Space; o: ATC; — (is-activated(s, o))
numOfAircraft(s, o location) =0

| not activated = emplyl

Validation 6 The controller of a known aircraft is on duty:

pidivral GLATC: s tnown(s,0)
controllerOf -onduty controllerOF (p, 0) € G ovidiity

The proofs of these proof obligations and validation conditions are discussed in the next
1wo sections.

12,3.3 Internai consistency

Although simply writing a formal specification of a system is likely not only to increase
one’s understanding of that system but also to reveal some errors in the basic design,
errors can stifl be present, for instance because there may be logical inconsistencies or
oversights in one’s mental picture of the system. Sometimes such errors can be revealed
by statically type-checking the specification using some appropriate tool, but there are two
limitations to this process: first, typs checking in YDM-SL. is not in general completely

12.3 Formalisation of the state model 203

statically decidable (because it cannot in general be statically checked that invariants
hold), and second, there are some areas of verification (for example the satisfiabitity of
operations; see Section 12.4) which simply do not lend themselves to static type checking.
A specification can therefore only be shown to be completely error-free (in the sense of
containing no logical inconsistencies) if all the proof obligations have been discharged.
This section shows how proof obligations I to 8 given in Section 12.3.2 are dealt with.

Proof obligation I The auxiliary function numGfaircraft is well-defined.

For an explicit, non-recursive! function definition like this, the key to proving well-
formedness is to first prove a rule asserting the well-formedness of the defining expres-
sion. This proof 1s straightforward, consisting sitply of a series of applications of the
formation rules for the operators from which that defining expression is constructed. This
rule is then used to prove the working version (see Section 10.4.1} of the definition rule,
and the required formation rule for the function then follows by simple type inheritance.

Applying this series of steps to the proof of ‘rumOfAircraft-form’ the rule asserting the
well-formedness of the defining expression is:

. s:Space; loc: Aircraft = Space
card (dom{locb {s}):N

Its proof follows directly from the formation rules for card, dom, b and the unit set:

trom s: Space; loc: Aircraft — Space

1 {s5}:Space-set {a}-form (h1)
2 locd {s}:Aircraft = Space b-form (h2, 1)
3 dom{loch {s}): Aircraft-set dom-form (2}
infer card (dom (loc b {s}H1N card-form (3)

The working version of the definition rule:
- s:Space; loc: Aircraft — Space
numOfAircrafi(s, loc) = card {dom{loc P {s}))

is then easy to prove as the well-formedness rule just proved justifies the third hypothesis
of the basic definition rule ‘numOfAircrafi-defng’ from the other two:

from s: Space; loc: Aircraft = Space
1 card{dom(loch {s1)1:N numOfAircraft-wif (h1, h2)
infer numQfAirerafi(s, loc) = card (dom (focd {s})) numQfAircraft-defng (h1, h2, 1)

The overall formation rule ‘nrumCfAircraft-form’ then follows directly from these together
with the rule *=-type-inherit-left”:

1See the treatment of the function nonRping in Section 12.5,5 for a discussion of recursive functions.

204 12 A Case Study in Air-Traffic Control

from s: Space; loc: Aircraft = Space

1 card(dom{loch {s}):N numQfaircraft-wif (h1, h2)
2 numOfAircrafi(s, loc) = card (dom{loc b {s})) numOfdircraft-defn (h1, h2)
infer numOfAircrafi(s, loc):N =-type-inherit-left (1, 2)

Proof obligation 2 The state invariant is well-defined.

The proof that the invarlant is boolean-valued follows the pattern described in Section 9.4.
After expanding the definition of the invariant, the propositional operators are eliminated
using the propositional formation rules of Section 9.3.1. Again, care must be taken to
use the sequent forms of these rules where appropriate. Next, the relational formation
rules given in Section 9.3.2 are used to eliminate the relational operators, and the proof
is completed using the formation rules for the operators on the basic data-types.

trom cs: Controller-set; con: Space «= Controller;
cap: Space =+ N; loc: Aircraft = Space

1 tmgcon: Controller-set mg-form-bimap (h2)
2 {mgconccs):B G-form (1, k1)
3 domcon: Space-set dom-form-bimap (h2})
4 domcap: Space-set dom-form (h3)
5 {domcon ¢ domceap): B o-form (3, 4)
6 fromdomeon C domeap
6.1 mgloc: Space-set rng-form (h4)
6.2 (rmgloc < domeon): B -form (6.1, 3)
6.3 from mgloc < domcon
6.3.1 from s1: Space; 51 € mgloc
6.3.1.1 numOfAircrafi(sy, loch:N numOfAircrafi-form (6.3.1.h1, h4)
6.3.1.2 ingloc ¢ domcap c-trans (6.1, 3, 4, 6.3.h1, 6.h1)
6313 5| € domcap <-E (6.3.1.h1, 6.1, 4, 6.3.1.h2, 6.3.1.2)
63.14 cap(sy):N at-form {6.3.1.h1, h3, 6.3.1.3)
infer (numQOfAircrafi(s), loc) < cap(s)):B <-form (6.3.1.1, 6.3.1.4)
infer (Vs & mgloc - numOfAircrafi(s, loc) < cap(s)y: B
V-form-set (6.1, 6.3.1)
infer (rng loc < domcon A
¥'s € mgloc - numOfAircrafi(s, loc) < cap(s)): B ~-form-sqt (6.2, 6.3)
7 (domcen C demceap Amgloc & domeon A
Vs e mgloc - numOfAircrafi(s, loc) < cap(s)):B s-form-sqt (5, 6)
8 (mngcon < cs Adomceon ¢ demceap A rngloc < domeon A
Vs € mgloc- numOfAircrafi(s, loc) < cap(s)): B A-form (2,7}

infer inv-ATC(cs, con, cap, loc): B folding (8)

Ldeend £ LAIIEALISALIVAY UL HIC FLALS TTIOUET Favn)

Note how the innermost subproof (Subproof 6.3.1) in the proof above relies on the well-
formedness rule for numOfdircraft proved previously (proof ebligation 1). This subproof
also involves showing that cap{s) is well-defined for all 5 in g loc, which follows from
the facts that mgloc < domcen and domcon < domeap (the third and second conjuncts
of the state invariang respectively).

One point worth noting here is that proving the well-formedness of inv-ATC has done
more to increase confidence in the model than “merely” showing its internal consistency:
ithas also performed a cross-check on whether or not a suitable subset of the requirements
has been chosen to construct the invariant. For example, if either of the requirements R2
or R3 had not been included in the state invariant, the oversight would have been revealed
in the course of trying to prove the well-formedness of the final conjunct of the invariani
(corresponding to the requirement R4).

Proof obligation 3 The initialisation condition is well-defined.

The proof of *init-ATC-form’ is straightforward, relying on the definition of inir-ATC and
the formation rules for equaiity and for the selector functions:

from ¢ ATC

P o.onduty: Controller-set onduty-form (h1)
2 o.capacity: Space — N capacity-form (h1)
3 {}:Conrroller-set { }-form
4 {—}:Space =5 N {#+}-form
3 (c.ondury={}nB =-form (1, 3)
6 (o.capacity = {—})B =-form (2, 4)
7 (C.onduty = {} A O.capacity = {+s}):B a-form (5, 6)
infer init-ATC(c): B folding (7}

Proof obligation 4 The initialisation condition is satisfiable.

This requires showing the existence of some state satisfying the initialisation condition.
Because the initialisation condition effectively implies that the initial state has all fields
empty, as already stated above, the easiest way of doing this is by using ‘Z-I’ with
mk-ATC({ }, {—1}, {1}, {++}) as the witmess value. This involves showing that this value
does in fact satisfy the initialisation condition (Line 19} and also represents a valid state
(Line 15). The first of these is easy, relying only on the definition of the initialisation
condition, propositional logic, and properties of the selector functions. For the second, it
must be showa that the components of mk-ATC({ }, {1}, {~=1}, {1} are of the correct
type (trivial; Lines 1 to 4) and that they satisfy the invariant on ATC. This last proceeds
by substitution of the definitions of dom {~+} and g {—} from Lines 5 and 6 and simple
predicate logic and set theory. The complete proof is:

LA

AL A do Uy W AT LA LANTHUH

from

1 {}:Controller-set { }-form
2 {}:Space «= Controller {+ }-form-bimap
3 {—}:Space =+ N {2 }-form
4 {—}:Aircraft > Space {~2}-form
5 dom{—}={} dom-defn-{r}
6 mg{m}=1{1} rng-defn-{r+}
7 {}<{} { }-is-subset (3)
8 mg{—}c{} =.subs-lefi(b} (1, 6, 7)
9 dom{—} cdom{r+} =-subs-left(b) (1, 5, 7
10 mg{—} cdom{—} =-subs-left(b) (1, 5, 8)
11 rmg{—}: Space-set mg-form (4)
12 fromy: Space; y € mg {+}

12.1 —{ye mg{—~} —-&-mg-{+-}-1{12.h1)

inter numQfaircrafi(y, {—]) £ {—=H»)

contradiction (12.h2, 12.1}

13 Vse mg{—} - numOfaircrafi(s, {—1}) < {—}(s) V-I-set (11, 12)
14 imv-ATCH), {—} {—=)}, {—=D inv-ATC-I-separate (1, 2, 3, 4, 8,9, 10, 13)
15 mk-ATC{{ }, {—1}, {—} {—rATC mk-ATC-form (1, 2, 3, 4, 14)

16 (mk-ATC({}, {—} {—}, {—}).onduty = { } onduty-form (15)
17 (mk-ATC({}, {+}, {=}, {—}).capacity = {—} capacity-form (15)
18 (mk-ATC({ }, {—} {—}, {—)onduty = { } A

(mk-ATC({ }, {—}, {—=}, {— })).capacity = {+} AL(16,17)
19 init-ATC(mk-ATC({ }, {—}, {—}, {— 1) folding (18)
inter 3¢: ATC - init-ATC(0) 3115, 19)

Proof obligations 5, 6, and 8 Each of the auxiliary functions is-getivared, is-known
and controllerOf is well-defined.

These proof obligations are treated in exactly the same way as the corresponding proof
obligation for the function numOfAircraft (see proof obligation 1 above).

Proof obligation 7 The precondition of controller0f is well-defined.
This follows immediately from the well-formedness of is-known.

12.3.4 Validation of the state representation

Although discharging the proof obligations on the state shows that the formal model is
logically consistent, it does not mean that it actually represents the system described in
the informal requirements. In particular, there is no guarantee at this stage that require-
ments RS to0 RE0 have actually been captured by the invariant, and there is probably
already enough complexity present for this not to be obvious. This step from informal
requirements to formal specification can, by definition, never be made completely formal
because there could easily be additional “requirements” which have simply been over-
looked. Nevertheless, showing that the requirements that have been thought of are all

12.5 Formalisation of the stafe mode! 207

consequences of the formal model is a very good way of increasing confidence that the
model does actually represent the system required. This is done by transforming the origi-
nal informal requirements into formal validation conditions, rules representing essentially
the formalisation of one’s informal intuition about the system. Proving these rules demon-
strates formally that the corresponding requirements are logical consequences of the state
invariant.

For the ATC system, this informal intuition has been captured in the remaining require-
ments RS 1o R10 and the corresponding formal rules have been given in Section 12.3.2.
This section discusses the proofs of these rules.

Validation 1 A controller cannot be assigned to two different airspaces simultaneously.

Figure 12.2: A controller cannot be assigned to two different airspaces simultaneously.

Where a boolean-valued auxiliary function like is-activared is used in the hypotheses of
rules, a useful first step is to prove a lemma formalising the elimination of that function.
This saves having to use the definition rule and substitution of equality every time the
function appears. In this case the appropriate rule is

1Space; ¢ ATC; is-activated(s, ¢
2 .2)

s € dom(o.control)

the proof of which simply consists of the two steps mentioned above.

After using this to eliminate both occurrences of is-activated {Lines 1 and 2 in the proof
below), the overall result is an almost immediate consequence of the fact that the control
map is one-one. Note how the hypotheses is-activated(s), o) and is-activated(s,, ¢} are
necessary to ensure the well-formedness of o.control(s)) and &.control{ss).

208 L4 A Lase study i AIM- 11arne Conrod

from s;: Space; s»: Space; ©: ATC; is-activated(sy, G);
is-activated(sa, ¢, T.control(s) = ¢.control(s:)

1 5 € dom{o.control) is~activared-E (h1, h3, h4)
2 5 € dom{o.control) is-activated-E (h2, h3, h5)
3 o.control: Space «™ Controller control-form (h3)
infer 51 = &2 bimap-1-1 (h1,h2, 3, 1, 2, h6)

Validation 2 Each known aircraft has a unique controller.

Figure 12.3: Each known aircraft has a unique controller,

This result follows directly from the well-formedness of the function controllerOf (see
proof obligation 8) and the rule ‘3t-=-1";

from p: Aircraft, ¢:ATC; is-known(p, o)

1 pre-controllerOf (p, o) folding (h3)
2 controllerOf(p, o): Controller controllerOf-form (h1, h2, 1)
inter ! ¢: Controller - ¢ = controllerQf (p, ©) Al-=1(2)

s s apa pashsdcibdbd e L A A LIRS R SANLAL W il

Figure 12.4: Each known aircraft occupies a unique airspace.
Valtdation 3 Each known aircraft occupies a unique airspace.
This is also a direct consequence of the well-formedness of the right-hand side of the

equality in the conclusion and the rule ‘Jl-=-1":

from p: Aircraft, o:ATC; is-known(p, G)

1 pe& dom(o.location) is-known-E (hl, h2, h3)
2 o.ocation: Aircraft = Space location-form (h2)
3 o.location(p): Space at-form (h1,2, 1)
infer 31 51 Space - s = o Jocation(p) =1 (3)

Validation 4 Each activated airspace has a unique controller.
This proof is entirely analogous to the previous one, It is left as an exercise for the reader.

Validation 5 An airspace which is not activated contains no aircraft,

The first step is to use the definition of numOfAircraft (Line 2) and the transitivity of
equality to reduce the problem to showing that card (dom (¢.location b {s1)) = 0. Then
simnple manipulation using the rules for maps and sets reduces this to showing (Line 9) that
s ¢ mg(c.location), which follows easily from the third conjunct of the state invariant
which insists that occupied airspaces have controllers.

Ay o R R AR TR frt gass SaRmaaftt AR RSe

Figure 12.5: An airspace which is not activated contains no aircraft.

from s: Space;, ©:ATC; —(is-activated(s, G))

1 o.docation: Aircraft == Space location-form (h2)
2 numOfAircrafi(s, ¢ location) =

card {dom{c.locationp {5})) numOfAircrafe-defn (hl, 1)
3 numOfAircraft(s, ¢ location):N numQOfAireraft-form (hi, 1)
4 mg(o.location): Space-set rg-form (1)
5 o.control: Space <= Controller control-form (h2)
6 dom(o.control): Space-set dom-form-bimap (5)
7 wmg(o.location) < dom{o.control) inv-ATC-I-clause3 (h2)
8 s¢& dom(o.control) —-is-activated-E (h1, h2, h3)
9 se mg(o.location) ¢ -subset-I (h1, 4, 6,7, 8)
10 olocationd {5} = {->} p-defn-{a}-¢ (hl, 1,9)
11 dom{o.locationh {s})={} dom-{+- }-1 (10)
12 card{dom(c.locationd {5})) =0 card=0-1 (11}
inter numOfAircrafi(s, o location) = 0 =-trans(a) (3, 2, 12)

Exercise 1 A possible variant of this validation condition says that if there is a non-
zero number of aircraft in any airspace, then that airspace is activated. Formulate this
validation condition as a rule and prove it. 0

Aer T X AESUANS Kl RIS LU wela

Validation 6 The controller of a known aircraft is on duty.

After applying ‘Is-known-E’ to the hypotheses and using the definition of controllerOf
to rewrite the conclusion, this proof reduces to showing that o.control(o location(p)) €
o.onduty from p e dom (¢ location). This follows easily, if tediously, from the first and
third conjuncts of the invariant (Lines 6 and 13) and the basic properties of subsets and
map application (Lines 10 and 14 to 17).

from p: Aireraft, o:ATC, is-known(p, o)

1 pre-controllerQf(p, G} folding (h3)
2 controllerQf (p,) = o.control{c location{p)) controllerOf-defn (hl, h2, h3)
3 o.control(¢.location(p)): Controller controllerOf-wif (h1,h2,)
4 pe dom(oc.location) is-known-E (h1, h2, h3)
5 o.location: Aircraft - Space location-form (h2)
6 rmg(o.control) C C.onduty inv-ATC.T-clausel (h2)
7 o.onduty: Controller-set onduty-form (h2}
& o .control Space «= Controller control-form (h2)
9 mg(o.control)y: Controller-set mg-form-bimap (8)
10 o.location(p): Space at-form (h1, 5,4)
11 g (o.location): Space-set rg-form {5)
12 dom{o.control): Space-set dom-form-bimap (8)
13 rmg(o.location) C dom{C.control} inv-ATC-I-clause3 (h2)
14 oglocation(p) e my{o.location) e -mg-I-at (h1, 5, 4)
15 o.location(p) e dom(C .control) <-E (10, 11, 12, 14, 13)
16 ©.control(o location(p)) € mg{o.control) e-rng-I-at (10, §, 15}
17 o.control{o location(p)) € o.onduty c-E(3,9,7,16,6)
infer controllerQOf (p, 0} € o.onduty =-subs-left(b} (3, 2, 17)

124 Top-level operations

To complete the top-level specification of the ATC subsystem, operations by which the
state can be changed are specified. As described in Section 12.2.2, these are grouped into
four categories:

® operations to commission and decommission an airspace, and to reset its capacity;
» operations describing controtlers coming on and going off duty;

s gperations to activate and deactivate an airspace, and to reassign control of an
airspace;

* operations to add flight data to and remove it from the system, and to hand over
flight data from one airspace to another.

Each operation requires symbols to be added to the basic theory outlined in Section 12.3
to represent the precondition (if any) and the postcondition of the operation. However, no

LIL o ALt QUL Y 1 Ak~ Aaliil LN

additional axioms are required. In addition, each operation gives rise to proof obligations
to show that both its precondition and its postcondition are well-formed (boolean-valued)
and that it is satisfiable.

One such satisflability obligation is discussed in Section 12.4.1, and another in Sec-
tiont 12.4.2 where it is shown how failure to discharge the satisfiability proof can reveal er-
rors in the specification. Validation conditions similar to those discussed in Section 12.3.4
are also useful at the level of the operations to ensure that the functionality they describe
matches one’s informal intuition, and some of these are also discussed here.

12.4.1 Commissioning an airspace

The first operation is for commissioning a new airspace s, with capacity a:

Commission (5: Space, n:\N)
extwr capacity : Space 2+ N
pre s € domcapacity

post capacity = capacity t {s — n}

The precondition simply says that the airspace is not already commissioned.

As indicated above, defined symbols representing the operation’s precondition and post-
condition are added to the theory:

pre-Commission(s, cap) c_i"_gj s & domcap

post-Commission(s, n, cap, cap) det cap =cap t {s — n}

each of which has an associated well-formedness proof obligation:

Proof obligations 9 and 10 The precondition and the postcondition of the operation
Commission are well-formed.
§: Space, n:N; cs: Controller-set
con: Space +=— Controller, cap:Space = N
loc: Aircraft 2, Space;, inv-ATC(cs, con, cap, loc)
pre-Commission(s, cap): B

pre-Commission-form l

s:Space, n:N; cs: Controller-set
con: Space —— Controller: ¢ap: Space =5 N
cap: Space — N; loc: Aircraft — Space
inv-ATC(cs, con, ¢ap, locy, pre-Commission(s, Cap)
post-Commission(s, n, cap, cap). B

I post-Commission-form l

In this particular case, it is fairly obvious that these well-formedness conditions are satis-
fied, so the proofs of these rules are not discussed here. The interested reader can easily
apply the technigues described in Section 9.4 to construct them.

The final proof obligation associated with this operation is the satisfiability obligation,
which states that there must always be at least one state configuration satisfying the op-

1.4 pUp-CVEL OPETatecns £13

eration’s postcondition whenever the operation can legitimately be applied (i.e. when the
system is in some legal state and when the operation’s parameters satisfy its precondition
in that state):

Proof obligation 11 The operation Commission is satisfiable.

s:Space; mN; cs: Controller-set
con: Space <~ Controller, cap: Space — N
loc: Aireraft = Space; inv-ATC(cs, con, ¢ap, loc)
pre-Commission{(s, cap)
Jcap: Space ~—> N -
post-Commission{(s, n,cap, cap) A inv-AT'C(cs, con, cap, loc)

mntigsion-sat

The first step in all these satisfiability proofs is to unfold the definition of the postcondi-
tion in the conclusion. After that, there are generally two ways of proceeding: either a
witness value (see Section 3.3.1} must be explicitly given which satisfies the existential
quantification, or some appropriate induction rule might be used. In this case, the fact
that the postcondition is a simple equality means that it effectively defines the appropriate
witness value for the new value of the capacity field directly, namely that it must be

capacity T {s — n}

Because of this, the appropriate rule to use is *3-I-1pt’. The proof (below) then reduces
to showing that making this change to the capacity field preserves both the type of the
capacity field (Line 10) and the state invariant (Line 17).

The first of these goals is easy to discharge using the basic formation rules for the operators
involved (map override and unit map). For the second, the fact that the first and third
clauses of the invariant do not involve the capacity field means these will be unaffected
when it is changed and will therefore still be true after the change (Lines 11 and 13). It
is thus only necessary to show that the other two clauses of the invariant are similarly
preserved by the change, that is:

* an airspace can be activated only if it is commissioned (Line 12);

+ the capacity of each utilised airspace is not exceeded (Line 16).

The first of these follows easily from the corresponding (second) conjunct of the invariant
on the state prior to the application of the operation (Line 4) and the fact that overriding
a map with another cannot reduce its domain. For the second, the first step is to apply
W-I-set’, resulting in Subproof 15, Then the precondition of the operation, expanded in
Line 3, can be used in conjunction with the second and third conjuncts of the invariant on
the state before the operation is applied (Lines 4 and 13) to show that s ¢ rngloc (Line 14),
which, taken together with the second hypothesis of Subproof 15, means that y is different
from s (Line 15.2). The properties of map override then allow (¢ap T {s — n})(y) to be
rewritten as cap(y) (Line 15.6), and the proof is completed using the fourth conjunct of
the invariant (Line 8) and simple predicate calculus.

14 L2 A Lase Siudy Iin Air- 1 ramrc Conrol

from s: Space;, m:N; cs: Controller-set; con: Space «— Controller;
cap: Space = N; loc: Aircraft =+ Space;
inv-ATClcs, con, cap, loc), pre-Commission(s, Cap)

1 com:Space == Controller bimap-supertype (h4)
2 rmgloc: Space-set ‘ rng-form (h6)
3 s domcap ; unfolding (h8)
4 domeon C domcap inv-ATC-E-clause2 (h3, b4, hS, h6, h7)
5 domcon: Space-set dom-form-bimap (h4)
6 domdcap: Space-set : dom-form (h3)
7 s domcon : ¢ -subset-I (hl, 5, 6,4, 3)
8 Vxe mgloc- numQOfiircraft(x, loc) < £ap(x)

inv-ATC-E-clause4 (h3, hd, k5, h6, h7)
9 {s~ n}:Space 4N ‘ {a + b}-form (h1, h2)
10 &ap T {s — n}:Space "> N f-form (h5, 9)
11 rngeon & ¢s _ inv-ATC-E-clausel (h3, h4, h5, h6, h7)
12 domcon < dom{cap ¥ {s > n}) -preserves-dom-c {1, h3, 9, 4)
13 rgloc < domceon inv-ATC-E-clause3 (h3, hd, h3, h6, h7)
14 s ¢ mgloc & -subset-I(h1,2,5, 13,7)
15 fromy: Space; y € mgloc
15.1 rumOfAircrafi(y, loc) £ cap(¥) V-E-set (15.h1, 2, 15.1h2, 8)
15.2 —(y=3) e-~¢-contr (15.h1, hi, 2, 15.h2, 14)
153 ¥y € domeon —-E (15.h1, 2, 5, 15.h2, 13)
15.4 y € doméap c-E(15.h1,5,6,153,4)
155 ap(ykN at-form (15.h1, h5, 15.4)

156 (G@pt {s — n))o) = Eapo)
at-defn-t-{a v+ b}-# (b1, h2, 15.h1, h5, 154, 15.2)

infer numOfAirerafi(y,loc) < (Cap ¥ {s = n}H(
=-subs-left(b) (15.5, 15.6, 15.1)
16 Vxe mglec numOfAircrafi(x, loc) 2 (Cap T {s — n})(x) ¥-I-set (2, 15)
17 inv-ATC(cs, con,cap § {s v> n},loc)

inv-ATC-I-separate (h3, hd, 10, h6, 11, 12, 13, 16)

18 3cap: Space =5 N
cap = cap 1 {5 — n} A inv-ATC{cs, con, cap, loc) I E1pt (10,17

infer Scap: Space > N -
post-Commission(s, n, cap, cap) A inv-ATC(cs, con, cap, loc) folding (18)

dact LU YCL UPCTALIONNS 41D

12.42 Resetting the capacity of an airspace

Next, consider an operation for resetting the capacity of an airspace, A first attempt o
specify this might simply mimic the Commission operation given above:

ResetCapacity (s: Space, n: N}
ext wr capacity : Space —> N
pre s &€ dom capacity

post capacity = capacity t {s — n}

The appropriate satisfiability proof obligation for this operation is

s:Space; n:N; cs: Controller-set; con: Space < Controller
cap: Space -2 N; loc: Aircraft -~ Space
inv-ATC(cs, con, €ap, loc); pre-ResetCapacity(s, cap)

ResetCapacity-sat 3cap: Space LN

post-ResetCapacity(s, n, cap, cap) A inv-ATC(cs, con, cap, loc)

with pre-ResetCapacity and post-ResetCapacity defined via

def

pre-ResetCapacity(s,cap) s € domeap

post-ResetCapacity(s, n, éap, cap) def cap=capt {s s n}

The proof proceeds as in the previous example: after expanding the definition of the post-
condition and using ‘3-1-1pt’ to supply the witness value for the existential quantification
directly from the equality in the postcondition, the proof again reduces to showing that
making the given change to the capacity field preserves both its type and the state invari-
ant. The parallel with the previous examnple continues, the Iatter goal again reducing to
having to show that:

& an airspace can be activated oaly if it is commissioned (Line 3 in the proof below);

e the capacity of each utilised airspace is not exceeded (Line 7).

Considering now the second of these two subgoals, the next step which imumediately
suggests itself is to apply ‘V-I-set’, as before. However, since the precondition in this
example is the negation of that in the previous example it cannot be used to yield y# s
as was done there. But the value of the expression (¢ap T {s — n})(y) in the conclusion
of Subproof 6 depends on whether or not y = 5. This suggests that the next step should
be to set up a case distinction on these two alternatives, this time using the rule ‘=-cases’
which unifies into a single rule the combined application of ‘8-=-1" and ‘8-E’ illustrated
in Section 3.5.2. Substituting y = s from the hypothesis of the first of the two subproofs
generated by this case distinction into its conclusion, and using the properties of map
application to rewrite the resulting subgoal, then leads to the partial proof below:

LED 14 A Ladt olbdy 1l All-11aliic WO

from s5: Space; n:N; cs: Controller-set; con: Space +=— Controller;
cap: Space ==+ N; loc: Aircraft ™ Space;
inv-ATC{cs, con, Cap, loc), pre-ResetCapacity(s, Cap)

cap + {s v n}:Space =+ N

1 (77 justify 77)
2 mgeonges (77 justify 77)
3 domcon < dom(cap T {s v« n}) (77 justify 77)
4 mgloc ¢ domeon (17 justify 77
5 rmgloc: Space-set (77 justify 77)
& fromy:Space;, y € mgloc
6.1 fromy=s§
6.1.1 €@t is—nl)s)=n at-defn-1-{a — b}-=(h1, h2, h5)
6.1.2 numOfAireraft(s,locy £ n {77 justify 7?)
6.1.3 numOfAircrafi(s, loc) < (cap T {5 — n})(s)
=-subs-left(b) (h2, 6.2.1, 6.2.2)
infer numOfAircrafi(y, loc) < (¢ap T {s — n})(¥)
=-subs-left(b) (hl, 6.2.h1, 6.2.3)
6.2 fromy#s
infer numOfAircrafi(y, loc) < (Cap T {s — n})(y) {77 justify 77)
inter numOfAirerafi(y,loc) < (¢ap % {5 — n})(») =.cases (6.h1, hl, 6.1, 6.2)
7 Vxe mgloc numOfircrafilx, loc) < (Cap 1 {5 — n})(x) V-I-set (5, 6)
8 inwATC(cs,con,cap t {s v» n},loc) inv-ATC-I-separate (h3, h4, 1,16, 2, 3,4, 7)

9 Heap: Space == N - cap = &@p t {5 — n} A inv-ATC(cs, con, cap, oc)
A-L1pt (1, 8)
infer 3cap: Space - N -
post-ResetCapacity(s, n, £p, cap) ~ inv-ATC(cs, con, cap, loc) folding (9)

From this point it is clear that Subproof 6.1 can only be completed if it is possible to
prove that numOfAircrafi(s, loc) < n, but the only hypotheses available which give any
information about 5 and » are the typing hypotheses on the two variables and the precon-
dition,

At this stage, if not before, it would probably occur to the verifier that the proof cannot
be completed, and that in fact the precondition on the operation must be strengthened to
say that the reset value n cannot be less than the number of aircraft currently occupying
the space 5. This leads to a revised specification of the operation:

ResetCapacity (s: Space, n:N)
ext rd location : Aircraft = Space
wr capacity : Space =+ N
pre § & dom capacity A numQOfAircrafi(s, location) < n

post capacity = capacity t {s v+ n}

12.4 ‘l'op-level operations 217

and a corresponding change in the proof obligation:
s:Space, m:N; cs: Controller-set
con: Space «= Controller, tap:Space =N
loc: Aircraft = Space; inv-ATC(cs, con, cap, loc)
pre-ResetCapaciry(s, n, cap, loc)

3eap: Space —> N-

post-ResetCapacity(s, n, cap, cap) A inv-ATC(cs, con, cap, loc)

Note how the failed proof not only revealed that the precondition needed to be strength-
ened, but also indicated what additional condition needed to be added to it. In fact,
attempting to discharge the satisfiability proof obligation for an operation is a good way
of checking that no preconditions or parts of preconditions have been overlooked.
Anoiher point worth noting here is that it is not necessary to start a new proof because
an error in the precondition has been discovered: all of the steps done so far are still
valid if the definition of the precondition is changed since none of them depend on it.
Thus, the only change that has to be made is that extra arguments have to be added to
pre-ResetCapacity in the hypotheses of the proof. Having made this change the proof can
proceed by simply extending the proof constructed so far.

12.4.3 Decommissioning an airspace

The operation Decommission is for decomissioning an airspace, that is for removing
from the system an airspace which is no Ionger operational. For example, it might be
desirable to subdivide an existing airspace into new, smaller airspaces to accommodate
increased demand in the ATC region, which could be achieved by first decommissioning
the airspace and then commissioning new airspaces appropriately.

This operation might be specified as follows:

Decommission (s: Space}

ext rd control : Space —— Controller
wr capacity : Space — N

pre s € {domcapacity\ dom control)

post capacity = {s} 4 capacity

Here, intuition would probably suggest that it should be meaningless to apply this op-
eration to a utilised airspace, although it might not be immediately obvious that this is
actually a property of the specification. The way to show this, then, is to formalise the
validation property as a rule and to prove the rule:

Validation 7 A utilised airspace cannot be decommissioned.

s: Space; mk-ATC(cs, con, cap, loc): ATC, s € mgloc
- pre-Decommission{s, con, cap)

! Decommissi on-lem@

The proof of this is fairly straightforward: after expanding the definition of the precon-
dition it relies simply on the properties of sets and the third clause of the invariant. The
completed proof is:

218 12 A Case siudy 1in Amr-iratfic Lontol

from 5: Space, mk-ATC(cs, con, cap, loc): ATC; s € mgloc

b con: Space <= Controller control-form-mk (h2)
2 cap: Space 25 N capacity-form-mk (h2)
3 loc: Aircraft - Space location-form-mk (h2)
4 mgloc: Space-set rng-form (3)
5 domcon: Space-set dom-form-bimap (1)
6 demcap: Space-set dom-form: (2)
7 mgloc c domcon inv-ATC-I-mk-clause3 (h2)
8 se domcon c-E(h1,4,5,03,7)
9 5 & (domcap\ domcon} % -diff-I-left (hl, 6, 5, 8)
10 = (s e {domcap\ domcon)) unfolding ()
infer = pre-Decommission(s, con, cap) folding (10)

12.4.4 Controllers coming on duty

Turning attention now to controllers, the next operation registers the fact that a controller
has “clocked on” (come on duty). It simply adds ¢ to the onduty set. There is a precon-
dition to say that ¢ is not already on duty. Note that this precondition is not the weakest
which permits the postcondition to be satisfied. It rather records an additional require-
ment, namely a limitation on the use of the ClockOn operation.

ClockOn (c: Controller)
ext wr onduty : Controller-set
pre ¢ & ondury

post onduty = ondury \J {c}

12.4.5 Controllers going off duty

The cotresponding operation for “clocking-off™ {going off duty) has a precondition which
says that the controller clocking off must be on duty but may not be currently assigned:

ClockOff (c: Controller)
ext wr onduty + Controller-set

rd control : Space «— Controller
pre ¢ € onduty\ mg control

post onduty = onduty\ {c}
A controller will become deassigned when the airspace under his or her controtl is ei-

ther assigned to some other controller via the operation Reassign (see Section 12.4.7) or
becomes deactivated as a result of the operation Deactivate (see Section 12.4.8).

L LURICYEL URCTEIONS 17

12.4.6 Activating an airspace

Turning next to operations for assigning controllers to airspaces, the first deals with an
airspace being activated, for example when an airport opens for the day. Recall that in
this abstract model an airspace is activated if and only if it is under someone’s control, so
that the operation simply needs to assign the airspace to a controller. But how should the
controller be chosen? Or rather, since this is a specification and not an implementation,
what are the precise requirements for the choice?

To give a little variety to the specification, the operation is left loosely specified at this
level of abstraction. At a later stage in the development, a richer model of the state could
be defined, which would include, say, information pertinent to the choice of controller,
taking into account such things as rosters, seniority, qualifications or whatever. Such
detail would swamp the specification if intreduced too early, making verification of cor-
rectness properties far more complicated, Here the primary interest is to ensure that the
choice of controller does not violate any of the requirements built into the state invariant.

The operation has a precondition stating that airspace s is commissioned but not currently
activated and that there should be a controller available. The latter can be stated as
eng control # onduty because it is known that rmgcontrol onduty. The specification is:

Activate (5:Space) c: Controller
ext rd onduty 1 Controller-set
wr control : Space s Coniroller
rd capacity : Space ~=+ N
pre s € (domcapacity\ domcontrol) A mgcontrol # onduty

-
post control = control T {5 ¢}

Another validation condition that might occur to the designer at this point is that the
controller ailocated to the new airspace as a result of this operation should have been
available ar the time, that is both on duty and unassigned:

Validation 8 It is a consequence of the specification of Activare that the controller cho-
sen by the operation was available at the time the operation was invoked.
s:Space, ¢.Controller
mk-ATC(cs, ton, cap, loc): ATC; mk-ATC{(cs, con, cap, loe): ATC
pre-Activate(s, cs, Con, cap)y, post-Activate(s,c, CoR, con)
¢ e (cs\mgcon)

Activate-lemma

Intuitively, the hypotheses of this rule record everything that is known about the state of
the system after execution of the operation. In principle, the proof of the validation might
depend on any or all of these hypotheses.

Exercise 2 Prove the above validation. Hint: Use the fact that both Con and con are
one-one, O

kS F A lddl DUy AL S~ Llalbde LANILEOE

12.4.7 Reassigning control of an airspace

The next operation is for assigning a new controller to an already activated airspace, for
example when a controller wants to clock off or simply take a break. Once again, there
is a precondition that a controller is available, but the actual choice of controller is Teft
loosely specified:

Reassign (s: Space) c: Controller
ext rd onduty : Controller-set

wr control : Space «Z Controller
pre § € dom control A mgcontrol = onduty

post control = control T {5 +— ¢} A ¢ # control(s)

Note that the postcondition says that the original controtler should not be re-chosen, since
this would after all defeat the purpose of the operation.

12.4.8 Deactivating an airspace

The next operation is for deactivating an airspace, for example if an airport closes down
for the night:

Deactivate (s: Space)

ext wr control 1 Space < Controller
rd location : Aircraft - Space

pre s € {domcontrol\ mglocation)

post control = {5} 4 control

The precondition says that § must not be utilised at the time. Note that the operation
simply deactivates s without decommissioning it.

12.4.9 Adding new flight data to the system

The last three operations concern flight handling. The first of these describes the arrival
of a new aircraft p into the ATC region, at airspace 5. For example, s might be the taxiway
from the terminal to the runway in the case of a departing flight, or s might be one of the
“frontier” corridors for incoming flights.

There are three parts to the precondition: s is already under someone’s control; p is a new
aircraft, unknown in the current state; and s is not already at its full capacity.

AddFlight (p: Aircraft, s: Space)

ext rd control : Space <= Controller
vd capacity : Space = N
wr location Aircraft = Space

pre s € domcontrol A p & domlocation A
numOfaircrafi(s, location) < capacity(s)

post location = location t {p — s}

Rkt AALOL BCLIICUICHTL MICL il

12.4.10 Handing over a flight

The next operation handles the case of an aircraft p already in the ATC region and prepar-
ing to move from one airspace to another, s say. In addition to the requirements in the
precondition for AddFlight above, p should not already be in airspace s.

Handover (p: Aircraft, s: Space)

ext rdcontrol : Space «— Controller
rd capacity | Space =+ N
wr location : Aircraft — Space

pre 5 € domcontrol Ap & domlocation A location(py # 5 A
numOfAircrafi(s, location) < capacity(s)

post location = location t {p +» s}

12.4.11 Removing flight data from the system

The last operation allows an aircraft to leave the ATC region, for example when an arriving
flight has landed and docked at its gate, or when adeparting flight has reached the outgoing
frontier of the region.

RemoveFlight (p: Aircraft)
ext wr location : Aircraft -= Space
pre p € domlocation

post location = {p} 4 location

Given a particular configuration of the ATC subsystem, it might be desirable to identify a
particular set of airspaces from which it is permissible to leave the ATC region — such as
parking bays and outgoing frontier airspaces — and 1o strengthen the precondition of this
operation to only allow it to be invoked from those airspaces. This would mean making a
change to the definition of ATC to incorporate such information, and is left to the reader
as an exercise.

12.5 First refinement step

This section illustrates a possible first development step, in which the state is made more
concrete and complex. This involves a change of emphasis, resulting in a model in which
flight information is distributed across the system and the set of flights assigned to a
controtler is “implemented” as a queve. Amongst other things, this refinement illustrates
how the structore of an implementation need not necessarily follow the structure of the
original specification.

The change of emphasis results from taking a different view of airspaces. The abstract
specification given in Section 12.3 models a more-or-less physical view of airspaces as
things in which aircraft are located. In the refinement given, airspaces are seen more
through the eyes of the controllers, so that Space now represents, say, the informa-
tion which might be presented to the controller on 2 monitor, for example as shown
in Fig. 12.6. In modern systems, such information is more likely to be presented to the
controller on a radar screen. This case study talks in termis of monitors, however, to

ey <y dd 3 eQob JIUY L AUT L dld il VT UL

limit the complexity of the data structures involved. Such a change in perspective sug-
gests, for example, a more distributed implementation of the ATC subsystem, whereby
subcomponents such as monitors need only know about information which is relevant to
them.

Airspace RA-1

ground emerg

call sign altitude speed code
BA-1506 35,000 530

KLM-74 20,000 710 H
Q-1 30,000 690

system personalized for: Stephanie

Figure 12.6: An airspace as its controller might see it via a monitor.

Section 12.5.1 below gives the specification for the new state space, and some aspects
of its internal consistency are discussed in Section 12.5.2. In Section 12.5.3 the retrieve
function relating the new state to the origiral one given in Section 12.3 is developed,
and the associated well-formedness and adequacy proof obligations, which are necessary
for the correctness of the refinement, are discussed in Section 12.5.4. To complete the
refinement, it would then be necessary to give a counterpart for each of the operations
specified in Section 12.4 and to prove, via the domain and result obligations, that each
such operation implements its abstract counterpart correctly. This aspect of the refinement
is dealt with in Section 12.5.5, but space perimits only one operation to be discussed.

12.5.1 The new state definition

In this new view of the system, the position of an aircraft, recorded previously in the
locarion field in the form of a map from Aircraft to Space, is instead stored in an gssign-
ment map. This associates with each airspace the queuve of aircraft currently utilising it,
and is specified as a new auxiliary data type AssigMap with an invariant to the effect that
no aircraft can appear in two different queues:

Assighap = Space - AircrafiQueue
invass & Vqi,q; € mgass- g # gy = elemsg; Melems gy = {}

Here, AircrafiQueune is an auxiliary data type modelling non-repeating sequences of air-
craft {that is, sequences in which all aircraft are different):

AircraftQueue = Aircraft’
invg & nonRpingl[Aircrafiiq)

The function nonRping is defined recursively: a sequence is non-repeating if it is empty
or if its head does not occur in the elements of its tail and its tail is itself non-repeating.
The function is also defined polymorphically (see Section 10.4.6) in terms of the type
parameter @A. The specification is:

ddewr 2RI ACLAUGHICHL 2WOL Ll

nonRping [@A]: @A" — B
nonRping(s) & s={]vhds e elemstts A nonRping[@AJ(ts)

The new state definition then has an assignment map instead of the location field, the
other three state components remaining unchanged:

state ATC of
onduty; : Controller-set
controly 1 Space «~s Controller
capacity, : Space —— N
assigs; . AssigMap
Inv mk-ATCy(cs, con, cap, ass) &
mgcon ¢ ¢s
A domcon C domeap
A domass = domcon
A Vs € domass - len ass(s) < cap(s)
int & & oy.onduty; = { } A 6y.capacity; = {—}
end

The invariants on the state and the auxiliary data-types capture essentially the same subset
of the requirements as before, but must additionally ensure that the restriction that an
aircraft occupies a unique airspace (requirement R7) is maintained. (This came “free”
in the original specification because the location field was specified 1o be a map from
Aircraft to Space.)

The initialisation condition on the state makes Il fields empty as before.

In fact the specification given above contains a subtle oversight, which might not become
apparent until fater in the development process, when it could be expensive to correct or
have serious consequences. Fortunately, the error comes to light below in the course of
atternpting to discharge the proof obligations for the specification.

12.5.2 Internal consistency of the new state definition

The axioms, definitions and proof obligations for the new state ATC; closely parallel
those for the abstract state ATC given in Section 12.3.2 so are not discussed here. The
interested reader should have no difficulty writing them down. However, the auxiliary
data-type AssigMap and the auxiliary function nonRptng are worth considering in some
detail as they make use of VDM-SL constructs which have not so far featured in the
examples treated in this case study.

The first of these represents a subtype, and is defined in exactly that way in the theory:
AssigMap def < m:Space T AircraftQueue | inv-AssigMap(m) >

Another defined symbol is introduced to describe the invariant on Assighap:
inv-AssigMap(m) det Vey,qa € mgm- gy #£ gy = elemsgy Nelemsgy = { }

and there is the usual well-formedness proof obligation to show that this invariant is
boolean-valued:

Lt do S l@it- iy Ll AT LAlall b LAaidv

Py m: Space —- AircraftQueue
inv-AssigMap(m}: B
The axiom and proof obligation for the auxiliary function nonRptng are:

T 5:A%; (s=[]vhds e elemstis A norRptng(tis)): B Ax
nonRptng(s) = (s =[] v hds & elemstis A nonRptng(iis))

54"

Note how the type parameter @A in the specification simply becomes a metavariable (4)
in these axioms.

It is instructive to consider the proof of the well-formedness obligation as this illustrates
how such proofs are tackled for recursively defined functions. The basic strategy for these
proofs is the same as that for the non-recursive case illustrated above for the function
numOfAircraft (see Section 12.3.2), namely to begin by proving a rule showing the well-
formedness of the defining expression:
s A*
{(s=[]vhds & elemsils A nonRptng(ils)):B

However, it is clearly impossible to prove this using simply the formation rules for the
operators comprising the expression which defines nonRprng as these include nonRpg
itself. But the definition rule ‘nonRptng-defny’ effectively implies that if nonRping is
well-formed for the tail of some sequence § then it is also well-formed for s itself because
if nonRptng(ils) is boolean-valued the second hypothesis of the definition rule is also
boolean-valued and nonRptng(s) is equal to it. This suggests that the proof should employ
sequence induction. Performing this as a first step yields the following partial proof:

from st A*

1 ([] ={]vhd[]e¢ elemsti[] A nonRptng(i[D):B {77 justify ?7)
2 tomizA; 6AY (t=[]vhdre elemstit A nonRping(in)): 8

infer (cons{h, £) =] v
hdcons{h,) ¢ elemstlicons(h, 1) A nonRping(ticons(h, 1)): {77 justify 77)
infer (s =[] v hds & elemstls A nonRptng(its)): B seg-indn (hi, 1, 2)

An important point to note here is that, although it might seem reasonable to begin this
proof by simplifying the conclusion immediately using the formation rule *v-form-sqt’
rather than by using sequence induction, this in fact does not lead to the simplest proof,
The essential feature of the proof given above is that the second and third hypotheses of
Subproof 2 match the hypotheses of the definition rule for nonRping directly, and these
can therefore be vsed to-deduce

nonRptng(t) = (¢t =[] v hdr & elemstlt A nonRptng(tis))

and hence that nonRping(t) is boolean-valued. Having done that, the rules ‘hd-defn-cons’

A arsar R LEDE AVEAXECLINGIIL SUCL) “ded

and ‘tl-defn-cons’ can be used to rewrite the expressions hdcons(h, £) and tcons(h, #) in
the conclusion of Subproof 2, leading to:

from s: A*
1 (7=1[1vhd[]e elemsii[] A nonRptng@ti[1)):B (77 justify 77)
2 fromiA; £AY (t=[]vhdre elemstit A nonRpmg(in): B
21 nonRping(f) =

(t={]vhdre elemstir A nonRping(it)) nonRptng-defn, (2.h2, 2.h3)
22 nonRptng(1).B =-type-inherit-left (2.h3, 2.1)
23 hdcons(h,) =h hd-defn-cons (2.h1, 2.h2)
24 ticons(h,n) =1t tl-defn-cons (2.h1, 2.h2)
25 (cons(h,n) =[] v h & elemst A nonRptng(6)): {77 justify 77}

2.6 {cons(h, Oy =[] v
hdcons(h,) ¢ elemst A nonRpng(d)::B =-subs-right(b) (2.h1, 2.3, 2.5)
infer (cons(h,) = [1 v (hdcons(h, 1} & elemsticons(h,) A
nonRpng(icons(h, 1)))):B =-subs-right(b) (2.h2, 2.4, 2.6)
infer (s =[] v hds & elemstis A nonRptng(tis)): B seq-indn (h1, 1, 2)

from which point the proof can indeed be completed easily using standard formation rules.

It is worth noting that the fact that the proof of the well-formedness of ronRptng has been
completed successfully indicates that the recursion in its definition is in fact sound. Con-
versely, failure to complete the well-formedness proof for a recursively-defined function
is often a sign that the recursion itself is ill-formed.

The overall formation rule ‘norRptng-form’ is then proved from the above rule via the
working version of the definition rule, just as for the non-recursive case.

12.5.3 Relating this specification to the original specification

In order to show that this new state ATC, is a valid refinement of the original state ATC,
a retrieve function must be defined relating values of the new state to values of the old.
In this case, the only change in the state definition is that the location field has been
replaced by an assignment map, so defining the retrieve function essentially amounts to
reconstructing the location map from the assignment map.

As a first step towards doing this, an auxiliary function is defined which returns all the
aircraft known to the ATC system, corresponding in the top-level specification to the
domain of the location map. This is simply given by the union of the elements of all the
sequences in the range of the assignment map:

knownAircraft - AssigMap — Alrcraft-set
knownAircrafi(ass) & {elemsq|g e myass}

pAT AN 44 A LAddC QWY I AR L dilie LU U

Exercise 3 'Write down the axiom(s) and proof obligation(s) for the auxiliary function
knownAircraft. Construct the proof(s) of the proof obligation(s), 00

A second auxiliary function is then used to determine the airspace utilised by a known
aircraft. This function simply returns the airspace whose queue of aircraft contains the
aircraft in question. Since the invariant on AssighMfap ensures that a given aircraft cannot
appear in two different queues, this should be unique:

locOf : Aircraft x AssigMap — Space
locOf(p,ass) 2 1s5e domass-p e olemsass(s)

pre p € knownAircrafi(ass)

Again, there are well-formedness proof obligations for the function as a whole and for its
precondition:

p: Aircraft, ass: AssigMap; pre-locOf (p, ass)
n
locOf(p, ass): Space

p: Aircraft; ass: AssigMap
pre-locOf(p, ass): B
where pre-locOf is defined via:

pre-locOf (p, ass) det p € knownAircraft(ass)

Following the procedure set out in the discussion of the proof of the well-formedness
of numOQOfAircraft (see Section 12.3.3), the first step towards proving ‘locOf-form’ is to
prove the rule

p: Alrcraft, ass: AssigMap; pre-locOf (v, ass)

(15 € domass - p € elemsass(s)): Space

Here, the conclusion clearly has to be justified using the rule ‘t-form-set’, which involves
showing that there is a unique airspace in domass satisfying the given predicate. If the
precondition of locQf is then expanded, the proof reduces to showing that every known
aircraft occupies a unique airspace, which is simply validation 3 restated in the context
of the new specification. The rule for this validation is:

p: Aircraft, ass: AssigMap;, p € knowndircrafi{ass)
3's € domass - p € elemsgssis)

[aircraf t-in-unique-space; |

In terms of this, the proof of ‘locOf-wif’ is:

from p: Aircraft; ass: AssigMap; pre-locOf{(p, ass)

1 domass: Space-set dom-form-AssigMap (h2)
2 pe knownAircrafi(ass) unfolding (h3)
3 3dlse domass:p e elemsass(s) aircraft-in-unique-space; (hl, h2, 2)
infer (15 € domass - p € elems ass(s)): Space t-form-set (1, 3)

Turning now to the proof of ‘aircraft-in-unique-space:’, justifying a unique existential
quantification over a set via the rule *3!-I-set’ involves both producing a witness value of

Ldesd L7023 LCHINCILCIIL SIEL Ll

the correct type belonging to the set and showing that all possible witness values in the
set are equal to it. However, at the start of the proof no objects of type Space are available
to use as witnesses. This indicates that the way to approach the proof is to try to generate
some appropriate object of type Space by working forwards from the hypotheses. Of
these, only the fast is not a simple typing assertion, so this clearly offers the only hope of
progress.

Looking at the definition of knownAireraft and combining this with knowledge of the
properties of distributed set union suggests a useful lemma (stated without proof) of the
form:

prAircraft, ass: AssigMap; p € knownAircrafi{ass)
dg & mgass-p € elemsq

Using this generates Line 2 of the proof below. Then application of ‘3-E-set’ is indicated,
vielding Subproof 3 and Line 1, the latter being easy to justify using the rule ‘rng-form-
AssigMap’. Then the rule ‘e -rng-E’ can be used to deduce {(Line 3.2) that there must be
some airspace in the domain of the map ass which maps to the range value ¢q. Again,
the rule ‘3-E-set’ is used, generating Subproof 3.4. Then, substituting the equality from
hypothesis 3.4.h3 into hypothesis 3.h3, thereby generating Line 3.4.1, leads to a state in
which the airspace a can be used as the witness to the unique existential quantification.

At this stage, therefore, ‘3!-I-set’ is used, and it remains to be shown only that the wit-
ness value a is unique (Line 3.4.3). The appropriate rule here is ‘V.I-set’, yielding Sub-
proof 3.4.2. Now the idea is to 1ry to reach a point at which the invariant on Assighap,
the only piece of available information not used so far, can be brought into play. This
requires producing two elements of g ass, which is easy: the first, ass(y), arises from the
properties of map application (Line 3.4.2.3), the second, ass{a), from simple substitution
of equals (Line 3.4.2.4). Note that although g is already known to be in mgass (hypothe-
sis 3.h2) this step transforming it to ass{a) is necessary because the required goal involves
a and y and not ¢ and y.

from p: Aircraft, ass:AssigMap;, p € knownAircrafi(ass)

I mgass: QueneOf (Aircraft)-set rng-form-AssighMap (h2)
2 Hg e mgass-pe elemsg & -knownAircraft-E (h1, h2, h3)
3 from g QueneOf(Aircrafty, g € igass; p € elemsg
31 ass: Space —— QueneOf (Aircraft) AssigMap-supertype (h2)
3.2 domass: Space-set dom-form-AssigMap (h2)
3.3 Ja € domass - ass{a) = ¢ e-mg-E (3.h1, 3.1, 3.h2)
34 from a: Space, a € domass; ass{a)=gq
3.4.1 p & elemsass(a) =-sibs-left{b) (3.hi,3.4.h3, 3.43)
342 from y: Space; y € domass
3421 inv-Assighap(ass) inv-AssigMap-1 (h2)
3422 Vgi,q; € mgass. g # gz =

elemsq Nelemsg = { } unfolding (3.4.2.1)

3.4.2.3 ass(y) € mgass e-rng-I-at (3.4.2.h1, 3.1, 3.4.2.h2)

~£0 14 A dSt otliay 10 Al LTali - LOHdiot

3.42.4 ass{a) € mgass =-subs-left(b) (3.h1, 3.4.h3, 3.h2)

3.425 Vg € tngass - ass(y) = gy =
elemsass(y) Melemsgz = { } V-E-set (1, 3.4.2.3, 3.4.2.2)
3.4.2.6 ass(y) # ass(a) =
elemsass(y) Nelemsass(a) = {} V-E-set (1,3.42.4, 3.4.2.5)
3427 8(p & elems ass(y)) (77 justify 77)
3428 fromp € elems ass(y)
infery =a {77 justify 77)
inferp e elemsass(y) = y=a =-1(3.42.7,34.28)
343 Yy e domass - p € elemsass(y} = y=a V-I-set (3.2, 3.4.2)

infer At s € domass - p & elemsass(s)
M-I-set (3.4.h1, 3.2, 3.4h2, 3.4.1, 3.4.3)
infer 315 & domass - p € elemsass(s) J-E-set (3.2,3.3, 3.4)
infer Al s & domass - p € elems ass(s) 3-E-set (1, 2, 3)

At this point it is known that p is in both elems ass(a) and elems ass(y) (Line 3.4.1 and
hypothesis 3.4.2.7.h1 respectively), from which it clearly follows that the intersection
of these two sets cannot be empty. This, by the contraposition of Line 3.4.2.6, means
that ass{a) = ass(y). However, this is not sufficiently strong to ensure y = a as required
because the map ass is not known to be one-one. The proof therefore cannot be completed,

A moment’s thought at this point should reveal that the invariant on AssighMap is not
correct as it allows two different airspaces to contain exactly the same queue of aircraft,
The specification must therefore be changed to rule out this possibility. The correct spec-
ification of AssigMap is:

AssigMap = Space -7 AircraftQueue
invass & Vs e domass - §; #5; = elemsass(sy) Melems ass(s;) = { }

Fortunately, this change to the specification does not mean that the work expended in the
construction of the above failed proof is useless. Indeed, far from it — the vast majority
of the proof survives and can be used as the starting point for the proof of the correctness
of the revised specification. The only changes required are that the old definition of the
invariant must be replaced by the new in Lines 3.4.2.2, 3.4.2.5 and 3.4.2.6 (with some
minor modifications to the justifications of these lines) and that Lines 3.4.2.3 and 3.4.2.4
can be deleted (they have become redundant because the new invariant requires elements
to be found from the domain of the map instead of the range). Cther than this, discharging
the new proof obligation simply requires completing those steps of the proof which were
left unfinished in the original proof (Subproof 3.4.2). This is now very easy and is left as
an exercise for the reader.

The reconstruction of the location map from the assignment map is completed with the
help of another auxiliary function which simply constructs the map mapping each known
aircraft to its location:

ALt 27200 ACLANCAICIIL DT Lok

extrLoc : AssigMap — (Aircraft = Space)
extrLoclass) A {pws locOf(p,ass) |p e knowndAircrafi(ass)}
This function is defined axiomatically via the following rule:

ass: AssigMap
{p = locOf(p, ass) |

p € knownAircraft{ass)}: Aircraft — Space ax
extrLoc(ass) =
{p v locOf(p, ass) | p & knownAircraf(ass)}

and the corresponding proof obligation is:

ass: AssigMa
S

extrLoc(ass): Aircraft = Space

Exercise 4 Prove the well-formedness rule ‘extrLoc-form’. O
The retrieve function retr; is now easy to define:

retry 1ATCy — ATC
retri(6) £ mk-ATC(0.onduty), G.control\, O.capacity,, extrLoc{.assigs)))

Of course, the retrieve function is on the one hand simply another auxiliary function,
so it has the appropriate defining axiom and well-formedness obligation (the latter being
sometitnes called the rorality obligation):

o ATC
(mk-ATC(o .onduty,, G .controly,

o.capacity,, extrLoc(o .assigs|)y ATC A
T O | et (&) = mk-ATC (O onduty,, G.controly, X
o.capacity, extrLoc(c.assigs:))

GlATC;

[reinfom) - ATC

In addition, however, it must generate all possible values of the abstract state ATC, a
property which is embodied in the adequacy obligation:

o ATC

T AT, e Gy

The proofs of this and the formation rule are discussed in the next section.

12.5.4 The validity of the retrieve function

The strategy of proving the formation rule is exactly the same as that used to prove the
formation rule for any other explicitly defined function. The first step is therefore to prove
the rule stating the well-formedness of the defining expression:

o:ATC,
(mk-ATC(0 .onduty,, O.contrely, G .capacity,, extrLoc(c.assigs,))): ATC

L2 d& £ do Uy I AT A lar il ULV

Working backwards from the conclusion as usuzl, the formation rule ‘mk-ATC-form’
requires that each of the arguments of the mk-function (G.onduty1, G.controly, & .capacity,
and extrLoc(or.assigs,)) should have the correct type and that together they should satisfy
the invariant on ATC. The typing information follows directly from the formation rules for
the selector functions, in the last case in conjunction with the formation rule for extrLoc
proved above. For the invariant, the first two conjuncts follow immediately as they are
identical to the first two conjuncts of the invariant on the concrete state ATCy, so it remains
to be shown only that:

» g extrLoc(o.assigs)) ¢ dom G.control,
e Vs e mgextrLoc(o.assigs) -
numOfAircrafi(s, extrLoc(o.assigs)) < (o .capacity {s)

This is best done with the help of a few lemmas (stated here without proof) giving proper-
ties of assignment maps and relating these to the auxiliary function numQfaircraft defined
in the abstract specification. These are:

P ass: AssigMap
mg- -1CTIEMa
mg extrLoc(ass) < domass

ass: AssigMa
dom-extrLoc-defn sap
domextrLoc

(ass) = knownAircraft(ass)

s:Space;, ass: AssigMap; 5 € domass
numOfAircrafi(s, extrLoc(ass)) = lenass(s)

| numOfAimmﬁ-elm-dcfn]

which are relatively straightforward consequences of the definitions of the functions in-
volved and the properties of map comprehension expressions.

Exercise 5 Construct the proof of ‘retri-wff” based on the above outline. O

Atthis stage one would normally proceed by proving the working version of the definition
rule in the form

g
T retri{G) =

mk-ATC(o onduty;, 0.control|, &.capacity, extrLoc(C .assigs,))

and thence the formation rule, but the fact that the refinement (and hence the retrieve
function) is essentially defined componentwise suggests that it is likely to be more useful
to formulate a working version of the definition rule which makes the componentwise
nature of the refinement more explicit. This is done using the mk-function instead of a
metavariable to represent the state, and the appropriate rule is;

prr— mk-ATCy(cs, con, cap, ass): ATC}
retr| (mk-ATC,(cs, con, cap, ass)) =
mi-ATC{cs, con, cap, extrLoc(ass))

The proof of the formation rule either follows as before from ‘retri-defn’ or can be done
directly:

vt A ARIL AVRRIELELILALE SELL))l

from o: ATC
1 (mk-ATC(0.onduty,, o.controly, o .capacityy, extrLoc(c.assigs;))): ATC
retr)-wff (hl)
2 rer{c)=
mk-ATC{0 onduty), o.control, o.capacityy, extrLoc(o assigs,))
retr)-defng (hl, 1)
infer retr {G): ATC =-type-inherit-left (1, 2)

Note that the above transformation relies on the fact that each element of the com-
posite type has a unique representation in the form mk-ATC(cs, con, cap, loc) (see Sec-
tion 10.2.3).

Considerations of the specific form of a refinement can also be brought 1o bear when deal-
ing with the adequacy obligation. The first step here is to make use of the componentwise
nature of the refinement again to rewrite the obligation in terms of the mk-function:

mk-ATC{cs, con, cap, loc): ATC
17AC%q Ay ATC - retr (C1) = mk-ATC(cs, con, cap, loc)

The adequacy obligation ‘retri-adeq’ is then proved from this simply by making use of
the rule ‘mk-ATC-defn’:

trom o ATC
1 mk-ATC(o .onduty, ¢ .control, o.capacity, ¢ location) = o mk-ATC-defn ¢(h1)
2 mk-ATC(o.ondury, G.control, ©.capacity, G location): ATC
=-type-inherit-left (h1, 1)
3 HowATC - retri(oy) =
mk-ATC(o .onduty, 0 .control, o.capacity, o location) retry-adeg-mk (2)
infer 3oy ATC - retri (o) = © =-subs-right(b) (h1, 1, 3)

Now the fact that the refinement leaves the first three components of the state unchanged
and only affects the fourth indicates that the value of Gy chosen as the witness value to
justify the existential quantification in the conclusion of the rule ‘retr;-adeg-mk’ must
be of the form mk-ATCy(cs, con, cap, ass) for some assignment map ass. This suggests
that the next step should be to formulate a simplification of the above rule involving only
existential quantification over ass.

Of course the value of ass must be chosen so that it satisfies the invariant on ATC) and such
that it retrieves to the given location map loc. By looking at the rule ‘resry-defn-mk’ it is
easy to see that the second of these two conditions will be satisfied if loc = extrLoc{ass)
so that the required simplification of the adequacy obligation is the rule

_ mk-ATC(cs, con, cap, lo¢): ATC
Hass: AssigMap -

inv-ATC:(cs, con, cap, ass) A loc = extrLoc(ass)

The claim now is that the rule ‘retr-adeq-mk’ can be proved from this.

e A& SR edd WJIURLY A4 2T ALV VLTRSS

In fact the proof is not particularly difficuli, as the rule ‘retr;-adeq-assigs’ directly asserts
the existence of the assignment map required to construct the appropriate witness value
for the existential quantification (as indeed it was intended to do). Of course, ‘3-E’ has
to be applied before ‘3-1" (see the discussion in Section 3.3.1) in order that the witness
value be available. The full proof is:

from mk-ATC(cs, con, cap, loc): ATC
1 Hass: AssigMap - inv-ATC\(cs, con, cap, ass) a loc = extrLoc{ass)
retr)-adeq-assigs (h1)
2 from ass: AssigMap,
inv-ATC{cs, con, cap, ass) loc = extrLoc{ass)

2.1 cs: Controller-set onduty-form-rak (h1)
22 con: Space += Controller control-form-mk (h1)
23 cap:Space — N capacity-form-mk (h1)
24 inv-ATC{cs, con, cap, ass) ~-E-right (2.h2)
2.5 mk-ATCy(cs, con, cap, ass): ATCy mk-ATC-form (2.1, 2.2, 2.3, 2.h1, 2.4)
2.6 loc: Aircraft -+ Space location-form-mk (h1)
2.7 loc = extrLoc(ass) A-E-left (2.h2)
2.8 retr) (mk-ATC(cs, con, cap, ass)) =
mk-ATC{cs, con, cap, extrLoc(ass)) retri-defn-mk (2.5}
29 retry (mi-ATC1{cs, con, cap, ass)) =
mk-ATC(cs, con,cap,loc) =-subs-left(a) (2.6,2.7, 2.8)
infer 30y: ATC, - retri (1) = mk-ATC(cs, con, cap, loc) 3-1(2.5, 29
infer Aay: ATCy - retri(Gy) = mk-ATC(cs, con, cap, loc) 3-E{1,2)

Now all that is required in order to complete the proof of the adequacy obligation is to
prove the rule ‘rerry-adeq-assigs’. Since this involves showing the existence of some
value, there are again two potential strategies just as for the satisfiability proof obliga-
tions discussed earlier (see Section 12.4): either a witness value must be supplied or the
existence must be shown by induction. In this particular case, the induction proof would
involve induction over loc, but the proof would be complicated by the fact that, because
loc appears in (two clauses of) the invariant on ATC, (those parts of) the invariant would
have to be combined with the overall goal using ‘=-E-left’ before the induction could
be carried out. Thus the resulting proof is likely to be both long and cumbersome, and
hence difficult to understand.

The other alternative, namely supplying a witness value for the existential quantification,
essentially amounts to constructing an “inverse” of the retrieve function?. Such a function
does not strictly have anything to do with the formalisation of the refinement, being
introduced purely to assist with reasoning about it. One way of treating it, therefore, is
to introduce it directly into the theory of the refinement by developing an axiomatisation
of it using the standard techniques for axiomatisation described in earlier chapters. This
is not always the most convenient approach, however, and sometimes it is simpler to
specify the function as an auxiliary function and then 1o develop the axiomatisation from

ZThe indefinite article is chosen deliberately as the retrieve function only has a unigue, well-defined
inverse if it is one-one.

14,0 CLIESLICONEment step 233

the specification as for any other auxiliary function (see Section 10.4). In this approach
the specification is effectively being extended by some auxiliary “reasoning support”
specification, which does not contribute to the description of the system being specified.
This latter approach is adopted here simply because it provides a platform on which the
discussion of two aspects of the verification and validation of specifications which have
not so far been illustrated can be based: the fallibility of informal reasoning and the
validation of implicitly specified functions.

One of the big problems with reasoning informally about a specification without using
formal proof to support and verify the arguments is that some aspect of the problem which
has been overlooked may not be revealed by an informal argument as this is based on
intuition which is incomplete or incorrect if some detail has been overlooked. Aninformal
argument may therefore appear to be entirely convincing even though it is fallacious,
being based on unsound or incomplete premises. Consider, for example, the following
informal argument supporting the validity of the rule ‘retr;-adeq-assigs” by constructing
an inverse of the retrieve function:

Constructing an inverse of the retrieve function effectively amounts to
defining a function extrAss (say) which builds an assignment map out of a
location map, for the same reason (see Section 12.5.3) that constructing the
retrieve function proceeded by defining the function extrloc which built a
location map out of an assignment map. Since the location map maps an
aircraft to the airspace it currently occupies and the assignment map maps
an airspace to the (queue of) aircraft currently occupying it, an assignment
map cant be constructed by mapping each airspace in the range of the location
map 1o the set of aircraft in the domain of the location map which map to
that airspace, this set being ordered arbitrarily to form a non-repeating queue.
This ordering can be described by an auxiliary function buildQueue, specified
implicitly via:

buildQueue (s: Aircrafi-set) q: AircraftQueue
post elemsg =5

and the function extrAss can then be specified in terms of this using map
comprehension:

extrAss : (Aircraft = Space) — AssigMap
extrAss(loc) 2
{5 = buildQuene(domloch {s1)) | s € mgloc}

The proof of the rule ‘retr,-adeq-assigs’ is then a consequence of the well-
formedness of the function extrAss

loc: Aircraft = Space

extrAss(locy: AssigMap

L0 12 A Lase otuldy i Al L 1allic CAHIU O

and a lemma stating that extrAss is an inverse of extrloc:

loc: Aircraft = Space
¢ = extrLoc(exirdss(loc))

gex:rAss-exrrLac-inverse | o

by supplying extrdss(loc) as the witness value for the existential quantifica-
tion.

Despite the fact that this argument probably sounds fairly plausible, it contains a mis-
take which the verifier may well not spot even on reviewing the argument. Moreover
the argument could also convince some independent reviewer. An attempt to construct
a formal proof based on the above skeleton would reveal the error, however, with the
proof eventually breaking down. It should be pointed out that the error lies in the above
argument and not in the rule it purports to prove — the rule rerri-adeg-assigs’ is valid,
the informal “proof™ of the rule given above is not.

Exercise 6 Find the mistake in the above argument and the correction required to make
the argument sound by discovering the point at which the formal proof breaks down.
Hint: The well-formedness of the function buildQueue is dealt with below and may be
assumed, in the form of the rule

s: Aircraft-set
build, -f ; ;
buildQuene(s): AircraftQueue

but the error may lie in any of the other three steps of the argument: the well-formedness
of the function extrAss, the proof of the lemma ‘extrAss-extrLoc-inverse’, and the proof
of ‘retr|-adeq-assigs’ itself. 0

Finally in this section, it is worth considering how the function buildQueue is treated as
this is the first example of an implicitly defined function encountered in this case study.

Following the template sct out in Section 10.4.3, this function is described by two axioms:

s: Aircraft-set; dg: AircraftQueue - clems g = §
i -def :
bulldQueue-defng elems buildQuene(s) = s Ax

s: Aircraft-set, dq; AircraftiQueue - elemsg =35
buildQuene-formy f > 24 f L q Ax
buildQueue(s): AircraftQueue
and there are two associated proof obligations, one to show that the postcondition is
boolean-valued, the other to show that the function is satisfiable:

s: Aircraft-set; q: AlrcrafiQueue
post-buildQueue(s, ¢):

8t Aircraft-set
U chene S8 "Sq AircraftQuene - post-buildQueue(s, q)

Here, post-buildQuene is defined via:

| post-buildQueue-form l

post-buildQueue(s, g} def elemsg =5

14,0 CISLICHnement siep : 235

The first of these proofs is trivial and is left as an exercise for the reader. The second
provides an example of a satisfiability proof which is perhaps best tackled by induction.

Here, set induction is used, giving a base case in which it must be shown that
3q: AircraftQuene - elems g = { }

and an induction step with hypothesis
Jq1: AircraftQueue - elems ¢y = 5,

and goal
Aqq: AlrcraftQueue - elems gy = add(a, 5;)

The base case follows trivially by supplying {] as the witness value for the existential
quantification, the induction step by similarly supplying cons(a, ¢1). The complete proof
is:

from 51 Aircraft-set

1 [1:AircraftQueue []-form-queue
2 elems{]={} elems-defn-[]
3 3q: AircraftQueue - slemsg = { } 31(1,2)
4 froma:Aircraft, sy Aircraft-set; g AireraftQueue - elems gy =85; a € §
4.1 from q,: AircraftQueue; elemsg; = 53
4,11 ae elemsq; =-subs-Jeft(b) (4.h2, 4.1.h2, 4.h4)
4.1.2 cons(a, q,): AircraftQueue cons-form-queue (4.h1, 4.1.h1, 4.1.1)
4,1.3 elems cons(a, q1) = add(a, elems q;)
elems-defn-cons-queue (4.h1, 4.1.h1)
414 elems cons(a, q1) = add(a, 51) =-subs-right(b) (4.h2, 4.1,h2, 4.1.3)
infer dgu: AircraftQuene - elems qp = add(a, s) 31{4.1.2, 4.1.4)
inter Jqp: AircraftQuene - efems q2 = add(a, s} 3-E (4.h3, 4.1)
5 3q AircraftQueuc - elemsg = § set-indn (h1, 3, 4)
infer 3g: AircrafiQuene - post-butldQueue(s,) folding (5)

The rules for queues used in this proof are:

-form-queue T
[1-formn-que [1: AircraftQueue
a: Aircraft, q- AircrafiQueus, a & elems
cons-form-queue ft g JTQ q
cons(a, q): AircraftQueue

a: Aircraft, q AircraftQueue
elems cons(a, q} = add(a, elems g)

rc!ems-defn-cons-qucue i

Working versions of the formation and definition rules

- 5. Aircraft-set
buildQueue-dein | ~ 1 otne butldQueue(s) = s

236 12 A Case Sfudy in Air-Traftic Control

- g s: Aircraft-set
[buildQueue-form| buildQueue(s): AircraftQueue

are then proved in the standard way.

12.5.5 Operations

The only operation considered in detail here is the one for adding a new flight to the ATC
system. The concrete counterpart of the abstract operation AddFlight (see Section 12.4.9)
is:

AddFlight (p: Alrcraft, s: Space)

ext rd control; : Space +— Controller

rd capacity; : Space —— N
wr assigs) : AssigMap
pre s € domecontroly Ap & knownAircrafi{assigs)) »lenassigs:(s) < capacity:(s)

post assigs) = assigs; T {s — assign1(s)” [p1}

giving rise to definitions of pre-AddFlighn and post-AddFlight, of the form:

pre-AddFlight\ {p, s, con, cap, ass) def 5 € domeon Ap & knownAircrafi(ass) A

leniass(s) < cap(s)

post-AddFlight(p, s, 555, ass) 52 ass = a5 1 {s > &5) " [p]}

There are the usual well-formedness obligations for these definitions, as well as the sat-
isfiability obligation for the operation as a whole, but none of these are considered here.
The purpose of this section is to consider the two additional proof obligations, the domain
and result obligations, which arise by virtue of the fact that AddFlight, is intended as an
“implementation” of AddFlight. These are stated as:
p: Alrcraft, s:Space
mk-ATC(cs, con, cap, loc): ATC
mk-ATC1(cs1, cony, capy, ass): ATC
mk-ATC(cs, con, cap, loc) = retr|(mk-ATC\(c51, cony, capy, ass))

ATt s o sapmeios)
p:Aircraft, s:Space
mk-ATC(cs, con, cap, EE:):ATC
mk-ATC\{cs1, cony, cap, @ss): ATCy
mk-ATC(cs, con, cap, 5—55) = retr1 (mk-ATC{cs\, cony, cap,, ass))
mk-ATC(cs, con, cap, loc). ATC

mk-ATC\(cs1, cony, capy, ass): ATCy
mk-ATC(¢s, con, cap, loc) = retr {mk-ATC\(cs1, cony, capy, ass))

pre-AddFlight(p, 5, con, cap, loc); post-AddFlight{p, s, ass, ass)

[Addrlightses-oti] post-AddFlight(p, 5, loc, loc)

Lz, riustreanement siep 23/

In this particular case, as with the adequacy obligation, these rules can be simplified by
taking account of the componentwise nature of the refinement. This effectively entails
making use of the rules:

mk-ATC(cs, con, cap, locy: ATC
mk-ATC\{cs, cony, cap,ass). ATC,

: mk-ATC(cs, con, cap, loc) = retr (mk-ATC(cs1, cony, capy, ass))
retr) -E-onduty T
| =

mk-ATC(cs, con, cap, loc): ATC
mk-ATCy{csy, cont, capy, assy: ATCy
mk-ATC(cs, con, cap, loc) = retri(mk-ATC (cs), con, capy, ass))
l
cony = con

mk-ATC(cs, con, cap, locy, ATC
mk-ATC\{csq, cony, cap, assy ATC

mk-A ; s s = rel -AT > r r
TC(cs, con, cap, loc) - ;;Ir;(?;cp Ci(cs1, comy, capy, ass))

mk-ATC(cs, con, cap, loc): ATC
mk-ATC1(cs1, cony, capy, ass): ATC

— mk-ATC(cs, con, cap, loc) = retri (mk-ATCy(cs1, cony, capy, ass))
extrLoclassy = lo¢

as a basis for replacing c¢s; by ¢s, cony by con, capy by cap, and loc by extrLoc(ass).

Using these rules and substituting the squalities in their conclusions as the first steps in
the proof of ‘AddFlight-dom-obl’ leads to the following partial proof:

from p: Aircraft, s:Space; mk-ATC(cs, con, cap, loc): ATC

Woo IOy B W

10
11

mk-ATC{csy, cony, capr, ass)y: ATCy;
mk-ATC(cs, con, cap, loc) = retr| (mk-ATCy(c51, cony, capy, ass)}
pre-AddFlight(p, 5, con, cap, loc)

¢s: Controller-set onduty-form-mk (h3)
con: Space +2 Controller control-form-mk (h3)
cap: Space ——+ N capacity-form-mk (h3)
loc: Aircraft = Space location-form-mk (h3)
€8] = ¢S retr;-E-onduty (b3, h4, h5)
CoRp = con retri-E-control (b3, hd, h5)
capy = cap retr1-B-capacity (h3, h4, h5)
extrloc(ass) = loc retri-E-location (h3, h4, hS5)
pre-AddFlight(p, s, con, cap, extrLoc{dss)) =-gubs-left(b) (4, 8, h6)
pre-AddFlight,(p, s, con, cap, ass) (77 justify 77}
pre-AddFlight,(p, s, con, cap,, ass) =-subs-lefi(b) (3, 7, 10)

infer pre-AddFlight,(p, s, cony, capy, ass) =-subs-left(b) (2, 6, 11)

2438 12 A Lase otudy it Afr- Frarne Comrod

Note how Line 10 can now be proved using the lemma

piAircraft, s:Space
mk-ATC(cs, con, cap, extrLoc(ass)): ATC
mk-ATC(cs, con, cap, ass): ATC
pre-AddFlight(p, 5, con, cap, extrLoc(assy)
pre-AddFlight (p, s, con, cap, ass)

|Addz«“ﬁgh:-dom-obz-simp1

which can be obtained more easily by making the substitutions for the components of the
retrieval directly into the basic domain obligation ‘AddFlight-dom-obl’. Nor is the proof
of this simplified version of the domain obligation difficult, as the lemmas ‘dom-extrLoc-
defn’ and ‘numQfAircrafi-clm-defn’, which were used above to show the well-formedness
of the retrieve function (see Section 12.5.4), together with a certain amount of substitution
of equalities, are sufficient to complete the proof:

from p: Aircraft, s: Space; mk-ATC(cs, con, cap, extrLoc(ass)): ATC;
mk-ATC1(cs, con, cap, ass): ATC; pre-AddFlight(p, s, con, cap, extrLoc(ass))
I s domconap ¢ domextrLoc(ass) A

numQOfAircraft(s, extrLoc(ass)) < cap(s) unfolding (h5)
2 ass:AssigMap assigs;-form-mk (hd)
3 domextrLoc{ass) = knownAircraft(ass) dom-extrLoc-defn (3)
4 se domeon A-E-right (1)
5 domass = domcon inv-ATCy -F-mk-clanse3 (h4)
6 domass: Space-set dom-form-AssigMap (2)
7 5e domuass =-subs-left(a) (6, 5, 4)
8§ numOfAircrafi(s, extrLoc{ass)) = lenass(s) numOfAircraft-elm-defn (b2, 2, T
9 extrLoc(ass): Aircraft ™ Space location-form-mk (h3)
10 numOfAircrafi(s, extrLoc(ass): N numOfAircraft-form (h2, 9)
11 s e domcon A p ¢ domextrLoc(ass) A lenass(s) < cap(s)
=-subs-right(a) (10, 8, 1}
12 domextrLoc(ass): Aircraft-set dom-form (9)
13 5e domcon Ap & knowndircrafi(ass) A lenass(s) < cap(s)
=-subs-right{a) (12, 3, 11)
infer pre-AddFlight|(p, s, con, cap, ass) folding (13)

Turning now to the result obligation, this too can be simplified exactly as described above
to:
p: Aircraft, s:Space
mk-ATC(cs, con, cap, extrLoc(d3$)): ATC
mk-ATC;{cs, con, cap, 455): ATC,
mk-ATC(cs, con, cap, extrLoc(ass)): ATC
mk-ATC\{cs, con, cap, ass)y: ATC,
pre-AddFlight{p, s, con, cap, extrLoc(ass))
post-AddFlight;(p, s, ass, ass)
post-AddFlight(p, s, extrLoc(dss), extrLoc(ass))

[Addﬂighz-rcs-obi-simp |

120 FIrstrenmnement step 239

Ignoring the first six hypotheses of this rule which essentially only give typing information
and invariants, the meat of the proof is to show

extrLoc(ass) = extrLoc(ass) t {p — s}
under the following assumptions:
p & domextrLoc(a5s) A s € domcon A numOfAircrafi(s, extrLoc(ass)) < cap(s)

ass = ass t {s ++ ass(s)” [pl}

Using the rules ‘dom-extrloc-defn’ and ‘numQfAircrafi-elm-defn’ together with the fact
that dom con = domass {from the invariant on ATC;), the first of these assumptions can
be rewritten o

D 2 knownAircrafi(ass) A s & domdass A lenass(s) < cap(s)

Now the fact that the first two conjuncts of this expression are enough to ensure the
invariant on gss suggests that a lemma of the form

piAircraft, s:Space;, ass. AssigMap
p & knownAircrafi(ass), s € domass
extrLoc(ass T {s v+ ass{s)” [p]}) = extrLoc{ass) T {p v s}

exirLoc-1

should be proved. However, the proof of this is rather long if atternpted directly. A better
strategy, therefore, is to develop a series of lemmas leading up to the proof of this one.
This unfortunately requires more space than is available and does not really introduce any
new proof techniques, so it is made the subject of the final exercise of this chapter.

Exercise 7 Prove the following lemmas:
p: Aircraft, s:Space; ass: AssighMap

- p € knowndircraft(ass); 5 € domass
ass T {s v~ ass(s)” Ipl}: AssigMap

prAircraft, s:Space, ass: AssigMap
p & knownAircraft{ass); s € domass
ircraft(ass T {5 — ass(s)” [p]}) =

add(p, knowndircrafi(ass))

IknownAircraﬁ—T—lemm;l Trnownd

p: Alreraft, s:Space; ass: AssigMap
a: Aircraft; p ¢ knownAircraft(ass)

T s € domass, a e knownAircraft(ass)
locOf(a,ass t {s v ass(s) " [p]}} = locOF(a, ass)
p: Aircraft; s:Space; ass: AssigMap
p & knowndircraft{ass); s € domass

locOf(p,ass T {s — ass(s) " [p]}) =5

Use them, together with the rule ‘map-comp-left-defn-add’, to prove ‘extrLoc-1". O

240 12 A Case study m Arr-1ratiic L.onfrol

12.5.6 Adequacy of initialisation

As discussed in Section 11.2.2 there is a proof obligation concerned with showing that the
possible initial states of the concrete specification have counterparts among the possible
initial states of the abstract specification. This obligation, the adequacy of the initialisation
condition, is very like the result obligation for an operation, though it is much simplified as
there are no preconditions or previous states to be considered. This reinforces the notion
introduced in Exercise 1 of Chapter 11 that the initialisation predicate could be viewed as
an operation which has write access to all components of the state, no precondition, and
postcondition which does not refer to the initial values of the state variables.

For the refinement step under consideration here the proof obligation has the form

— G ATC, 01:ATC; ¢ =retri{); init-ATC(o1)
R

Its proof is straightforward because the only two state variables mentioned in the initial-
isation predicates do not change under the refinement.

12.6 Second refinement step

12.6.1 A database of controllers

The second development step introduces a database of information about controllers,
recording whether or not they are currently on duty and, if so, which space they control:

Cinfo :: onduty : B
space : [Spacel
inv mk-Clnfo(d,s) 2 wad =3 s =nil

It is easy to imagine Clnfo being extended to include other relevant information as well,
such as . login files for customizing monitors to suit personal preferences.

The database is represented as a map from controllers to information in which no two
controflers can control the same airspace:

CDatabase = Controller = Clnfo
invdb & Ve, co & domdb-
let s; = db(c;).space in
CiFE =S =nilvs=nilvszs

12.6.2 The new state definition

The new state definition replaces the simple set of on-duty controllers with a database of
information about controllers. The new state invariant says (amongst other things) that
the database is consistent with the control map:

1./ Conctuding remarks 241

state ATC, of
info, . CDatabase
controly : Space — Controller
capacity, : Space N
assigss . AssigMap
inv mk-ATCy(db, con, cap, ass) & domcon = activatedSpaces(db) A
rng con = assignedCrris{db) A
Ye¢ e assignredCrris(db) - con{db(c)space) = ¢ A
activatedSpaces{db} c domcap A
Vs e domass - lenass(s) < cap(s)
int oy & oy.capacity; = {} A ondutyCrris(cy info) = { }
end

The auxiliary functions activatedSpaces, assignedCerls and ondutyCrrls, returning respec-
tively the set of activated airspaces, the set of assigned controllers, and the set of on-duty
controllers for some given database, are specified as follows:

activatedSpaces : CDatabase ~» Space-set
activaredSpaces(db) & {db(c).space | ¢ € assignedCris(db)}

assignedCirls : CDatabase —» Controller-set
assignedCerls(db) £ ondutyCtris(db}\ availableCtris(db)

ondutyCirls : CDatabase — Controller-set
ondulyCirls(dby & {c:Controller | ¢ € domdb A db(c).onduty}

The second of these is defined in terms of another auxiliary function availableCrrls re-
turning the set of controllers not already assigned:

availableCirls : CDatabase — Controller-set
availableCirls(dby £ {c: Controlier | ¢ € ondutyCiris(db) A db(c) space = nil}

Note that controlz is no longer explicitly required to be one-one (although it follows from
the invariant). In fact, controly is redundant - but addition of redundancy is one of the
most common refinement techniques.

The specification of the operations on the new state, the definition of the retrieve functioa,
and all the associated proofs are left as exercises for the reader.

12.7 Concluding remarks

This case study has shown how the general means of interpreting components of spec-
ifications and reifications presented in Chapters 10 and 11 can be combined with the
techniques for reasoning about the basic elemnents of the specification language discussed
in Chapters 2 to 9 to provide a means of reasoning about the design and development of
a specific system. In particular, it has illustrated how to construct a theory, in the form of
a set of axioms, definitions and derived rules, from a specification and from a refinement
step, and how the proof obligations can be stated as rules and proved in this theory. It has

Lt 14 A Lase Study 11 AW- 11aimic Lonoros

also discussed the use of validation conditions as a means of checking both that infor-
mal requirements on the system have been captured in the formal specification and that
the operations specified on the formai model actually exhibit the expected and desired
functionality.

Since this book is primarily concerned with proof rather than specification, the actual
form of the specification given above has to some extent been influenced by the desire
not only to include an example of how each of the different proof obligations discussed in
Chapters 10 and 11 arises and is dealt with in practice but also to illustrate a wide range of
different reasoning techniques. In addition, the specification is perhaps atypical because
every operation has a postcondition which defines the new state components directly in
terms of the old via some equality and because the refinement is defined component-wise
rather than over the whole state. Both of these are the result of a deliberate attempt to
make the examples complex enough to illustrate the points required whilst at the same
time simple enough that those points do not get lost in extraneous detail.

Having said that, it cannot be stressed enough that the exact form of a specification can
have a profound influence on the ease or otherwise with which reasoning about that spec-
ification can be carried out. First, since many proofs involve showing that some invariant
holds, constructing the invariants out of some subset of the requirements and treating the
other requirements as validation conditions can save an enormous amount of work. In
that way the validation conditions are only proved once instead of every time the invariant
has to be shown 1o hold. Although this point has not been illustrated explicitly above,
looking at, for instance, the proof of ‘Commission-sat’ given in Section 12.4.1, where
something like two thirds of the proof is concerned with showing that the invariant on
ATC is preserved, should be sufficient {0 convince the reader.

Second, introducing auxiliary data types and functions to represent concepts used in one’s
informal thinking about the specification generally simplifies both reasoning about the
specification and the formulation of validation conditions. There are essentially two rea-
sons for this. First, one is reasoning about objects of which one has some kind of mental
picture, and second, the specification, and hence the proof obligations, is being divided
up into smaller and more manageable units.

In a similar way, the whole reasoning process 15 made simpler if it too is divided into
a series of small, easy to understand steps. Thus, whilst it would be perfectly possible
to discharge all the proof obligations on a specification directly from the axioms and
definitions describing that specification (assuming, of course, that the specification is
sound), proofs constructed in this way tend to become so long and unmanageable that it
is easy to lose track of how the proofis progressing. This is avoided by stating and proving
lemmas embodying one’s intuitive understanding of the various constructs involved in the
reasoning. As an added bonus, this also saves work by reducing repetition in the proofs.

Finally, mention must be made of the magnitude of the task of formally verifying a “real”
specification and design process. The case study presented here deals with a relatively
small system and does not discuss the satisfiability of nine of the top-level operations,
the internal consistency of the concrete specification, the satisfiability of any of the oper-
ations on the concrete state, or the operation modelling obligations for ten of the eleven
operations. Moreover, some of the details of those proofs which are discussed have been
omitted, either by leaving proofs incomplete or by leaving lemmas unproved. Despite
all this, the case study runs to some fifty pages, so the reader is probably somewhat con-
cerned (and rightly so) that a full formal development of even this example would be

dac/ UNGIGUINE ICHTAIRS LoD

prohibitively long.

The first point that should be noted here is that most of the proofs presented, although
long, contain very few steps which are not routine, Indeed, some are entirely mechanical,
for instance the well-formedness obligations which follow the pattern described in Sec-
tion 9.4. Such proofs or parts of proofs could be discharged automatically by a proof tool
instantiated with the appropriate inference rules. In this way, the task is split between the
machine, capable of performing routine steps quickly and without error, and the human,
whose intuition is essential in guiding the non-routine steps (for instance for determining
an appropriate witness value to justify an existential quantifier).

The second, and far more important, point is that informal and formal reasoning and proof
should be considered as something which can help with the development of a specifica-
tion or a design step rather than some chore which has to be carried out after a formal
specification or refinement has been written. Moreover, the reader should not feel that a
proof of some proof obligations or validation condition is only of value if it has been com-
pleted fully formally (the term “proof obligation™ is perhaps unfortunate in this respect).
Indeed, as this case study has attempted to illustrate, planning a proof, sketching the main
steps of a proof, or failing to formalise an argument can be at least as enlightening and
informative as the finished proof.

It is important to remember that the main purpose of proof is to increase confidence in the
quality of specifications and design decisions. Proof skills should be part of the system
developer’s normal toolkit. Applied judiciously and at an appropriate level of rigour,
the techniques described above can make a significant contribution to the quality of the
development process.

Chapter 13

Advanced Topics

13.1 Introduction

As stated at the outset, the aim of this book is not to provide a complete description of
the whole of the VDM specification language. Rather, it uses VDM-SL. as an example to
introduce and explain, in as natural and intuitive a way as possible, the techniques nec-
essary to enable the reader to confidently tackle not only proofs about specifications but
also the axiomatisation of theories, The data types and constructs discussed in Chapters 2
10 9 do not therefore represent all the available features of VDM-SL, although they are
generally adequate for most applications.

The features of the language which have not been covered fall broadly into two categories.
The first of these contains constructs like the familiar arithmetic operators (for example
-, /, T) which would be treated entirely analogously to constructs already discussed. The
reader should have no difficulty applying the lessons learned so far to determine a rea-
sonable set of axioms and derived rules for such operators.

Constructs in the second category, on the other hand, have been omitted from the pre-
ceding discussion either because they do not fit easily into the simple logical framework
presented here (for example “loose” let statements; see Section 13.7.1) or because they
complicate the basic theories presented above in such a way that the axioms and rules for
familiar data types become hopelessly unintuitive and cumbersome (for example func-
tion types; see Section 13.2). This chapter briefly discusses some of these constructs and
indicates possible ways in which they might be treated. Indications are also given of the
repercussions these have on the material presented in earlier chapters.

The chapter also discusses how to generate formal descriptions of constructs with variable
arity such as quote types and enumerated sets, maps and sequences {see Sections 13.8
and 13.5 respectively), as well as extensions to some of the topics covered in the main
body of the book. These include an indication of how the treatment of equality can be
generalised to allow the comparison of values of different types (Section 13.3) and a
discussion of how to deal with recursively-defined types in a specification and how 1o
formulate induction rules for them (Sectton 13.4).

246 13 Advanced Topics
13.2 Functions as a data type

As discussed in Chapter 7, when constructing maps using map comprehension, care must
be taken to ensure amongst other things that the resulting expression only contains a finite
number of associations. Thus, for example, the expression

{n—n® | m:N}

which associates with each natural number » its square #%, does not represent a map
because its domain (all the natural numbers) is infinite. This notion can, however, be
expressed in VDM using lambda expressions as

AN A2

the type of which is the function type N — N.

More generally, the function type A — B represents all (total) functions from the type A
to the type B, that is those functions which, given an object of type 4, return an object of
type B. An element f of the function type A — B therefore differs from an element g of
the map type A -+ B when A is an infinite type because f(a) is defined for all elements
a belonging to the type A whereas g(a) is only defined if a belongs to the (finite) domain
of the map g.

It is not particularly difficult to write down axioms which describe the properties of func-
tions as outlined above, These might be:

wAL Px):B a:A A A-P(xhA— B
(A PE)ASE ™ (& P0x)) - (@) = Play
@A ffA—-B Ax
f-(ayB
One might also consider defining axioms describing the equality of functions, such as
xALPW=00) flASB
I A PE =AcA- 0@ AcA(fOoN=Ff"

though it is somewhat debatable whether this notion ought be supported.

The main problem with function types is not the axiomatisation, however, but the fact
that VDM does not allow them to be combined with the other basic type constructors
arbitrarily. Instead, it introduces a notion of flaness of a type and considers the function
type and certain types constructed from a combination of function types and the other
type constructors as non-flat. It then imposes restrictions on the use of non-flat types.

One example of these restrictions is that it is illegal to construct a set of functions in VDM
(more generally, it is illegal to construct a set of objects of any non-flat type). This means
that the rules given above in Chapter 6 for building sets are not valid when the sets are of
non-flat type. In particular, rules such as the formation rule for the empty set *{ }-form’
require an additional hypothesis in the presence of non-flat types to ensure that only legal
sets are constructed. This rule would thus have the form

is-flat(A)

{}: A-set

Aotasd S niprad Bl GUCLUICIIED VHL QUDY UKL LY Y P

where the predicate is-flar (not defined here) represents the notion of a flat type.

Fully supporting a description of function types, therefore, would require not only an
axiomatisation of the concept of flatness but also significant changes, similar to that to
the formation rule for the empty set shown above, to many of the formation rules already
presented. Whilst these changes could certainly be made, it was felt that the corresponding
loss of intuition and clarity in the axiomatisation of sets, maps, etc. presented above which
would thereby result was prohibitive. It is, however, worth keeping in mind that not all
the rules for sets, maps, etc. presented above are valid in the presence of function types.
They are all valid when no function types are present, though, as all types constructed
using only the set, map, sequence and record constructors are automatically flat.

13.3 Comparing elements of disjoint types

Using the axiomatisation of equality given in Section 3.4 above, it is possible to deduce
(using the rule ‘§-=-1") that any two elements of the same type are either equal or unequal,
but at this level there is nothing to determine which of these alternatives is actually true.
This is perfectly adequate when it comes to comparing arbitrary variables of some type,
and the rule ‘d-=-I" is therefore used primarily in proofs to set up a case distinction
on the equality or otherwise of arbitrary elements of a given type, but is not sufficient
for comparing specific elements of a type. This extra information comes from rules for
equality on the specific type in question, so that, for example, the rule ‘=-set-defn’ defining
equality on sets makes it possible to show that the empty set is different from the singleton
set {a} for arbitrary (but denoting) a:

{}={a}

Between ther, therefore, the general axioms of equality and the rules defining equality for
the specific types and type constructors give all the information necessary for comparing
any two elements of any given type. But what about comparing elements from two
different types?

Some progress towards this can be made with the help of union types: it has already been
shown in Section 4.2 how they can be used to prove a generalisation of the rule ‘§-=-1":
a:A; b:B

(8=Tgen| —s oy

stating that two arbitrary elements of two arbitrary (i.e, possibly different) types are either
equal or unequal, and a similar technique can be used to construct generalisations of the
specific equality rules for the data types so as to allow some level of comparison between
constructed objects of different types, for instance between an object of type A-set and
one of type B-set. However, the most that can be deduced using these generalisations is
that expressions like

T =tue {7} = {true}

are either true or false, even though the first of these possibilities appears to be ridiculous.
One can also prove relationships between some expressions of this kind, for instance
that the two expressions given above must have the same value, that is that 7 = true
< {7} = {true}.

LE0 12 Alvdiicod 100y

The extra information required in order to rule out these unwanted cases would have to be
supplied as additional axioms explicitly stating that elements of distinct types are unequal.
Thus, for example, the case 7 = true might be excluded by an axiom of the form:

alB; bR

A
a#hb *

The problem with this approach is that it rapidly gets out of hand because axioms of this
form are not only required for other pairs of distinct basic types, they are also required
for each possible combination of a basic type and & type constructor and for different
combinations of type constructors. Furthermore, axioms are also needed which state that
an element of some type introduced in a specification is different from an element of any
hasic type, from an element of a basic type constructor, and from an element of any other
type introduced in a specification.

Another possible approach is to formalise the notion of types being disjoint, say through
some predicate are-disjeint, and to introduce one set of axioms describing its general
properties, for example:

a:A; b:B; are-disjoint(A,B) A
a#h o are-disjoint(A-set, By

and another set defining which specific types are disjoint, for example:

are-disjoint(B,R) Ax

This approach has the advantage that fewer axioms are needed because some of the in-
formation has been included by the parameterisation inherent in the first of its sets of
axioms, but it still requires an axiom in the second set for each possible pair of types
taken from the basic types and the types introduced via specification. In particular, the
practical upshot is that every time a new type is specified a new set of axioms is required
to say both that it is disjoint from each of the basic types and that it is disjoint from all
the types so far specified.

Experience shows that these axioms are not widely needed when reasoning about spec-
ifications (although there is some indication that they can be important when specifying
abstract syntax}, and the high level of unmanageability has led to the omission of a for-
mulation of disjoint types from this book. However, the generation of the axioms for
the second of the two approaches described above is straightforward, and it is easy to
see how mechanical support could be used to take the burden out of this by generating
the appropriate axioms for are-disjoint automatically whenever a new type is added to a
specification.

13.4 Recursive type definitions

This section gives some indicative examples of how one can define and reason about
recursive type definitions.

A simple example of a recursive type definition is the following definition of binary trees
with numerical leaves:

£otar EALLLM I YG LY RO UGLIEILIUNS a7

NTree = N| NTree x NTree

It can be seen that the definition of NTree is well-founded, because the name of the type
being defined does not occur in one of the branches of the union type construction that is
used in the definition. In effect, there is a “terminating clause” (by analogy with recursive
function definitions).
Treating this as a definition in the logical frame:
def
Niree == N|NTree x NTree

the following two formation rules can be proven from the typing rules for Cartesian
products and union types:

N
NTree-leat-form | —emm—
dad 2 n:NTree

NTrow modeform t;, 1h: NTree
oo R LLr S
= mk-(t|, t2): NTree

From the definition and the axiom ‘|-E’ the following rule is obtained:

t: NT
mNE P(m)
g t;: NTree, z;g:1\”;1”?:;:.’0!;”2 P(mk-(n,82))

Unfortanately, this rule is useless in general! To see why, consider the following function
definition:

sumiNTree : NTree - N
sumNTree(t) & casest :
mk-(t1, 8y) —> sumNTree(t;) + sumNTree(n),
others — ¢

end

An attempt to prove the formation rule for this function:

sumiNTree(t):N

using the above rules will fail. At some stage in the proof, it will be necessary to show
that:

sumiNTree(t;) + sumNTree(t):N

for the case where there are some 1, 1y (both of type NTree) such that ¢t = mk-(1), 13).
However, it is not possible to show that sumNTree(t; :: N given only that 1: NTree — this
is the same problem that the present proof is trying to solve!

In order to reason about values of a recursive type definition, some form of induction
axiom must be supplied. This can be constructed by analysis of induction rules (or similar
“property-propagating” rules) for the type constructors used in the definition, This leads
to the following induction scheme for NTree:

2N A2 ALYAIILCU UGS

t:NTree
mNE P(n)
t: NTree, ty:NTree, P(n1), Plr) by, Plmi-(11,8))
- A

= x

Notice that “afl’ this has done is to strengthen the sequent hypothesis of ‘NTree-E’ by
assuming additionally that P holds for all sequent variables of type NTree.

This induction scheme can be used 10 derive properties that are true for all trees and also
to give properties of function that are defined recursively by structural induction. Using
this axiom to prove ‘sumNTree-form’, when the point is reached where ‘sumNTree{(s;):N’
is required, it will be present already as a hypothesis of the “step’ case of the induction:

from t: NTree

1 fromaN
infer sumNTree(n):N {77 justify ?7)
2 from t5: NTree;, to: NTree; sumNTree(t)):N; sumNTree(r):N
2.1 sumNTree(r)) + sumNTree(t: N +-form (2.h1, 2.h2}
2.2 sumNTree(mk-(1, 1)) = sumNTree(ry) + sumNTree(tz) {77 justify 77}
infer sumNTree{mic-(t, 1)1 N =-type-inherit-left (2.1, 2.2)
infer sumNTree(ty: N NTree-indn (hl, 1, 2}

13.4.1 Mutual recursion

Mutually recursive type definitions are permitted in VDM. For example, a definition of
binary trees with numerical labels at each node is:

NTpir = [NT)]
NT = NTprr xN < NTptr

(This definition is somewhat artificial, but does bear similarities to more realistic con-
structions.)

Converting this into definitions, the following formation rules can be proven from typing
rules for optional types and Cartesian products:

- nt: NT
[WTpir-form | — e

ntp: NTptr, P(nil); nt: NT & P(nt)

P{ntp)

Lo ROCUrsive Iype aermions 251

nty: NTpir; N, nrp: NT,
NT-form ! P n a3 s
mk-{(nty, n, nty): NT

As before, these rules are not sufficient to allow proof by induction on NT, and an addi-
tional induction scheme axiom must be supptied. One form of induction scheme for NT
is: ‘

nipy = nil v P(nip), P{mk-(nipy, 1, nip,))
nipy = nil v P{aps) nipy mnipy
tNT

P Ax

In the above, the “propagation” of the property P through the optional type constructor has
been incorporated into the single sequent hypothesis. This has the visually unfortunate
consequence that the base and step cases of the induction are not separated, but with
some manipulation of the sequent hypothesis, quantifiers and disjunctions, it can be re-
expressed as:

nip1:NTptr, ntpy. NTptr, mN, }'\

N E P{mk-(nil, 7, nil))
neNT, N, Plan) &, P(k-(nt, n, nil))
nENT, mN, P(ns) &, P(mk-(nil, n, nt))
nt: NT, N, ni NT,
Py, Pty | Plmke-nty, 1,)

alp APy

- t:NT
P Ax

In the case of any recursive type definition, care must be taken to ensure that the definition
is meaningful. The following are examples of meaningless definitions:

X=XxX

1

A = A-set

In each case, the definitions are ill-formed because there is no “base case” type expression
upon which the definition can be founded. Tt is still possible to generate rules for these
definitions as done above, and a similar approach to developing the induction scheme
leads to schemes such as:
xX, X, Px), PO), Plmk-(x,y))
v.X
P(v)

which has no base case. This might appear to be dangerous, as it describes how to prove
properties for a type definition that is not well-formed, but in fact it is not possible to
satisfy the hypothesis v: X. To see this, note that the only way to construct an object of
type X will be via a formation rule of the form:

X, X

mk-{x, yr. X

so that there is no way to construct a “base” X value.

232 13 Advanceda 1opIcs
13.5 Enumerated sets, maps and sequences

The treatrnent of sets, maps and sequences in Chapters 6, 7 and 8 concentrated mainly on
reasoning about general elements of these data types, this manifesting in the fact that most
of the axioms and rules given both in the chapters themselves and in the relevant sections
of the directory (Chapter 14) are couched in terms of metavariables. Indeed, the only
specific elements of the data types which were discussed were the empty collections ({ },
{++1 and [T} and the singleton or unit collections ({a}, {a ~+ b} and [a]). Somesimes,
however, more complex specific elements of these data types are useful, for instance:

{1,3,4,7} {et v+ true, b — true} [e1,e2, €3]

Intuitively these constructs are very easy to interpret: the first represents the set containing
the four numbers 1, 3, 4 and 7; the second, the map which maps both @ and b to true;
and the third, the sequence containing the elements e, e; and e3, in that order. Their
properties are also simple to determine. For example, the number 4 is clearly an ¢lement
of the set {1,3,4,7} whereas the number 5 is not:

de {1,3,47) 5e {1,347}
and the union of the set {1,3,4,7] with the set {3,7, 11} is the set {1,3,4,7,11}:

{1,3,4,7} U {3,7,11} = {1,3,4,7,11}

Unfortunately, the fact that these enumerared collections do not have a fixed arity (so
that they can contain any number of elements) means that it is impossible to describe the
general form of these expressions within the logical framework used in this book. Any
given enumerated collection can be described, however, and two possible methods are
suggested.

The first method relies on the fact that any enumerated collection having two or more
elements can be expressed in terms of the appropriate singleton collection and standard
operators on the data types. Thus, enumerated sets can be expressed in terms of singleton
sets and set union or add, for example:

{a.b,c} = {a} v {b} U {c} = add(a, add(b, {c}))
enumerated maps in terms of singleton maps and map override or addm, for example:
{ambcrrdl={am b}t {c d}=addm(a b, {c — d})

and enumerated sequences in terms of singleton sequences and sequence concatenation
or cons, for example:

[a,b,¢) =[a] "~ [b]” [c] = cons(a, cons(b, [c])) .

One could thus envisage some sort of automatic “pre-processor”™ which could be applied
to a specification before any reasoning was carried out and which would “translate” all

13.5 Enumerated sets, maps and sequences 253

enumerated collections having two or more elements into one or other of the appropriate
equivalent forms given above. Reasoning about the specification would then be per-
formed at the level of the singleton collections and the appropriate operators chosen as
the basis for the translation, for which general definitions, axioms and rules are available.

The alternative approach is to introduce a new defined symbol for each enumerated col-
lection of fixed size in just the same way as the singleton collections are defined in terms
of the empty collections, then to develop a series of derived rules for these. In this way,
an arbitrary set containing two elements {_, .. } would be defined via:

(a6} ¥ add@ b))

then sets containing three elements would be defined in terms of this via:

(@b} ¥ adda {b,ch)
and so on. Enumerated maps and sequences would be defined analogously using addm
and cons respectively.

Rules describing these constructs would also be developed in a similar recursive manner,
so that rules such as:

a:A; bA

be {ab}

aA
{a.a}l = {a}

a:A; b A
{a,b} = {b,a}

would be proved using the definition of {a,b} together with the derived rules for {a},
then rules describing {a,5, ¢} would be derived from its definition together with the de-
rived rules for {a,b}, and so on. In this way, definitions and rules describing any given
enumerated collection can be developed,

The main advantage of the first (“translation™) approach is that it is generally applicable
and does not require the introduction of a whole slew of new definitions and the devel-
opment of rules to describe them (though it is likely that additional rules dealing, for
instance, with expressions involving multiple set union will be required). On the other
hand, it suffers from the big disadvantage that one has to reason about constructs which
bear only & tenuous relationship to what was actually written in the specification, whereas
the second method retains the form of the expression written in the specification in the
theory. Given that it is generally rare for enumerated collections having more than a few
elements to be used in specifications, this faithfulness of the theory to the original spec-
ification probably outweighs the disadvantage of genericity, which argues for preferring
the second treatment.

254 13 Advanced Topics

13.6 Patterns

The notion of patterns is pervasive throughout VDM-SL, and though they have been used
earlier (for example in Chapter 10) they merit further consideration here.

A pattern is an expression that contains variables that are to be bound as a result of
matching the pattern against some value. Patterns can be used in many places where
simple variables are used, for example:

in function/operation arguments:

F:TxTree - U
Flmk-T(x,y), mic-Tree(d, [mk-Tree(d, D]} & x+y+d+g(t)
in quantifiers:

Ymk-T(.,w,s):T-—(waASs)

in set comprehensions:

{x+y| mk-T(x,y) e aTSer-x>y}

in let expressions:
let mk-T(x,y) =f(zyinx+y

and, of course, in cases expressions:

cases € .
mk-T(x,) —x+y,
mk-Uly,_,x) > vxx

end

Patterns play two roles in VEBM-SL: to limit the realm of discourse and to associate
variables with subexpressions. The first role is miost obvious in cases expressions, but
can also apply to quantified expressions. For example:

omkT(x, x): T - P(x)

could be considered to be true if P(x) holds for any T whose two components are equal.

Such quantified patterns have not been introduced into the logical framework presented
thus far. Though the quantification above may appear “obvious™, there are some subtle
points to be made.

If T is defined as:
Tuowa:C
b:C

then it is tempting to treat the above quantification as “syntactic sugar” for:
veT - P(ra).

However, this is incorrect. The original formula “ignores” values of T whose fields are
different, whereas the formula above does not. (Suppose for example that there are some

13.6 Patterns 255

x,y: C with x Yy, such that P(mk-T(x, ¥)) is false.)
It is also tempting to “remove” T from the quantification, and treat the formula as:

Vx: X - P(x).

This is equivalent to the original formula, because mk-T is total on C x C; however, if
T had an invariant, then the latter formula would be overstrict (consider some y: C such
that both inv-T{(y,y) and P(y) are false.)

The subtle point of quantified patterns is that it is necessary to consider what the quan-
tification means for values that do not match the pattern (an issue that does not arise for
simple variables). In the case of the universal quantification, only values of T that match
the pattern should have components that satisfy the predicate. This suggests the use of a
predicate “matches™ as a guard in the quantification; then:

Vnk-T{x,x): T - P(x)
could be treated as a shorthand for:
V. T - t matches mk-T(x,x) = P(x)

However, this 1s not satisfactory as the variable x is now free (and cannot be bound by
the “matches” predicate and subsequently used in a distinct subformula). The solution is
two-fold: firstly, define:

t matches mk-T(x, x)

using the existential quantification:
A C ot =mk-T(x, x)

and secondly, replace the x in P(x) with a selector expression in ¢; in this case either P(1.a)
or P(t.b) will do. Consequently, the original formula can be considered as a shorthand
for:

Vel (Ax:C -t = mk-T(x,x)) = P(ta)

Thus, Vmk-T(x,x): T - P(x) is not as obvious as it first appears! The shorthand version
can be used, but it should be noted that its translation into the definition is not a simple
syntactic process: it requires knowledge about the composite type definition T (the types
of its components, the names of its selectors, and their relationship to the arguments to
the constructor.)

The corresponding approach for:
kT (x, x3: T - P(x}

gives:
AT - (3 C -t = mk-T(x, x)) A P(ta).

Note the use of conjunction instead of implication. As a simple exercise, derive the
universal quantifier form from the existential form and the definition of V in terms of 3
given in Chapter 3.

Where patterns are used as function arguments, it is possible to reproduce them in the

256 13 Advanced Topics

corresponding axioms and obligations. For example, given:

sum. T :T — N
sum.T{mk-T(x,v)) & x+y

then the corresponding definition axiom can be given as:
mk-T(x,v3:T; x+y:N
Sum Tk TG My =2 +y
where the metavariables of the rule are x and y. Note that to replace an application of

sum.T to an arbitrary expression ¢ of type T by the body expression, it is necessary to
rewrite ¢ to the form mk-T(e;, €2}, so that x and y can be matched to e, e; respectively.

Patterns can contain wildcards, which represent “don’t care” patterns, for example:

diff . W:W >N
diff - Wimi-W(x, .,y & x-y

There is no notion of “don’t care” value in the logical framework; however, these can
be replaced by “throwaway” metavariables in the corresponding axioms and rules, for
example:

- mie-W(x, de,y) W ; x—y:N
dff ok W, de,) = 2=y

Note that when a pattern contains several wildcards, a separate “don’t care™ metavariable
is required for each.

The above discussion has centred upon composite (record) patterns. Similar technigques
can be used for other forms of patterns (set epumerations, set unions, sequence enumer-
ations and concatenations).

Patterns of the forms A\ B and 53 ™ s, (where A, B, 51 and 52 can be pattern variables or
compound patterns) can introduce problems with determinacy. For example, the pattern
AU B (with A, B as pattern variables) can be matched against the set {1,2,3} in several
ways, suchas A= {1},B={2,3},or A= {13}, B = {2).

13.7 Other expressions

13.7.1 Let expressions

The simplest use of a let expression is to introduce a shorthand notation, in the form of
a new variable, to stand for some complicated expression. Thus, for example, one might
“factor out” the common expression #° + 7n+ 13 appearing in the formula

P+ Tn+ 132+ 3+ Tn+13)+5

by writing instead
letx=m+Tn+13inC+3x+5

Here, the let expression can be interpreted as the instruction “replace x by the expression
n? +7n+ 13 everywhere it occurs in the expression x* + 3x + 57,

13.7 Other expressions 257

The most general form of such an expression is then
letx=vyin P(x)

with the implicit instruction being to replace every occurrence of the variable x in the
expression P(x) by the expression y. Clearly, one would expect this general let expression
to be shorthand for P(y), though care is needed to ensure that the substitution actually
produces a sensible expression. For example, one would not expect the expression

letx=n*+1inye domx

to be meaningful as n® + 1 is not a map, and therefore does not have a domain, Some
guard is therefore needed to ensure that the expression P{y) represents a valid expression.
This takes the form of a typing hypothesis, and leads to an axiom describing this form of
let statemnents of the form
P(y):A A
(etx =y in PCOY = PO

This form of let expression is straightforward to describe axiomatically because, provided
it denotes a value at all, that value is uniquely determined. However, VDM-SL also
admits a form of let expression, sometimes called a “loose” let expression, where a range
of different values are all possible. Here, the variable x is defined implicitly by giving
a predicate P(x) which it satisfies instead of explicitly via some equation (analogous to
defining a function in a specification by means of a postcondition instead of an explicit
definition). The most general form of this kind of let expression is

let x1 A be sA. P(x) in Q(x)

with the looseness arising because there is no guarantee in general that there will be only
one value of x of the correct type A satisfying the predicate P{x).

When the typing information and the predicate do uniquely determine the value of the
variable, this kind of et expression is no more difficult 1o describe axiomatically than the
simpler equational let expression introduced above. For example, it is clear that the value
of the expression

letx:Nbest ¥ +3x=4in x> +5x+7

must be 13 because the typing information and the predicate together mean that x must
be 1. More generally, the case with arbitrary predicates can be described axiomatically
via the rule:
Wx:A-PR); OQUx:A-PR)):B
(el A be st P() in Q) = O A - PE) %

Here, the unique existential operator 3! and the unique choice operator 1 (see Sec-
tions 3.5.2 and 3.5.3) are used respectively to ensure that there is a unique value of the
variable x and to determine that value. The second hypothesis then ensures that the pred-
icate O{x) is well-formed for that particular value of x.

Consider, however, what happens when the predicate and the typing information do not
uniquely determine the value of the variable x, as in

tetx:Zbest P4+3x=4inxX+5x+7

258 13 Advanced Topics

In this example, there are two possible values of x, namely 1 and -4, and since these
give rise to two different vatues of the overall expression it is no longer quite so clear
what that value should be: should it be 3 or 137 In fact, according to the semantics of
VDM-SL, it can be either of these. More generally, when a set of possible values exists,
the value can be any value in that set.

This sort of arbitrariness could be captured using the non-unique choice operator £, anal-
ogous to the unique choice operator ¢ but returning simply some element from a possible
set of elements satisfying the appropriate predicate P(x). This operator could be described
by axioms analogous to those given for i in Section 3.5.3, obtained simply by replacing
1by € and 3! by 3:

Ix:A - Px) A4 - Plx)
efom] -2 Paya & [pewa Py *

and it is tempting to try to apply the same transformation to generalise the axiom describ-
ing the form of let expression where the variable is uniquely determined to the case where
it is not:
A P(x); Qlex:A-Px)):B .
(el x: A be st P(x) in Q) = Olex-A - PGY)

The difficulty here is that the above axioms mean that the choice operator £ is under-
determined but deterministic, that is that the expression € x: A « P{x) denotes an arbitrary
element x satisfying P(x) but that every occurrence of this expression denotes the same
element (because the rule “=-self-I' means that any expression that can be assigned a type
is equal to itself). This in turn means that the let expression described in terms of € is
also under-determined but deterministic, that is that it will take any value of the range of
possible values but it will always take the same value. Unfortunately, this contradicts the
sernantics of VDM-SL which allows the same let expression to take different values in
different contexts within the same specification. For example, if two auxiliary functions
are specified via:

fZ-12
@) & z4etxZbest ¥+3x=4in®+5x+7

g7z
2z) B z+letxiZbest 2 +3x=4inx’+5c+7

then f(z) and g(z) are not necessarily equal because the let expression does not necessarily
have the same value in both contexts. Thus, the formulation in terns of 3J and & does not
work.

In fact, it is impossible 10 capture the balance of determinism and under-determinedness
required by the VDM-SL semantics with the machinery available so far. One might
try to solve the problem by introducing some non-deterministic analogue of the choice
operator £, as this automatically ensures that in the example given above the two functions
f and g will not necessarily return the same value when applied to the same value z,
However, this freeness has the unfortunate side-effect that f{z} then does not necessarily
always represent the same value in different contexts within a specification (ie. f(z) is
not necessarily equal to f(2)), contrary to the semantics of YDM-SL which constrains

Ata s Somaana LA g ilridd d

functions to be deterministic. Thus the problem has simply been inverted — instead of
having to find some way of describing non-determinism with a deterministic operator it
is now necessary to try to incorporate the required determinism into a description based
on a non-deterministic operator.,

Another possible solution: might be 0 introduce some form of parameterized let expres-
sion, with the parameters recording the details of the context in which the expression
occurred within the specification. This seems a more promising line of approach and its
investigation has been taken up by Larsen ([L.ar93]), but preliminary indications are that
a large amount of contextual information is needed, making the manipulation of the pa-
rameterized let expressions exceedingly cumbersome. Loose let expressions are therefore
considered to be outside the scope of this book.

13.7.2 Cases expressions

The cases expression of VDM-SL is a powerful tool; unfortunately it is also difficult to
handle in a proof-theoretic manner. In this section, some possible approaches to reasoning
about cases expressions are presented, though none of these is wholly satisfactory.

The general form of a cases expression is:

cases E
PGIL], Patm, .. E
Patyy,Patys, ... —> E,

Patn1,Paty, ... — Ep,
others — E,

end

where E, E; and E, arc expressions, and Pay; are patterns. Naturally, the patterns can
contain variables to be matched, and E; can mention the variables in Pat;,.

The value of such a cases expression js the value of the right hand expression of the first
case containing a pattern that matches E. Thus, evaluating a cases expression involves
checking whether or not £ matches each Pat;; in turn; if a match is found, then the result is
the correspanding E; (with variables in the expression replaced by their matched values)®.
If none of the patterns match, then the result is the value of the others clause.

One approach to a proof theory for cases expressions is to give a set of “evaluation rules”
whereby a cases expression can be simplified. Consider a cases expression of the form:

cases s :

[-0,

(@] ts — 1+ length(tls)
end

then the following rules could be used to simplify occurrences of this cases expression in
proofs:

'If more than one pattern matches for the same case, then it would seem natural to use the bindings
from the first pattern; however, the semantic interpretation in VDM-SL implies a non-deterministic choice.

A £ AT HLIVAAS & MR

X 5=1]

cases § @

[-0,
[al ™ tls — 1 + length(tls) = 0
end

s XN X, dsi X 5= [al” ts; 1+ length(tls):N

cases s |
(1 -0,
[a] ™ ts— 1+ length(zls) = 1 +length(tls)
end

This relies on being able to treat variables in patterns as metavariables in rules. The
hypothesis 1 + length(tls):N is needed to ensure that the equality in the conclusion is
well-formed.

The above rules are reasonably straightforward, because this is a special form of cases ex-
pression, where the patterns are both mutually exclusive and exhaustive (every sequence
will match precisely one of the patterns). If the patterns were not mutually exclusive, then
the second rule would require an additional hypothesis stating that 5 did not match [].
The rule for the third pattern of such a cases statement would need two such hypotheses,
and s0 on.

An alternative approach would be to give rules that “destruct” the cases expression in a
list-processing manner, An informal statement of such rules might be:

e: X; e matches pary; ;A
s el

cases e :
pai - e,
= €]
end
and;
_ e:X: —¢ matches pan
- ext
cases ¢ .
pan — ey, 10—
patz - ea, - patz — ez,
end end
eval-case-others e:X; eg:A
cases e !
others — ¢y = ¢&p
end

It is important to note that ‘eval-case-next’ is incorrect as stated above. It is incorrect to
assert the equality in the conclusion without guaranteeing that either side is well-formed.
Consequently, ‘eval-case-next’ should have a hypothesis stating that the right-hand cases
expression is well-formed (has a type). There should be 2 corresponding set of forma-
tion rules for cases expressions, which work by a similar process of reducing the cases

Arat ASRIVE WALHCOO LIS 201

eXpression.

In the logical frame presented, it is not possible to state evaluation rules (and correspond-
ing formation rules) in a sufficiently generic form to cover all cases expressions, because
there is no way to say “‘e maiches par” generically. To make this approach more general,
it would be necessary to make matching of patterns against expressions, and the resulting
bindings of pattern variables to expressions, “first-class citizens” in the logical frame, that
can be manipulated in inference rules.

Note that these rules say nothing about a cases expression which has no matching patterns
and no others clause.

A third, less direct, approach would be to translate a cases expression into a conditional,
whose conditions include “match” tests (as introduced in Section 13.6); the body expres-
sions would have instances of pattern variables replaced by appropriate access expres-
sions. So, for example, given:

T:a:N

b N
Use:N
cases € :

mk-T(x,)= x+y,
mk-U(vy —2xy,
others — 0
end

would become:

if N, y:N - e =mk-T(x,y) then e.x + e.b else
if I:N- ¢ =mk-U(v) then 2 x e.c
else O

For the sequence example, the corresponding condition is:

if 5 = [] then O else
if Ja: X, tls: X" - 5 =[a] " ds then 1 + length(ils)

though the second conditional is redundant (at least, when 5 is a sequence expression).
Such translation only makes sense when the original cases expression is well-formed.
When there is no others clause, for example in:

cases e :
mi-Tx, y) =2 x+,
mi-U(y) — 2xv

end

then the supplied patterns must be exhaustive for (all possible values of) the expression
e

(BN, N - e =mh-Tx,y) v (GviN- e = mk-U(v))

LWL 48 AUYAIILAAL LUy

13.7.3 1 expressions

The VDM-SL p operator provides a mechanism for describing modifications to the fields
of an element of a composite type by explicitly listing the fields which are to change
together with their new values. For example, taking the data-type ATC from the case
study (see Section 12.3) as a representative composite type, the expression

(G, onduty — cs")

where o: ATC represents the result of replacing the onduty field of & with the value ¢5”.
Another way of putting this is that, if ¢ is of the form mk-ATC(cs, con, cap, loc) then
o, onduty v cs’) represents the expression mk-ATC(cs’, con, cap, loc), provided that
this value satisfies the invariant on ATC. This condition can easily be accommodated by
incorporating it into the hypotheses of a rule describing the above replacement axiomat-
ically, for example via;

o ATC, mk-ATC(cs, o.control, ¢ .capacity, 6 location): ATC
o, onduty v sy = mk-ATC{cs, o.control, & .capacity, o Jocation) X

but this is far from a general solution — not only does it only describe the i operator for
the specific composite type ATC, it also only deals with modification to the onduty field
of that type.

A completely general treatment of 1 would have to be parameterized over an arbitrary
composite type having an arbitrary number of fields, which would mean that the ¢ oper-
ator would have 1o have variable arity and that the notion of being the mk-function or a
selector function of a composite type would have to be formalised. Both of these fall out-
side the logical framework used here. The best bet, therefore is to treat each (expression
used in a specification separately.

Two approaches would seem to be possible here. First, a different it symbol could be
introduced into the theory for each different combination of composite type and those
fields which are modified appearing in the specification. In this way, the expression
(o, onduty — cs) considered above might be described in the theory by a symbol
Uare,t, Tepresenting general modification to the first field of the composite type ATC and
described by an axiom, analogous to the one given above, of the form:

0:ATC; mk-ATC(cs, 6.control, G capacity, ¢ location): ATC |
Uarci (0, c8) = mk-ATC (cs, 0 .control, 0 .capacity, o location)

Expressions involving y applied to different components of an object of type ATC would
then be described by different i operators. For example, the expression u(o, control
con, capacity +» cap) would be described by the expression Harc23(0, con, cap) in this
scheme, with the symbol fiare 23 being defined axiomatically via:

o ATC; mk-ATC(o.orduty, con, cap, ¢ location): ATC .
Uarc2a(0, con, cap) = mk-ATC(G .onduty, con, cap.c.location) ax

The advantage of this approach is that one axiom is sufficient to describe each of the
different gt symbols introduced. The corresponding disadvantage is that the number of
axioms proliferates annoyingly if the specification contains a large number of different y
expressions.

13.% Uther types 263

The other possible approach is to “translate out” all the 1 expressions in the specification
before attempting to reason about them, replacing them with the appropriate mk-function
applied to the appropriate fields constructed exactly as described above for the other
possible treatment. The fact that the invariant has to hold for this replacement to make
sense would then appear as a proof obligation to show that the expression replacing the
it expression is of the correct type. The advantage of this approach is that no extension
of the theory is required. The disadvantage is that any proofs involving the “expanded
out” i expressions no longer explicitly depend on these expansions being well-formed.
The effect of this is that, even though a proof might have been completed successfully,
it is only valid if the well-formedness proof obligations on which it implicitly depends
have all been discharged. Although this is a subtle distinction, it runs counter to the tenet
assumed throughout this book that any result that has been proved from axioms alone
is valid. For this reason the strategy of representing each different y expression by a
different symbol in the theory is preferred.

13.8 Other types

13.8.1 Tokens

The distinguished type token in VDM-SL is a source of countably many structureless
values on which the only defined comparator is equality. It is used in the definition of
types for which the specifier does not (yet) want to give a representation. For example,
in giving an abstract specification of a programming language, it may not be of any
importance what the representation of procedure names is, or one may wish to defer this
detail to a later refinement stage:

Proc.Name = token

The type definition above results in a single type constant Proc.Name being added to
the theory of the specification. This allows one to deduce that equality is defined on
Proc.Name by ‘6-=-"_ The fact that the class of tokens is infinite could be captured by
an axiom of the form:

e pns: Proc.Name-set
Proc.Name-infinite

3p: Proc.Name -p & pns

A specification may contain definitions of a number of token types, for example:

T1 =token

T2 =1oken

This does not mean that T1 and 72 are the same type, nor does it mean they are distinct
types: they are each infinite classes of structureless values. In the theory of the specifi-
cation, elements of the types are denoting, and therefore equality is defined on them, but
it is not possible to tell whether the types are the same or not.

264 13 Advanced Topics

13.8.2 Quote types

A quote type consists of just one value denoted by the same character string as the type
itself. In a specification, quote types are distinguished by a special character set. Such
types are used to represent constants. An enumerated type is a union of quote types. For
example, a specification of part of an operating system might contain a definition:

Component = KEYBOARD | MOUSE | SCREEN

This introduces three quote types: KEYBOARD, MOUSE and SCREEN. Each of these
has just one element of the same name as the type. Thus:

MOUSE: MOUSE ¥

m: MOUSE

MOUSE-singleton " MOUSE” Ax

Quote types of different names are distinct, so that it is necessary to give axioms differ-
entiating the types, for example

[KEYBOARD-MOUSE-disjoint| <remmamr—rmree— A

for each possible combination of quote types introduced in a specification.

Quote types are usually introduced in the context of a union type, as shown in the example
above. The intention here is to achieve the effect of an enumerated type. The rules for
type union allow one to prove that

d: Component
d = KEYBOARD v d = MOUSE v d = SCREEN

13.8.3 Characters

The type char consists of the VDM-SL character set. Values of the type are distinguished
by the use of quote marks. The type is completely described by a set of axioms stating
that each element of the character set is of type char. These include:

AX

—————AX ———— g ——AX
‘o’ char ‘a’:char ‘4 *:char

Text strings, shown in specifications between speech marks (“...”), represent sequences
of characters {elements of the type char™).

Part II1

Directory of Theorems

Chapter 14

Directory of Theorems

This final chapter forms a “reference manual”, aimed at readers who wish to apply the
proof techniques described in the earlier chapters to their own examples. Sections 14.1
to 14.8 correspond in turn to Chapters 2 10 9. Each consists of separate listings of: the
axioms of the theory, arranged in logical order (that is so that axioms defining a particular
concept appear before those using that concept to define some other concept); the defined
symbols of the theory, arranged in the same order; and a collection of useful derived rules,
arranged in “alphabetical” order.

These listings include all axioms, definitions and rules mentioned or used in the main
body of the text, and in addition include extra “useful” derived rules. However, these
lists cannot be exhaustive, so the reader should ajways be ready to invent and prove new
rules as the need arises.

Sections 14.9 and 14.10 summarise the templates for the axioms, definitions and proof
obligations for the various components of specifications and reifications which were given
in Chapters 10 and 11 respectively. Generic examples are used as the basis for these
tempiates.

The final two sections of this chapter contain the specific axioms, definitions and proof
obligations for the ATC system discussed in the case study (Chapter 12). These sections
also include subsections Hsting the validation conditions which were discussed therein
and a selection of lemmas which are useful in discharging the proof obligations and
the validation conditions. The first of these two sections deals with the abstract ATC
specification discussed in Sections 12.3 and 12.4; the second deals with the concrete
specification and the refinement, discussed in Section 12.5.

14.1 Propositonal LPF

Axioms

true Ax

egvenerbe eabe

v-E Ax
é

268 14 Directory of Theorems

1€
Rt &) AX
e
[
—=-I AX
g

— €3, meL
coneradiction | —=--—— AX
[4/]
—i{€ VvV &2
] e v e
@z

£y Vv &
—Em e el
—€]

€1, Ty

B R el - §.
— —(e1 v ez)

Definitions
def
E1AEy = —}(—181 v '"”162)

false q=6f —true

def
€1 = & = -1V

def

g & &2 {e;y = e2) A (€2 = &1)

be def gV e

Derived rules

grag)vie e
lA-v-disL-comract ey 2) v (e)
2 Ale2ves)

g1 A{ea v e}
(e ner) v (a1 Aes)

491 LAUPQIIAL Lar T 269
e1AE) AL
€1 Az Aea)

21 A ez Aes)

~ass-right
o ne) e

ey Aéz
€2 A€

%

€15 €2

gL A

e ney e ke

‘—e;;"“g;—

&1 A€z, 225‘8

A-subsright | —————
[N
661, 6(.’2
5A—1nhen 5(~e2)
< Sey; e F bey
-A-inherit-sqt | —er—-———-
6(31 A 92)
Gey; 8ey
6 inherit
[5-cvinherit] 522

621, 582
TR

dey; e - Sey

(B it ey
(e ot
LRl v

P av

ey 9oy
&-v-inherit
[8-veinherit] — et 2 5(3 v

581; —1£] + 622

~v-inherit- - @ @
e

Sey; ey ey —ep b ey

e

[
el 5o

2y & &3
—¢f & e

-]

e; <=>ez

comm
&y < €

(a2

Ci1AE Vel AE

2) & (,’z é1
D R
e @ e
[-E-left-d | — s
€1 &9 €r, 1€
[Edefe — |22 82 241
&3
= 8y, &
[Eright] =252
g & £
<>-E-right-§ | g
5er
g &> e3; e
e>-Eright- - | 2t 182
—1£j
[T
€] &> e2

oA -0

g1 & &2

i4 LAICCUN Y Of 1RCOICHIS

A5 4 FIOPUs el al e 271

=€y ATEs
€1 & &

¢
3
]

-~ €1, &2
€; &= &7

g
]

de

-gelf-f [———
gé>e

€1, B A B3 => €3
g2 =» &3

I

A-left-E

€ = 833 =@ F ey

=5-—-CONseq o = &

e = e3; ez ey
=>-Con e
€] = €3

€)1 = €2
—éy B g

iu
3 |z

€L = €y, €
€

-E-left

e = g; e
=5 Brright] —mien i 152

—€)

fers et Fep
€ = &3

7

5
=L Jeft-vae | ———
€ = €2
€1
e = e

=>-I-right-vac

Se
e=>e

=>-gelf-]
g = €3, &3 = &y

gy = &3

—{f; A€
TEdai]oleine)
=gV gy

e1;, —=erAe
—-AElelt] — 102l (ey e2)
e |

4]

Bk

, 22; (e A)
—-n-E-right i (s nen)
183

—é vV —=é
Cortaa] LY 2

—{e1 Aez)

[Feadief] —— 2
-

{er ne)

Tright] ———2t
e e

ey es F —ey

e

~1{€y = 3)
ComE @)

e Aey

€] = &
CoEmesa)
-z

2] =» &
1

215 ey

] | —A 12
= e = e

olave)

— €1 AMez

=€) Aén
[moveddeM | —— =

(& v &)

- false

. {e: ve)anle ves)
v-a-dist-contract

e v (e né3)

FrS— ey v {ey A e3)
W-A-(1S1-GX
P (e1v ez) aler v es)
{eyve)ves
v-ass-lcft e ——
ey v (e v e3)

avi@avey)
v-ass-right
(e, venves

25 AAIIAAUL Y U L DGV CLELY

4L DICGIULAC Lrl” WL CUudlily 412

ey VvV éz

e
e ve
é; vV ey e
V'E'[cfl""’) ——m-‘“_"“"'_l—'
)

€1V €2, ™¢g
e
1

€1 Vv €7 ell-e

e v ey

eitven epbe

v-subs-right | ———-—rrrr———
e ve

Se; e |- talse

false
[l] o>

14.2 Predicate LPF with equality

14.2.1 Predicate LPF

Axioms
I A - PO
y:A POY e
—) ax

p
a:A; Pla)
BNl eyee-en Py A

g GA ~EnA PE) |

-y P(ﬂ)
AL —P(x)
—GA o)
xAE8P(x)

mﬂ“

LI I RALGCIULY U LHICULTIS

Definitions

def

Vx: A Px) A P

(=3
=9

inhabited(d) = IxA-tue

Derived rules

VxiA-Vy:B- Plx,y)
[¥-F-comm G A Play)

@A BB, Vx:A-Vy:B-Plx,y)
Pl

x:A, y:BE, Pxy)

VA -Vy:B P,y

VAN B P

XA, yiB, Ptx,y) b, Q(x,y)
VA 5B)

- Va A P AV A-Q)
V/-a-dist-contract VEA- PO A QW

_ VA P(x) A Q)
e e

—— VxiA-S8P(x); Yy A 8000
VzA- 8(P(z) v Oz)

Vxi A —Px)

Vx:A-P(x) & Q)

Vx:A-00Q(x)

Vxi A« Px) & Q@)

VA~ 6P)

Vx4 Px)
Ak Px) < Q)

V- &>-subs VA~ O

Vx:A-6P(x)
YA Px) < Q)

A S0

L FrUArcale Lt wiln equalily 213

Vx:i A P(x)
AL P = 0

Vi4 00

- VoA P v (VA-OG)
Vx:A - P(x) v Ox)

VA Q@)
VA PG v 00

_ Vx: A P(x)
VxiA- Plx) v Qx)

Vx: A - P{x); inhabited(A)
m ErYWI0))

VA —P()
(¥ > = BaeM]-—oops

aA; Vx:A- P(x)
P@

Vx:A-Vy:A Plx,y)
V.x:A ‘ P(x.v-x)

y:A L P)
YxiA-P(x)

V-fix

Yy A-P(y)
xA, Pk Q)
Vi - OO

x:A, y:BE OP(xy)

SOVC A Vy: B PGy

y:A L 8P()

Ix:A-Vy.B-Px,y)
VB 3 A P(x,y)

Ax:A Yy B P(x,y)
x4, y:B, Puy) b, Q(xy)

e A- Vv B O,

‘ A A- Pl A Q)
Ty A-PON A @24 - 0@)

210 44 LAAreciony oI 1ACOrCIns

HAx: A - Plx) A OX)
i

- A - P(x) A O(x)
oA PR

A -3y B-Plx,y)
Jy:B-duA- Plx,y)

e ATy B PR
x:A, y:B, Pk, e
P

33-E

@ a.A; b:B; Pla,b)
— IxiA-Fy:i B - P(x,y)

I A-Ty:B - Plx,y)
x:A, y:B, Px,y) k, O(x,)

DA BB O y)

A A - P(X)
AL P(x) & O@)

{3-®-subsi e A 00

dx: A P(x}
XAk (PO) = Q(0)

Bosibs] 5

- HxA-PE) v @Ax: A Q)
AP v Q)

_ I A P v Q(x)

(A - POy v QA - 0()
A A - = P)

B vl = rey

a: A Pla)
A - x=anP(x)

x4 - Pix, x)

dA- Ay A Plx,y)

Iy A-PY)
xA, P(x) & Q@)
54 00)

14.2 Fredicate LPF with equality 277

=~ (Vx: A - P(xX)
RETy e

- (VA P(x})
y:A, 2 P(y) I;, e

:

a: A, Pla)
~{¥Vx:A-=P(x))

—1-V'I
- aA; ~Pla)
—{Vx:A- P(x))
g hl (Ebc A- P(X))

14.2.2 Equality

Axioms

e
a=a
= b:4; a=b; Pb)
=-subs-lefi(b) F(a) .
- a:A; a=b;, Pa)

B
[5=1] a A b A

Definitions

81 # ¢z C_{"_e__f —|(81 =g)

Derived rules
m a. A b A
“Sa=by

aA; biA
=t o= pvazs

278 14 Directory of Theorems

ad;, bA, a=bte a=bte
e

=-Cascs

aA; a=b; Ela)B
E{a) = E(b}

=-gxiend(a)

a:A; a=b; E(b):B
E(a) =E(b)

=-extend{b)

aA; a=b, P(D)

=-subs-left(a)

Pla)
- biA, a=b; Pla)
O

)
| 2

=-symm(a

LA

I U
o

<o

I

Ry
o

=-gymm{b

@A, a=b; b=¢

=-1rans(a)

a=
b:A; a=b, b=c
=-trans(b) prpmps
ypray CA a=b b=¢

a=c

@A a=ba=c

=-trans-left(a)

b=c¢
=-grans-left(b} b:A; ab==b£ a=c

cAya=ha=c

=-trans-left(c)

aA,a=c b=c¢

=-trans-right(a)

o
i
o

a=b
. A a=c b=¢
=-trans-right(b) 2=b

=-{rans

o
]
=
=
&
B
i
&

14.2 Predicate LPF with equality 279
— o a:A b=a
b
— E——y. biA; b=a
[omemeag] -S4 b=

aA
Sl 22
—{a#a)

aA; A a#b
[omm) -5 20220

14.2.3 Other quantifiers

Axioms
AlxA-Plx)
[etomm | T P A ¥

x:A - Pix)
@ P(y:A -P(y))

Definitions

Axd-Pr) B 3ed4 . POAVEA PO) = y=x

Derived rules

Jx:A-Vy:B-Plx,y)
Vy:B-3x: A P(x,)

BT spig=a
- HlxA-Px)v Q)
Alx:A-PO) v (At A O
HNxA Pk
B3l

IxA-Px)
y:A, P(y), Vz: A P(z) = z=yk e

:

280 14 Directory of Theorems

a:A; Pa), Vy:A-P(y) = y=a
3 A-Plx)

a:A; b A; Pla); Pb); Ax:A-Px)
: Pl

Ay APy
x A, P(x) F Q(x)

5 4-00)

a:A; Pla), A x:A-P(x)
(tx:A-Px)})=a

aA; ~(AlxA-PR)

—Pla@yvIzA P a-(z=a)

a:A; b A, Pla)y, P(b), a=b
(3t x4 - P(x))
(3 AP
oA PO

14.2.4 Conditionals

Axioms

cdind
o (fathenbelsec)=¢

A a

(fathenbelsec)=h Ax

Derived rules

a8 DA
o e (fa=athenbelsec)=b

da, b:4; ¢ A
(it a then b else ¢): A

éa
at-b:A

—akcA

ITE-form-sqt (it a then b else c): A

ATvins pdgibe LY R LULIDIUGIUED L0141

14.3 Basic type constructors

14.3.1 Union types

Axioms

w(A|B)
@At Pla)
b P&

b:B
TR
[-I-lef _'bm_g_.u A
b (A1B)
a:A A
@ @A|B) ¥
Derived rules
a A b: B
af{A|B)|C
[t ST @ Tor

a:Al(B|C}‘

I-%Swﬁght W

a:(A | B)

14.3.2 Cartesian product types

Axioms
(et S AXE
o] £

pair-form (a b) AX) Ax

L L 259 LAHCCIL Y U4 LA Gy

(a,b):AxB
ond (@B =5

PAXB
(s o] Z42E o

Derived rules

: s prAXE; =1 =
Pu:AXB; py fs;pl_p st p2 A snd py = snd py
Hy 2]

——r PiiAXE, pr=m
fst py =fst pa Asnd py = snd py

air-|-extend-left | ——; p:AXB

s e (AIC)xB
air-|-extend-righ ———p:AXB
e

14.3.3 Optional types
Axioms
[abfom] i - A

a: [A]; P(nit); b:A K P(b)

- Play Ax

t-1 -—&A
a:[A] X

Derived rules

ZB1A]

: (4]

a:
—|-exi w1 RS IV
[opt |-extend-right P [A | B]

{A]; a=ni

aT—

14.3 Basic type constructors 283

14.3.4 Subtypes

Axioms

LA | PX) >
Pla) Ax
a:d; P(a
1
L eAPE > Ax

LAl PX >

aA Ax

Derived rules

a:A; AL P(x)

o]

aA; b:B
XA, y:BE Pxy)

t-E-basic-2
s

aA; Pla), x:A, Pt O(x)

=4 O(a)

a:A; b:B; Pla); Q)
x:4, y:B, P(x), Q0 &, R(x,y)

o
a<xA|Px) >
T BIHIPES

XA | PR >
a<x(A|B)|PX) >

I subtype-|-cxtend-ri ght]

L AP >
y:4, PO)k O0)

b
a<xA| Q) >

284 14 Directory of Theorems

14,4 Natural numbers

Axioms

.

N
“suoo(m N A%
m N, P(O)

kN, Pk}t P(succ(k))

0 Ax

BN A
suce{n) #0

ni:N; no:N; succ(my) = succ(m)
Ax
Hy =Ny

pur oy L B
O+n=n

ny N N
+-defn-suce-left Ax
succ(n;) + np = succ(r + ha)

x-defn-0-left .____ﬂ__ Ax
Oxn=0

4 AN
x-defn-suco-left i raiN

Ax
succ(m) X ne = Ay X ng + 1

N N BN

< - £-defi e ——
;s;Skr::HSjAjSk Ax

Definitions

N def L nuNinz0 >

def

n>m Ny -m+k=n

o
-

nzm ' N m+k=n

14.4 Natural numbers 285

def
n<m = m>n

=
A
3
I&
3
[
A

Derived rules
- i N Nna: N
T8 > my
- ni: N ! N
T8(m<ny
LN N N
SUsj<k)

. - miN
>-irreflexive | ————
—(n>n)

niN, np N
Ll 7

nm>mvm=mvm>n

n Ny ne NG N oy > m > s
ny>n;

>-lrans

mN

201 n=0va>0

N, N n>m

n > succ(m) v n = succ(m)

niN; nN; onyp <n
1-98, M. 0N, M} 2
Ry #1y

_ - N
<-irreflexive | —————
—{n<n)

n: N N
e

mM<mVR=nVia<n

nuN; N netN o < mop mp <ms
h<m

nyh mp N

m = succ(ny) v nyp S Ry © my < succ(ng)

<-frans

286 14 Lhrrectory ot theorems

nN; P(O)
kN b P(succ(k))

[Ny

Hl N]

a0

N n=EQ
@ 1Ny

n: Ny; P(succ(0))
k:Ny, P(k) b P{succ(k))

Pin)

‘N

Ny saportypo] — s
[Ni-supertype} -~

n:N
e)

ne N il o+ =0
nm=0An=0

npelN; nacN; na N
(m+m)+hs=n+H+m)

aN; nacN
Hy+hy=Hz+ "

‘N

O g
B Ty 0=n

Ny ngiN
suce(my + np) = succ(ny) + ny

[+~defn-suce-lefs-comm |

ni:N; N

+defn-suce-right
ny +suce(ng) = succ{ny + m2)

AN N, N

X-ass
(hy X mp) X ns =ny X (e X n3)

aiN; naN
My XM= Xm

i EHHIC STLY a4

ni:N; n2:N

n > neN

nN
[O<n]5o7

wN

=0 Q|
0 S <0

mN

< M) § e ————

ni:N N o <m
On
1

—— AN, N >

suee(n;) > suce(ng)

nN N ny#n

succ(ny) = succ(ng)

14.5 Finite sets

Axioms

a:4A; 5:A-sot
add(a,s). A-set AX

a:A; biA; 5 A-set
ae qddh,s) <> a=bvacs
stA-set; P({ 1)
a:A, st A-set, P(s'), ae s, Pladd(a,s"))
Ax

5

s:A-set; dr e 5- P
yA yes Po)ke

[4

Ax

LOO 14 prreciory o1 1neorems

a:4; s:A-set; ae 5, Pla)
T e s PG) Ax

a:A; s:A-set; ae s, = (Gre 5. P
25 .

siA-sel; 1A, xe st —F(x)

Sy e s POY Ax

s:A-set; dlxe 5 P(x)
(yes Poa ™

siA-get; lxe 5-PX)

Plye s By A%

Sy A-set; 5y A-set
Ax
S Cs e Vae s -ae 5,

§1: A-set; 530 A-set
S T8 S S ESHAS#5

c-defn

§): A-set; 57: A-set

Si=R enchangs

[canddefn (3]~ Ty g A%

tA; siA- ;
card-defn-add aA; stA-set, ag s

A
cardadd{a, 5) = succ{cards) ¥

st d-set; 55! A-set
55 A-set

U-form

a:A; 1 A-set; 520 A-set
aEe SIUSH S AESH VAE &

e -i-defn

51:A-set; 53: A-set
51 M sy 0 A-sel

M-form

a:A; s;:A-set; 5u:A-set
aAE S NH S AE SIAAE 5y

e-r-gdefn

51: A-set; 521 A-set
s\ 5 A-set

diff-form

a:A; sy1A-set; 500 A-s
< -diff-defn ! 2:A-sel

ae SN &P AE SHIAAE 5

14,0 CINRNC SCLs 289
$: A-set-set
f
m Us: A-set Ax
a:A; s:A-set-set
| J-defn A
aeUsedres-aet ¥

5. A-set-set, 5% { } Ax

Ns:A-set
a4; s:A-set-set, s#{}
-("-def
gels& Vies-aet Ax

o 5: A-set A
Fs: A-set-set ¥

510 A-set; 57: A-set
s1€ Fr e85 S5 Ax
VA - 8P(x)
XA, PO Ef(xnB

ds:B-set - Vy:A-P(y) = f(y) e s
FO TxA - PR} Bsal

b:B
Vx:A- 8P(x)
XA, P L f(xxB

Hs:B-set Vy:A-P(y) = f(») e s
be {fix} | xA - P)} Ja:A-Pl@) A b f(a)

5 A-set
Vxe 5- 6P)
XA xes Pl f:B

dnB-set-Vye s-P(¥) = fy)e t
@) lxes PROY={fx) | xA - xe sAPQR)} Ax

Definitions

ae s (i_g_g ~{a e 5

—_

Vxe s P(x) def —3Ax e 5 2 P)

dlxe s P(x) % e $-P)AVyes-Pyy=y=x

{a} def add(a, { 1)

YU 4 Drectory oI 1neorems
{x:A] P(‘C)} {x { x:A - P(x)}
{fxytxe s} def fx) | xe s - true}

def

{f) tx: A} {fx) 1 x4 - true}

(o) ¥ (eNjigng))

Derived Rules

[(Oriestsa]

(@] GrepeaTi=a)
aA

{a}: A-set

s:A-sel; ViA-xe s = P(x)
Vics PO

a.A; 5 A-set; c;)zz;; Yxe s-P(x)

siA-set; y:A, ye sk P(y)

Vxe s Pix)

s:A-set; Vxe s- Px)
Vx:A-xe s = P(x)
siA-set; y:4, ye sk 8P(y)
8(vxe s-P(x))

8-¥-inherit-set

s A-set; x4, xe sE 8P

S < 5P

- a:A; s A-set
T 8lae s
51: A-set; 7t A-set
Y T8 e =)

$1: A-set; §p: A-set
= 851 © 52)

It LUHINE SOLS 71

51 A-set

5: A-set
aALags

s1iA-set; 5, =5
1 g o)Az Cs1)

S A-set; spiA-sel 51 S5 52 G
51 =85

51: A-set; $2: A-set
@A, ac sk aen
bid, besshbe s

siA-set; Bx:A-xe 5 AP(R)
rd re;

—-setE

s:A-set; dx e 5- Px)
de:A-xe s AP

s:A-set; Alx e 5- P{x)
yA yes PO), Vxes Pl = x=yk e

°

aA; siA-sel; ae 5 Pla), Vyes-PQY) = y=a
Alxe s-P)

aA; bbA;ZE {d}
aA

(et zear
@A b=a

be {a}

a:A; siA-set; su:A-sel; ae 51N 5
ae s AdE $3

a A; s1:A-set; sy:A-sel; a€ 51N s,

ae 5

294 1 DICClory O LRCUICHLS

a:A; s;:A-set; $p:A-set;, 2 € 51 M5
ae 5

e -m-E-right

arA: st A-set, siA-set; ae 515 A€ f2
ae sy M3z

m
¢

2
7

-

a:A; biA; s:A-set, ae s, be s
atb

€~ -CONlF

aA; s:A-set
aesvaes

a:A; s;iA-set; sy A-set; aE s{Us
ae S|vae s

e -E

I

a:A; sitA-sety 51 A-set, ae s vae 5
ae s1\VUs

& -U-f

aA; s1:A-set; Sy A-set; a2 g€ 52
ae s51\JUVs

e - U-I-left

aA; s1:A-set; 5y 4-set; @€ 5
ae s1\Js

& ~i-L-right

a:A; s5:A-set-set; ae Us

e-| J-E

Aes-ast
; a:A; s:A-set-set; dte s-aet
el aells
iE a:A; b:A; s:A-set, ae add(b, s)
A a=bvacs
aA; biA:; s:Asel, a=bvaes
a e add(h,s)
aA; 5 A-set
Eﬁﬂﬂﬁﬂ“ggag@;f

@4 5:h-seh a=b
-add-f-elem-= S

a. A, biA; s:A-set, ag §
a € add(b,s)

aA;, s:A-set; ae sthe, ae ste

A UG SCLY 293

a:A; s1:A-set; 52:A-set a € 51\ 5
ae S Aae 5

;

& -diff-E

a: A, sy A-set; 51:A-sel; ae
& difLE-Jot 511 A-set; 52 51\ 85y
ae s

@ A; spiA-set;, s A-set, g e s\ 5

e -diff-B-right
ae 5

aA; 5iA-sel; s5y:A-seh ge 5 ae
e i ! i R A AL
ae s1\5;

b:B; Vx:A 8P(x)
xA, Pk f(x):B
Is:B-set-Vy:A -PO) = f(y e s
be Ifx) | x4 - P(x)}
Ja:A-Playnb =fla)

€-set-comp-E

b:B; Vx:A. 8P(x)

x:A, Px)i; fGx):B
Jds:B-set- Vy:A-P(y) = f(n e s
Sa:A-Pla) A b=fla)
be {fx) | x4 - P(n)}

€ -set-comp-T

a:A; Pla)
Vx:A- 8P()
x:A, Pix) 5 flx):B

Js:B-set - ¥y:A-P(y) =3 f(y) e 5
fla)e {f0 | x:4 - P}

: iN; BN, BN
ke i Y ©isk<]

a A
YA 8P(x)

ds:A-set-Yy:A-P(Y)y > ye s
dEATPY)} & P(d)
a:A; Vx4 8P(x)
ds:A-set- Yy A - PO) = yes

2c sl ro)

a:A; Pla); Vx:A- 6P(x)
ds:A-set-Vy:A-Py) = ye s
ae {xA|P(x)}

bl A4 LANCLIOTY Of TNRCUTCIILy
aA; s:A-set; ae s
m-{a}-defn-e (a} A5 = (a]
a:A; s A-set; {atns =
ir\-{a}-cmpty-E 7 &E{S} s

PSS s1:A-set; 520 A-set; 530 A-set
M H
§1 (52U s3) = (51 Msa) W5 Msa)

m S[:A'Set; Sz:A-Se(; Sa:A-Set
M-U-QISE-TL
(51 8) NSy = (8§ M 83) U (520 83)
5i:A-sel; saiA-set; s3iA-set; (F1USRINS =
m-o-empty-E-left ! 2 3 & 2) 2 { }
$2 M8y = { }
- 51: A-set; saiA-set; s3:A-set; (USRI Ns ={}
M-t-empty-E-right
ssnss={}
51 A-set; spiA-set; s1A-sel, sisy={} s20e=
m-u-left-empty-1 ! 2 L ! 3 { }' 2 3 { }
(s1Us)nsy={}
- sy1:A-set; sy A-set; syiA-selh s m={}h siNs=
M-u-right-empty-I TR GRS { } { } { }

s1:A-set; 531 A-set; §3: A-set
M-458
(51 M $2) M S3 =81 (52 83)

s1:A-set; 52: A~set
S1 M8 =8 M8

51: A-set; 531 A-set
sinsn={xAdlxe s axe 5}
A-set
w { }sr\ ssf {}
5 A-
defn~{ }-right %ﬁ%{{“}“

a:A; spiA-set; sptA-set; a€ 5
=1 add(a, $1) O 33 = addla, sy O §2)

a A; s A-set, sy:A-set; ag 5
add(a,51) M & =510 8

m s1:A-set; s3:A-set; 51 S 52
r~J-right-
g St M2 =5

AT e A ALV JLl2 LeZl)

5:A-set

M-gelf | e
(sl e

a:d; sy A-set; 521 A-set; ag 5
—{add{a,5) < 52}

—-add-g-I-elem

D

atA;, 51tA-set; spid-sel, - (5 € 57)
—{add(a,5) < 52)

—-add-g-I-set

PR a:A; BB, a#bh
ar ag {b}
@ A; s;iA-set; sp Aset, A€ 105
aE s;vae 5

é-N-E

a: A; sy A-set; s A-sety a g 5,
ae siMsn

¢ -nf-left

a:A; s A-set; 55 A-set, a g 5
ae 1M

& -m-I-right

a:A; siiA-set; s A-set; g€ 5 US
ae S;Aag 5

"
¢
3

aA; 5 A-set; satA-set, ae s U
¢ -U-E-left | - 1) 52 > 1 WS
ae s

a:A; s1:A-set; sp:A-set; a ¢ 5| US,
ag s

& -U-E-right

a:A; sptA-set; s:A-set; a€ S A€ S
ag 5 us

!

&-U-

a:A; biA; s A-set; a ¢ add(h,s)
a¥braes

¢ -add-E

a:A; biA; 51 A-sety a ¢ add(h,s)

¢ -add-E-left
ag s

aA; b A, s:A-sety, ae add{b,s)
azbh

¢ -add-E-right

a:A; biA; s A-set; a#=b; a¢ s
ag add(h,s)

#-add-

aA; spiA-set; s A-sel, ae 51\ 5

¢ -diff-E
AE I VAE 5

I =

ST ASAIAWLLL T VR LISV wR LIS

a:A; sp:A-set; 5:4-s8t, g€ s
& -dif-1-left ! 2 22 : 2
ae s \s;

a:A; s1:A-set; s3:A-set; a g s
ae s \5

& -diff-I-right

aA; spiA-set; spiA-sel 51 S8 ag s
¢ -subset-f
aé 5

aA; VA SP(x)
Is:A-sel-Vy:A- Py = ye s
ae {xA|Px)}

gk

a:A; = P(a)y; YxiA- 8P
IsiA-set-Vy A - P = ye s

2% [CATPO)

a:A; b A; s:A-sel

add(a, add(b, s)) € add(b, add(a, s))

a:A; s1:A-set; s A-set; ae 5 5 C 5
ac s

@

51: A-set; 52:A-set
a:A,ae sikhae s

f1& 82

s1A-set
= 5Cs

5i:A-sel; 2. A-set; s3iA-set; 5 S8y 52 S5
51 & 83

c-trans

:A-set; 531 A-set; 531 A-
S[Set, SzAset 33 Asef

SspU sz 8) = {51 Us) M(s W)

e 51:A-set; $7:A-set; §1: A-set
w-n-dist-right
(51 M) s = (51 WU 83) M (52 U 53)

a:A; 5. A-set; s3:A-set
w-add-left-1
add(a, s1) U s2 = add{a, s; \J $3)

S a: A; s;iA-sel; sy A-set
£ 51\ add(a, s2) = add(a, 5| U $3)

§1:A-set; SaiA-set; s2:A-set
L/-ass
(s; USSR US; =8 WIS \5)

AT LI Wl L7

51: A-sety 530 A-set

el
—comim
5 U5 =5 US,

§1:A-sel; 59 A-set
sruss={rAlxe sivie 5}

5 A-se
w-defn- {} Eeft !
{lus=s
: A-set
-defn-{ }-left-rev L Aset
s=f{lus
5: A-set
w~defn-{ }-right| —————....
suil=s
5: A-set
w-defn-{ }-right-rev
S=sUl}

\J-comp

Yx:A - 8P(x)
VYw:A- §Q(w)
ds:A-set- Vy:A-Py) = ve s
drA-sel-VzA Q) =3 zet

{2A1PE) v 0@} = (xATPOO} U {y:A] QO))

s1:A-set; s A-set, 51 €85
S US2 =5

s A-sely 520 A-set; spiA-set; 5| © 53 $2 C 53
(51VUs) 8

[of subsets is subset |

51 A-set

SGs=s
51: A-set-set; s: A-set-set

WUs1 v s2) = (Usi)w (Us2)

5: A-set-set
Us={xA|3xse s -xe xs}
TO=IT
5: A-set

Tir=s

§1:A-set; 531 A-set-sel
W detn-add | - datr,52) = 51 O Uz

159 LATCLUL Y UL L RCOICHTLY

a:A; siA-set; 521 A-set; add(a,5)) & 8
add-c-E-left ! 2 (@ s) S5
S1 S8

1Ay 51 A-sety spi A-set; X
a A; 5 2 A-set; add(a, 51) < 82
ae n
a:A; s):A-sel; 53 A-set; gae 5 5] C 5
add(a, ;) S5

a:A; s:A-set

add(a,s) = {a} s

a. A, 5:A-set
add(a, add(a, 5)) = add(a, 5)

a: A; B A; s A-set
add(a, add(b, s}}: A-set

a:A; b A; s A-set

add(a, add(b,5)) = add(b, add(a, s)

- aA; s A-set
add(a,s)={x:A|x=avxe s}

— a:A; §;:A-set, st A-set
(add{a, 1)\ $2) € add(a, (51 \ 52)

a:A; siA-set; ae s
e

- s=1}
cards =0

5 A-set; cards =0

s={}

card=0-E

$1:A-set; 510 A-
il

card (s; \ 82} = (card s + card s;) — card (s; M 52)
51 A-set
-fi [—
s N
- s1:A-set; 53: A-set
diff-=-{ }-defn
[ditt= (et s O 25
st A-set; 530 A-sel; 510 A-set
diff-r-deM ! 2 2

SiN(szg) = (51N n2) U s\ 83)

tA-sel; $p: A-set; 531 A-
s1:A-sel; 52: A-set; 531 A-set
INS) s = (51 N3\ s

- 51: A-set; $9: A-set
diff-cc-I
A

511 A-set; 520 A-sel; 531 A-set
diff--deM | —" 2 A 5

SN2 Us3) = (51Vs2) M (51\ 53)

aA; s1:A-set; sy:A-sel ae s
diff-add e ! 2 22 d 2

aa’d(a,s;)\ 2 =5 \Sz

_ a:A; s1:A-sel; s2iA-set; a¢ 5
ff-add-I-
it add-Le | @, s 52 = addia, 5,5 53)

SliA'Set; Sz:A-Set
s\n={xAlxesiaxe 5)
5 A- se:
dl.ff defn- {}-Iefr. { TNs=

s A-set

s\ {} =3¢

diff-defn-{ }-right

- s1:A-set; sp:A-set; 5 €52
diff-I-¢
851 A 5 = { }

(6] - =Ty

s:A-set; XAk f(x):B

finite-set-i ;
drB-set-Vxe s-fx)et

a:A; s;A-set; ae §

s#{}

N
seee niiNp-set

| inhabited=snon-empty

| initial-interval-1-form | 5

_ENN
{i+ 1, ={0,.. . JN{0

N BN j<i
mterval—emt
[merva-empyy] =0 e

]

bt

AFi

As:N-set-Vy:N-isysi=vye s

iN; N

i 1- T e
[0 7 Neset

siA-set; s={}

inon—cmpty-set—inhabitcdl A e s

$: A-set

(B8] (e set 7 25)

set-j-extend-left 5: 4-sel
CL--exiend-iel e ——————
5:{B{4)-set
s A-set
t-|-extend-right | ——————
set-|-extend-rigl S (A | B)-sel

5:A-set
XA xe sk flx):B
t:B-set-Vye s-f(Ve ¢t
{fx)ixe s} B-get

|
set-comp-form-set-ident]

51 A-set
. xAEfxnB
1dem-gtobal[@ xe 5] Bsai

set-comp-form-set-

Vx:A-Px) & Q)
XA, PYEf(x:B

- ds:B-set-Vy:4-P(y) = f(y)e s
Yo 1 xA - P} ={fx) | x4 - 0W)}

siA-set; A E fOxn B

set-image-fi
{f(x}| x e s}: B-set

a:A

hose-=-
{x:Alx=a}:A-sel

Henid
{e:A]ee 5} A-set

VA SPX)
Vw: A - 80(w)
Js:A-set-Vy:A-P(y) > ye s

SnA-set-Vnd Q@) = zet
XA PR v Q(x)}: A-set

o T mefimhea fpase

L UG QLD o195

VA = P(x)
(e)54 7G0T = 13
Vx: A 8P(x)
As:A-set-VniA-Py) = ye s
{x:A | P(x)}: A-set

51: A-gel; 521 A-set
[ihose-form-e -¢ | ‘ ’

{xtAlxe s Ax& 5} A-sat

Vy: A PO) & Q)
— ds:A-set - VyiA-Py) = yes
| those-form-rewrite]
M {x:A] Q) }: A-set

5:A-set

s={e:Alee 5}

VoA Px) & 0

- — ds:A-set- VA - PY) = ves
[ihose-rewrite] AP} ={zA|Q(@)}

Vx: A - §P(x)

Yw:A- §Q(w)
ds:A-set-Vy:A-P(y) = ye s
JrA-set VA - Q)= zet

x4, Pk, 0@)

[@ATP@] < (B A1 0G))

51: A-get; 531 A-sel
SINHCH

51 A-getl; 5o A-sel
5 kY 2
L SINS S8

S1:A-sel; 52:A-set
51 (‘1(51\.5'2) =5\5

i S1:A-set; §p: A-set
san(i\a)y=1{} s: YO 812) ={}

$1: A-set; $21 A-set
¥ &)
1eW IR 516 (s1Us2)

|.s'1 ﬁ(S]\S2)=SJ\SQ,|

51 A-set; sp: A-set
Ly &) 2,
A 52 C (51 US2)

§1:A-set; 511 A-sel
! 1172 ! .S‘]U(S[\Sz)=.5‘1

peiv e A9 LAdeL i y UL LIICOICTILS

5. A-sell s9: A-set
StUS\s) =51US

|sxu(sz\sl)=s1usz|

S1:A-set; $3: A-set
s1N(siNS2) =511 8

|S[\(S;\Sz)=6‘1 ﬂ.fzf

14.6 Finite maps
Axioms

[oTAT B A

@A b:B: A -2 B

addm(@ v b,my:A =B X

= _ a:A; b1:B; bZBmA_""}B
[addm-overwrite] addm{a v by, addmi(a — by, m) = addmia s brm)

ad, b:B; A B mA - B ga=e
(addm-cormm] addmia — b, addm(c — d,m)) = addmic — d, addmia —= b))

mo:A — B; P({—})
@A, b:B, m:A -"s B, P(m), a& domm G o Pladdmia — b, m))

P
Gom{ml={] ™

a:A; BB, m:A -5 B
domaddm{a v+ b, m) = add{a, domm)

mg-defn-{»-a} m Ax
a:A; b:B; mA = B; ae domm
mgaddmia — b, m} = add{b, mgm) Ax
5: A-set
e e

ad; By mA - B siA-sel: ae s A
4 detn-addm-c sqdaddm{a v bom)=s4m X

dom-defn-addm

e @A; biB; miA - B; s1A-set, ae 5
| ¢-dofn-addm-¢ | s daddm(a — b,m) = addm(a 3 b5 dmy

A ARG LIRSS JUD

§: A-set
sqiol = (o7 &

@A, BB mA -2 B, siAset ae s
-defn- - Ax
<defn-addm-¢ s 4 addm{a — b,m) = addm({a — b,s {m)

@ biB A B sidset ae s
== sqaddm(a— b,my=s4m

5. B-get
BT M

adi bibmd DB sibetbes
— addm(a = b,m)bs = {@} 4(mbs)

@A, b:B; mA -5 B; s:B-sel; be s
addmia — b,m)b s = addm{a — b,mp 3) Ax
5. B-set
dcfn— rs}
prtetn- -} s = oy A
@A B mA 2B, s:Bsel, be s Ax
addmia — b,m) b s = addm(a — b,mbp)

aA; b:B; mA ZuB; siB-set; be s Ax
addm(a v b,m)bs = {a} 4 (mbs)

A, b B oA B

addniars b,my@)=5 "

a:A; b:B; ¢:A; mA -5 B; c#a, c& domm .
SRR addm{a — b, m)(c) = m{c) X

my A 2 By maiA 24 B

dommy = dommy; Va e dommy; - my{@) = ma(a)
=-map-defn - A
iy = m
mA 2+ B
t-defn-{—}-right —”“-{T?;;‘* Ax

a:A: b:B, myA - By mpA - B
on-a my T addm(a — b,my)} = addm(aHbml‘{“mz)

hiedet myA -2 B mayA -4 B
compatible(m, my) < Va e domm; dommy - my(a) = mg(a)

U= 14 LJHCUIONY UL LUCWICEH D

fs-1-1-defn mA = B A
2O T -1 (m) & Vx,y & dommt - mix) =m(y) = x=y

myiA = By my:A - B; compatible(my, my)
"
mywm =m tm

; mA—+ 8B A
P e o= 1)
a A, BB, m:B -5 Comy A2 B

mynt C dommy; a e domny; be dommy
o-defn-addm

my o addmia v b,my) = addm(a v m(b), ny o my)

s (=TT ™
m:A s By s:(A - B)-set
Vm,my & add(m,s) - compatible(m;, ma)
merge add(m, s) = m T (merge §) A

m:A < B

inv-defi
m = {m(a) — a|a e domm} A

Vx: A - 8P(x)
x:A, P} | f(x):B
x:A, Px) b gxx:C
ds:B-set-Vy: A - P(Y) = fiy)e s
Vay, az: A - Pla) A Plag) Af(an) = flas) = glan) = glaz)

F@ - g1 xA PO}B 2= C Ax

Vx: A- 8P(x)
xA, P(x}t f(x):B
x4, PO glanC
35:B-set-VyA-P(y) = f(y)e s

Vay, a1 A Play) A Plaz) aflar) = flaz) = gla)) = glan)
dom-defn-map-comp dom {f() o g(0) | XA - P(x)} - {f(x) (%A P(x)} Ax

b:B
Vx:A - 8P(x)
A, P b f(x:B
xA, POk gl C
Js:B-set-Vy: A Py = fWes
Vai,ap: A - Playy A Pl@) Afla) = fla) = gla) = gla)

be dom {f(x) v glx) | x: 4 - P(x)}
700 = g0 | %A - PO (D) = Ax

1 C VA -POAb=f(x) = ¢ =g(x)

L8 LCHIILC HLAps V)

5: A-set
Yxe s 0P(x)
XA xes P b fx)B
xA, xes PO gl C
3 B-set-Vye s-POY) = f¥) et

Mmap-compdita sl Va,a € s Play) A Pan) aflan) =fla) = gla) = g(@)
(mep-comp-def st o meixe s P} =

{fix) = gx) [x:A -x & s A P(X)}

Definitions
ALLB = <mA T Blis-1-1(m) >

a6} B addmia b, {))

- gwixes) € e gw | xes - e}

{flx) = g(x) | x: A} {f(x) —g(x) | x:A - true}

Derived Rules
KRR e wre=yn
T Ao
om {m+} ~domm = { }
a.A; b:B
IR prey s gy 3

miB " €y myA -Ts By mgmy o dommy
m
mompd —C

iy A s
S(m={—})

ap A; GZZA; be; m: A —”L-)B
¢ -com-acem- &(ay € domaddmiay — b, m))

G!A; mA SN B
o Sla e domm)

SUD I LATCCIOTY O LIICOICINS

3 T b:B; n:A = B
8(b & mgm)
5 W A B myA 2B
m 5(companble(m;,m2))
G| pA B

ik "8(is-1-1(m))
] aA; b4 mA B
d((a e domm A b & domm) A ma) = m(b))

: m A T By 51 A-set
iAo B

mA-—— B A-"sB
aA; mA -2 B, ae domm
{a} dm=m
T aA; b:B, mA -2 B
(aY daddma > bony = {a] 4
aitA; a A, BB, mA Z-B, a2 a

{a1} 4addm{as — b,m) = addm{ay — b, {a1} 4m)

m A = B: s A-set

s4mA - B

avA; artA; BB miA == B; a) € domaddm(ay — b, m)

dy =a; v a € domm

aitA; aizA; B mrA "= B
m ay € domaddm(az — b,m); ay € domm

ai=a; vda; e dommady#d

a:A; 0By mA "o B
a € domaddm{a — b,m)

e rm agA; and; b:B; mA -5 B, a; € domm
€ -gom-adame-:-ma
i a € domaddm{a, — b, nt)

e -dom-addm-I-¢lem

14.06 Fimte maps 307

a: 4; Pla)
Vx:A - 8P(x)
x4, Pk f(x):B
A, Pk glx):C
ds:B-set-VyA- P = fO e s
a1, az: A - Play) A Plaz) A flay) = flap) = glay) = glaz)
flaye dom {f(x) — g{x) | x: A - P(x)}

w— a:A; b:B, mA-"B
be mgmt {ar b}

aA, b:B, mA -5 B
b e mgaddm(a — b,m)

@ A; biiB; byB; mA -2 B; by e mgm;, a e domm
m by € mgaddm(a — by, m)

& bB; miA "= B; be mgm
Ja e domm - miay=b

b:B; m:A "+ B, 3a e domm-b=mia)
2
€ mgnt

V
| & -dom-map-comp-I-f(a)|

| e-mg-t-{a— b}-I—elcﬂ

— a:4; mA -2 B; ae domm
& o
—— a:A; mA < B a e domm
(@) € mgm
- - aA
D
b.B
[emetm b — e mg oy

3 : ad; mA -5 B
ae dom({a}ﬁm}

ard; apd; B m:A -5 By ay ¢ domaddm(a; — b, m)
¢ -dom-addm-E
a#d Ad & domm

(A5 apd; b:By miA > B, madd b,
a1A ay A b:B; m:A — B, a; & doma m(a2|-—> m)

aj; & domm

o apiA; ay Ay BB miA - B; ay ¢ domaddm(as — b, m)
& -dom-addm-E-right ara
!

308 14 Directory of Theorems

@ BB A< B, be mgm
- be dom(m™)
a:A; bi:B, by B, m:A -5 B
by & mgaddm(a — by, m); a & domm
by#byAb; & mgm

a:A; biiB;, by:B, mA =B

b ¢ mgaddmia — by, m); a & dom
tng-adam Eet] =119 (2,m); a @ domm
by & mgm

a:A; bi:B; by B, m:A - By by € mgaddm(a — by, m)

¢ -mg-addm-E-right | ———————"— .
5.7 b

_ a:A; mA s B, a¢ domm
:
ag¢ mg(m*)

myA T By my A -2 By oma A 2 B

{ry Timg} T ma = my ¥ (mz § ms)

my: A -5 By mat A =T B, compatible(my, my)
mytm=mtm

mA -9 B
[o]l

my A B, myA —— B

o : s mg
mTmA ——B

my A - By mpt A - C matA o C; dominy < domanis
dommy < dom{my T ma)

mA =B
mim=m

b:B, mA =+ B, mp {b}# {~}
b@[ngm

b:B, mA "5 B, be mgm
mb (B} = (=]

m:A =5 B; s5:B-set
mbs:A —+ B

-self

p-form

A = B; s:B-set

-fi A
mps:A— B

-

Fans R AESELN ARTEIRAD

mitA = B, miA - B
= domm, < dom (s T ma)

miA - B myA -5 B myA -5 B
compatible{n, my);, compatible(my, ms); compatible(m;, my)

-Q')-HSS
(m1 '@)} s = my @ (M @ ms)
mytA == B, mpt A = By compatible(my, my)

my W R = f Wy

[e A
- mA -2+ B
[o-tefn-{—}-right] ey

my A s B mot A - By comparible(my, m2)
my @ A Z5 B

e Wi b:B; mitA " B, myp:A -4 B, a e domm
a i addm{a — b,m)tme=m Tm

@.form

@E@ ad; BB mpA - B, my A 24 By ag dommy
acm e addmia v b,m) T ma = addm{a — b,m; T my)

aA; BB mitA - By mpA - B
compatible(addm{a — b,m), my)

i addm-t-deft-compatible !

@A B mA =3 B; ae domm; m(a)=b

addm--ident addm(a— b,m) =m

@A B, mA =B

mi{a— b} = addmia — b,m)
@A BB A B
addm(a v b,m) = addm{a — b, {a} 4m)

a:d; mA 2 B ae domm
m = addm(a — m(a), {a} 4m)

@A BB, mA s B; a¢ domm, be mgm

addm(a > b,m): A <™ B
@A BB, mA B
T {am bD@ =5

addm(a — b,m)} T m = addmi{a — b, (m; T m2))

fea¥ oy

RNV} L9 LAULLIU Y B LHUULLILEDS

ai:A;, B aA; mA "o B; gz € domm;, @y
(mt {a1 = b}}az) = miaz)

a:A; BB mpA T By ma:A -2 B

(e T addmia v b,m) ey = b

aA; myA -+ B; myuA =2 B; ae dommy, a€ dommy
at-defn-{-left
(rmy T mza@) = mila)

at-defn ight ﬂ::i;)321::‘ ”B; mz!/’i s ae dommz
- .T_ng —+ B
(rm T m)a) = my(a)

a.A; P{a)
Vx: A 8P(x)
XA, Py fx):B
xA, Pk glx):C
Is:B-set - Vy:4 .- POY) = f(y)e s
Va, ax A - Play) n Plag) aflay) = flap) =5 glay) = glap)
{F(x) = g0 | x: A - PO)}(f(a)) = g(a)

at-defn-map-comp-f(a}]

@A, s:A-set; gae §
XA xe st f(xkB

{x - f) | xe sia) =f(a)

@A mA 2B a6 domm
—

] at-defn-map-comp-lefi-set 1

a:A; mid *2 B ae domm
at-iorm-pimaj
s mia): B

. ap:A; apd; med <2 By ay e domm; as € domm miay) = miay)
bimap-1-1 4 =g
y =3y

- avA; gz Ay mA 2o B, a; € domm; ap € domm; @) # @
bimap-1-1-—
mia) » m{az)

, mA < B

— mA -2 B; is-1-1(m)
i
my: A «— B, P~}
a:A, b:B, m:A «—— B, |——bP(addm(as—~> b,m))

P(m), a ¢ dompm, be mgm
: Plrmo)

AR U RIS 121D

- mA+—B
[bimap-supertype] -~ o

@ A; mA " B, ge domm
A b B-b=mla)

I bimap-uniquc—mg-elcm—!

mytA —"-l‘“iB; A SN B; matA 4 B
compatible(m,my), compatible(rmy,
_compalib[e—T~I-lch i il -m3) Oin patible(my: 1)
compatible(n T ma, my)
mI:A LB; mz:A LB, m3:A —m“‘)B
compatible(my, my); compaiible(m,,
[compatible T-T-right| ~220 s, m); compatible(rm, my)
compatible(m;, my T ms)

aA; b:By mpA 28 By myA - B
a & dommy; compatible{addmia — b,my), m;)

| compatible-addm-E-left-¢ | compatbIeGm)
1,2

@A BB mp A -2 B myA 5B
e dommy; compatible(addm(a v+ b, my), my)

a
fcompauble,addm-E-rigm] @) =F
2 =

. my:A 2o B my: A T By compatible(my, m2)
compatible-comm ;
compatible{ma, m;)

mA "B
compatible({—},m)

‘ compatible-defn- { l—»}-lcﬁ]

mA 2B
compatible(m, [—})

| compatible-defn-{— }—rightl

PR mi:A 2o By my: A T B; compatible(my, nz)
Ya e dommy mydomm - ma) = ralad
miA 2B oA B

- Ya e dommy N dompy - m(a) = m{a)
-
compatible(m;, my)
= ()
domm = { }
mA -"a B; 5 A-set
o deI dom (5 4 m) = domm \ §

m.A — B; domm#{}
LA

2l

312 14 LATCCIOTNY OF LOCOIeIns

adA; biB; mpiA T B, mA 2B

Mnd =
dom-addm-r-E-left domaddm(a -+ b,m) omr { }

dompm Mdommg = { }

@A B m:A - B muA "B
domaddm{a + b,m) ndomm; = { }
a ¢ dommy

m;:A --m—>B, mg:A -—m—i'B
—Z i dom (T my) = domery L doman

l dom-addm-m-E-rightJ

(A BBy miA T B
o deinadine| 2 BB A v B; a e domm

domaddmia v+ b,m) = domm

mA —— B
dom{m™) = mgm

s:A-set
xA, xe sk fo)B
dom-defin-map-comp-left-set| ~5 e

Vx:A - 8P(x)
A, P fG):B
A, PO gx):C
Js:B-set- Yy A- Py = f(y) e s
Vay, aa: A - Pla) A Plag) A flar) = flae) = glan) = glaz)
3n:Cset-Va:A-Pla) = gla)s t

[dom-finite=>mp-finitc|

mA 5B
domm: A-set

mA s B

dom-form-bimap |~ eat

@A b:B: ntA — B
is-1-1¢mt {a =~ b}); a e domm
be mngm

1 is-1-1-1-{a — b}-E-¢ -rng[

aA; b:B; mA - B
is-1-YHaddm(a — b,m)); a ¢ domm
is-1-1(m)

] is-1-1-addm-E-¢ -map!

L4.0 e maps 313

@A BB, mA - B

[is-1-1-addm-E-¢ -mg| ’S'l‘l(addm(ﬂé': i,gr:?z)‘, ae domm

A 2B is-1-
vxyem — i5-1 l(m)

domm m(x) =m{y} => x=y

mA 25 B
- Vx,y € domm - m(x) =m(y) = x =y
is-1-1(m)
5:A > B
[map-testend-dom eft] e
$:A "B
{ map-|-extend-dom-right | B e
e SAHE
5:A = (C|B)
s:A =B
| map-+extend-mg-right| 54 T B1C)
VA 8P(x)

XA, Pk fx):B
ds:A-set- Vy:A-P(y) = ye s

Frf@ 1A PO}A 25 B

5 A-set
x:A xe sk B
—fx)|xeshA-"y B

mapcomp—form-leﬂ—set\ e

5. A-set
BARfGeB
XA xeskgx):C
Va,a € 5 fla) =f(a2) = gla) = glas)
=gy ixeshB = C

map-comp-form-set-ident [

a: A; 5. A-set; flayB
xA, xe sk f)B
Lmap-comp-lcft-defn-add! o707 e add@) =

{xe finixe st {aw fla)}

5: (A = B)-set

Yy, my € §- compatible(my, my)
L
merge s: A — B

314 14 tarectory of 1neorems

= mA -2 B
tngm = {m(a}| a € domm}

ey @A, B mA - B
[@ g addm(a — b,m) = add(b, mg{{a} ¢m))

a:A; b:B; mA -5 B; ae domm

ingaddmia — b, m} = add(b, mg({a} {m))

o mA <2 B
mg(m“l)zdomm

Vx:A- 8P(x)
x: A, Px) & fx):B
XA, POL ganC
3s:B-set - Vy:A - P(y) = fO) e 5

Vai, a: A Pla) A P(a) Af(m) = fla) = g(a) = glaz)
rag {F(x) ++ g(x) | x: A P(x}} = {g(x) | : A - P(x)}

mA B
& tngm: B-set
mA 2 B

mg-form-bimap |~ Bset

14.7 Finite sequences

Axioms

[C-form | e A

a:A; s AT

CONS-form-geq+ § ————mree Ax
cons(a,s): AT

s:A* P
A, 0 A, P() b, Plcons(h, 1))

55 ~

hd-defn-cons -—m~—-~w--—a:A; s:A” Ax
hdcons{a, s) = a
a4, s A"
tl-defn-cons | —————— AX

ficons(a, 8} =5

i4./ rane sequences 315

= A
-defn-[}-leftj ——=—— Ax
[17s=ys
= aA; 5pA% s AY
-defn-cons-left - ! z oy Ax

cons(a, 51)" s =cons{a, 51 S2)

el s(1)=hds '

s AY LN P21 i<lens
s = ((Ls‘)(i— I) Ax

Definitions

A* def <A s#[]1>

fal gef cons{a, [1)

lens def if s =[] thenO else succ(len{ils))

elems s def ifs=1] then {} else add(hds,elems (t5))
det . -
concs = its=1[] then[] efse (hds) ~ conc(tis)

inds s def {L,...,lens}

Derived rules

- 6(s- [})
ay A; arA; s AY s A
cons{a,51) = cons{ay, $2) S a1 =A@ A5 =5

1A% il
=-geq+-defn
bt 51 = 85, <> hds; = hdsy Alls; =152

a:A; B A; 1A% a e elemscons{d, s)

a=hvae elemss

5 AT N ne indss
€ -1T1dS~
nsiens

310 14 LAreciory of 1heorems

aA

& -clems-[]-1 e clemsT]]

a. A

ae mds{]
SIiAT s At s AT
a

T8 sa=s (82 83)

— - s AT
-defn-[]-right ?{]TS

sAY s AT

“-form =
s; s AT

aA
fal ={]

aA
{ayform| w2

s:AY; BNy i <lens
Ll SG)A
{sone-dein{]] =y

. S AT s AT

conc cons(sy, 52} = §¢ CONC 52

5 At‘

cone-form | ——————
[eonc-form | —————

a:A;, s At

cons{a, 5) # []
GZA; s A

fal s = cons(a, 5)

ad; s: A

form | ——f2e Se 2
cons{a,s): A*

5 AY
cons(hd sUs) =5

s At
elemss = {5(i) | i € indss}

14.7 Finite sequences 317

fems-defn-[]} ~————r——=
elems-defn-[] clems[]=]
- S A% s AT
elems-defn- =
elems(s;) =elemss; Uelemss;

Torme-dolncoms a:A; siiAY; s AT
elems- i ORI = =
elems (cons(a, 51) "~ 52) = add(a, elems (57 $2))

a:A; s:A°
elems-defn- elemscons(a, 5) = add(a, elems s)
a:4; s A

elems-defn-cons-{a
elemscons{a, s) = {a} U elemss
5 A*

elems s: A-sel

el form s: A

elems s: A-set
a:A

hd—c[efn-[a] W;—a_

[inds-dofn- 0| ey — 7y

A"

- 5
inds 5: N;-set

len-defn-[3 Tenl1=0
(AT s AT
B

len(s; " $2) = lens; +lensy

Ten-defi _.u_,,am'_q__,.m
lenfal =1

a A 5 A"
I len-defn-cons l
tencons(a, §) = succ lens

len-def s A7
-defn-s
lens = succ lentls

318 14 Directory of Theorems

s A
[fon-form] -y

- A*

b
[fen-form-seq+ | 2=

st A

il ey

s A% s#[]

5 AY
h:A, DA™ b Plcons(h, 1))

seq+-hnf P B

5:AY
a:Ak P(lal)
ki A, £ A%, P(2) b, P(cons(h, 1))

7

At

5 A
SCq+-SL'IpCﬂ}'pB ———“S: A..
st A% P(LD)

a AL P(lal)
s A%, s AY, P(sy), P(so) &, Plsi ™ s2)

oy
seq- i-extend nght A | TATE
AT

51 A"

s=[}vIA-InA* -5 =cons(h,)

aA
[edetotal] 7 =7

+

5IA

14,0 DOICHNS 319

14.8 Booleans

Axioms
Sa
ld @B ™
a:B
830 Sa Ax
asb
o == Ax
a=h
Derived rules
y:A';P(.)'):B

5: A-set
y:A, ye sk Py):B

re s B

-A-form M

{e1 A e2):B

e1:B; e - e2:B

a:B
a=1true v g = false

ab

=3

a:4; bA
[om] =558
yAE P(y):B

$:A-set
»:A ye sk PO):B

e s PO)B

y:AL PO):B
o] w4 Peys

prav)

5: A-set
y:A, ye sk Py:B

¥
@fxe s P)):B
fo a8 e
[efom] =258 (e1 ¢ €2):B

a < b; Pla)

o
[Sform] 22 2B
(1 = e3):B

e1:B; & ex:B

-fi -sqt| —— — — ————
@E (el = 32):53

a4, s:A-set
{ae s1:B

e -form

e1:B; ey FeyB

-form-sqt
viomd (e; v e22: B

§1: A-set; 5p: A-set
(51 c 5220

14 Larediory or 1ncoreins

A7 OPCUHICALUTTS Jel

[ttse-fom] g

14.9 Specifications

For each construct definitions and rules are given in terms of a typical example.

14.9.1 Simple type definitions

T =Texp
inve 2 P
Definitions
def

inv-T{e} = Ple)

T 9 < etem | imTe) >

Derived rules

e: Texp; inv-T(e)

e:
L Supertype | Texp

el
inv-T(e)

Obligation
- e:Texp
T
Validation

inhabited(T)

14.9.2 Composite type definitions
Tia:A
b:B
invmk-T(a,) £ Pla,b)

SLL 44 LAUCLLL Y O I OCANTIIS

Definition
inv-T(a,b) & Pla,b)
Axioms
x A, vi By inv-T(x,y) Ax

mk-T(x, vy T
T
SazA X
nT
b-form —r——b—B— Ax

mk-T(x,yi: T
mik-T(x,y).a=x Ax

mi-T(x, v T
mic-T, vy b=y Ax

T
Sk Ta =1 A

mk-T(x,y». T

T s

Ax

Obligation
- XA, B

Validation

inhabited(T)

14.9.3 The state

state S of
a: A
b B

invmk-S{a,b) & Plab)
init mk-Sa, b) & Oa. b
end

The same definitions and rules that appear for composite types apply to the state and the
invariant, together with a definition and obligations for the initialisation condition.

4,7 QPCCHICHTIONS 343

Definition

inir-S¢s) E 0(s.a,5.6)

(Note that uniike inv-S which is defined on the components of the state, iniz-S is treated
as a predicate in the whole state type §.)

QObligations
_ 55
init-S(s):B

14.9.4 Functions

Explicit function definitions

fiAxB>C

flaby & Eab)

pre P(a, b)
Definition

pre-fa.b) % Pa,b)

Obligation

[presfom] -S4 B8
pre-f{a, b):B

If a parameter of f is not mentioned in the precondition expression, the definition takes
fewer parameters.
Axiom

a.A; BB, E(a,by.C, pre-f(a,b)
F@.b) = Ea.b) Ax

If a parameter is not mentioned, it is still necessary to keep the typing hypothesis for that
argument.

Datt 44 LACCUAY O LICOICIEY

Obligation

a:A; b:B; pre-fla,b)
v} Ea,5):C

Working rule (for use once the obligation has been discharged)

aA; biB; pre-fla,b)
fla,b) = Ela,b)

Tnplicit function definitions

flaAbB) e C

pre Pria,b)

post Pola, b, ¢)
Definitions

prefah) € Pria,b)

post-fla, b,) def Po{a,b,c)

If a parameter is not mentioned, the definitions take fewer parameters.

Axioms

a:A; b B; pre-fla, by, 3c:C - post-fla, b, c}
{f—form_f_)_} F@b).C Ax

a:A; b:B; pre-f(a,b); 3e:C - postf(a, b, c)
] post . 1) "

Obligations
[preom] — ot
pre-f(a, b):8
a:A; b B, ¢:C; pre-f(a,b)
post-f(a, b, ¢):B

a: A, b:B; pre-f(a,b)
Je: C - post~f(a, b, c)
Working rules (for use once the proof obligations have been discharged)

a:A; b B; pre-fla, b)
[@I fla, by C

£ Tt A RAAL SR IO [FAN

a:A; b B, pre-f(a,b)
posif(a b f(a,B)

14.9.5 Value expressions
wl & E

Axiom

E:T

e

Obligation

-
Working rule (for use once the proof obligation has been discharged)

14.9.6 Operations

The definitions and obligation for operations are given for the following state model and
implicit operation:

state X of OP (i:1)0: 0
r :+ R ext dr : R
w W wrw @ W
u U pre Prii,r,w)

inv mk-Z(r, w, 1) post Po(i,0,r, W ,w)

A
init mk-I(nw,u) L
end

Definitions

pre-OP(i,r,w) def Pri,rw)

post-0PGi,0,1,%,w) & Poli,0, %, w)
Ohbligation
il mk-Z(F, W, UL, pre-OPG,F, W)

Jo: O, mk-Z(y, w,u): £

post-OP(i,o,, W, W) A r=F Au=tf

S LA AT ATV VR Y WA AR AR

14,10 Reifications

Rules are given in terms of a typical example:

Abstract state Concrete state

state 5, of state 5. of

s 1 Rs r. 1 R,

w, : W, we : W,

Uy 1+ Uy u, : U,
NV 779k-Sala, Wa, the) £ iRVa(Fa, Wa, tha) inv mk-Sc{re, we, o) 2 inv(re, we, Us)
Nt 1k-Sol(Fa, Way tha) 2 inity(Fa, Was ta) init mk-So(re, we, the} D inito(re, we,)
end end

Although the two states have corresponding components, this does not imply that retrieval
is component-wise.

14.10.1 Retrieve functions

Retrievat is defined between the whole states S, and S,.

retr-S 18, — S,
retr-S(s.:80) £ body-expression

Definitions, axioms and obligations for explicit functions apply (Section 14.9.4). Totality
is formalised by the lack of a precondition.

Chligations

2t Sa
EET o

Sai San Set Se
Sa = retr-S(s.)

TS5

14.10.2 Operation modelling

Abstract operation Concrete operation
OP, (a: AT OP. (AT
ext idr, : R, ext dr, : R,
wrw, @ W, wrw, @ W,
pre Po(a,r., w,a) pre P.(a,re, w.)
post 2.(a, 1, 1y, Wa, Wa) post Q.(a, t, r., We, we)

Operations have corresponding names and the same argument and result types.

e iz vemdl Lty L. aaiiall SPCCInCaiion ¥

Obligations

aA; s.:8:; 545,
$, = retr-8(s.)

pre-OP,(a, 5,.7,,5..W,)
pre-OP (@, Se.7e, S0.We)
ad, nT
Sat Say SetSe; 8o = retr-8(s.)
52080 Sc:Se Sa = rer-S(5)
pre-OP.(a, S, Fa, Sa Wa)
post-OP{a,t,5c.7., 5. We, Se.We)
A Sede = Sode A Sodly = Sp g
Post-OP.(a, 1, Sa.la, S5 Wa, Sa.Wa)
A Sata = SaFa A Sally = 53 .l

OP-res-0bl

14.10.3 Implementing functions

Implicit function Explicit function
fitatAy R fi:A>SR
pre Pi(a) flay & ha)
post Qi(a, r) pre P.(a)

The definitions, axioms and obligations for implicit and explicit functions apply (Sec-
tion 14.9.4), in addition to the obligations listed below.

Obligations
a:A; pre-fila)
a:4; pre-fi{a)

14.11 Case study I: abstract specification

Axioms
cs: Controller-set; con: Space += Controller
cap: Space =+ N; loc: Aircraft ~=+ Space
T — inv-ATC(cs, con, cap, loc) Ax

mik-ATC(cs, con, cap,loc). ATC

C:ATC
_ATC- - A
ik-ATC-defn mk-ATC{o .onduty, © .control, o capacity, G location) = ¢ *

J40 A4 LAV Y O LI CIHTHY

mk-ATC(cs, con, cap,loc). ATC
inv-ATC(cs, con, cap, loc)

mk-ATC{cs, con, cap, loc): ATC
mk-ATC(cs, con, cap, loc).capacity = cap

capacity-defn

G ATC

iry-form ; Ax
o .capacity: Space —s N

mk-ATC(cs, con, cap, loc): ATC

3 A
mk-ATC{cs, con, cap, loc).control = con X
oo A
Comror O "5 control: Space <2 Controller ™

mk-ATC(cs, con, cap, locy ATC
tcs, con, cap, loc) ax

mk-ATC(cs, con, cap, loc) location = loc

o ATC A
o Jocation: Aircraft — Space *

location-form

S mk-ATC(cs, con, cap, loc): ATC
mk-ATCcs, con, cap, loc).onduty = ¢s

c:ATC

o .onduty: Controller-set Ax

prAircraft; o:ATC, pre-controllerGf(p, o)
(o.control{o location(p))y: Controller
controllerQOf (p, o) = o.control(G location(p)) Ax

PPN s:8Space; ¢:ATC, (s e dom{c.control)):B A
- -(eln 3 7 X
i-achvate ® T istactivared(s, o) = (s € dom{o control))

. p:Aircraft, 6:ATC; (p e dom(c.location)): B
is-knownip,) = (p € dom(c.location)) Ax
5:8pace; loc: Aircraft — Space

- card {dom (Joc P {s}):N
numOfAircrafi(s, loc) = card (dom {loc) {5})) Ax

Definitions

inv-ATC{cs, con, cap, loc) def mgeon C cs Adomeon & domeap A
ingloc ¢ domcon A Vs & mgloc - numQfAircrafi(s, loc) £ cap(s)

init-ATC{o) def o.onduty = { } A 0.capacity = {—}

4 Trd A oW QRUWLT As GO ST DLURLLIL LI ST

pre-Activate(s, s, con, cap) def s e (domceap \ domcon) A hg con #cs
N def
pre-Commission(s,cap) = s ¢ domcap
def

pre-controllerOf(p, o) = is-known(p, G}

pre-Decommission(s, con, cap) def s e (domeap \ domcon)

[«

pre-ResetCapacity(s, n, cap, loc) def s € domedp A numQfAircrafi(s,locy < n

. e def A —
post-Activate(s, ¢, Coh,con}) = ¢ € CSACE MYCOR A con=cont {s — ¢}

post-Commission(s, n, Cap, cap) def cap=capt {s v n}

post-Decommission(s, cap, cap) gef cap = {s} 4cap

post-ResetCapacity(s, n, cap, cap) def cap = cap 1 {s — n}

Proof obligations

s:8Space; nm:N; cs: Controller-set
con: Space «= Controller; cap: Space ~~» N
loc: Aircraft = Space; inv-ATCcs, con, £ap, loc)

__ pre-Commission(s, cap)
Jeap: Space -~ N -

post-Commission(s, n, cap, cap} A inv-ATC(cs, con, cap, loc)

p:Aircraft, 0:ATC, pre-controllerOf (p, o)
controllerOf (p, &): Controller

—— o ATC

F0: ATC - init-ATC(0)

cs: Controller-set; con: Space «s Controller

cap: Space -2 N, loc: Aircraft = Space
o St

inv-ATC{cs, con, cap, loc): B

s:Space, ¢ ATC
a

is-activated(s, c): B

LA 45 UJIULrI.U.l)’ i 1 HUAH ALY

p:Aireraft; ¢ ATC

.
M is-known(p, ¢): B

Ofireraftform] = Space; loc: Aircraft — Space
numQfAircrafi(s, loc):N

s: 8Space; m:N; cs: Controller-set
con: Space += Controller; cap: Space — N
cap: Space = N; loc: Aircraft —— Space
inv-ATC(cs, con, cap, loc); pre-Commission(s, tap)
post-Commission(s, n, cap, cap): B

post-Commission-form |

s:Space; m:N; cs: Controller-set
con: Space +— Controller; cap: Space =+ N
cap: Space =+ N; loc: Aircraft -2 Space
inv-ATC(cs, con, cap, loc)
pre-ReseiCapacity(s, n, cap, loc)
post-ResetCapacity(s, n, ¢ap, cap): B

post-ResetCapacity-form |

s:8pace, n:N; cs: Controller-set
. con: Space <~ Controller, cap:Space -~ N
loc: Aircraft —— Space; inv-ATC(cs, con, cap, loc)
pre-Commission(s, cap): B

] pre-Commissfon-form]

b Aireraft; o ATC
pre-controllerOf(p, o). B

| pre-controllerGf -form]

s:Space, N, cs: Controller-set
con: Space —— Controller, cap:Space =5 N
loc: Aircraft -+ Space; inv-ATC(cs, con, cap, loc)
pre-ResetCapacity(s, n, cap, loc): B

pre-ResetCapacity-form]

s:Space;, m:WN; c¢s: Controller-set
con: Space s Controller, cap: Space = N
loc: Aircraft -T Space; inv-ATC(cs, con, tap, loc)
pre-ResetCapacity(s, n, cap, loc)

3cap: Space —+N -

post-ReserCapacity(s, n, cap, cap) inv-ATC(cs, con, cap, loc)

L4 LaSC ULy L0 austiall SpeCHICanon

Validation conditions

s: Space; c¢: Controller

mk-ATC{cs, Con, cap, loc): ATC; mk-ATC(cs, con, cap, loc): ATC

pre-Activate(s, s, Con, cap); post-Activate(s, ¢, con, con)

=
c € {cs\ mgcon)

p: Alreraft, ©:ATC; is-known{p, &)
3! ¢: Controller - ¢ = controllerOf (p, ©)

| aircraft-conteoller-unique |

p:Aircraft, ¢ ATC; is-known(p, o)
At s: Space - s = ¢ .location(p)

l aircraft-in-unique-space |

§:Space; ¢:ATC; is-activated(s, G)
St ¢: Controller - ¢ = .control(s)

p: Aircraft, 0:ATC, is-known(p, G)
controlierOf (p, 0) € ©.onduty

[airspace-conuoilcr—uniqlﬂ

5: Space, mk-ATC{cs, con, cap, loc); ATC: s € mgloc
—pre-Decommission(s, con, cap)

[Decommission-lemma |

si: Space; s2: Space; o: ATC; is-activated(s), G)
is-activated(s,, G); O.control(s1} = ¢ .control(sa)
S} = 53

W-dnuble—assignmenq

5:Space; ¢:ATC;, — (is-activated(s, 6))
numOfAircrafi(s, 0.docation) = 0

[not activated = empty |

Useful lemmas

5:Space; ¢: ATC, —(is-activared(s, o
2 ! .29

s ¢ dom {0 .controf)

mk-ATC(cs, con, cap, loc): ATC

capacity-form-mk cap: Space N

mk-ATC(cs, con,cap, loc). ATC
controllomy; con: Space - Controller

prAircraft, ¢, ATC; is-known(p, G}
controllerOQf(p, 6) = o.control(c Jocation(p))

T pidircraft, 6:ATC; pre-controllerOf (p, 0)
(o control(o location(p))). Controller

201

234 19 BJUCCIOLY O LACEHTIHS

cs: Controller-set, con: Space «+ Controller
cap: Space — N; loc: Aircraft = Space
inv-ATC(cs, con, cap, loc)

inv-ATC-E-clausel
FRgCcon C CS

¢s: Controller-set; con: Space += Controller
cap: Space — N; loc: Aircraft = Space

inv-AT{ , CON, cap, loc
inv-ATC-E-clanses inv-ATC(cs, con, cap, loc)
domeon ¢ domceap

cs: Controller-set; con: Space «—— Controller
cap: Space —— N, loc: Aircraft = Space

inv-ATC(cs, con, cap, loc
inv-ATC-E-clause3 kd (cs, con, cap, loc)
mgloc C domeon

cs: Controller-set; con: Space «~s Controller
cap: Space -5 N; loc: Aircraft = Space
inv-ATC(cs, con, cap, loc)

.
W ¥s e mgloc - numOfiircrafi(s, loc) < cap(s)

. o ATC
inv-ATC-I-clausel
g o.control & G.onduty
G ATC

inv-ATC-1-clanse3 .
rng ¢ .location & dom & .control

mk-ATC(cs, con, cap, loc): ATC
mgeon ¢ CS

Finy-ATC-I-mk-clausel |

mk-ATC{cs, con, cap, loc): ATC
domcon < domcap

[inv-ATC-I-mk-clause2 |

mk-ATC(cs, con, cap, loc): ATC
rngloc ¢ domeon

[inv-ATC-T-mk-clanse3 |

mk-ATC(cs, con, cap, loc): ATC
ng loc - numQfAircrafi(s, loc) < cap(s)

{inv-ATC-T-mk-clause4 | VicT

es: Controlier-set; con: Space «— Controller
cap: Space = N; loc: Aircraft ~™ Space
rngcon < ¢5; domeon < domceap;, mgloc © domeon

. i <
@@ Y's € mgloc - numOfAircrafi(s, loc) < cap(s)

inv-ATC(cs, con, cap, loc)

m s:Space, 6. ATC
actvaies is-activated(s, ¢) = (s & dom o .control)

1 4L LAST SLUAY L1 Termement

s:Space, 6.ATC; is-activated(s, ¢
" .2)

s & dom{o.control)

e s:Space; 0:ATC; 5 € dom(c.control)
is-activated-1 n ;
is-activated(s, o)

: ce;, G:A
ispace, 01 ATC

(s € dom{c .control)::B

p: Aireraft; 0. ATC

is-known(p, o) = {p € dom (& .location))

p: Aircraft; 0:ATC; is-known(p, G)

p € dom{o.location)

' p:Aircraft, o:ATC
(r € dom{c.location)): B

mk-ATC(cs, con, cap, loc): ATC
loc: Aircraft = Space

. s:8pace, loc: Aircraft = Space
numQfAircraft(s, locy = card (dom(loc D {s}))
, s:Space; loc: Aircraft "+ Space
card (dom(foc P {s}):N
mk-ATC(cs, con, cap, loc): ATC
cs: Controller-set

location-form-mk

14.12 Case study II: refinement

Axioms
¢s: Controller-set; con: Space «~ Controlier
cap: Space =4 N; ass: AssigMap
inv-ATC{cs, con, cap, ass)
mk-ATC\(cs, con, cap, ass): ATCy Ax

. ATC,
mk-ATCi(C .onduty,, 0.controly, O.capacity,, G .assigs)) = o

[inv-ATC, 1] mk-ATCy(cs, con, eap, ass): ATC)
inv-ATC)- inv-ATC(cs, con, cap, ass)

Ax

333

04 14 LATCCIOry O6 1 Nneoreiny

mk-ATC(cs, con, cap, assy: ATCy

5y -def; " — A
mk-ATC (¢S, con, cap, 05s).assigs) = ass X
o A
asngs o.assigs,: AssigMap
mk-ATC\(cs, con, cap, ass): ATC, Ax

AN O k-AT Cy (cs, con, cap, ass).capacity, = cap
— o ATC Ax
o .capacity: Space —— N
mk-ATC:{cs, con, cap, ass): ATC, A
rOly - n
o mk-ATC1 (Cs, con, cap, ass).control; = con '

G ATC;

A
_ G.contraly: Space «= Controller

mk-ATCy(cs, con, cap, ass): ATCy
mk-ATCy{cs, con, cap, ass).onduty;y = cs Ax
T ol
oneuin o.ondutyy: Controller-set x

: 5:A™ (s =[] wv hds & elemsils A nonRping(tis)): B
!@J nonRping(s) = (s ={] v hds ¢ elems tis A nonRptng(ils)) Ax

ass: AssigMap
U{elemsg | g € mgass}: Aircraft-set

knownAircraft(ass) = | }{elems g | g € mgass}

p: Aircraft; ass: AssigMap;, pre-locOf{p, ass)
(15 & domass - p e elemsass(s)): Space
locOf(p, ass) = 15 € domass - p € elemsass(s) Ax
ass: AssigMap
{p > locOf(p, ass) |

exm,c(asf)i knownAircraft(ass)}: Aircraft — Space Ax
{p = locOf(p, ass) | p e knownAircraft{ass)}

G: ATC;
(mk-ATC(c .onduty,, ¢ controly,

o .capacityy, extrLoe(o .assigs;))): ATC A
T | etry () = mE-ATC(O ondutyr, O-.control, *
o.capacitys, extrLoc(G .assigs;))

14,12 .ase Study Ii; retimement 335

5: Aircrafi-set; Jq: AircraftQueue - elemsg = 5
il -defi ;
buildQuene-defng elems buildQuene(s) = s Ax

- s:Aircraft-set; 3q. AircraftQueune - elemsg =5
buildQueue-fortno buildQueue(s): AircraftQueue Ax

loc: Aircraft = Space
{8 = buildQueue(dom{loc b {s})) | s € mgloc): AssigMap A
e R extrAss(loc) = {s — buildQueue(dom(loc b {s1)) | s € mgloc)

Definitions

inv-ATC\(cs, con, cap, ass) def mg con ¢ ¢s Adomeen & domeap A

domass = domcon A Vs € domass - lenass(s) < cap(s)

initATC:(0) & o ondutyy = {} n 0.capacisy = (-}

AssighMap def & m: Space 2, AlrcraftQueue | inv-AssigMap(m) >

inv-AssigMap(m) def V51,52 € domass -85 2 852 =
elems ass(si} M elems ass(sy) = { }

AircraftQuene & < s Aircraft® | inv-AircrafiQuene(s) >

inv-AireraftQueue(s) def nonRptng(s)

pre-locOf(p, ass) def p € knownAircraft{ass)

post-buildQueue(s, ¢) et elemsg=¢

pre-AddFlight\(p, s, con, cap, ass) def 5 & domcon Ap & knownAircraft(ass) n
len ass(s) < cap{s}

post-AddFlight; (p, s, 55, ass) 22 ass = 855 1 {s — 853(5) ™ [p])

Proof obligations

p: Aircraft, s.Space
mk-ATC(cs, con, cap, loc): ATC
mk-ATC{csy, cony, capy, assy. ATC,
mk-ATC(cs, can, cap, loc) = retr|(mk-ATC\{(cs1, com, capr, ass)}

; pre-AddFlight(p, s, con, cap, loc)
pre-AddFlighti (p, 5, com, capy, ass)

330 14 Lhrectory ol iLheorems

p:Aircraft; 5:Space
mk-ATC{cs, con, cap, loc): ATC
mk-ATCy(csy, cony, capy, a‘?&): ATC,
mk-ATC(cs, con, cap, loc) = retr| (mk-ATCy(¢sy, cony, capy, ass))
mk-ATC{cs, con, cap, loc): ATC
mk-ATC1(cs5y, cony, capy, ass): ATCy
mk-ATC{cs, con, cap, loc) = retry (mk-ATC(cs1, cony, capy, ass))
pre-AddFlight(p, s, con, cap, loc); post-AddFlight,(p, s, 353, ass)

post-AddFlight(p, s, loe, loc)

p: Aircraft, s: Space; cs: Controller-set
con: Space <=~ Controller; cap: Space -+ N
ass: AssigMap; inv-ATC,(cs, con, cap, @ss)
pre-AddFlight\(p, 5, con, cap, ass)

Jass: AssigMap-

post-AddFlight{p, 5, @55, ass) A inv-ATC(cs, con, cap, ass)
- 5. Aircraft-set
dq: AircrafiQuene - post-buildQueue(s, q)

loc: Aircraft — Space
)

extrAss(loc): AssigMap

ass: AssigMap

-
extrLoc(ass): Aircraft — Space

AT N L AT M o 3 init-AT
[fmie-ATCy-adeq) o ATC, o Cling-A ;z‘t{;()m) init-ATC1 (o)

G ATC
init- i [P oS-,
it TGO | AT G (6)- B

q5. ATC, - init-ATC1(0)
- . wm: Space = AircraftQueue
inv-AssigMap(m): B

cs: Controller-set; com: Space <= Controller

. cap: Space —— N, ass: AssigMap
inv-ATCy{cs, con, cap, ass):. B

——— s: Aircraft
Hv-{in =10rm r3]
4 inv-AircraftQueue(s). B

14,12 Case study I refinement 337

- ass: Assighap
knowndircraft-form knownAircraft(ass): Aircraft-set

piAircraft, ass: AssigMap; pre-locOf(p, ass)
locOf(p, ass): Space

s A*

MR g-FOrm |~
nonRptng(s). B

prAircraft, 5:Space;, cs: Controller-set
con: Space «— Controller; cap: Space =+ N
ass: AssigMap; ass: AssigMap
inv-ATC(cs, con, cap, G55); pre-AddFlighty(p, s, con, cap, ass)
post-AddFlight, (p, 5,55, ass): B

I post-AddFlight-form|

5: Aircraft-set; q: AircraftQuene
post-buildQueue(s,q): B

l;m-bui[d@ueue-ﬁﬂl

p:Aircraft, s:Space; cs:Controller-set
con; Space - Controller; cap: Space Z> N

- ass: AssigMap; inv-ATC(cs, con, cap, ass)
pre-AddFlight(p, s, con, cap, ass): B
p-Aircraft, ass: AssigMap
pre-locOf(p, ass):B

o ATC

J0y: ATC, - retri (o) = ©
try - mm%
{rer form] retr(0): ATC

Useful lemmas

i .
[1: AircraftQueue
p:Aireraft, ass: AssigMap; p € knownAircraft(ass)
Jdg e mgass - p e elemsg
Al ; 1 Assi ; k]
prAlrcraft, ass: AssigMap; p & knownAircraft(ass)
Vgqe mgass-p & elemsq

338 14 Directory of Theorems

p:Aircraft, s:Space
mk-ATC(cs, con, cap, extrLoc(ass)): ATC
mk-ATC1(cs, con, cap, ass): ATC;
pre-AddFlight(p, s, con, cap, extrLoc{ass))
pre-AddFlight, (p, 5, con, cap, ass)

AddFligh-dom-obl-simp |

p: Aircraft, s:Space
mk-ATC(cs, con, cap, extrLoc(d5s)): ATC
mik-ATC{cs, con, cap, ass): ATC,
mk-ATC(cs, con, cap, extrLoc(ass)): ATC
mk-ATC(cs, con, cap, assy. ATCy
pre-AddElight(p, s, con, cap, extrLoc{ass))
post-AddFlighti(p, 5, 355, ass)
post-AddFlight(p, s, extrLoc(ass), extrLoc(ass))

[AddFlight-res-obl-simp)|

| p:Aircraft, ass:AssigMap, p € knownAircrafi(ass)

aircraft-in-unique-space;
| que-space: 3fs'c domass - p € elemsass(s)

p: Aircraft; s:Space; ass: AssigMop

yPerTTre— p & knownAircrafi(ass);, s € domass
ass 1 {s — ass(s)” [pl}: AssigMap

7 - ass: AssigMap
A SODSDT | ass: Space o AircraftQuene

- ni: Space —— AircraftQueue; inv-Assighfap(m)
AssigMap-form .

m: AssigMap

- mk-ATCy(cs, con, cap, ass): ATC,

assigs;-form-mk :
ass: AssigMap

o S s: Alrcraft-set
- £} 3
uildQueue-de elems buildQueue(s) = s

i ; §: Aircraft-set
buildQueue(s): AircraftQueue
mk-ATC (cs, con, cap, ass): ATCy

ity,-form-mk
capacity,-form-m cap: Space N
a Aircraft, q: AircraftQuene; a ¢ elemsq
-
cons{a, q): AircrafiQueue

mk-ATC(cs, con, cap, ass): ATC,

trofy -form-mk
con: Space +— Controller

A lE AT SLUUY 1L rerinement

loc: Aircraft — Space
dom-extrAss-defn ft — 5p

domextrAss(loc) = mgloc

ass.AssigMap
dom-extrLoc-def ;
e dom extrLoc(ass) = knownAircraft(ass)

- ass: Assighap
dom-form-Assighap |~ omass: Space-set

a: Aireraft, q: AircraftQueue
elems cons{a, q) = add{a, elems g)

ielems-defn-cons«queuej

q: AircraftQueue
clems q: Aircraft-set

elems-form-quene

loc: Aircraft -2 Space

f Ass-extrLoc-1
extrAss-extrLoc-inyerse loc = extrLoclextrAss(loc))

p: Aircraft, s:Space; ass: AssigMap

E p & knownAircrafi(ass);, s € domass
e exarLoclass T (s v ass(s) [p1}) = extrLoc(ass) T {p = §)

@ aSS:ASSigMap
il extrLoc(ass) = {p v locOf(p,ass) | p e knownAircrafi(ass)}

ass. AssigMap

{p v locOf(p, ass} | p € knownAlrcraft(ass)}: Aircraft —— Space

m ass: AssigMap
inv-AssigMap(ass)

inv-ATC| -I-clausel o2 AT
Av-Alc- g o.control] C O .onduty,
o ATC,

inv-ATC1~1- 2 T
ny-ATCy-L-clause dem o.control] c dom O .capacity

o ATC

inv-ATC;-I-clause3 ;
dom ¢.assigs; = dom ¢ .control;

GIATCl

Vs e dom o.assigs; - len(c.assigsy){(s) € (G.capacity|)(s)

mk-ATC (¢s, con, cap, ass): ATCy
domass = domcon

linv-ATC; -I-mk-clause3

339

40 294 LAIGLIOL Y O 1 LGCNCHE

cs: Controller-set; com: Space +=— Controller
cap: Space — N, ass: AssigMap
rng con ¢ cs; domcon C domceap, domass = domceon
Vs € domass - lenass(s) < cap(s)

iny- -1- arate T
iny-ATCy-1-sopara inv-ATC\(cs, con, cap, ass)

p:Alrcraft, s:Space; ass: AssigMap
p ¢ knownAircrafi{ass); s € domass
knownAircrafi{ass 1 {s — ass{s)” Ipl}) =
add(p, knownAircraft(ass))

r— o ass: AssigMap

knownAircraft(ass) = U{elemsg | ¢ € mgass}
n ass: AssigMap

Ufetems g | g € rgass}: Aircraft-set

prAircraft, s:Space; ass: AssigMap
T p e knowrAircrafi(ass); s € domass
locOf(p,ass T {5+~ ass(s) " [p1N) =5

p:Aireraft, s:Space; ass: AssigMap
a Aircraft; p € knownAircraft(ass)

O s € domass; a < knownAircrafi(ass)
locOf(a, ass T {s — ass(s)” Ipl)) = locOf(a, ass)

prAircraft; ass: AssigMap; pre-locOf(p, ass)

locOf(p,ass) =15 € domass - p e elemsass(s)

| knownAircraft-t-lemma |

p:Aircraft, ass: AssigMap; pre-locOf(p, ass)

(ts e domass - p € elemsass(s)): Space

5:4°

nonRping(s) = {s={] v hds & elemslis A nonRptng(tis))

5 A
(s=[}vhds g elemstis A nonRptgls)):B

s:Space, ass: AssigMap; s € domass
numQfAircrafi(s, exirLoc(ass)) = lenass(s)

{nuamOfAircrafi-elm-defn |

mk-ATC\ (cs, con, cap, assy: ATC,

¢s: Controller-set
- mk-ATC{cs, con, cap, loc): ATC
Hass: AssigMap -

inv-ATC1{cs, con, cap, ass) A loc = extrLoc(ass)

1904 ST study o rennement 241
mk'ATC(CS, con, cap, IOC)'. ATC
rel1-asea 30q: ATCy - retry(6q) = mk-ATC(cs, con, cap, loc)

e
: retri(6) =

mk-ATC(c onduty,, ¢.controly, 6 .capacity,, extrLoc{c.assigs))

mk-ATCy(cs, con, cap, ass). ATC
O ratr (mk-ATC(cs, con, cap, ass)) =
mk-ATC(cs, con, cap, extrLoc(ass))

mk-ATC(cs, con, cap, locy: ATC
mk-ATC\{c51, cony, capy, assy: ATC,

mk-ATC(cs, con, cap, loc) :ar;rr; (rcnakp-ATC; (cs1, com, cap, ass))
1 —

mk-ATC{cs, con, cap, loc): ATC
mk-ATCi(cs1, cony, capy, assy: ATCy

mk-ATC(cs, con, cap, = retr -ATC (51, s s
(cs, con, cap, loc) = retr)(imk-ATC\(cs1, cory, cap, ass))
con = con

mk-ATC(cs, con, cap, loc). ATC
mk-ATC{csy, cony, capy, ass)y: ATC

mk-ATC(cs, con, cap, loc) = retry(mk-ATC\(c51, com, cap, ass))
extrlLoc(ass) = loc

mk-ATC{cs, con, cap, loc): ATC
mk-ATCi(csy, cony, cap, assy: ATCy

mk-ATC(cs, con, cap, loc) = retry(mk-ATC{(cs, cony, capy, ass))

o ATC,
(mk-ATC{o .onduty,, G.controly, 6.capacity, extrLoc(G.assigs))): ATC

e
£ rng extrLoc{ass) < domass
ass: AssigMap
-form-Assi, -
mg-form-AssigMap rag ass: AfrcraftQieue-set

Bibliography

[AI91]

[BCI84]

[Bic93]

[BN92}

[BSI192]

[Chag1]

[Che8s]

{Cho88]

[Cle93]

[Daw91]

[DKRS91}

[End72]
[GLT$9]

Derek Andrews and Darrell Ince. Practical formal methods with VDM,
McGraw-Hill, 1991. ISBN 0-07-707214-6.

H. Barringer, 1. H. Cheng, and C.B. Jones. A Logic Covering Undefinedness
in Program Proofs. Acta Informatica, 21:251-269, 1984.

J. C. Bicarregui. Algorithm refinement with read and write frames. In
FME'93: Industrial-Strength Formal Methods, pages 148-161. Springer-
Verlag, Berlin, 1993, (LNCS 670).

S. M. Brien and J. E. Nicholls. Z Base Standard version 1.0. Technical Re-
port PRG-107, Programming Research Group, Oxford University Computing
Laboratory, Oxford, UK, Movember 1992, ISBN 0-202928-84-8.

British Standards Institute, Working Group IST/5/19. VDM Specification
Language Proto-Standard: Draft, 1992. Document N231 I-9, 8 August.

D, Charlwood. Take-off to Touchdown: The Story of Air Traffic Control.
Australian Government Publishing Service, Canberra, 1981.

Jen Huan Cheng. A Logic for Partial Functions. PhD thesis, Dept. of Com-
puter Science, University of Manchester, UK, January 1986. Technical Report
No. UMCS-86-7-1.

FX. Chorley, Electronics and communications in air traffic control. J [nstit
Electronic and Radio Engineers, 58(1):1-11, 1988,

T. Clement. A tutorial on data reification. Technical Report UMCS-93-8-2,
Dept. of Computer Science, University of Manchester, August 1993,

John Dawes. The VDM-SL Reference Guide. Pitman Publishing, 1991. ISBN
0-273-03151-1.

Roger Duke, Paul King, Gordon Rose, and Graeme Smith. The Object-Z
Specification Language Version 1. Technical Report 91-1, Software Verifica-
tion Research Centre, University of Queensland, May 1991,

H.B. Enderton. A Mathematical Introduction to Logic. Academic Press, 1972,

J.-Y. Girard, Y. Lafont, and P. Taylor, Proofs and Types. Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, 1989.

a4

[HHP87}

{Hoa85]

{IEE]

{JILM91}

{JonS0}

[Lar93]

[Midoa]

[Mor90]

[Nip86]

[Os192]

{Pra65]
[Rob89]

[RSL92]

[Sch86]

[Vyt92}

[WH93]

Bibliograpny

R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics.
In Proceedings of Second Symposium on Logic in Compurer Science, pages
194204, 1987.

C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985,
ISBN 0-13-153289-8 Pbk.

Special issue devoted to Air Traffic Control in the USA. Proceedings of the
IEEE Vol. 77 No. 11, November 1989,

C.B. Jones, K.D. Jones, PA. Lindsay, and R. Moore. mural: A Formal De-
velopment Support System. Springer-Verlag, London, 1991,

C. B. Jones. Systematic Software Development Using VDM. Prentice Hall
International{UK), second edition, 1990.

Peter Gorm Larsen. Towards Proof Rules for Looseness in Explicit Def-
initions from VDM-SL.. In Proceedings of the International Workshop on
Semantics of Specification Languages, Utrecht, October 1993, Workshops in
Computing. Springer-Verlag, 1993. To appear.

C.A. Middelburg. Syntax and Semantics of VVSL: A Language for Structured
VDM Specifications. PhD thesis, University of Amsterdam, 1990.

C. Morgan. Programming from Specifications. Prentice-Hall, 1990.

T. N. Nipkow. Behavioural Implementation Concepts for Nondeterministic
Data Types. PhD thesis, Dept. of Computer Science, University of Manch-
ester, December 1986. Technical Report UMCS-87-5-3.

J. Ostroff. Formal Methods for the Specification and Design of Real-Time
Safety Critical Systems. Journal of Systems and Software, 18, 1992.

D. Prawitz. Natural Deduction. Almqvist and Wiskell, 1965,

Robin Milner. Communication and Concurrency. Prentice-Hall, 1989, ISBN
0-13-115007-3 Pbk.

RAISE Language Group. The RAISE Specification Language, 1992. Prentice
Hall, BCS Practitioners Series.

O. Schoett. Data Abstraction and the Correctness of Modular Programming.
PhD thesis, Dept. of Computer Science, University of Edinburgh, 1986. Tech.-
nical Report CST-42-87 or ECS-LFCS-87-19.

I Vytopil, editor. Proceedings of the Symposium in Formal Technigues in
Real-Time and Fault-Tolerant Systems. Springer-Verlag, 1992, Lecture Notes
in Computer Science Vol. 571.

Mark Woodman and Benedict Heal. Introduction to VOM. McGraw-Hill,
1993. ISBN 0-07-707434-3.

bIlonograpny 345

[WL93] J C. P. Woodcock and P. G. Larsen, editors. FME 93: Industrial-Strength
Formal Methods. Springer-Verlag, 1993. Lecture Notes in Computer Science
Vol. 670, ISBN 3-540-56662-7.

Index

V-I/V-E, 46, 48
3-E/3-1, 44, 48, 58

adequacy obligation, 183, 229, 231, 232
of initialisation, 183, 240
assumption, local, 15
auxiliary function, 167, 200
axiom, 9
axiomatisation
development of, 41, 72-75, 86, 108,
133, 134, 262
of composite types, 68, 164--166, 262
of explicit functions, 167-169, 200,
201, 229
of implicit functions, 170-171, 201
of initialisation, 166, 200
of operations, 175-177, 212
of polymorphic functions, 174175,
224
of recursive functions, 171-173, 224
of recursive type definitions, 248-251
of state, 166167, 199
of type definitions, 162-166, 223
of value definitions, 175

binder, 10, 56, 57

case distinction, 26, 27, 34, 56
cases expression, 259262
character type, 264
choice
non-unique, 258
unique, 57, 257
comprehension
axiomatisation of, 126

definedness of, see definedness, of com-

prehension expressions, 100, 126
finiteness of, 99, 101, 126
map, 126
set, 99, 100
conclusion, 11
local, 15

conditional, 57, 59, 60, 142
constant, 61

constructor, 64, 68, 136, 164
contradiction, 27

data reification, 1, 6
data type, see type
definedness
of equality, 51, 63, 66, 247, 248
of predicates, 40, 153
of propositions, 33, 37, 151
of quantified expressions, 50
of relations, 153
definition, 18, 28, 81
folding, see justification, by folding
potential problems, 83, 92, 138, 169,
249
recursive, 83, 137, 171-173
subsidiary, 120
unfolding, see justification, by
unfolding
deMorgan laws
predicate, 47
propositional, 32
denoting term, 41, 51, 52, 65, 137
derived rule, see rule, derived
destructor, 135, 136, 148, 164
domain obligation, 184, 185, 236, 237
example, 187
for functions, 190

enumerated collection, 252, 253
enumerated type, see type
equality

chains of, 54, 56, 141

definedness of, see definedness, of

equality

of maps, 115

of sequences, 136

of sets, 93

polymorphism of, 51

348

rewriting over, 56, 139, 141
explicit functions, 167-169

flatness, see type
function type, see type

generator, 72, 86, 133, 145
goals, 29

hypothesis, 11
local, 15

implementation bias, 190
implicit functions, 170-171
satisfaction of, 190
induction
YV -Ef=>-E-left “rick”, 144
=-E-left “trick”, 79, 134, 143
base case, 87
hypothesis, 135
rule, 72, 87, 134, 146
rule for subtype, 84
step, 87
induction scheme, 249, 251
inference rule, 9, 11
informal argument, 25, 26, 35, 53, 54,
56, 59, 139
initialisation condition, 166, 192
adeguacy, 183
instantiation, 11, 49, 174
invariant, 162, 165
as subtype, 69, 163
role in proofs, 178

justification, 12
by triv, 27
by folding, 29
by sequent hypothesis, 35
by unfolding, 29

knowns, 29

lemma, see rule
abstraction of, 118
extraction of, 54, 36, 60, 89, 103,
116-118, 125, 142
let expression, 256-258
determinism of, 238, 259
LPE, 23, 33, 37, 40, 41, 51, 52

metavariable, 11, 67

INDEX

natural deduction, 14
non-determinism, 175, 185

operation decomposition, 1
operation modelling, 7, 184

patterns, 254256
polymorphic type definitions, 174
postcondition, 3, 170
precondition, 3, 169-170
predicate, 39
definedness of, see definedness, of
predicates
proof, 10, 12
of symmetric rules, 27, 121
proof obligation, 4, satisfaction, satisfi-
ability, well-formedness, see ad-
equacy obligation, domain obli-
gation, result obligation
well-formedness of invariant, 154

quantifier

definedness of, see definedness, of
quantified expressions

existential, 41, 42, 56, 59
multiple, 48-50, 59
unique existential, 56, 257
universal, 41, 45

quote type, 264

read frame (role of), 177

reification, see data reification

result obligation, 184, 186, 236, 238
example, 188

retrieve function, 7, 182-183
adequacy, 183
example, 187, 229

rile
derived, 10, 25
developing variants of, 93
formation, 57, 64, 137, 138, 164, 165,

170, 174, 249

formulation of, 34, 36, 151, 152
naming conventions, 18
selection of, 29

satisfaction obligation (for function), 190
satisfiability

of implicit function definitions, 171,
234

ALVLSLSY

of initial state, 167, 200, 205
of operations, 176, 213, 215, 217
of recursive functions, 172, 224
one-point version for functions, 171,
173
scope, 10
selector, 64, 65, 68, 164, 262
sequent, 15, 67,70
strictniess of function definitions, 168
subproof, 14
trivially true, 27
substitution
of equal values, 51, 65
of equivalent values, 158
subtype
induction rule for, 124
polymorphic, 123

theorem, see rule

theory, 10

token type, 263

turnstile, 14

type, 161
disjoint, 248
enumerated, 264
extension (by type union), 51, 61~

63, 66, 68, 247

flatness, 246, 247
function, 246
inhabited, 50, 163
membership of, 40

typing assertion, 40, 41, 51

under-determinism, 173
under-specification, 173

validation condition, 5, 163, 177, 19§,
200, 202, 206, 217, 219
validation conjecture, see validation con-

dition
variable
bound, 41, 48
free, 40, 48
sequent, 67, 70
VDM, 1, 2, 23, 40, 245
VDM-SL, 1, 3, 19, 61, 65, 66, 69, 136,
146148, 202, 245, 237, 258

well-formedness

a3

of explicit functions, 168, 201, 203

of functions with preconditions, 169,
201

of initiatisation, 167, 200, 205

of invariant, 163, 165, 200, 204, 205,
223

of postconditions, 170, 212, 234

of preconditions, 170, 201, 206, 212

of recursive functions , 224

of value definitions, 175

one-point version for functions, 168

proof, 154

witness value, 42

Index of Symbols

~-set (set type) 85,287 5 83,285
- s . (map type) 107,302 i 262
-« _ (bijective map type) 123,305 N 72,284
-* (sequence type) 133,314 N; 82,284
. (non-empty sequence type) 134,315 — (negatioh) 24,268
[-] (optional type) 66,282 # 56,277
<€ .| - > (subtype) 67,283 & 86,289
{} 86,287 v (disjunction) 24,267
{=} (empty map) 108,302 t (map override} 119,303
{-} (singleton set) 06,289 + 75,79,284
{. — -} (singleton map) 305 b (range restriction) 114,303
[] 133,314 b (range subtraction) 114,303
[-] (singleton sequence) 137,315 c 93,288
¥V {for all) 45,91,274,289 o 92,288
A {conjunction) 28,268 X 284

B 149,319 U 96,288
o {map composition) 129,304 {J (distributed union) 97,289
™ (sequence concatenation) 139,315 w (map merge) 120,304
& (delta) 33,268 - | - (type union) 61,281
-\ - (set difference) 06,288 - X . (product type} 63,281
4 (domain restriction) 113,303 0 72,284
4 (domain subtraction) 112,302 ~ 1~ {typing) 40

= 51,277 .~ (map inverse) 130,304
= (on maps) 115,303 F (turnstile) 14

= {on sets) 93,288 add 86, 287
3 (exists) 41,91,273,287 addm 108,302
31 (exists unique) 56,91,279,289 card 05,288
F (power set) 97,289 cohe 142,315
> 82,284 cons 133,314
= 83,284 dom 110, 302
<> {equivalence) 32,268 elems 138,315
= (implicatiomn) 32,268 false 32,268
€ 86,287 fst 64,281
I 96, 288 hd 136,314
N {(distributed intersection) 97,289 if .. then - else . 57,280
1 (iota) 57,92,279,288 inds 145,315

< 82,285 len 137,315

352

merge 130,304

nil
mg
snd

66,282
111,302
64,282

suce
tl

72,284
136,314

token 263

true

24,267

INDEX

Rule Index

{ }-form, 86, 93, 96, 111, 203, 206, 246,
287

{ }-is-empty, 87, 88, 90, 94, 116, 287

{ }-is-subset, 93, 206, 290

{—}-dom-disjoint, 305

{++}-form, 108, 108, 205, 206, 302

{++ }-form-bimap, 206, 305

{r+3-is-1-1, 305

{a}-comp, 290

{a}-form, 96, 98, 99, 119, 203, 290

{a + b}-form, 214, 305

[1-form, 134, 135, 137, 142, 143, 314

[]-form-queue, 235, 235

[.}-"-cons, 146

[a}-=-[], 316

[al-form, 137, 146, 316

V-¥-comm, 49, 274

YV-E, 59,274

vV-1,59, 274

YV-subs, 274

V-a-dist-contract, 274

V- a-dist-expand, 274

V-8-v-inherit, 274

V-8-I-—, 274

V.<-E-left-8, 274

V-<-E-right-6, 274

V-e>-subs, 274

V-<-subs-8, 274

V-=>-subs, 275

V-v-dist-contract, 275

V-v-l-left, 275

V-v-I-right, 275

Y - V-set, 144, 290

¥V -» 3, 50, 278

Y - —-J-deM, 47, 275

V-E, 46, 46, 47, 48, 58, 59, 68, 144, 27§

V-E-set, 91, 214, 228, 290

V-fix, 48, 275

V-form, 153, 319

V-form-set, 153, 154, 155, 204, 319

V-1, 45, 45, 46, 48, 58, 59, 68, 103, 144,
275

V-I-set, 91, 94, 95, 206, 213-216, 227,
228,290

V-set — V, 104, 290

¥-subs, 46, 275

A-v~digt-contract, 268

A-v-dist-expand, 268

A-~ass-left, 269

A-ass-right, 269

A-comm, 31, 32, 269

~-E-left, 28, 28, 3032, 188, 232, 269

~-E-right, 28, 28, 29, 31, 32, 188, 232,
238, 269

~-form, 153, 155, 204, 205, 319

~-form-sqt, 153, 156, 157, 204, 319

~-1, 28, 28, 30, 32, 45, 64, 65, 81, 188,
206, 269

A-subs-left, 269

A-subs-right, 269

B — &, 149, 150-152, 319

B-eval, 150, 150, 319

o-defn-{—}, 304

o-defn-addm, 304

o-form, 305

“-ass, 316

“.defn-[]-left, 139, 140, 141, 315

“.defn-[J-right, 139, 316

“.defn-cons-left, 139, 141, 315

“.form, 139, 141--143, 146, 316

8-{—1,308

§-[11,315

8-VV-1, 275

8-V-inherit, 51, 275

§-V-inherit-set, 290

&-a-inherit, 269

&-A-inherit-sqt, 269

§-=21,34, 51, 56, 57, 63, 63, 81, 82, 215,
247,263,277

J-=-I-gen, 63, 281

S35

8-J-inherit, 50, 82, 92, 273

&-3-inherit-set, 92, 104, 290

8->, 82,285

8-« -inherit, 26%

&-=»-inherit, 269

d-=-inherit-sgt, 269

8-, 34, 90, 94, 100, 153, 290

8- -dom-addm-I, 117, 305

§-& -dom-1, 305

8- -rng-1, 306

S8-r-empty, 290

5-<, 285

8-<-<, 103,285

&~ — -inherit, 269

5-=1, 277

§-v-I-left, 152, 269

§-v-I-right, 152, 276

&-v-inherit, 37, 270

8-v-inherit-sqt, 37, 37, 270

8-, 291

& —» B, 149, 150, 152, 153, 319

8-compatible, 121, 306

&-E, 34, 34, 35, 36, 57, 144, 150-152,
215, 270

&-empty, 291

&-1, 34, 34, 50, 270

8-1-—=, 34, 34, 50, 152, 270

§-is-1-1, 125, 126, 306

§-is-1-1-pred, 306

4-defn-{r+}, 113, 303

4-defn-addm-<, 113, 303

¢-defn-addm-¢ , 113, 303

4-form, 113, 306

4-defn-{ }, 306

gdefn-{}, 112, 302

4-defn-{a}-¢, 118, 306

¢-defr-addm- {a}-=, 306

4-defn-addm-{a}-#, 118, 306

4-defn-addm-<, 113, 117, 302

4-defn-addm-¢, 113, 118, 303

4-form, 113, 119, 306

={}-1,94, 291

=-v-%, 277

= -3 >, 150, 319

=-cases, 88, 90, 215, 216, 278

=-extend(a), 63, 65, 278

=-extend(b), 278

=.form, 205, 319

LU LINLAGA

=-map-defn, 115, 303 ‘

=-self-1, 51, 52, 69, 81, 83, 173, 258, 277

=-seq-defn-cons, 136, 315

=-seq+-defn, 136, 315

=-set-defn, 93, 93, 94, 247, 288

=-set-E, 291

=-set-I-c, 291

=-set-I-sqt, 95, 98, 99, 291

=.subs-left{a), 53,53, 119, 141, 232, 238,
278

=-subs-lefi(b), 5%, 53, 81, 122, 138, 140
142, 146, 206, 211, 214, 216,
227,228,235, 237,277

=-gubs-right(a), 51, 52, 53, 65, 150, 238,
277

=.subs-right(b), 53, 53, 55,79, 225, 231,
235,278

=-gymm(a), 52, 278

=.symm(b), 52, 278

=-trans(a), 53, 210, 278

=.trans(b), 141, 278

=-transfc), 122, 278

=-trans-left(a}, 278

=-trans-lefi(b), 278

=-trans-left{c), 278

=.trans-right(a), 278

=-trans-right(b}, 55, 278

=-frans-right(c), 122, 278

=-type-inherit-left, 52, 52, 55, 78, 111,
137, 138, 142, 143, 174, 203,
204, 225, 231, 250, 279

=-type-inherit-right, 52, 53, 686, 279

3v-subs, 59, 275

3V = V¥-3, 49, 49, 275

3-a-dist-expand, 59, 276

3-A-E-left, 59, 276

3-A-E-right, 59, 276

3-3.comm, 49, 50, 276

J3-E, 49, 50, 276

43-1, 49, 50, 276

93-subs, 49, 276

J-=-subs, 59, 276

3-=-subs, 44, 276

J-v~dist-contract, 276

J-v-dist-expand, 59, 276

3 — D-set, 104, 291

3 — —-V-deM, 47, 47, 276

3-E, 42, 43, 44, 46, 48, 49, 58, 59, 232,

KULE INLEX

235,273
I-E-set, 91, 227, 228, 287
I-form, 319
I-form-set, 319
3-1, 42, 43, 44, 46-50, 38, 59, 172, 205,

206, 232, 235,273
3-1-1pt, 213-216, 276
3-1-set, 91, 288
F-set — 3, 104, 291
J-split, 48, 48, 50, 276
J-subs, 42, 42, 276
NV V3279
I-=-1, 208, 209, 279
It-v-dist-expand, 279
I — 3,279
3J!-E, 56, 279
Jt-E-set, 91, 291
3i-form, 320
J!-form-set, 326
31-1, 56, 280
Al-I-set, 91, 226-228, 291
Jl-same, 57, 280
3!-subs, 280
>.irreflexive, 82, 285
>-total-order, 84, 285
>-trans, 82, 285
=-0-1, 285
>-suce-1, 285
.-l 37, 270
<« — =, 150, 150, 151, 319
&>-comm, 270
«>-E-full, 270
<-E-left, 270
<=>-E-left-8, 150, 270
&>-E-left-—, 276
&-E-right, 95, 270
&>-E-right-8, 150, 270
¢»-E-right-—, 270
<>-form, 153, 320
-1, 151, 270
«>-1-A, 270
&-a-—, 271
«-1-—=, 151,271
-self-1, 150, 271
»>-subs-left, 158, 320
+=>-subs-right, 158, 320
=-A-left-E, 271
=>- - -conseq, 271

355

=>-conseq, 271

=p-conirp, 37, 271

=s-E-left, 33, 33, 44, 80, 81, 84, 116,
117, 124, 125, 134, 135, 143,
144, 148, 232, 271

=-E-right, 33, 33, 271

=»-form, 153, 320

=-form-sqt, 153, 158, 320

=3-1, 34, 34, 81, 117, 124, 125, 144, 228,
271

=5-I-lefe-vac, 33, 33, 35, 124, 125, 135,
2N

=-I-right-vac, 33, 33, 35, 81, 117, 135,
271

=-self-1, 271

=>.trans, 271

e-{a}-E, 98, 99, 291

e-{a}-1,291

e-{a}-I-=, 98, 99, 291

e--defn, 96, 96

e-r-E, 291

e-m-E-left, 291

e-m-E-right, 292

g-m-1,292

e -[+defn, 97, 289

e-g-~contr, 214, 292

e-v-¢,87, 87, 89,292

€ -U-defn, 96, 96, 288

e¢-U-E, 98, 99, 292

e-u-1, 292

e - -I-left, 98, 99, 292

€ ~U-I-right, 98, 99, 292

e-|J-defn, 97, 289

- }E, 292

e-{}F1, 292

& -add-defn, 87, 89, 287

e-add-E, 89, 99, 292

e-add-I, 292

e-add-I-elem, §9, 292

e -add-I-elem-=, 89, 89, 90, 99, 292

e -add-I-set, 89, 89, 90, 99, 292

€ -cases, 292

e -diff-defn, 96, 96, 288

e -diff-E, 293

& -diff-EB-left, 293

e -diff-E-right, 293

e -diff-1, 293

e -dom-addm-E, 117, 306

3006

e -dom-addm-E-¢, 117, 306
e -dom-addm-I-eiem, 306

& -dom-addm-I-map, 3686

€ -dom-map-comp-I-f(a}, 131, 307
e -elems-cons-E, 315
e-form, 153, 157, 320
&-inds-E, 315

€ -interval-defn, 103, 293

& -knowndircraft-E, 227, 227
& -pow-defn, 97, 289

& -rg-addm-I-elem, 307
e-rng-t-{a — b}-I-elem, 307
e-rng-addm-I-map, 367
e.mg-E, 130, 227, 307
e-mg-1-3, 307

e-mg-I-at, 211, 227, 307

& -rng-1-at-bimap, 307

€ -set-comp-defn, 101, 101, 105, 289
& -set-comp-E, 293

€ -set-comp-I, 293

€ -set-comp-1-f(a), 293

e -those-defn, 100, 101, 103, 105, 293
& -those-E, 293

e -those-I, 293
-{a}-defn-c, 294
-{a}-empty-E, 294
r--dist-left, 294
M-U-dist-right, 294
M-U-empty-E-left, 294
N-U-empty-E-right, 294
N--left-empty-1, 294
M-Ueright-empty-1, 294
M-add-I-, 294

Meadd-I-¢, 294

M-ass, 294

M-comm, 294

M-comp, 294

M-defn-{ }-left, 294
-defn-{ }-right, 294
~-form, 96, 96, 288
Iright-c, 294

KULE INDEA

< #, 285

<-form, 320
<-irreflexive, 285
<-total-order, 285
<-trans, 285

< - <.defn, 83, 284
<-form, 204, 320
<-succ-defn, 285
N-cases, 286

N-indn, 73, 76-81, 284
N;-supertype, 82, 286
Ni-I1, 286

Ni-indn, 84, 286

N;-E, 82, 286

—-¥ — 3-deM, 47, 277
—-V-E, 277

—-v-1, 277

-l 47,277
—-a-E-deM, 32, 32, 47, 271
—-~-E-left, 271
~-m-F-right, 272
—-a-I-deM, 32, 32, 272
— -a-I-left, 272
~1-nA-1-right, 272
—-a-I-sqt, 272

—-3 = V-deM, 47, 277
—-3-E, 42, 46, 273
—-3-E-set, 91, 288
---3-1, 42, 45, 47, 50
~-A-I-set, 91, 288
—-J1-E, 280

—-3!-1, 57, 280
—-Al-I-vac, 280
--=-E, 272
—-=-F-left, 272
—-=-E-right, 272
—-=-1,272
—-e-dom-{rs1}-1, 116, 117, 307
—-€ -mng-{—}-1, 206, 307
—-<-0, 286

——-E, 24, 24, 30-32, 46, 47, 268

m-self, 295 ——-1, 24, 24, 30, 31, 45, 268
(-form, 97, 289 - -2-self-1, 135, 279

1-defn, 280 —-v-E-deM, 32, 272

t-form, 57,279 —-v-E-left, 25, 25, 30, 31, 268
I-form-set, 92, 226, 288 - «-v-B-right, 25, 25, 30, 31, 268
-1, 87,279 —-v-1, 25, 25, 30, 31, 152, 268
t-I-set, 92, 288 —-v-I-deM, 32,272

KULE INLDBEX

—-add-¢-I-elem, 295

—-add-g-I-set, 295

- -falge-I, 151, 272

—-form, 181, 320

- -Is-activated-E, 210

#-comm, 279

#-form, 320

g-{a}-1,295

&--E, 295

e -n-I-left, 295

g -M-I-tight, 295

e -U-E, 295

g -U-E-left, 295

¢ -U-E-right, 295

¢ -1, 295

¢ -add-E, 295

¢ -add-E-left, 89, 295

¢ -add-E-right, 89, 295

¢ -add-1, 89, 89, 90, 295

¢ -diff-E, 295

& -diff-I-left, 218, 296

¢ -diff-I-right, 296

e -dom-4-I-{a}, 118, 119, 307

¢ -dom-addm-E, 307

¢ -dom-addm-E-left, 307

2 -dom-addm-E-right, 307

¢ ~-dom-inv-1, 308

¢ -elems-[-1, 316

¢ -form, 326

& -inds-{]-1, 316

¢ -rng-addm-E, 308

¢ -rng-addm-E-left, 308

¢ -mg-addm-E-right, 308

& -rng-inv-f, 308

e -subset-1, 210, 214, 296

€ -those-E, 296

¢ -those-1, 296

v-a-dist-contract, 272

v-a-dist-expand, 272

v-ass-left, 37, 63, 272

v-ass-right, 37, 63, 272

v-comim, 26, 27, 28, 30, 273

v-E, 24, 24, 26, 27, 30, 31, 34, 36, 37,
42, 59, 62, 88, 90, 99, 267

v-E-left-—, 26, 26, 27, 28, 30, 31, 33,
273

v-E-right-—, 27, 27, 27, 28, 30, 31, 33,
273

357

v-form, 152, 152, 320

v-fonm-sqge, 152, 152, 224, 328

v-I-left, 24, 24, 26, 30, 33, 34, 88-90,
151, 268

v-l-right, 24, 24, 26, 30, 33, 34, 89, 90,
151, 268

v-subs-left, 273

v-subs-right, 273

t-ass, 119, 121, 122, 308

t-comm, 122, 122, 308

t-defn-{r }-left, 120, 121, 308

t-defn-{— }-right, 119, 121, 303

t-defn-addm, 119, 303

t-form, 121, 122, 214, 308

t-preserves-dom-c, 214, 308

1-self, 119, 308

+=0-E, 79, 286

+-ass, 79, 286

+-comm, 79, 286

+-defn-0-left, 77,78, 79, 81,284

+-defn-0-left-rev, 141

+-defn-0-right, 78, 79, 286

+-defn-suce-left, 77, 78, 79, 79, 81, 284

+-defn-suce-left-comm, 141, 286

+-defn-suce-right, 78, 79, 286

+form, 76, 76, 77, 81, 172, 174, 250,
286

b-{a}-not-empty-E, 308

p-defn-{+-+}, 114, 303

p-defn-{a}-¢, 210, 308

b-defn-addm-e , 114, 303

p-defn-addm-2, 114, 303

b-form, 114, 203, 308

p-defn-{1, 114, 303

p-defn-addm-¢ , 114, 303

p-defn-addm-¢ , 114, 303

b-form, 114, 308

-defn, 93, 288

c-add-add-1, 296

c-defn, 92, 92, 93-95, 288

¢-dom-1-1, 309

c-E, 204,211,214, 218,296

c-form, 204, 320

-1, 94,94, 95, 296

c-self, 92, 296

C-trans, 204, 296

x-ass, 286

x-comm, 286

358

x-defn-0-left, 284

x-defn-suce-left, 284

x-form, 287

w-M-dist-left, 296

w-N-dist-right, 296

w-add-left-1, 296

-add-right-1, 296

-ass, 297

w-comm, 98, 98, 297

w-comp, 297

\-defn-{ }-left, 297

-defn-{ }-left-rev, 297

w-defn-{ }-right, 297

\-defn-{ }-right-rev, 297

-defn-those, 297

w-form, 96, 96, 98, 99, 288

-I-left-cz, 297

 of subsets is subset, 297

-self, 297

J-U-dist, 297

J-comp, 297

U-defn-{ }, 104, 297

U-defn-{a}, 297

| J-defn-add, 297

|J-form, 97, 289

w-ass, 122, 122, 309

w-comm, 122, 309

w-defn, 121, 122, 304

w-defn-{— }-left, 121, 121, 309

w-defn-{— }-right, 121, 121, 309

w-form, 309

|-ass-left, 62, 62, 63, 281

|-ass-right, 62, 63, 281

[-comm, 281

|-E, 62, 62, 63, 281

|-I-left, 61, 63, 281

|-I-right, 61, 63, 66

0 < n{Ny), 287

O-form, 72,73, 78,79, 81, 137, 140, 141,
284

Activate-lemma, 219

add-c-E-left, 298

add-¢-E-right, 298

add-c-1, 298

add — v, 97, 98, 298

add-abs, 298

add-add-form, 298

add-comm, 118, 298

RULE INDEX

add-comp, 298

add-diff-c-1, 298
AddFlight-dom-obl, 236, 237, 238
AddFlight-dom-obl-simp, 238
AddFlight-res-obl, 236
AddFlight-res-obl-simp, 238
add-form, 86, 96, 98, 99, 111, 287
add-reduction, 298
addm-t-defn-e, 309
addm-t-defn-¢, 309
addm-t-defn-compatibie, 309
addm-t-ident, 309

addm — 1, 309

addm-comm, 109, 118, 302
addm-defn-4-{a}-=, 118, 119, 130, 309
addm-extract, 309

addm-fori, 108, 119, 125, 302
addm-form-bimap, 309
addm-overwrite, 169, 117, 302
aircraft-controller-unigue, 202
aircraft-in-unique-space, 202
aircraft-in-unique-spacei, 226, 226
airspace-controller-unique, 202
appl-defn-hd, 143, 144, 145, 315
appl-defn-tl, 143, 144, 145, 315
appl-form, 143, 143, 316
AssigMap-form-1, 239
AssigMap-supertype, 227
assigs;-form-mk, 238

at-defo-1-{a — b}-=, 216, 309
at-defn-t-{a +» b}-#, 214, 310
at-defn-t-addm-=, 310
at-defn-t-left, 310

at-defn-t-right, 310
at-defn-addm-=, 115, 303
at-defn-addm-#, 115, 303
at-defn-map-comp, 127, 304
at-defn-map-comp-f(a), 128, 310
at-defn-map-comp-left-set, 129, 310
at-form, 115, 204, 209, 211, 214, 310
at-form-bimap, 157, 318
bimap-1-1, 208, 350

bimap-1-1- -, 310

bimap-E, 123, 124, 125, 310
bimap-form, 123, 125, 310
bimap-indn, 124, 148, 310
bimap-supertype, 123, 124, 125,214,311
bimap-unique-rng-elem, 311

v o As VAL AR

buildQueue-defng, 234

buildQueue-defn, 236

buildQueue-formy, 234

buildQueue-form, 234, 236

buildQueue-sat, 234

capacity-form, 205, 206

capaciry-form-mk, 218, 232, 237

card=0-1, 210, 298

card=0-E, 298

card-defn-{ }, 95, 95, 288

card-defn-w), 298

card-defn-add, 95, 95, 95, 288

card-form, 95, 203, 298

Commission-sat, 213, 242

compatible-t-I-left, 121, 121, 122, 311

compatible-f-I-right, 121, 121, 122, 311

compatible-addm-E-left-¢ , 311

compatible-addm-E-right, 311

compatible-comm, 126, 121, 311

compatible-defn, 120, 303

compatible-defn- {+-}-left, 120, 121, 311

compatible-defn-{~ }-right, 120, 121, 311

compatible-E, 120, 311

compatible-1, 120, 311

conc-defn-[], 143, 143, 316

conc-defn-cons, 143, 143, 316

conc-form, 142, 143, 316

condition-false, 88, 138, 142, 280

condition-true, 57, 172, 280

condition-true-ident, 137, 142, 280

cons-#-{], 134, 138, 142, 316

cons — ", 316

cons-form, 134, 141, 316

cons-form-queue, 235, 235

cons-form-seq+, 134, 314

cons-I, 136, 316

contradiction, 24, 27, 30, 31, 57, 130,
206, 268

control-form, 208, 210, 211

control-form-mk, 218, 232, 237

controllerOf-defng, 201

controllerQf -defn, 211

controllerOf-form, 202, 208

controllerOf -onduty, 202

controllerOf -wif, 211

Decommission-lermmma, 217

diff-=-{ }-defn, 298

diff-r-deM, 298

fo i by

diff-n-1, 299

diff-c-1, 299

diff-u-deM, 299

diff-add-I-€, 299

diff-add-i-e, 299

diff-comp, 299

diff-defn-{ }-left, 299

diff-defn-{ }-right, 299

diff-form, 96, 97, 288

diff-I-g, 299

diff-self, 299

dom-{+=}-I, 210, 311

dom-4¢-defn, 311

dom-#-{ }-E, 311

dom-addm-m-E-left, 312

dom-addm-n-E-right, 312

dom-defn-{w+}, 110, 111, 116, 206, 302

dom-defn-+, 312

dom-defn-addm, 110, 110, 110, 111, 112,
362

dom-defn-addm-<, 112, 312

dom-defn-inv, 131, 312

dom-defn-map-comp, 127, 304

dom-defn-map-comp-left-set, 129, 312

dom-extrLoec-defn, 230, 238, 239

dom-finite =>mg-finite, 131, 312

dom-form, 110, 203, 204, 214, 218, 23§,
312

dom-form-AssigMap, 226, 227, 238

dom-form-bimap, 155, 157, 204, 210,
211, 214, 218, 312

elems — those, 316

elems-defn-{], 235, 317

clems-defn-", 139, 317

elems-defn-"-cons, 317

elems-defn-cons, 317

elems-defn-cons-{a}, 317

elems-defn-cons-queue, 235, 235

elems-form, 138, 317

elems-form-seq+, 157, 317

extrAss-extrlLoc-inverse, 234, 234

extrAss-form, 233

extriLoc-t, 239, 239

extrloc-defng, 229

extrLoc-form, 229, 229

false-contr, 273

false-E, 273

talse-form, 151, 321

QU

finite-set-image, 102, 299
fst-defn, 64, 281

fst-form, 64, 63, 66, 281
hd-defn-[a)], 137, 317
hd-defn-cons, 136, 142, 224, 225, 314
hd-form, 136, 317

inds-defn-[], 317

inds-form, 145, 317

inhabited =>non-empty, 299
init-ATC-form, 200, 205
init-ATC-sat, 200
init-ATCy-adeq, 244
initial-interval-form, 299
initial-interval-1-form, 145, 299
interval-diff-defn, 299
interval-finite, 103, 103, 300
interval-form, 103, 300
interval-empty, 299
inv-AssigMap-form, 224
inv-AssigMap-1, 227
Inv-ATC-E-clause], 214
inv-ATC-E-clause2, 214
inv-ATC-E-clanse3, 214
inv-ATC-E-claused, 214
inv-ATC-form, 200

inv-ATC-1, 200
inv-ATC-I-clausel, 211
inv-ATC-I-clause3, 210, 211
inv-ATC-1-mk-clanse3, 218
inv-ATC-I-separate, 206, 214, 216
inv-ATC,-I-mk-clause3, 238
inv-defn, 130, 364

inv-form, 131, 312

is-1-1-f-{g ++ b}-E-¢ -tng, 312
is-1-1-addm-E-& -map, 125, 126, 312
is-1-1-addm-E-¢ -rng, 125, 126, 130, 313
is-1-1-defn, 123, 304

is-1-1-E, 124, 313

is-1-1-1, 123, 313
is-activated-defng, 201
is-activated-E, 207, 208
is-activated-form, 201
is-known-defng, 201
is-known-E, 209, 211
is-known-form, 201

ITE-form, 60, 280
ITE-form-sqt, 58, 60, 280
knownAircraft-1-lemma, 239

ANU LA RIS AN

len-defn-[], 140, 141, 317
len-defn-[a}], 317
len-defn-", 139, 139, 141, 317
len-defn-cons, 141, 317
len-defi-seq+, 3E7
len-form, 137, 138, 141, 145, 318
len-form-seq+, 318
location-form, 209-211
location-form-mk, 218, 232, 237, 238
locOf-1-=, 239
locOf-1-#, 239
locOf -form, 226, 226
locOf-wif, 226, 226
map-}-extend-dom-left, 313
map-{-extend-dom-right, 313
map-j-extend-rng-left, 313
map-j-extend-rng-right, 313
map-comp-defn-set, 128, 305
map-comp-form, 127, 304
map-comp-form-left, 313
map-comp-form-left-set, 129, 313
map-comp-form-set-ident, 128, 313
map-comp-left-defn-add, 239, 313
map-indn, 109, 111, 116, 117, 124, 125,
302
merge-defn-{~+}, 304
merge-defn-add, 304
merge-form, 314
mk-ATC-defn, 200, 231
mk-ATC-form, 199, 206, 230
mk-ATC-form, 232
nil-form, 66, 282
no-double-assignment, 202
non-empty-set-inhabited, 104, 300
nonRping-defng, 224, 224, 225
nonRptng-form, 224, 225
nonRptng-wif, 224
not activated = empty, 202
numQOfAircraft-defng, 200, 203
numOfAircraft-defn, 203, 204, 210
numOfAircraft-elm-defn, 230, 238, 239
numOfAircraft-form, 200, 203, 204, 210,
238
numOfAircraft-wif, 203, 203, 204
onduty-defn, 200
onduty-form, 200, 205, 206, 211
onduty-form-mk, 232, 237
opt-|-extend-left, 282

LA LIYLIDA

opt-|-extend-right, 69, 69, 282

opt-E, 67, 282

opt-E-2-nil, 67, 282

opt-1, 66, 282

pair-=-merge, 64, 282

pair-=-split, 64, 64, 282

pair-|-extend-left, 66, 282

pair-|-extend-right, 66, 282

pair-form, 64, 66, 282

pair-defn, 64, 66, 281

post-buildQueue-form, 234

post-Commission-form, 212

pow-comp, 300

pow-form, 97, 289

pre-Commission-form, 212

pre-controllerOf -form, 201

pre-locOf-form, 226

ResetCapacity-sat, 217

retr;-adeq, 229, 231

retry-adeq-assigs, 231, 232-234

retry-adeq-mk, 231, 231

retri-defng, 229,231

retr;~defn, 230, 230

retry-defn-mk, 230, 231, 232

retry-E-capacity, 237, 237

retri-E-control, 237, 237

retr;-E-location, 237, 237

retry-E-onduty, 237, 237

retr;-form, 229

retr,-wif, 230, 230, 231

rng-defn, 314

mg-defn-{—}, 111, 206, 302

rng-defn-addm, 119, 314

rg-defn-addm-e, 114, 114, 116, 118,314

rg-defn-addm-e, 111, 111, 117-119, 302

mg-defn-inv, 130, 314

rng-defn-map-comp, 129, 314

mg-extrloc-lemma, 230

rng-form, 112, 204, 206, 210, 211, 214,
218,314

rng-form-AssigMap, 227

mg-form-bimap, 155, 157, 204, 211, 314

seq- -indn, 146, 146, 318

seq-|-extend-left, 318

seq-|-extend-right, 318

seg-indn, 134, 134, 135, 137-139, 142-
144, 146148, 172,224, 225, 314

seq-sep, 148, 148, 318

36l

seq+-E, 135,318

seq+-haf, 134, 136, 147, 318

seq+-1, 318

segq+-indn, 148, 318

seq+-supertype, 135, 318

sequent-E-basic, 68, 68, 283

sequent-E-basic-2, 70, 283

sequent-E-gen, 67, 68, 283

sequent-E-gen-2, 70, 146, 283

set-J-extend-left, 300

set-]-extend-right, 300

set-comp-defn-set, 101, 289

set-comp-form, 101, 101, 105, 289

set-comp-form-set-ident, 102, 300

set-comp-form-set-ident-global, 102,
300

set-comp-rewrite, 300

set-image-form, 300

set-indn, 87, 87, 88, 90, 109, 235, 287

snd-defn, 64, 282

snd-form, 64, 65, 66, 282

subtype-f-extend-left, 283

subtype--extend-right, 69, 283

subtype-E, 67, 67, 68, 163, 283

subtype-1, 67, 67, 68, 163, 283

subtype-subs, 67, 283

succ- >-inherit, 84, 287

suce # 0, 73, 80, 81, 284

succ-1-1, 75, 284

suce-1-1-#, 287

succ-form, 72, 73, 78, 81, 138, 141, 284

supertype, 67, 67, 68, 163, 283

those~-=-form, 300

those-€ -form, 300

those-v-form, 304

those— { }, 301

those-form, 100, 101, 103, 105, 361

those-form-e -¢, 301

those-form-rewrite, 301

those-I, 301

those-rewrite, 301

those-weaken, 301

tl-defn-[a], 137, 318

tl-defn-cons, 136, 138, 142, 225, 314

tl-form, 136, 318

true-form, 151, 321

true-1, 24, 24, 30, 151, 267

n=0 < n<0, 287

302

Hz < M 0<n, 287

n < suce(n), 287

51N {51\ 852) = 85y Mgy, 302
St (8N 52) = 851\ 52, 301
51 ﬁ(Sz\ 51) = { }, 301
{81 M 5) <85, 301

(51 N8y C 51, 301

52 (51w 82), 301

51 & (51w 8), 301

SLU (s N\ 52) = 51, 302
sS1U (.5‘2\81) = §1 U5, 302

KULE INPEA

