
Proof in VDM:
A Practitioner's

Guide
by

Juan C. Bicarregui
JohnS. Fitzgerald
Peter A. Lindsay
Richard Moore
Brian Ritchie

Springer-Verlag
London Berlin Heidelberg New York

Paris Tokyo Hong Kong
Barcelona Budapest

Juan C. Bicarregui and Brian Ritchie, Informatics Department
Rutherford Appleton Laboratory, Chiton, Didcot, Oxfordshire
OXll OQX, UK

JohnS. Fitzgerald, Dependable Computing Systems Centre,
20 Windsor Terrace, The University,
Newcastle upon Tyne NE1 7RU, UK

Peter A. Lindsay, Software Verification Research Centre,
Department of Computer Science, University of Queensland, St Lucia,
Queensland 4072, Australia

Richard Moore, Department of Computer Science, The University
Manchester Ml3 9PL, UK

Series Editor

Steve A. Schuman, BSc, DEA, CEng
Department of Mathematical and Computing Sciences
University of Surrey, Guildford, Surrey GU2 SXH, UK

ISBN 3-540-19813-X Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-19813-X Springer-Verlag New York Berlin Heidelberg

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress in Publication Data
A catalog record for this book is available from the Library of Congress

Apart from any fair dealing for the purposes of research or private study, or
criticism or review, as permitted under the Copyright, Designs and Patents Act
1988, this publication may only be reproduced, stored or transmitted, in any form
or by any means, with the prior permission in writing of the publishers, or in the
case of reprographic reproduction in accordance with the terms of licences issued
by the Copyright Licensing Agency. Enquiries concerning reproduction outside
those terms should be sent to the publishers.

© Springer·Verlag London Limited 1994
Printed in Great Britain

The use of registered names, trademarks etc. in this publication does not imPly,
even in the absence of a specific statement, that such names are exempt from the
relevant laws and regulations and therefore free for general use.

The publisher makes no representation, express or implied, with regard to the
accuracy of the information contained in this book and cannot accept any legal
responsibility or liability for any errors or omissions that may be made.

Typesetting: Camera ready by author
Printed and bound by Antony Rowe Ltd, Chippenham, Wiltshire
34/3830-543210 Printed on acid-free paper

Foreword

Formal specifications were first used in the description of program
ming languages because of the central role that languages and their
compilers play in causing a machine to perform the computations
required by a programmer. In a relatively short time, specification
notations have found their place in industry and are used for the
description of a wide variety of software and hardware systems. A
formal method - like VDM - must offer a mathematically-based
specification language. On this language rests the other key
element of the formal method: the ability to reason about a
specification. Proofs can be employed in reasoning about the
potential behaviour of a system and in the process of showing that
the design satisfies the specification.

The existence of a formal specification is a prerequisite for the
use of proofs; but this prerequisite is not in itself sufficient. Both
proofs and programs are large formal texts. Would-be proofs may
therefore contain errors in the same way as code. During the
difficult but inevitable process of revising specifications and devel
opments, ensuring consistency is a major challenge. It is therefore
evident that another requirement - for the successful use of proof
techniques in the development of systems from formal descriptions
- is the availability of software tools which support the manipu
lation of large bodies of formulae and help the user in the design of
the proofs themselves.

Unfortunately, experience indicates that even the simultaneous
presence of formal descriptions and tools to support the con
struction of proofs will not be enough to ensure that they are
instantly accepted. Learning from the previous technology transfer
difficulties, it is clear that it is necessary to modify the way people
think about systems and to teach them a whole new approach if
they are to reason successfully about their specifications and
designs. It is a key contribution of this book that it takes seriously
the challenge of teaching practitioners how to construct their own
proofs.

In 1977, Ole-Johan Dahl wrote a paper with the prescient title of
'Can Program Proving Be Made Practical?'. His argument was
basically that, if each program proof is to be started on a blank
sheet of paper, the process will never become viable. It is necessary
that collections of useful results or theories about data types are

rurewura

documented and made available to potential users of proof tools.
The system- mural- which the authors of this book built, placed
considerable emphasis on the development of theories. Some
organisations which have built their own theorem provers have
realised ;hat the 'theory base' which has been developed with the
tools is a more valuable asset than the theorem prover itself.
Readers of this book should be grateful that the authors are
prepared to expose and make available the theories which they
have developed for the most important parts of VDM-SL.

The mural system put great emphasis on the design of a user
interface which would make it easier for people to employ a
computer in the development of proofs. It is difficult, within the
limitations of a textbook, to explain the process by which proofs are
constructed. The authors of this book have been successful in
conveying how one should tackle the task of designing the proof of
a theorem. Any reader who conscientiously works through this text
should be in an admirable position to move on from the stage of
using formal specifications solely as a description of a system and be
prepared to use formal reasoning as a support both for ascertaining
properties of a specification and for using proofs in the develop
ment process.

Manchester
September 1993

Cliff Jones

Preface

Recent advances in computing technology have led to an increasing
willingness on the part of engineers and innovators to entrust
critical operations to computing systems, both for reasons of safety
and for increased efficiency over older technologies. This has posed
a challenge to the computing community to develop ways of
engineering computer systems so that they meet the stringent
requirements placed upon them. There have been many responses
to this challenge, among them the exploitation of formal methods.

Formal methods involve the construction of a mathematical
model or theory of the required behaviour of a product in the early
stages of its development. Such modelling is widely employed in
more "traditional" engineering disciplines to assist with analysing
the behaviour of complex systems: an aeronautical engineer, for
example, uses a mathematical model of lift and thrust on an aircraft
wing to help determine its optimum design. In a similar way, a
mathematical model, in the form of a formal specification, can be
used to describe the essential behaviour of a computing system at
an abstract level.

A major benefit of this approach over less mathematical tech
niques is the degree of rigour which can be brought to arguments
about the behaviour of the system described by the model. A
formal specification can be shown to be consistent using mathema
tical proofs. The same techniques can be used to help increase
confidence that the specification captures informally-stated
requirements. Design decisions can be checked for fidelity to the
specification as development progresses. In a number of formal
isms (e.g. VDM [Jon90], RAISE [RSL92], refinement calculus
[Mor90]) this is done as a staged process of refinement or reification
in which increasingly concrete designs and implementations are
shown to preserve the behaviour described in more abstract
specifications.

Other benefits arise from the fact that the initial specification is
abstract as well as formal. The essential functionality of the desired
system can be described more concisely than would be possible if
implementation detail were included. As a result, the most import
ant properties, such as safety, can be reasoned about at a stage of
the development when they are easier to understand and when any
errors are less costly to rectify than is the case if they are uncovered

viii Preface

in later stages of design or in testing. In this way formal methods
can be seen as one way of increasing the degree of confidence that a
computer system will exhibit both required and predictable behav
iour.

Much research ha.s gone into improving the accessibility and
practical applicability of formal methods. Effort has been put into
the standardisation of specification languages such as that of VDM
(VDM-SL [BSI92]) and Z [BN92]. In addition, new languages have
been and are being developed. Some of these attempt to combine
the ideas of formal specification with those of other design
methods, for instance object-oriented design (e.g. RSL [RSL92],
Object Z [DKRS91]). Others attempt to incorporate the expressive
power required to specify such non-static properties of a system as
concurrency (e.g. VVSL [Mid90], CCS [Rob89], CSP [Hoa85]),
real-time constraints and fault-tolerance (e.g. [Ost92], [Vyt92]).
Another important area of work has been tool support for formal
methods (e.g. the tools reports in [WL93]).

Numerous books and courses deal with these aspects of formal
methods, but comparatively few offer help to the practitioner or
student wishing to gain the full benefit of rigorous or formal proof
in the areas mentioned above. Texts which do cover proof tend to
present only sketch proofs, and give little indication of the process
by which a proof can be constructed. One of the authors of this
book (RM) recently received a letter reflecting this view:

"There is an example of an adequacy proof on page . .. of . ..
However, I am unsure how to make use of it and I find it
difficult to follow. I have not created any proofs previously and
do not know how to set about the process."

The process of creating proofs is the main subject of this book.
The emphasis is on proof as an integral part of the system
developer's toolkit, rather than as an onerous duty to be performed
in order to exhibit conformance to some set of mathematical
criteria in the form of proof obligations. It is demonstrated how
proof can be used to improve understanding of a specification or a
design step, how it can uncover errors, and how it can also be used
to show that the specified system exhibits the required properties.
An important lesson is that understanding why an attempted proof
has failed is often more valuable than knowing the details of a
successful proof.

It should be stressed at the outset that this is not a book about
VDM per se. Rather it is about proving properties of formal
specifications in general, with VDM used simply as a vehicle to
illustrate techniques which can just as easily be applied to other
specification languages. The book will therefore be of interest to
potential practitioners of formal methods who are seeking to
overcome the "prover's block" exhibited by the correspondent
mentioned above. It will also interest those scientists working on
proof support systems for formal methods, as well as those
developing proof theories for other specification languages. The

Preface ix

tutorial nature of the text, including the exercises and substantial
case study, is intended to make it suitable for industrial and
university-level courses. Some familiarity with writing and under
standing specifications in at least one formal specification language
is assumed. However, the first part of Chapter I gives a brief
summary of VDM for those readers whose experience lies elsew
here. The remainder of Chapter I provides an overview of the
logical framework on which the material of the rest of the book is
based.

Like other formal specification languages, VDM-SL provides an
underlying logic and a collection of primitive types (e.g. numbers,
truth values) and type constructors (e.g. sets, lists) out of which
specifications are built. Proofs about a particular specification will
therefore involve, at least in part, reasoning about these built-in
primitives, the properties of which are defined via a collection of
axioms. Part I (Chapters 2 to 9) gives axioms and definitions for the
basic VDM logic, data types and type constructors, and discusses
how such axiomatisations can be designed, as well as problems
which might be encountered. It also shows how theories of useful
results about these constructs can be built up by proof. These
chapters introduce important proof strategies, such as induction,
case distinction, and the technique of structuring proofs by using
subsidiary lemmas. They also demonstrate the use of informal
argument as a tool, both for determining whether a particular result
is provable and for determining the outline structure of a more
rigorous or formal proof. These points are illustrated with the help
of detailed worked examples, with explanations of the key stages in
the production of a proof and of the arguments used to determine
the best strategy for its construction.

Having developed a collection of useful results about the primi
tive constructs of the specification language, the next stage is to use
these in proving properties of a specification or a refinement step.
This is the subject of Part II (Chapters 10 to 13). Chapter 10 shows
how to construct a theory from a specification, including the axioms
describing the essential properties of the specification and the proof
obligations representing properties that the specification must
possess if it is to be considered sound. Chapter 11 extends these
ideas to reasoning about refinements. The techniques discussed so
far are illustrated in Chapter 12, which contains a substantial case
study of an air-traffic control subsystem, including an abstract
specification and two levels of refinement. The case study also
shows how validation conditions can be used to discover errors in a
specification and to help to demonstrate that a specification actually
exhibits the required safety properties.

Part I gives an axiomatisation of the most commonly used parts
of the VDM-SL language [Daw91]. However, some constructs
(e.g. function types) have been omitted because their inclusion
renders the treatment of more familiar constructs less intuitive, or
because their own formal axiomatisation is complex. These con
structs, and other advanced topics, are discussed in Chapter 13.

X Preface

The size of the VDM-SL language prevents full coverage of all its
constructs, and a few have been omitted for lack of space, but
these (e.g. many well-known arithmetic operators) are sufficiently
similar to the constructs treated in the text that the reader should
have little difficulty arriving at a reasonable axiomatisation using
the techniques described. Chapter 13 also discusses issues relating
to the logical approach taken in the other chapters, for example
limitations of the logical frame and the axiomatisations chosen.

The final part of the book, Part III, contains a collection of useful
theorems for those readers wishing to apply the techniques learned
to their own examples.

It is worth stressing that the techniques discussed throughout the
book can be applied equally to proofs done by hand and to proofs
constructed using a computer. Indeed, the logical framework and
proof style presented here have been shown to be suited to machine
support [JJLM91].

Each chapter in the main text ends with exercises aimed at
reinforcing the lessons taught there. In the case study of Chapter
12, the exercises are an integral part of the study itself, and are
presented at appropriate points throughout the chapter. In addi
tion, Part III contains numerous derived results which can be used
as practice material. Chapter 13 can be considered additional
reading for those wishing a deeper understanding of some of the
more esoteric issues arising in connection with the axiomatisation
of a specification language.

Further material, including answers to exercises, is available as a
separate volume. Entitled "Proof in VDM: Readers' Notes", this
can be obtained by anonymous file transfer protocol (ftp) or in
hardcopy. The ftp version can be obtained from the University of
Manchester (ftp.cs.man.ac.uk) in the directory /pub/Proof-in
VDM. The files are stored as compressed PostScript. Copies are
also available by post from the following addresses. A small fee will
be charged to cover printing and postage.

Dept. of Computing Science, The University of Newcastle upon
Tyne, Newcastle upon Tyne NEl 7RU, United Kingdom

Informatics Department, Rutherford Appleton Laboratory,
Chilton, Didcot, Oxon OXll OQX, United Kingdom

Software Verification Research Centre, University of Queensland,
St Lucia, Queensland 4072, Australia

This book represents a significant collaborative effort by a geo
graphically diverse group of authors, all of whom have contributed
to the material presented throughout the book. Readers wishing to
make further enquiries are, however, invited to contact the authors
on the following basis: RM and JSF for the basic axiomatisation
and proof techniques presented in Chapters 2 to 9 and 14; JCB and
BR for theories of specifications and reifications discussed in
Chapters 10 and 11; PAL for the logical framework outlined in

Preface xi

Section 1.3; RM and PAL for the case study of Chapter 12; RM,
BRand JSF for the material presented in Chapter 13.

Acknowledgements

The authors owe a considerable debt of gratitude to Cliff Jones for
his thoughtful advice and support both in the production of this
volume and in the research which underlies it.

We are very grateful to Peter Gorm Larsen of the Institute of
Applied Computer Science (!FAD), Denmark for his valuable
review comments. Technical discussions with Peter have helped us
identify many of the issues relating to the extension of our work to
the full VDM-SL language (Chapter 13): we wish him well in taking
this work further in his doctoral research. In a similar vein, we are
grateful to our colleagues in the development of the mural system,
during the design of which many of the ideas described here were
originally formulated. Thanks also to Ian Hayes for discussions
concerning early drafts of the air-traffic control case study, and to
Ralph Nelson, Senior Tower Controller at Brisbane Airport, for
advice on terminology.

This book has been some two years in the making. Our thanks
therefore to Linda Schofield and the staff at Springer-Verlag for
their patience and support, and to the anonymous referees for their
telling and constructive comments.

The authors gratefully acknowledge the technical assistance of
the Department of Computing Science at Newcastle University in
the maintenance of the book's source text. Typesetting was done
using a version of the LATEX system set up by David Carlisle of
Manchester University, with mathematical and index macros by
Mario Wolczko and Brian Ritchie.

JSF would like to thank colleagues in the Computing Science
Department at the University of Newcastle upon Tyne for valuable
discussions and technical support; RM thanks the Department of
Computer Science, University of Manchester for financial support;
BRand JCB would like to thank colleagues at the SERC Ruther
ford Appleton Laboratory; and PAL would like to thank collea
gues in the Department of Computer Science and the Software
Verification Research Centre at The University of Queensland.

September 1993 Juan C. Bicarregui
John S. Fitzgerald
Peter A. Lindsay

Richard Moore
Brian Ritchie

Contents

1 Introduction I
1.1 Background I
1.2 How proofs arise in practice: an introductory example 2
1.3 A logical framework for proofs 9
1.4 Summary 19

I A Logical Basis for Proof in VDM

2 Propositional LPF .. . 23
2.1 Introduction .. . 23
2.2 Basic axiomatisation 24
2.3 Derived rules: reasoning by cases; reasoning using

contradiction 25
2.4 Using definitions: conjunction 28
2.5 Implication; definedness; further defined constructs .. 32
2.6 Summary 36
2.7 Exercises 36

3 Predicate LPF with Equality 39
3.1 Predicates .. 39
3.2 Types in predicates 40
3.3 Predicate calculus for LPF: proof strategies for

quantifiers ... 41
3.4 Reasoning about equality: substitution and chains of

equality . 51
3.5 Extensions to typed predicate LPF with equality 56
3.6 Summary 58
3. 7 Exercises 58

4 Basic Type Constructors 61
4.1 Introduction 61
4.2 Union types 61
4.3 Cartesian product types 63
4.4 Optional types 66

xiv Contents

4.5 Subtypes 67
4.6 A note on composite types 68
4.7 Summary ... 69
4.8 Exercises 69

5 Numbers 71
5.1 Introduction ... 71
5.2 Axiomatising the natural numbers 72
5.3 Axiomatisation of addition and proof by induction ... 75
5.4 More on proof by induction 79
5.5 Using direct definitions 81
5.6 Summary 84
5. 7 Exercises . 84

6 Finite Sets . 85
6.1 Introduction 85
6.2 Generators for sets; set membership; set induction . . . 85
6.3 Proof using set induction . 87
6.4 Quantification over sets . 90
6.5 Subsets; set equality; cardinality 92
6.6 Other set constructors .. 96
6. 7 Set comprehension 99
6.8 Reasoning about set comprehension...................... 102
6.9 Summary .. . 104
6.10 Exercises 104

7 Finite Maps 107
7.1 Introduction 107
7.2 Basic axiomatisation 108
7.3 Axiomatisation using generators 109
7.4 Extraction and abstraction of lemmas 115
7.5 Using subsidiary definitions 119
7.6 Polymorphic subtypes and associated induction rules 122
7.7 Map comprehension .. 126
7.8 Summary 129
7. 9 Exercises 129

8 Finite Sequences 133
8.1 Introduction .. : 133
8.2 Basic axiomatisation .. 133
8.3 Destructors .. 136
8.4 Equality between lists 136
8.5 Operators on lists .. 136
8.6 An alternative generator set 145
8.7 Summary 147
8.8 Exercises 147

Contents

9 Booleans
9.1 Introduction .. .
9.2 Basic axiomatisation
9.3 Formation rules for boolean-valued operators
9.4 An example of a well-formedness proof obligation .. .
9.5 Summary .. .
9.6 Exercises .. .

II Proof in Practice

XV

149
149
149
151
!54
!58
158

10 Proofs From Specifications 161
10.1 Introduction 161
10.2 Type definitions 162
10.3 The state 166
10.4 Functions and values 167
10.5 Operations 175
10.6 Validation proofs ... 177
10.7 Summary .. 178
10.8 Exercises .. 178

11 Verifying Reifications .. . 181
11.1 Introduction .. 181
11.2 Data reification 182
11.3 Operation modelling 184
11.4 An example reification proof 186
11.5 Implementing functions 189
11.6 Implementation bias and unreachable states 190
11.7 Summary 191
11.8 Exercises .. 192

12 A Case Study in Air-Traffic Control 193
12.1 Introduction .. 193
12.2 The air-traffic control system 194
12.3 Formalisation of the state model 197
12.4 Top-level operations 211
12.5 First refinement step 221
12.6 Second refinement step 240
12.7 Concluding remarks .. 241

13 Advanced Topics .. . 245
13.1 Introduction .. 245
13.2 Functions as a data type 246
13.3 Comparing elements of disjoint types 247
13.4 Recursive type definitions 248
13.5 Enumerated sets, maps and sequences 252

xvi Contents

13.6 Patterns
13.7 Other expressions .. .
13.8 Other types .. .

254
256
263

III Directory of Theorems

14 Directory of Theorems .. 267
14.1 Propositonal LPF ... 267
14.2 Predicate LPF with equality 273
14.3 Basic type constructors 281
14.4 Natural numbers 284
14.5 Finite sets 287
14.6 Finite maps ... 302
14.7 Finite sequences .. 314
14.8 Booleans .. 319
14.9 Specifications 321
14.10 Reifications ... 326
14.11 Case study I: abstract specification 327
14.12 Case study II: refinement 333

Bibliography . 343

Index .. 347

Index of Symbols 351

Index of Rules 353

Chapter 1

Introduction

1.1 Background

This book is about formal techniques for the specification and development of computing
systems. In particular, it addresses the role of proof as an aid in building specifications,
checking them and developing working systems from them. As a vehicle for this, the
specification and development techniques of VDM (the Vienna Development Method)
are used. Prior familiarity with VDM is not essential to an understanding of this text, but
a good working knowledge of the method can be gained from [Jon90], [AI91] or [WH93].

VDM is a collection of techniques for the rigorous or formal development of computing
systems. It chiefly consists of:

A specification language: The language VDM-SL is used to present specifications in a
model-oriented style. A specification consists of a data model, defining an abstrac
tion of the maio data types with which the proposed system is concerned, together
with a set of operations which express the required behaviour of the system in an
abstract manner. A state type is usually defined as part of the data model, as an
abstraction of the internal state of the system, although many applications do not
in fact require a state. Each operation is defined as a relation between input and
output values of various defined types. When a state model is used, an operation
may also change the state of the system as a side-effect.

Data reification techniques: The data model defined in a specification is an abstraction
of the data types which will appear in the final implementation, and might be quite
different in form and structure. Data reification techniques allow the specification
to be progressively rewritten in terms of data models which more and more closely
approximate the data types of the implementation. As implementation detail is
introduced, each successively more concrete specification can be shown to exhibit
the behaviour defined by the more abstract specifications.

Operation decomposition techniques: In an abstract specification operations are spec
ified as mathematical relations, but in the final computing system they are imple
mented as programs. Operation decomposition techniques allow the staged intro
duction of programming constructs (loops, conditionals, and so on) into operation
definitions. VDM-SL has a repertoire of predefined operation combinators for giv
ing imperative-style operation specifications.

2 1 Introduction

This book concentrates on the specification and data reification techniques of VDM.

As motivation, Section 1.2 takes a simple example of a VDM development and illus
trates the kind of reasoning involved in validating its correctness. Section 1.3 describes
a framework for conducting this reasoning.

1.2 How proofs arise in practice: an introductory exam
ple

In this section, a simple specification is built and a small refinement step illustrated. This
highlights the need to reason about a specification as it is being written and developed,
exemplifying the kinds of facts one might wish to prove in the process.

1.2.1 Requirements

Here is an extract from a hypothetical informal requirements document sent by a client
to a specifier:

I am building afonnally-developed debugger for a block-structured pro
gramming language. As part of this, I need a symbol table which records the
names and values of all the variables in the program at any point. I need
operations to:

1. enter a block, stacking the outer block's variables;

2. leave a block,forgetting about its variables;

3. find the value of any variable accessible from the current block;

4

A variable is in scope in all the blocks contained within the block where it is
defined, except where it is redefined locally.

The client has asked for other operations (e.g. to add and modify variables) but these are
not considered in this brief introduction.

1.2.2 Specification

The specifier reads the requirements and notices that the client has been good enough to
state what operations are required. The next step is to come up with a suitable model of
the symbol table. One approach is to treat the table as a stack of frames, a frame being a
mapping from variables to values.

In VDM, models are built using primitive types and type constructors. There are, for
example, primitive types modelling the natural numbers and Boolean values (respectively
Nand B), and type constructors modelling Cartesian product types(. x .), disjoint union
types(. I .), finite sets (_-set), finite maps(. -"'-. -land finite sequences(. •).

In the symbol table example, the type of frames can be modelled as a class of maps:

Frame = Var ~ Val

1.2 How proofs arise in practice: an introductory example 3

where Var and Val are types for variables and values respectively. The details of their
definitions are not relevant here.

The state of the symbol table can be modelled as a sequence of frames, most recent
frame first. Initially (before the first block of the program is entered), the symbol table is
empty:

state Symbol-Table of
[stack : Frame•

inrr mk-Symbol-Table(fs) 0. fs = []
end

The primitive types and type constructors of VDM-SL have associated operators which
may be applied to values of the relevant types. For example. sequences have many pre
defined operators, among them:

the empty sequence [] sequence enumeration [a,b,c, ...]
sequence concatenation length of a sequence len-
head of a sequence hd_ elements of a sequence elems_

tail of a sequence u_ indices of a sequence inds-

Since a sequence has been chosen to model the symbol table, these operators can be
applied to it, allowing the specifier to describe the head, tail, elements, and so on, of the
symbol table.

In addition to the primitive types. type constructors and their associated operators, VDM
supports logical assertions composed from terms using the operators. For example:

Assertion 1.1 If fs is a non-empty symbol table, then the result of popping
the most recent frame off[s is again a symbol table:

(fs: Frame· r.fs ,o []) => (11/s): Frame•

The ability to make assertions about elements of the defined types and state space al
lows the operations to be specified implicitly. An operation can be specified in VDM-SL
by defining its input and output variables, together with their types; the access (read
only. read/write) it has to the so-called external state variables; its precondition, which
describes those inputs and states for which the operation•s behaviour is defined; and its
postcondition, which describes the relationship between inputs and outputs and the effect
on the state.

For example. the operation for entering a block can be specified thus:

Enter-Block (frame: Var":..,Val)
ext wr fstack : Frame•
pre true

postfstack =[frame] ~J;iaek

where the input variable frame represents the frame corresponding to the block being
entered. This operation updates the symbol table by pushing the new frame onto the

4 1 1nanaucaon

stack. In the postcondition, the variable fstack denotes the value of the state variable
when Enter_B/ock is invoked andfstack stands for its value when the operation returns.

The implicit specification style of VDM allows the specifier to give just enough informa
tion to describe the effects of an operation, without being over-prescriptive.

The operation for leaving a block can be specified as follows:

Leave-Block ()
e>d wr fstack : Frame•
pre fstack"' []

postfstack = tlfstack

The behaviour of the Leave-Block operation is not defined when the symbol table is
empty.

What would the client, who knows little about formal specification, make of the specifier's
work so far? This specification is unlikely to be helpful if it is offered simply as a piece
of text without some supporting argument that it is meaningful, self -consistent, and does
indeed describe the required system behaviour. In short, the specifier needs a semantics
for the specification language which supports reasoning about the behaviour it describes.
This is provided, in part, by the mathematical properties of the building blocks of the
specification: the primitive types, type constructors, operators on constructed types, and
so on. Using these, it is possible to make some assertions about the putative symbol table
specification and to discuss their validity.

VDM provides a number of proof obligations which, when discharged, show the math
ematical self~consistency of a specification. For example, an argument should be given
to say why the postcondition of Leave_B/ock is meaningful, since the tl_ operator is de
fined only on non-empty sequences. Such a proof obligation is called a well-formedness
obligation. For the Leave-Block operation, the precondition gives a sufficient condition
for the postcondition to be well-formed, since it ensures that {stack is non-empty when
the operation is invoked.

Another kind of proof obligation is to show that operation specifications are satisfiable.
For the Enter-Block operation, this proof obligation can be formulated as follows:

Obligation 1.2: Given any input frame: Var ~ Val and stateliiCiCk:Frame"
satisfying the precondition of Enter _Block, there is a state [stack: Frame"
such that the postcondition of Enter-Block is satisfied.

An informal proof of this obligation might go as follows:

The type of the input is
so by definition of Frame
and by properties of sequences

Next, it is given that

so by properties of sequences

frame: Var ~ Val,
frame: Frame,
(frame]: Frame•.

fstack: Frame•,

(frame] ~ JiiCiCk: Frame•.

1.2 How proofs arise in practice: an introductory example 5

Let/stack be this new value: /stack= [frame]~ J;iaek.

By substitution of equals f-;tack: Frame•,
so /stack is a state (as required)
and the postcondition holds post-Enter_B/ock.

It remains to specify the operation for looking up the value of a variable. The visible
variables are those of the current block and all those of containing blocks whose names
have not been redefined in the current block. The specifier decides to write a function
curr ~ vars which takes a symbol table and extracts from it the collection of aU currently
visible variables and their values:

curr _ vars: Frame• ~ (Var ~ Val)

The specifier leaves the body of the function undefined temporarily in order to finish off
the specification of the look-up operation:

Lookup (v: Var) r: Val
ext rdfstack : Frame'
pre v e dom curr _ vars(jstack)
post r = (curr_ varsljstack))(v)

The function curr-vars is auxiliary: it is defined purely for convenience in writing the
specification; it is not an operation requiring implementation. A first attempt to define
the function might result in something like:

curr _ vars :Frame· ~ (Var ~ Val)
curr-varsljs) ~ itfs = [] then{,_,} else (hd/s) t curr_vars(tlfs)

where { ,_,} is the empty map and t is the map overtide symbol. However, as the reader
may have noticed, the specification of curr _ vars given above does not define the desired
function because the arguments of the map override are the wrong way round. This means
that, where frames have variables in common, the more recent values get overwritten by
the older values, which is not what the client intended. The function body is well-formed
and agrees with its signature, so this error would not be spotted by a type-checker. In
fact, the error in curr _ vars is not even one of internal consistency in the specification: the
Lookup operation is satisfiable, so discharging the satisfiability proof obligation will not
help in spotting the fault.

Such faults can easily arise in formal specification as the result of a misunderstanding of
the requirements, or of oversights in the definition. One way to overcome such problems
and improve confidence in a specification is to posit validation conjectures (or validation
conditions), which are statements of properties which the system is expected to possess,
then to show that these are logical consequences of the specification. For the example
above, one such validation conjecture might be:

Validation 1.3: Suppose that, after initialisation, Enter _Block({x ,_, vt)) is
applied, followed immediately by Enter-Block({x ,_, v2 }); then the result of
Lookup(x) should be v,.

By considering the effect the operations have on the state; this could be stated more

6 1 Introduction

formally as:
(curr_vars([{x ,_, v2 }, {x ,_, v1}]))(x) = v2

Unfolding the definition of curr M vars, it becomes clear that Validation 1.3 cannot be
proved:

Let s2 stand for
and let s1 stand for

Then curr M vars(s2) is

Now, curr_vars(s1) is
and curr _ vars([]) is
so by properties of maps,
curr _ vars(s1) equals

Thus curr _ vars(s2) equals
which simplifies to
again, by properties of maps.

Finally, (curr_vars(s2))(x) is
which equals
contrary to expectations!

[{x ,_, v,), {x ,_, v,)]
[{x ,_, v,)].

{x ,_, v,) t curr_vars(s1).

{x ,_, v,) tcurr_vars([]),
{ ,_, }.

{x ,_, v,) t {x ,_, v,)
{x ,_, v,),

{x ,_, v,)(x),
v,

This example illustrates that proof is a tool not only for showing internal consistency of
specifications but also for validating them against their requirements. Obviously it is still
possible to miss some "bugs" in a specification, since one may not suggest all the correct
validation theorems. Even extensive proof can only serve to increase confidence that a
specification conforms to its requirements. It is, in general, impossible to show perfect
conformance at this boundary between the formal and informal.

In the symbol table example, the specifier corrects the definition of curr _ vars to read:

curr _ vars : Frame• -t (Var ~ Val)

curr-vars(js) ~ if fs = [] then { ,_,} else curr_ vars(tlfs) t (hd/s)

With this new definition, it is possible to prove the validation conjecture above.

1.2.3 Data reification

The specification given above provides an abstract model of the system exhibiting the
required external behaviour, but it pays no attention to the efficiency of operations. For
instance, a direct implementation of the specification of the Lookup operation would be
particularly inefficient since the curr H vars function recursively traverses the whole of
the sequence of frames in order to build a map of the visible variables and their values.
Some improvement in efficiency could be made by algorithm refinement. For example,
the succession of recursive calls could be stopped as soon as the required map let is found
(namely, as soon as a frame is encountered which has the variable in its domain).

Algorithm refinement on its own, however, might still not deliver the required efficiency.

1.2 How proofs arise in practice: an introductory example 7

If it is known that Lookup is to be used very frequently, it might be better to choose a
new data model which brings to the fore the information it requires. The process of going
from an abstract data model to a more concrete one is known as data reification. One
possible reification of the data model given above would be to model the state as a map
from variables to stacks of values, where the head of each sequence is the current value
associated with that variable and its tail comprises the values that have been overridden
in the present context. With this model Lookup could be considerably more efficient,
though Enter -Block and Leave.Block become more awkward as a consequence.

The specifier might define the new, more concrete state as follows:

state Symbol.Tab/e_2 of
vmap : Var ~ Var

inv mk-Symbol.Table-2(vmap) L [] ~ rngvmap
end

The invariant indicates that variables that are out of scope are modelled by omission from
the map.

With the new data model, the Lookup operation could be re-specified in what appears to
be a more efficient way as:

Lookup (v: Var) r: Val
ext rd vmap : Var ~ Var
pre v E dom vmap
post r = hd vmap(v)

This operation has the same .. signature" (that is, parameter and results types) as its abstract
counterpart, but does it describe the same behaviour? More generally, what is required
in order to show that an operation on the new, concrete state is a faithful representation
of the abstract operation? The requirement is that it should exhibit behaviour that is at
least as good as that of its abstract counterpart, that is, the concrete specification should
exhibit all the properties of the abstract one. Thus, it is possible to develop a system by
stepwise refinements and be assured that the development preserves top-level properties.

The key to dividing the justification of the system as a whole into a separate treatment for
each operation lies in establishing a correspondence between the two state spaces. Then
it is sufficient to show that each operation separately respects this correspondence.

One way to establish such a correspondence is to provide a retrieve function which maps
elements of the concrete data model back to elements of the abstract data model. Given
this, it is possible to compare the abstract and concrete versions of each operation indi~
vidually and define conditions under which the concrete operation's behaviour is at least
as good as its abstract counterpart's. The requirements are twofold. First, the domain
of termination of the concrete operation must be at least as wide as that of the abstract
one: that is, the concrete precondition must be weaker. Second, any non·determinacy
in the concrete operation must be contained within the non-determinacy of the abstract
operation: that is, the concrete postcondition must be stronger. These criteria are made
precise and formalised in Chapter 11. The process of developing more concrete versions
of operations is called operation modelling.

For the symbol table example, the retrieve function must construct a sequence of maps
from the map of variables to sequences:

8

retrieve : (Var --"'-> Val') --> (Var --"'-> Val)"
retrieve(m) !'=

1 Introduction

But how is it to do this? On attempting to define the retrieve function one finds that
there is insufficient infonnation in the concrete state to reconstruct the abstract state. For
example, the concrete state {x, ""' [vd,xz ""' [vz],x, ""' [v,, v,l} could have arisen
from the initial state either by applying Enter.Biock({x1 ""'v1,x, ""'v,}) followed by
Enter.Biock({xz ""' vz,x, ""' v,}), or by applying Enter.Biock({xz ""' v2,x3 >-> v4 })

followed by Enter.B/ock({x1 ""' v1,x3 ""' v,}). In the first case the corresponding abstract
state is [{x2 ~---+ vz,x3 ~---+ v3}, {x1 ~---+ v1,X3 ~----+ v4}] whereas in the second case it is
[{x, ""'v,,x, ""'v,}, {xz >-> v,,x, >-> v,}l.

The problem arises since two different abstract states are being modelled by the same
concrete state. On further consideration, the specifier realises that when new variable
bindings are formed by Enter .Block the information as to which variables have just been
bound is thrown away. This will cause a problem for Leave.Biock: how can it be known
which variable bindings should be released? Thus it is impossible ~o ensure that the
concrete operations faithfully reproduce the behaviour of their abstract counterparts, and
so the choice of concrete data model is inadequate. In this example, the problem was
revealed when trying to construct the retrieve function. Other chances to catch errors
occur when discharging the proof obligations associated with reifications (see Chapter 12
for an example).

1.2.4 Onwards ...

The example above should begin to give the reader a feel for the kind of reasoning that
is involved in software development using VDM. Verification and validation techniques
such as those discussed above reveal errors in specifications and refinements and expose
oversights which might otherwise remain undiscovered until much later in the develop
ment process. Attempting proofs is a good way to increase one's understanding of the
system being modelled.

Informal proofs of the kind employed in traditional mathematics texts is heavily reliant
on human intuition: steps in the argument are omitted which the reader is expected to fill
in mentally or simply accept as valid. A formal proof, on the other hand, is one in which
every step is justified by some formal rule of inference. Such proofs can be seen simply
as exercises in symbol manipulation: checking the correctness of the steps in the proof
is reduced to pattern matching against established inference rules. This can be done
mechanically without any understanding of what the individual steps mean. Machine
assisted construction and checking of proofs reduces the possibility of errors occurring
in proofs significantly beyond what can be achieved using pencil and paper.

The purpose of this book is to introduce the reader to techniques for building formal
proofs. In doing so, a great many questions must be settled first. For example, what does
it mean to appeal to one of the facts stated earlier "by substitution of equals"? What are
the permitted inferences? How does one appeal to definitions in the specification? The
first step in answering these questions is to define a logical framework within which they
can be posed. This is done in Section 1.3.

Once a logical framework is established, it is possible to embark on the task of codifying
and expressing useful properties of the specification language's components: its logic,

1.3 A logical framework for proofs 9

primitive types, type constructors and their associated operators. This is dealt with in
Chapters 2 to 9. In Chapters 10 and 11 the focus returns to specifications and refinements,
with a clearer idea of how theorems are to be formally expressed and proved. The lessons
of these chapters are then brought to bear on a realistic problem, the specification and
development of an air~traffic control subsystem, in Chapter 12.

1.3 A logical framework for proofs

1.3.1 Introduction

In order to reason formally about specifications and refinements, three things are required:
a formal language in which assertions can be formulated; an interpretation of the mean
ing of the expressions and statements of the formal language; and a set of axioms and
inference rules describing inferences which are valid for the given interpretation. These
three components are explained in turn below.

For a specification language like VDM-SL, the formal language consists of a collection
of symbols together with ways of combining them to form expressions and statements.
Some of these symbols form part of the basic specification language (e.g. +, "· Z). others
describe the types, functions etc. defined in a particular specification. Symbols are used
to represent values (e.g. (], 3), value constructors (e.g. _ ~ _), predicates (e.g. _ = -),
types (e.g. N), type constructors (e.g. _ •), and so on. Statements built from the symbols
above include [] ~ [3] = (3] ~ [] and [3] : N'.

The interpretation of the symbols and expressions of a VDM specification can be found
in any standard text book on VDM. As examples, the symbol [] represents the empty
sequence, and represents sequence concatenation; the expression N" represents the
type of sequences of natural numbers, and [3] represents the singleton sequence whose
only member is the number 3; the statement[] : N represents the (false) assertion that
the empty sequence is a natural number; and so on.

An inference rule is a rule which says how statements can be inferred from other state
ments. An example inference rule is "If we assert a statement of the form P =:::> Q and
we also assert the statement P, then we can also assert the statement Q". This rule is
in fact a schema for a whole class of inference rules, because the symbols P and Q can
be instantiated to any statement. The exact form of inference rules used in this book is
explained below. An inference rule is valid if it is consistent with the interpretation given
to the statements of the formal language: that is, if all its hypotheses are true then its
conclusion is also true. In this book, an axiom is an inference rule whose validity is taken
to be self-evident.

Given a formal language, an axiom set and some rules of inference, one can set about
deriving theorems and new inference rules. If the axioms and rules of inference are valid
in the interpretation attached to the statements of the formal language, then any statements
which can be inferred from them must also be valid. Thus inference is reduced to an
exercise in symbol manipulation, and the correctness of reasoning can be checked purely
mechanically, independent of the particular interpretations given to the symbols. This is
the main principle on which formal reasoning is based.

The process of showing how the validity of one statement is derived from others by

10 I Introduction

applying rules of inference is called proof, and the inference rule which summarizes the
outcome of the proof is called a derived rule. A theory is a collection of symbols, axioms
and derived rules which are related together in some way: the examples discussed above,
for instance, form part of a theory of sequences of natural numbers.

The fallowing section informally describes the logical framework used to present the
logic in subsequent chapters. Readers interested in a more detailed, formal description of
the logical framework are referred to [JJLM91]. Note that a number of example rules are
presented in this section for illustration only and are not necessarily themselves applicable
to VDM. The rules for VDM are introduced in subsequent chapters.

1.3.2 Constants and expressions

The basic building blocks of proofs, inference rules and logical statements are expressions.
Three kinds of symbol are used in expressions:

• variables, which vary over values, e.g. vs, x, Vt. vz;

• constants, which correspond to value and type consttuctors, e.g. [], [_], _ -· 0, N,
-··-AM; and

• binders, which correspond to consttuctors which inttoduce (and bind) new vari
ables, e.g. V, 3, set comprehension.

A constant takes a fixed number of arguments, known as its arity. For example, the
constant [] takes no arguments, and the constant _ '""' _ takes two arguments.

Expressions are built from these components. An expression is either:

• a variable symbol;

• a constant symbol together with the appropriate number of arguments, themselves
expressions, e.g. [0], hd ([vs] ~ fs); or

• a binder symbol with a variable (the variable it binds) and an expression repre
senting the universe over which the variable ranges, together with the body of the
binding (itself an expression), e.g. V n: N · hd ([n] ~ ns) = n.

The scope of the bound variable is limited to the body of the binding. Variables not in the
scope of a binder are called .free variables. Expressions are considered equivalent up to
renaming of bound variables (a-equivalence): for example, the expression Vx: N· xxx ;, x
is to all intents and purposes the same as the expression \/y: N · y x y ;::: y.

A special notation for subtypes directly supports reasoning about data types with in
variants. For example, the following type expression represents the type of all natural
numbers greater than three:

<x:Nix>3>

Subtypes are discussed in Section 4.5.

This book is very liberal regarding concrete syntax for the logic. Constants are presented
in prefix, postfix, or infix forms as seems most readable. Parentheses are often omitted
for commutative/associative operators such as M A _ and _ + -· The operator precedence
and association of [Daw91] is used throughout.

1.3 A logical framework for proofs 11

1.3.3 Hilbert-style inference

Inference rules and metavariables

The description of rules and proofs begins with a basic Hilbert-style system1• A (Hilbert
style) inference rule consists of a list of hypotheses above a horizontal line and a conclu·
sion below it. The rule states that the conclusion holds whenever the hypotheses hold.
Thus, in a theory of natural numbers, the following rule asserts that if3 is a natural number
then 3 + 1 is also a natural number:

3:N
(3+ I):N

Some rules have no hypotheses, for example the rule asserting that 0 is a natural number:

The two rules above refer to specific constants (0, 3, _ + ., I,.:., N), but clearly the first
rule would still be valid with any natural number in place of the 3. Instead of writing such
a rule for every number, symbols, called metavariables, are used to represent arbitrary
expressions. For example, the following rule, in which n is a metavariable, states that if
an arbitrary expression n represents a natural number then so does the expression n + 1:

n:N
(n+ I):N

When rules arc used to justify steps in proofs, their metavariables are instantiated (i.e.
replaced by expressions). Note that each occurrence of the same metavariable must re
ceive the same instantiation. Thus for example, the first rule given above is an instance
of the more general rule, obtained by instantiating n with the constant 3.

In the logical framework of this book, metavariables can also take arguments, in much the
same way as functions can take arguments. Consider the following rule, which describes
the substitution of equal values in an expression:

a= b; P(a)
P(b)

The meta variable P(.) can be instantiated by any expression having a "placeholder" for a
subexpression. For example, P(-) could be instantiated by \:lx: N· _ = x v x >-·in which
case P(O) would then stand for that expression with 0 in the place of the placeholder:
Vx:N· O=x v x> 0.
In the rule above, a and b are also meta variables. Thus the rule could be instantiated to
justify a step of reasoning such as "if 2 = I+ I and is-even(2) then is-even(!+!)". The
appropriate instantiation replaces a by 2, b by I+ I, and P(.) by is-even(.).

Note that, in general, meta variables can have any number of placeholders. Thus P(a, b)
instantiates to 2 + 1 upon instantiating a by 1, b by 2, and P(-a, -b) by -b + -c~o where
_, stands for placeholder i. Under the same instantiation, P(a, a) becomes I+ I. When
building instantiations, bound variables may need to be renamed in order to avoid capture

1 The reader is referred to Section 2.4 of {End72] for more information on HilberHtyle inference
systems.

12 1 Introduction

offree variables. For example, when instantiating P(.) by 3x: N · 2 xx;t. and a by x+ x,
the expression P(a) becomes (something a-equivalent to) 3y: N · 2 xy ;tx +x.

Before moving on to consider the use of rules in proofs, a few syntactic points need to
be made. Each rule may have more than one hypothesis, in which case the hypotheses
are separated by semicolons or appear on separate lines. A rule also has a name, which
is used when referring to it in proofs. This appears in a box to the left of the rule, and is
generally mnemonic, following the informal conventions outlined in Section 1.3.7. Rules
which are axioms are marked on the right with the letters "Ax". The following examples
illustrate these points:

P: p => Q I modus ponens I Q

Proofs

A (formal) proof is an argument that some conclusion can be inferred from a number
of assumptions. For example, suppose one wants to prove that, given some sequence
of natural numbers ns, concatenating the sequence [0] with it produces a sequence of
natural numbers. That is, from the assumption ns : N' infer that [0] ns : N'. In the
proof notation used here, the (incomplete) proof is written:

from ns:N'

infer [0] ~ ns : N' (?? justify ??)

The keyword from identifies a line recording assumptions,- while the keyword infer iden
tifies a line containing a conclusion. The marker"(?? justify ??)" indicates that the
justification of some assertion has not yet been worked out. The marker " ... " indicates
where some lines may have to be inserted when constructing such a justification.

In completing this example proof, the following rules concerning the theory of sequences
of numbers are used:

~--·
~O:N

a: A
I singl·form 1..,.;~, . . [a]:A'

The rule 'O~form' has no hypotheses, allowing the fact that 0 is a natural number to be
asserted anywhere. Applying it in the current proof gives a line containing its conclusion
as the assertion, justified by appealing to the rule:

from ns:N'
I O:N

infer [0] ~ ns : N'

0-form

(?? justify ??)

The new line contains a reference number (1), an expression representing the assertion
that the line purports to establish (0: N), and a justification indicating which inference rule
has been applied to justify the assertion ('0-form').

1.3 A logical framework for proofs 13

The rule 'singl-fonn' contains two rnetavatiables, a and A. If a is instantiated to 0 and A
to N, the following instance of the rule results:

O:N
[0]: N'

Its hypothesis matches Line 1 in the proof, so the rule can be applied, allowing the infer
ence that [0]: N'. The new line is justified by the name of the applied rule and a numerical
reference to the line on which the assertion matching its hypothesis occurs:

from ns: N•
1 0 : N
2 [0]: N'

infer ([0]~ ns): N'

0-form
singl-form (1)

(?? justify??)

The proof is completed by applying '~-form', instantiating s1 by [0], s2 by ns and A by N
to yield the following instance of the rule:

[0]: N; ns: N'
([0] ns): N'

The completed proof is:

from ns: N*
1 0: N
2 [0]: N'
infer ([0] ~ ns): N'

0-form
singl-form (1)
~-form (2, h1)

Lines are numbered sequentially between from and infer keywords. Assumptions are re
ferred to by their position in the from line: "h1" for the first assumption, "h2" for the
second and so on.

The proof can be seen as either an exercise in symbol manipulation or an argument about
sequences of natural numbers. For this proof, the argument can be read as follows:

"Suppose ns represents a sequence of numbers (Assumption hl). Using rule
'0-form' it can be asserted that 0 is a number (Line 1). Using rule 'singl
form' it follows from Line 1 that [0] is a sequence of numbers (Line 2).
Finally, using rule '~-form' it follows from Line 2 and Assumption h1 that
[0] ~ ns is a sequence of numbers."

Derived rules

The proof has established a new logical statement, [0] ~ ns : N', contingent on the as
sumption that ns: N*. This can be stated formally as a new rule:

1 [OJ-~-rorm 1 ([OJ~:z;, N'

14 1 Introduction

A rule extracted from a proof as above is said to be derived from the rules used in its
proof. Derived rules can be used in other proofs as required. A point to be noted is that
the derived rule itself has ns as a meta variable. Any metavariables which appear in the
statement of the rule being proved must not be instantiated during the course of the proof:
instantiation of meta variables only takes place for the rules used in justifications in the
proof.

In this book, derived rules are sometimes also called lemmas or theorems.

Valid proofs

A proof is valid precisely when:

• Justifications refer only to preceding lines.

• For each justification, there is an instance of the inference rule such that the hy·
potheses (of the instance) correspond to the assertions on the lines to which it refers
and the conclusion corresponds to the assertion on the line being justified.

• At each step, the instantiation is valid in the syntactic context of the proof. Roughly,
all symbols must be "in scope" where the proof is being constructed, or be metavari
ables of the rule being derived.

A rule is regarded as proved when it has a valid proof with justifications referring only
to axioms and already proved rules.

1.3.4 Natural Deduction style

So far, a proof has been viewed as a sequence of justified assertions. While straightfor
ward, this view is limiting. In order to give proofs a structure which more closely resem
bles that of a natural argument, the idea of local scoping of assumptions is introduced.
This comes from Gentzen's system of Natural Deduction [Pra65, GLT89]. Consider, for
example, the following well-known inference rules:

Deduction Rule: "To prove P => Q (that is, P implies Q), assume P then prove Q."

Case Distinction Rule: "If A v B (that is, A or B) is known, then in order to prove Cit
suffices to prove C assuming A and also to prove C assuming B."

In each of these rules, there is a reference to a subproof showing that some fact can be
derived from some local assumption (Q from P, C from A, and C from B). The local
assumption holds only in the subproof.

In order to capture this kind of inference rule, the logical framework incorporates the
symbol"!-" (called a turnstile) to indicate derivation via a subproof. The statement

P, QI-R

1.3 A logical framework for proofs 15

is called a sequenP. Its meaning is that the expression R is derivable from the local
assumptions P and Q in a subproof. Expressions to the left of the turnstile are called local
assumptions or local hypotheses; the expression to the right is called the local conclusion.
Local assumptions are separated by commas.

Using this notation, the Deduction and Case Distinction Rules are written as follows:

-- p ~ Q
[deductlOii] p => Q

A v B; A ~ C; B ~ C
lcasesl C

In order to use these rules, the syntax for proofs is extended to accommodate subproofs.
For example, consider the following rule:

P=>Q; Q=>R
P=>R

Its proof contains a step which is justified by appealing to the deduction rule, the sequent
hypothesis of which generates the subproof labelled '1 ':

fromP=>Q; Q=>R
1 from P
1.1 Q

infer R
infer P:::::::} R

modus ponens (l.h1, h1)
modus ponens (1.1, h2)

deduction (1)

Subproofs are numbered in the same way as lines. Within a subproof, which may itself
contain subproofs, the from and infer keywords indicate the local assumptions and local
conclusion. and line numbering is nested and sequential. Local assumptions are referred
to in justifications by their position in the from line, prefixed by the number of the subproof.
Thus "l.h1" refers to the first assumption of Subproof 1. Recall that "h1" refers to the
first assumption of the whole proof.

For this proof, the argument can be read as follows:

"Suppose P implies Q (Assumption h1) and Q in turn implies R (Assump·
tion h2). Assume that P holds (Assumption l.h1). By 'modus ponens', it
follows that Q must hold (Line 1.1) and hence, again by 'modus ponens',
that R also holds.

Finally, since R has been shown to follow from P (Subproof 1), then by the
'deduction' rule it follows that P implies R.u

The notions of subproof and the notational conventions employed will become familiar
to the reader through many examples in subsequent chapters.

2The turnstile used here is specific to the logical framework of this book, and is subtly different from
the turnstile often used in Hilbert-style or Sequent Calculus systems. In particular, unlike conventional
Hilbert-style systems, it docs not involve separate scoping of variables on the two sides of the 1- (see
Section 1.3.5).

16 1 Introduction

Justification by sequent hypotheses

As indicated above, some rules have sequent hypotheses which represent inferences which
can be used in the rule's proof. Consider, for example, the rule:

I one case [
PvQ; PrR

RvQ

the proof of which is:

fromPvQ; PrR

1 from P
1.1 R

inferR v Q
2 from Q

inferR v Q
infer R v Q

sequent h2 (l.hl)
left case (1.1)

right case (2.h 1)
cases (hl, 1, 2)

The sequent hypothesis is used at Line 1.1 to infer R (its local conclusion) from P (its
local assumption). The proof also relies on the following two inference rules:

!Ieftcasel P~Q lnghtcasel PeQ

1.3.5 Natural Deduction with local scoping of variables

Sequents provide local scoping of assumptions within formal proofs. The Edinburgh
Logical Framework (ELF) [HHP87] extends Gentzen's Sequent Calculus so that sequents
can introduce and bind new variables. The logical framework of this book combines
the ELF idea with Natural Deduction, to allow local scoping of variables as well as
assumptions within proofs. Consider for example the following inference rule:

Generalisation Rule: "To prove Vx:X · P(x) (i.e. for all x of type X, P(x) holds), it
suffices to introduce a new variable a to stand for an arbitrary value of type X and,
assuming a: X, prove that P(a) holds."

Nothing should be assumed about a other than the fact that it stands for a value of type
X. The Generalisation Rule is written:

a: X I;; P(a)
I generalisation I Vx: X. P(x)

The subscript a on the turnstile indicates that the sequent variable a is "bound" throughout
the sequent in the same way that variables are bound by quantifiers like V and 3. Sequents
are considered equivalent up to renaming of their sequent variables, so that a: X ~ P(a)

is indistinguishable from b:X I;; P(b). This means that, when a sequent hypothesis with

sequent variables is applied in a proof (see previous section), the sequent variable(s) may
be renamed to match existing variables in the proof. This is illustrated in Section 3.3.1.

1.3 A logical framework for proofs 17

When the 'generalisation' rule is used to justify a step in a proof, use of a is restricted to
the subproof corresponding to the sequent hypothesis3 . To see how such a rule is used in
proofs, consider a proof of the following rule:

'lfu:A · 'llv: B · P(u, v)
'lfv:B. 'lfu:A · P(u, v)

In order to establish the conclusion of the rule using 'generalisation', it is first necessary
to introduce a subproof with a new local variable, b say, and local assumption b: B, as
follows:

from 'lfu:A · 'lfv:B · P(u, v)
I fromb:B

infer'llu:A · P(u,b)
infer 'llv: B · 'lfu: A · P(u, v)

(?? justify??)
generalisation (I)

The local conclusion of Subproof 1 follows from another application of 'generalisation':

from 'lfu:A · 'lfv:B · P(u, v)
I from b:B
1.1 from a: A

infer P(a,b)
infer 'lfu: A · P(u, b)

infer 'llv: B · 'lfu: A · P(u, v)

(?? justify ??)
generalisation (1.1)

generalisation (I)

Finally, the proof can be completed by two applications of the following rule for special
isation:

t:X· 'lfy:X · P(y) I specialisation I ' P(t)

The completed ptoof is:

from 'lfu:A · 'lfv:B · P(u, v)
I from b:B
1.1 from a: A
1.1.1 'lfv:B · P(a, v)

infer P(a, b)
infer'llu:A · P(u,b)

infer'llv:B · 'lfu:A · P(u, v)

For this proof, the argument can be read as follows:

specialisation (l.l.h I, hI)
specialisation (!.hi, 1.1.1)

generalisation (1.1)
generalisation (I)

3Jf a rule with a sequent hypothesis is applied in a proof at a line where the sequent's local variable is
already in usc, the local variable must be renamed to avoid a clash.

18 1 Introduction

"Suppose \fu:A · \fv:B · P(u, v) (Assumption hl). Let b be an arbitrary ele
ment of B (Assumption l.hl). Now let a be an arbitrary element of A (As
sumption l.l.hl). It follows from the main assumption by specialisation that
\fv:B · P(a, v) holds (Line 1.1). Hence, in tum, it follows by specialisation
that P(a, b) holds.

But since a stands for an arbitrary element of A, it follows (back in Sub
proof 1) that \fu: A · P(u, b). Finally, since b is arbitrary, it follows (back in
the main proof) that \fv:B · \fu:A · P(u, v)."

1.3.6 Definitions

Sometimes a constant can be defined directly in terms of other expressions. For example,
the logical operator "and" can be defined in terms of "not" (--,) and "or" (v) as follows:

del
etAez = -,(-,etv-,e2)

where e1 and ez are formal parameters standing for arbitrary expressions.

This definition introduces a riew symbol (A) which can be considered to be a syntactic
shorthand for the expression that defines it. Thus e1 A e2 always has the same value as
...., (-, e1 v -, e2) and any expression or subexpression matching one side can be replaced in
a proof by the corresponding expression matching the other side. Replacing an expression
matching the right hand side by one matching the left is called folding. The converse
process is called unfolding. These terms appear within proofs as justifications. Consider,
for example, the following proof fragment:

5 ~((A AB) v ~C)
6 ~(~hAv~B)v~C)

7 (~Av~B)AC

unfolding (5)
folding (6)

Here, Line 6 results from Line 5 by unfolding the subexpression A AB, and Line 7 results
from Line 6 by folding the whole expression.

Rules can be derived about the defined construct which can then be used to reason directly
about the defined symbol without using its definition. For example:

Recursive definitions are also allowed. These are discussed in Section 8.5.

1.3. 7 Rule naming conventions

Throughout this book some informal mnemonic naming conventions have been followed
in order to make rules easier to remember.

1.4 Summary 19

Rule names generally consist of up to three components, separated by dashes. The first
component lists the various symbols acted on, also separated by dashes. The main sym
bol being acted on appears first, followed by any subsidiary symbols in turn. The second
component indicates the type of the rule, for example "introduction", "elimination", "for
mation". The third (optional) component gives any subsidiary information about the way
the manipulation is being done (e.g. "left", "right") or about separate cases of related
rules (e.g. =or ;e). The convention should become clearer by considering the following
examples. Note, however, that these conventions are not always followed.

"Zero Formation":

The "0" in this rule name indicates that this is a rule about 0, the "form" that it is a
formation rule, that is that it gives typing information about its subject. The letters "Ax"
indicate that it is an axiom.

Other kinds of rule are: definition (defn) rules, which give (a case of) a definition of
their subject; introduction (I) and elimination (E) rules, which say respectively how a
symbol can be introduced and eliminated; commutativity (comm) and associativity (ass)
rules, which say that a binary operator is commutative or associative; induction (indn)
rules, for certain data types; satisfiability (sat) rules. which state that a given operation is
satisfiable.

"Or Introduction Right":

I v-I-right I e, Ax
. . e, v e2

In this rule the symbol v (for 'or') is being introduced, that is it appears in the conclusion
of the rule but not in the hypotheses. The new item e2 is introduced to the right of the
'or'.

"Membership of Intersection Elimination Left":

I f l.ca:::::.:.A:::;_:s"1-": Ac:...:-•:::e2t;-'s'"'':'' A.o-:-=s:::et2;_:a:ce=-.:sc.'.:.."=s''-. e -n-E-le t. ····
a E S2

This rule is primarily about membership of intersection, hence the first two components
of the name e and n. It is an elimination rule because the intersection is in the hypotheses
and not the conclusion. Furthermore. it is a "left-hand" rule because the argument to the
left of the intersection has been eliminated.

Some rules appear without names at all. Such rules are not part of the axiomatisation as
a whole; indeed they may not even be valid. They are presented simply for the purpose
of discussion and do not appear in the directory of theorems (Chapter 14).

1.4 Summary

At this point, it is worth reviewing the main points of the chapter:

• A VDM-SL specification is model-oriented. It defines types to model the inputs,
outputs and internal state of a system. Value constructors and logical operators

LU 1 Jntroductwn

allow the definition of states. invariants, auxiliary functions and state-modifying
operations. These provide a basis for reasoning about specifications and refine
ments.

• Opportunities for proof arise in a number of contexts in the formal specification
and design of computing systems:

- discharging proof obligations relating to internal consistency and satisfiability
of a specification;

- discharging proof obligations relating to the correctness of design decisions
in the reification process; and

- showing the truth of validation conjectures, which state expected properties
of the specification.

Performing such proofs increases confidence that a specification or reification step
is correct.

• Failure to complete a proof can be just as valuable as success: it indicates changes
which can improve a specification or design.

• A general framework for logic has been described which provides the basis for
the reasoning system for VDM defined in later chapters. A fully formal, detailed
description of the logical framework is given in [JJLM9l].

• A formal language, axioms and rules of inference provide a basis for proof of
results, including obligations and conjectures.

• Axioms, theorems, lemmas and derived results are all written as inference rules, and
called rules for short. Axioms are distinguished by the letters Ax. Rules are really
rule schemas, with metavariables capturing genericity. Rules may have sequent
hypotheses representing local seeping of assumptions and variables.

• Proofs are block-structured, reflecting the structure of the rules applied. Blocks
within a proof are called subproofs. Subproofs can have local assumptions and
local variables.

• Each step in a proof involves one of the following:

- instantiation and application of a rule;

- application of a sequent hypothesis; or

- folding or unfolding a definition.

Subsequent chapters give definitions and rules for reasoning about VDM specification
and refinement. They demonstrate a wide range of techniques for constructing proofs,
and show how to reason about specifications and reifi.cations.

Part I

A Logical Basis for Proof in VDM

Chapter 2

Propositional LPF

2.1 Introduction

In general, a proof is a reasoned argument that some assertion (the conclusion of the
proof) is true under the assumption that certain other assertions (the hypotheses of the
proof) are themselves true. Each step of the argument is itself an assertion and represents
a valid deduction from preceding assertions in the sense that there should be some law
which justifies the step in the mathematical inference system being used to support the
reasoning. The basic logic of assertions, propositional logic, is the subject of this chapter.

One point worth noting before beginning is that, whilst the so-called "classical logic" is
probably the most familiar form of propositional logic, it is by no means the only form.
Indeed, VDM is based on a generalisation of classical logic called the Logic of Partial
Functions (LPF; see [BCJ84]; [Jon90]; [Che86]), and it is this generalisation which is
discussed here. The proof techniques illustrated are, however, equally applicable to other
forms of propositional logic. Moreover, since LPF is a generalisation of classical logic,
all the inference rules which are valid in LPF are also valid in classical logic (though the
converse is not true).

The main aim of this chapter is to introduce in as simple a setting as possible the basic
ideas and general proof techniques which are needed in the following chapters. The
starting point is the definition of a basic set of axioms for propositional LPF. This is
followed by a discussion of a very common proof technique, reasoning by cases, and
several worked examples are presented. These examples are also used to illustrate both
how one can try to convince oneself before starting a proof that a particular inference
rule is provable and how informal reasoning can suggest a structure for the formal proof.
Proof by contradiction is also discussed. The next section deals with extending a theory
by adding definitions, and shows how definitions are used to justify steps in a proof.
The example proofs in this section show how one can determine potentially useful proof
strategies by considering the form of the available inference rules. The final section
introduces the notions of undefinedness and implication, and discusses the differences
between LPF and classical logic which these engender. The use of sequent hypotheses in
proofs is explained with the help of the examples.

24 2 Propositional LPF

2.2 Basic axiomatisation

The idea behind giving an axiomatisation of a theory is to define a set of symbols rep
resenting the concepts one wishes to reason about in the theory, together with a set of
inference rules defining their most basic properties. This set of inference rules, the ax
ioms of the theory, are taken to be true without proof. Other inference rules proved in the
theory (derived rules) are consequences of these basic axioms.

Propositional LPF can be described in terms of three basic logical symbols1, a constant
'true' representing truth and the logical constructors '-,'representing negation (not) and
'v' representing disjunction (or). Their fundamental properties are defined via a series of
axioms expressing the introduction and elimination rules for the simplest combinations
of them.

The easiest of these symbols to deal with is the constant 'true'. Its properties are defined
by a single rule 'true-I' which states that 'true' is true under no assumptions:

I true-I 1--Ax
true

Three axioms are required tO define the basic properties of disjunction. The two intro
duction rules 'v-I-right' and 'v-I-left' state respectively that the assertion e1 v ez is true
if the assertion et is true or if the assertion e2 is true:

I v-I-right I Ct Ax
et v e2

The elimination rule 'v-E' is somewhat less intuitive and is the first example of a rule
with sequent hypotheses. It has the form:

r.:r;-, et v e2; et f- e; e2 f- e
~ Ax e

The first hypothesis of the rule asserts that e1 v e2 is true, and there are only two ways that
this is possible, namely for either et or ez to be true separately. The sequent hypotheses can
thus be considered as representing these two possible cases, with the rule being interpreted
as stating that if e1 v e2 is true and if it is possible to prove some assertion e first by
assuming that et is true and second by assuming that e2 is true then the assertion e is true.
This rule thus represents (one form ot) reasoning by cases, examples of which are given
in the next section (Section 2.3). That section also shows how using a rule which has
sequent hypotheses to justify a step in a proof leads to subproofs, with the hypotheses
of the sequent becoming the local hypotheses of the subproof and the conclusion of the
sequent its local goa!.

Returning to the axiornatisation of propositional LPF, a further three axioms are needed
to describe the basic properties of negation. These are:

l-,-,-1!--e-Ax
~~e

r---r.l -,-,e
=---Ax e

e1; -,et I contradiction I Ax
e2

The first two ('-,-,-1' and '...,...,-E') are easy to understand and effectively amount to

1 Axiomatisations based on other combinations of "primitive" symbols are possible.

2.3 Derived rules; reasoning by cases; reasoning using contradiction 25

saying that double negation of some assertion e has the same value as the assertion e
itself. Again, the third axiom is perhaps not quite so intuitive, as its hypotheses state that
both some assertion e1 and its negation ..., ei are true. At first sight it seems that this rule
could therefore never be used as an assertion cannot be both true and false at the same
time. In practice, however, the rule is often used in proofs employing reasoning by cases
when one of the cases under consideration cannot actually be realised. This is illustrated
in the next section (Section 2.3).

Three more axioms are needed to complete the definition of propositional LPF, dealing
with the simplest possible assertions built from combinations of negation and disjunction.
The introduction axiom '-,-v-I' can best be thought of as stating that if each of the
assertions e1 and e2 is false then the assertion e, v e2 is also false. The elimination rules
'-,-v-E-left' and '-,-v-E-right' state the converse of this, namely that if the assertion
e1 v e2 is known to be false then each of the assertions e1 and e2 must be false:

2.3 Derived rules; reasoning by cases; reasoning using
contradiction

Whilst it would be perfectly possible to attempt to prove everything using just the basic
axioms, in practice this would lead to very long and intractable proofs. Rather it is better
to extend the reasoning power by stating and proving new rules embodying more powerful
valid inferences. These rules can be used in turn to prove rules which are more powerful
still, and a library of useful derived rules can be built up in this way. In essence, therefore,
a derived rule acts as a shorthand for its proof: any step in a proof which is justified by
appeal to a derived rule could instead be justified by multiple steps corresponding to all
the steps in the proof of that derived rule.

When constructing derived rules it is useful to keep in mind two general principles. First,
the rule should be stated in as general a form as possible. To put this another way, it is not
worth stating a derived rule which represents an instance of some more general derived
rule. Second, derived rules will ordinarily represent commonly used inference steps and
not inference steps which are specific to one particular proof and which are not likely to
be used elsewhere (though it is worth relaxing this second criterion if a particular proof
threatens to become excessively long and cumbersome).

The next point to consider is how to avoid wasting time trying to prove a rule which is
unprovable, or, to put it another way, how to decide whether or not a particular rule is
provable simply by considering its statement (that is without attempting a formal proof).
A good way of doing this is to reason informally about the rule, by using one's intuitive
ideas of what the assertions comprising its hypotheses and conclusion mean to consider
the circumstances under which they are (separately) true. This is best illustrated by an
example.

26 2 Propositional LPF

Suppose one wishes to construct a rule stating that disjunction is commutative, that is that
the arguments of a disjunction are interchangeable. The obvious form for such a rule is:

lv-comml
e1 v e2

Informally, this rule amounts to the statement that the assertion e2 v e1 is true if the
assertion e1 v ez is true. Considering first the hypothesis of the rule, this can only be true
in two cases, namely if the assertion e1 is true or if the assertion ez is true. In each of
these cases, the assertion ez v et is true, so the rule is provable.

The other advantage of such informal argument is that its structure generally mirrors that
of the corresponding formal proof. In this particular example, the facts that the informal
argument employed reasoning by cases and that a disjunction is amongst the hypotheses
suggest that the rule 'v-E' is likely to be useful. Applying this to justify the conclusion of
the proof yields two subproofs corresponding not only to the two sequent hypotheses of
the 'v-E' rule but also to the two cases considered in the informal argument, these cases
being represented by the local hypotheses of the subproofs:

from e1 v ez
1 from e1

infer ez vet
2 from ez

infer ez v e,
infer ez v e1

(?? justify ??)

(?? justify ??)
v-E (hl, l, 2)

Each subproof is now easy to complete, being respectively simple instances of the rules
'v-I-left' and 'v-I-right'. The completed proof is thus:

from e1 v ez
1 from e1

infer e2 v e1
2 from ez

infer e2 v e1
infer ez vet

Another simple example is the rule 'v-E-left-~ ':

v-I-left (l.hl)

v-I-right (2.hl)
v-E (hl, I, 2)

Again, one would start by reasoning informally about this rule.

As in the previous example, the hypothesis e1 v ez leads to the conclusion that either et
or e2 must be true. Here, however, extra infOJ;mation, namely that e1 is false, is provided
by the second hypothesis. This means that the first of these two cases is ruled out, which

2.3 Derived rules; reasoning by cases; reasoning using contradiction 27

in turn means that ez must be true. This shows that the rule should indeed be provable.

Turning now to the formal proof, the facts that there is a disjunction amongst the hypothe
ses and that the informal argument proceeded by considering cases again indicate that the
rule 'v-E' is likely to be useful, application of which yields two subproofs in exactly the
same way as seen in the previous example:

from e1 v ez;, e1

1 from e1

infer e2

2 from ez

infer e2

infer ez

(?? justify ??)

(?? justify ??)
v-E(hl, 1,2)

The second subproof here is actually trivially true as its local hypothesis is the same as its
goal (it effectively amounts to proving that ez is true on the assumption that ez is true!).
Such subproofs are not shown in proofs in this book. Rather, the fact that a step in a proof
is justified by appeal to a trivially true subproof is recorded by referring to the symbol
'triv' instead of some line number in the justification.

The first subproof has a hypothesis which contradicts the second hypothesis of the over
all proof and corresponds to the case that was ruled out as impossible in the informal
argument. In the formal proof this sub proof is justified by appeal to the rule 'contradic
tion'. Note how this is used to justify the required conclusion in this "illegal" case. The
completed proof is therefore:

from er v ez;, e1

1 from e1

infer ez
infer ez

contradiction (l.h 1, h2)
v-E (hl, 1, triv)

Clearly, an entirely analogous proof of the related rule 'v-E-right-~'

could be constructed, except that in that case the first subproof would follow trivially
by assumption and the second would be proved by contradiction. A much simpler proof
can be produced, however, which makes use of the derived rule for the commutativity
of disjunction ('v-comm'). The point to note here is that the rule 'v-E-right--.' can
be transformed into the rule 'v-E-left--.' by first commuting the disjunction in its first
hypothesis and then swapping e1 and e2 throughout. The proof which results from this
insight shows how the judicious use of derived rules can save work:

28

from e, v ez; -, ez
1 ez v e,
infer et

2 Propositional LPF

v-comm (hl)
v-E-left-~ (1, h2)

Of course, one could just as easily have chosen to prove the rule 'v-E-right---,' first,
afterwards proving the rule 'v-E-left-~' from that by using the commutativity of dis
junction.

2.4 Using definitions: conjunction

Although any propositional assertion could in principle be expressed in terms of the three
logical symbols introduced so far (truth, negation and disjunction), assertions written in
this way not only become long-winded and unwieldy very rapidly but also fail to express
one's intuitive understanding in anything like a natural way. For example, the notion
that two assertions e1 and e2 are both true would have to be expressed by saying that the
disjunction of the negation of e1 and the negation of e2 is false, that is as the assertion
-, (--, et v -,ez). This notion of conjunction (A, or and) does not add anything fundamen
tally new to the theory of propositional LPF, however, as it can be expressed in terms of
the existing notions of disjunction and negation as shown above. It is therefore inappro·
priate to extend the theory by adding axioms to describe the properties of conjunction as
these should all be deducible from the properties of negation and disjunction. Rather one
makes a syntactic definition:

del
etAez = -,(-,e,v-,ez)

This effectively defines the pattern e1 A e2 as a shorthand for the expression on the right
hand side of the defining equation.

The standard introduction and elimination rules for conjunction

are provable from the above definition and the rules for negation and disjunction. Their
proofs are simple, but illustrate how definitions are used to justify steps in a proof.

Consider first the statements of these three rules. The introduction rule 'A· I' asserts that
if e1 and e2 are both true then e1 A e2 is true, and the elimination rules 'A-E-right' and
'A-E-left' express respectively that if e1 A e2 is true then et is true and ez is true. These
properties exactly match one's intuitive understanding of conjunction. Indeed, the whole
idea of stating such rules for a defined construct is that they should encapsulate the way
one naturally reasons about that construct. This means, however, that the technique of
planning the formal proof by using infonnal natural reasoning does not work for rules such
as these which represent the most basic properties of defined symbols. Some different
approach is therefore needed here.

At this stage, no derived inference rules mentioning conjunction are available to help
with the proofs of the introduction and elimination rules. The only thing that is known

2.4 Using definitions: conjunction 29

about conjunction is its definition in terms of negation and disjunction. The only way the
proofs can proceed, therefore, is by making use of this definition to rewrite the assertions
containing a conjunction. This introduces two new forms of justification, folding and
unfolding of definitions.

Consider first the elimination rule 'A-E-right'. The first step in the proof is to unfold the
definition of the conjunction in its hypothesis. This yields a new line in the proof justified
by unfolding:

from e1 A ez
I -,(-,e, v-,ez) unfolding (h l)

infer e1 (?? justify ??)

This has reduced the task to proving that e1 is true if the assertion ..., (..., e1 v ..., ez) is true,
which still probably defies one's intuition. However, the problem is now stated only in
terms of negation and disjunction, so it is clear that the only possible way to proceed is
to use rules relating to these. The question is, how does one choose which rule might be
the most useful to apply?

In fact, there are various considerations which can help with the selection of useful rules at
some point in a proof. The first step is to look at the current knowns and goals of the proof.
The knowns are all the assertions in a proof which could be used to match against the
hypotheses of any rule being applied. Typically this comprises all accessible hypotheses
in the proof (including local hypotheses of containing subproofs) and anything that has
been proved from these by steps of forward reasoning. In the current proof, therefore,
the knowns are the assertions e1 A ez and...,(-, e1 v ..., e2). The goals, on the other hand,
represents those lines of the proof which have not yet been justified. These therefore
represent those assertions which could be used to match the conclusion of the rule being
applied. The only goal in the current proof is the assertion e1•

Next, consideration of steps already carried out in a proof can help to filter the set of
"useful" knowns. For instance, it was argued above that the only possible way of deducing
anything from the first of the knowns was by unfolding the definition of conjunction.
Since this has already been done to generate Line 1 of the proof above, there is nothing
furtherto be gained by considering it. It can therefore be discarded from the set ofknowns,
leaving ..., (..., e1 v ..., e2) as the only useful known.

The next step in the procedure is to try to find those rules from the set of all available rules
which could be applied to these knowns and goals. It must be remembered, however, that
rules can be applied either forwards to knowns or backwards to goals, so that a particular
rule might be applicable in one direction but not in the other. The aim is thus to arrive at
a list of rules together with the direction(s) in which each can be applied.

Additional assistance with this process can be gained by looking at the structure of the
available knowns and goals. First, the only available known is a larger expression than
the only goal. Moreover, it contains references to two variables e1 and e2 whereas the
goal only refers to the single variable e1• This suggests that one should think either of
applying rules to the known to generate some smaller assertion, preferably independent of
e2 , or rules to the goal to try to generate something closer in form to the known. Because

30 2 Propositional LPF

the goal is a single variable, however, it is not easy to get a good hint of what rule would
be most useful if applied backwards, so the choice reduces to selecting a rule to apply
forwards to the known.

At this stage of the development of the theory, the rules 'true~ I', 'v-I-right', 'v-I-left', 'v
E', '-,-,-I', '-,-,-E', 'contradiction', '-.-v-I', '--,-v-E-left', '--,-v-E-right', 'v-comm',
'v-E-left---, ' and 'v-E-right---,' are available. The rules 'v-E', '--,...., -E' and 'v-comm'
can be rejected immediately as they do not have a hypothesis which matches the known.
Also, those rules with more hypotheses than the number of available knowns are unlikely
to be useful, so all rules in the list with more than one hypothesis can be ignored. This
reduces the selection of potentially useful rules to 'true-I', 'v-I-right', 'v-I-left', '--,--,-I',
·~ -v-E-left' and·~ -v-E-right'. Pretty clearly, the first of these is unlikely to help as the
goal does not mention the constant 'true'. Further, the next three rules in the list can also
be removed according to the criterion that the fact that the goal is smaller than the known
suggests applying a rule which generates some assertion which is smaller than the known.
The choice is thus between '--, -v-E-left' and '--, -v-E-right'. Finally, the fact that the goal
is independent of e2 points towards the rule'--, -v-E-right' being the correct choice. It is
worth pointing out here that a different heuristic which states that the most useful rule is
likely to be the one which matches the complex expression most closely (in the sense of
having the most common structure) would have led to the same choice of rule.

Applying this rule to the proof leads to:

from e1 Ae2

1 -,(-,et v-,e2)
2 -----.·~1 CJ

infer e1

unfolding (h l)
~-v-E-right (1)

(?? justify ??)

which is easy to complete- the goal can be inferred directly from the new known (Line 2)
by using the rule '-,-,-E'. The finished proof is thus:

from e1 A e2
1 -,(-,et v -,e2)
2 -,-,et

infer e1

unfolding (hI)
~ -v-E-right (1)

~~-E (2)

The proof of the other elimination rule 'A-E-left' is entirely analogous.

Turning now to the proof of the introduction rule 'A-I', although two rules about con
junction are now available (the elimination rules), they are not going to be any help with
this proof as they have the conjunction as their hypothesis and not as their conclusion.
Again, therefore, the only possible starting step is to use the definition of conjunction.
In this case, this is applied backwards to the overall conclusion, which means that the
conclusion is justified by folding the definition from its expanded form as shown:

2.4 Using definitions: conjunction

1 -,(--,et v --,e2)
infer e1 A e2

(?? justify ??)
folding (I)

31

The selection of potentially useful rules then proceeds as described above, except that in
this case the atomicity of the knowns suggests working backwards from the goal (Line 1).
Of the rules available, only 'v-E', '-,--, -E', 'contradiction', '--, -v-E-left', '--, -v-E-right',
'-,-v-I', 'v-E-left---, ', 'v-E-right--, ', 'A-E-left' and 'A-B-right' have a conclusion which
matches the assertion on Line 1 (note how the rules 'A-E-left' and 'A-B-right' have be
come available for use as derived rules). Again, consideration of the relative complexity
of the knowns and the goal, in this case that the knowns are all simpler than the goal,
leads one to reject rules which have hypotheses which are more complicated than their
conclusion. This reduces the choice to either 'contradiction' or '-,-v-I'. As a general
rule, 'contradiction' is normally only useful in subproofs of proofs employing reasoning
by cases when the case represented by the subproof corresponds to some impossible situ
ation. Since the current proof is not of this form, this points to using '-,-v-I' as the next
step in the proof. Again, this could have been deduced from the facts that its conclusion
matches the goal most closely and that its hypotheses are simpler than its conclusion.
This leads to:

1 --,--,e1

2 --,--, e2
3 -,(--,ei v --,e2)
infer e1 A e2

(?? justify ??)
(?? justify ??)
~-v-I (1, 2)

folding (3)

Again, the proof is now easy to complete as Lines I and 2 follow directly from the first
and second hypothesis respectively using the rule ·~~-I'. The completed proof is thus:

from e1; e2
1 --,--, e1
2 --,--, e2
3 -,(--,el v --,e2)
infer e1 A e2

~~-I (hi)
~~-I (h2)

~-v-I (1, 2)
folding (3)

Now that these basic introduction and elimination properties have been proved, most
future proofs involving conjunction will be constructed using intuition and informal ar
gument, as illustrated above for proofs about negation and disjunction, and will not need
to make use of the definition of conjunction (see Section 2.3). As an example of this, the
rule 'A-comm' stating that conjunction is commutative:

32 2 Propositional LPF

submits to the informal argument technique as follows: its hypothesis asserts that e1 A e2

is true, which is only possible if both e1 and e2 are true, which in tum means that ez "e1

must be true. The corresponding formal proof follows in the obvious way by using the
introduction and elimination rules 'A-I', 'A-E-right' and 'A-E-left'.

There are still a few occasions when the direct use of the definition is necessary, however,
one example being in the proofs of two of the so-called deMorgan 's laws. These rules
deal with the distribution of negation over conjunction, and have the form:

The definition of conjunction must be used because the introduction and elimination rules
'A-E-left', 'A-E-right' and 'A-I' for conjunction given above do not incorporate any means
of reasoning about the negation of conjunction. To put this another way, none of those
rules have a hypothesis or a conclusion of the form......, (et A e2), which means that none
of them can be used to reason about the expression of that form appearing in the deMor
gan's laws. Furthermore, of the other inference rules available, only those with a single
metavariable in the appropriate position (hypotheses or conclusion) offer any chance of
dealing with this expression, but, as indicated earlier in this section, these are unlikely
to be of any help because they always generate an expression more complex than the
one they are applied to. This points to the use of the definition as the only possible way
forward.

In fact, after applying the definition the proofs of the deMorgan 'slaws are straightforward.
For example, that of ·~-A-E-deM' is:

from-, (e1 1\ e2)
1 -,-,(-,e1 v -,e2)

infer-, e1 v -, e2
unfolding (h 1)

~~-E(l)

The proof of ·~-A-i-deM' and the deMorgan's laws ·~-v-1-deM' and ·~-v-E-deM',
which can be found in Chapter 14, are left as exercises for the reader.

2.5 Implication; definedness; further defined constructs

Other notions commonly used when reasoning about propositions are falsehood, impli
cation, and equivalence, which are denoted respectively by the symbols 'false', '==>'
(implies), and '¢'>' (is equivalent to, also called if and only if). These can be added to the
theory as defined constructs like conjunction (see Section 2.4 above). Their definitions
are:

del
false = -,true

2.5 Implication; definedness; further defined constructs 33

def

Again, one can derive introduction and elimination rules for these using the definitions
and existing rules describing the properties of the symbols used in the definitions. Thus,
for example, the introduction rules '=>~I~left-vac' and '=>-I-right-vac' for implication
follow directly by expanding the definition of the implication in their conclusion and
applying the rules 'v-I-left' and 'v~I~right' respectively. Similarly, the elimination rules
'=>-E-left' (sometimes called modus ponens) and '=>-E-right' follow from the derived
rules 'v-E-left---,' and 'v-E-right~--,'.

I ~~1-Jeft-vac I ez
e1 => ez

I ~-E-left I et => ez; et e,

--, e1 I =>-1-right-vac I

I E . h I e, => e,; ~ e, =>- -ng t
~e,

One point worth noting here is that, although equivalence is defined in terms of impli~
cation and conjunction, which are themselves defined constructs, its introduction and
elimination rules are best proved in terms of the derived rules for conjunction and impli
cation and not by expanding their definitions. Of course, expanding the definitions would
yield a valid proof, but this would be much longer and much more complicated than that
constructed by reasoning directly in terms of the derived rules.

Differences between classical logic and LPF begin to show up when one goes on to
consider other derived rules involving implication. For instance, rules such as the so~
called "law of the excluded middle", often written in one of the following forms

e=>e

are valid in classical logic but not in LPF. This is because classical logic deals only with
assertions which are everywhere either true or false (as embodied clearly in the second
form of the above rule) whereas LPF supports reasoning about assertions which may be
undefined. For example, the assertion x = 0 v x/x = 1 is a perfectly valid assertion
about some number x in LPF even though the right-hand clause of the disjunction is
undefined when xis zero. Note, however, that the assertion as a whole is wellMde:fined for
all numbers x- the leftMhand clause of the disjunction is true where the right~hand clause
is undefined, which means that the overall assertion is also true at that point.

This distinction is formalised in LPF by introducirig a new defined constant '0' (delta)
into the theory of propositional LPF. This is defined via:

def Oe = ev-,e

and the assertion Oe can thus be interpreted as a statement that the assertion e is either
true or false (alternatively, that e is defined). Classical logic can then be considered as
that subset of LPF which deals only with assertions e for which Oe is true2• This subset

2Note how this corresponds to taking the second fonn of the law of the excluded middle given above

34 2 Propositional LPF

is treated more fully in the chapter on booleans (Chapter 9).

Another wellvknown technique from classical logic which is not valid in LPF is that
of using the sovcalled "deduction theorem .. to prove that an assertion in the form of an
implication holds:

e1 f- ez
e1 => ez

Here, the sequent hypothesis can be interpreted informally as a statement that e2 is true
if e1 is true. On the other hand, the implication in the conclusion of the rule, treated
informally as the disjunction of....., e, and e2 as suggested by its definition, is true only if
e1 is false or if e2 is true. This does not follow from the interpretation of the hypothesis,
so the rule is not valid in LPF.

In classical logic, however, additional information from the law of the excluded middle
is available, in particular that e1 must be either true or false. Considering these two cases,
when e1 is true the sequent hypothesis means that e2 must also be true so the implication
is true toO; on the other hand, when e1 is false the implication is immediately true. Thus
the rule is valid in classical logic.

The above argument suggests that one can generate a version of the deduction theorem
which is valid in LPF simply by adding an extra "definedness" hypothesis 8e, to the clas
sical logic rule to ensure that the assertion e1 is well-defined. That hypothesis informally
amounts to a statement that e1 must be either true or false, corresponding to the additional
information needed to complete the argument above. This leads to the rule ·~-1':

Det; e1 f-ez
I =0-rl--::-:--:--:e, ~ ez

In fact, this process of adding definedness hypotheses to classical logic rules to construct
versions valid in LPF is a general technique, and the proofs of these rules rely on derived
properties of delta. The fact that delta is simply a specialisation of disjunction to the case
where one disjunct is the negation of the other means that the introduction and elimina
tion rules '8-l', '8-I-,' and '8-E' for delta are direct analogues of the introduction and
elimination rules 'v-I-left', 'v-I-right' and 'v-E' for disjunction:

The last of these rules, '8-E', offers a second means of reasoning by cases, in the special
case where one case is the negation of the other. It is particularly useful in conjunction
with rules such as '8-=-I' from the theory of equality (see Section 3.4) and '8-e' from
the theory of sets (see Section 6.3) which allow one to deduce that a particular assertion is
everywhere defined. An example of its use in such situations is presented in Section 3.5.2.

As an illustration of its use in the proofs of rules with definedness hypotheses, consider the
rule·~-!' discussed above. Applying '8-E' as the first step of the proof, as suggested by
the informal argument where the two possible cases for the value of e1 were considered,
leads to:

as an axiom of classical logic.

2.5 Implication; definedness; further defined constructs

from 8e1; e1 f- e2
1 from e1

infer e1 => e2
2 from,e1

infer e1 => e2
infer e1 => e2

(?? justify ??)

(?? justify ??)
8-E(hl, 1,2)

35

The second subproofis easy to complete using the '=>MI-right-vac' rule. The first subproof
is more interesting as it illustrates the last basic form of justification, justification by
sequent hypothesis. As explained above, the sequent hypothesis amounts to an assertion
that e2 is true on the assumption that e1 is true, and this·assumption is exactly the local
hypothesis of Subproof I. Line 1.1 of the completed proof shown below is thus justified
by applying the sequent hypothesis to the local hypothesis of Subproof I. The proof is
completed using the rule' =>-l-left-vac':

from Oe1; e1 f- e2
1 from e1
1.1 e,

infer et => e2
2 from.....,et

infer e1 => e2
infer e1 => ez

sequent h2 (!.hi)
=>-l-Ieft-vac (1.1)

=>-l-right-vac (2.hl)
8-E (hl, I, 2)

As a final point in this chapter, it is worth considering another informal technique which
can sometimes be used to demonstrate very quickly that a particular rule is not valid. The
basis of this is the fact that a rule cannot be valid if some instance of the rule can be
shown to be invalid. Considering the (classical logic version of the) deduction theorem
as an example, if e2 is instantiated to e1 the sequent hypothesis becomes e1 f- e1, which is

trivially true by the properties of sequents (since it would correspond to having to prove
that e1 is true on the assumption that e1 is true). At the same time, the conclusion of the
rule becomes the implication e1 => e,, so this particular instance of the rule effectively
amounts to the rule

which is just an instance of the first version of the law of the excluded middle given
above. This particular instantiation of the deduction theorem would therefore enable one
to prove some assertion which is not necessarily true (because the assertion is undefined
when e1 is undefined). This means that the instantiated rule is not valid, which in turn
means that the deduction theorem is not valid.

An extension of this technique is to consider particular values for the meta variables in a
rule. In this way, for example, if both e1 and e2 are taken to be undefined in the rule

;lb :1 1-'roposJ/Jonal Ll'F

then the conclusion of the rule is undefined (because implication is undefined if both its
arguments are undefined). The rule is therefore not valid in LPF.

In fact this example illustrates a general principle that must be strictly adhered to whenever
stating rules in LPF, namely that the conclusion of a rule can only be undefined if at least
one of the hypotheses is either undefined or false at the same time. This consideration
is particularly important where the rule has no hypotheses or where its hypotheses are
all typing assertions (see Chapter 3): since the hypotheses of such rules can never be
either false or undefined their conclusions must always be well-defined. Examples of
rules where all hypotheses are typing assertions occur in later chapters.

2.6 Summary

This chapter has dealt with the following topics:

• Basic techniques of proof construction: application of rules, using sequent assump
tions, and application of definitions.

• Using informal reasoning to determine whether a rule is provable and as a template
for a formal proof.

• Using instantiation of metavariables as a way of seeing that a rule is not valid.

• Extending the level of reasoning by introducing derived rules.

• Some heuristics for selecting appropriate rules when constructing proofs.

• Reasoning by cases using 'v-E' and '0-E'.

• Reasoning by contradiction to rule out impossible cases in case distinctions.

• Using symmetry to simplify proofs of pairs of similar rules.

• Undefinedness in LPF.

2. 7 Exercises

1. Using informal reasoning

Use informal reasoning techniques to determine which of the following rules are provable
and to construct proofs of those that are.
(a) (b)

e, ~ e2; e2 f- e3

e1 => e3

e1 => e2; e2 => e3
e1 => e3

2. 7 Exercises

(c)

ez ~ e3; e1 ~ ez

e1 ::::::> e3

(d)

2. Associativity of disjunction

(e)

The fact that disjunction is associative is expressed via the two rules:

I . h I e1 v (e, v e3) v-ass-ng t

Use the rule 'v-E' to prove the first of these. Prove the second without using 'v-E'.

3. Contra position of implication; reasoning about equivalence

Prove the rule

which allows the arguments of an implication to be interchanged if they are negated.

Use it to show that if two expressions are equivalent then so are their negations:

~ e1 <=>ez
-. e1 <=> -. ez

4. Reasoning about definedness

37

One of the distinguishing features of LPF is that an expression can be well-defined when
some sub-expression is undefined. For example, a disjunction is true if one disjunct is
true, even if the other is undefined, as embodied in the following rule:

Oe1; -.e1 ~ Oez
jJ-v-inherit-sqtj 8(e, v e,)

Note that this requires one argument of the disjunction to be defined, but only requires
the second to be similarly defined if the first happens to be false.

Prove this rule. State and prove a similar rule dealing with the definedness of conjunction.

Note that a rule stating that a disjunction is defined if both its disjuncts are defined:

. 8e1; 8e,
IJ-v-inheml 8()

e1 v ez

follows directly from the more general rule as the sequent hypothesis is discharged by
the assumption that its local goal is true. The proof is:

from Oe1; Oez
infer 8(et v e,) 8-v-inherit-sqt (hI, h2)

Chapter 3

Predicate LPF with Equality

3.1 Predicates

Chapter 2 introduced a calculus for reasoning about logical propositions. In this chapter,
the calculus is extended to allow logical statements about arbitrary values drawn from a
type. The limitations ofpropositionallogic are apparent from a simple example. Consider
the following argument, concerning the availability of a value for a variable identifier in
a symbol table (like that introduced in Chapter l):

1 The identifier "v" is in scope.
2 Any identifier in scope has a value.
3 Therefore the identifier "v" has a value.

This cannot be formulated (finitely) in propositional logic because it makes use of a
general assertion about variables (Assertion 2). This assertion stands for a whole class of
propositions, one for each possible variable:

If identifier "a" is in scope then it has a value.
If identifier "b" is in scope then it has a value.

"If identifier "zzz5" is in scope then it has a value.

Where there is an infinite class of possible values from which to choose, it is impossible,
let alone intractable, to write down all the necessary propositions. It is for this purpose
that predicates are introduced into the logic. A predicate describes some property of an
arbitrary value. For example, the predicate

in-scope(x)

describes the property of being in scope. Predicates may also define relationships between
values. For example, in a theory of numbers, the predicate

is-jactor-of(x, y)

states that xis a factor of y. This allows one to write rules capturing properties of whole

40

classes of values, e.g.

in-scope(x)
has-value(x)

3 Predicate LPF with Equality

A predicate consists of a (mnemonic) name and a number of place holders or free variables
denoting the objects related by the property. A predicate with one free variable is termed
unary; one with n free variables is n~ary. More elaborate predicates can be built from
simpler ones by means of the propositional connectives introduced already. For example:

prime(x) "even(x)

is a unary predicate to be satisfied by values which are both prime and even.

Instantiating the free variables of a predicate with actual values yields a proposition which
may be true (e.g. prime(2)), false (e.g. even(?)) or undefined (e.g. even([])). In VDM,
predicates can be partial: they may not denote a logical value (true or false) if their free
variables are instantiated by values outside their domain of definition. In the example
above, evenness is a property of numbers, not of sequences, so the predicate even(_)
applied to the empty sequence (even([])) is meaningless.

The rest of this chapter describes the calculus for reasoning about predicates, enriching the
propositional calculus already introduced. Section 3.2 introduces the type membership
assertion as a way of describing the domain of definition of a predicate. Section 3.3
follows a similar pattern to Chapter 2 in that basic constructs such as the existential
quantifier '3' are introduced first and their essential properties described via axioms. The
universal quantifier 'V' is defined in terms of constructs already given. Along the way,
strategies for proofs of assertions involving 3 and\:/ are discussed.

In Section 3.4 the calculus is extended with a predicate denoting equality between values.
Rules governing the use of equality in proofs are given and illustrated in an example proof,
which shows the "chain of equality" style of reasoning.

Finally, Section 3.5 shows how the predicate quantifiers and equality can be used in the
definition of new kinds of expression, including conditionals and choice.

3.2 Types in predicates

In LPF, a predicate might be meaningless for some instantiations of its free variables.
The reason for this is related to the use of LPF in VDM specifications. In VDM, the view
is taken that specifications should not prescribe or limit system behaviour outside the
domain of definition of the functions and operations in the specification: error behaviour
should be explicitly specified. Improperly-applied predicates are therefore not ascribed a
logical value at all.

Since predicates can be partial, it is-important that axioms in the theory of a specification
record the domain of definition of a predicate. For example, a precondition should be
placed on the use of even to indicate that its argument must be a natural number:

x is a natural number
o(even(x))

The type judgement form"- : ." is used to record membership of a type. In effect, for

3.3 Predicate calculus for LPF: proof strategies for quantifiers 41

any type A, there is a predicate "x: A" denoting membership of the type. For the natural
numbers example, the rule above is written:

x:N
o(even(x))

A variable, expression or value which is known to be of a certain type is said to be
denoting.

The next section is devoted to building the calculus necessary to allow reasoning about
whole classes of values using predicates. The simple typing assertion and notion of type
introduced so far is sufficient for this. Later chapters cover properties of the special VDM
types (union types, finite sets etc.).

3.3 Predicate calculus for LPF: proof strategies for quan
tifiers

It is often necessary to make assertions using predicates "for all'' or "for some" values of
a free variable. For example:

3x: N · is-prime(x) A even(x)
"There is some prime number which is also even."

Vx: N · 3y: N · is-prime(y) A is-jactor-of(y,x)
"Every natural number has a prime factor."

The calculus of predicate LPF is mostly concerned with the symbols 3 and V called the
existential and universal quantifiers respectively. Each quantifier binds a free variable in
the predicate which forms its main body, giving the variable a type.

The following sections discuss how to conduct proofs about assertions involving 3 and
\;/. In each case, the axioms and definitions necessary to define the quantifier's basic
properties are first introduced. In producing these definitions, it is worth bearing in mind
the similarity between 3 and v, and\;/ and A. For example, the assertion that there is an
even prime number could be thought of as the disjunction of all the possibilities:

(is-prime(O) A even(O)) v (is-prime(!) A even(!)) v (is-prime(2) A even(2)) v ...

3.3.1 Existential quantification

The axiomatisation of propositional LPF (Chapter 2) begins with disjunction, giving in~
troduction and elimination axioms. In predicate LPF, the axiomatisation begins with the
existential quantifier '3', its properties given by axioms. The introduction axioms for
propositional disjunction state that, if one half of a disjunction is true, the whole disjunc
tion is true. For 3, the introduction axiom should state that, if a predicate P is known to
be true at some value a of some type A, then one may conclude that there does indeed
exist a value of type A such that P holds, for its existence has been demonstrated. The
axiom is

42 3 l'redlcate L¥r With bqualtty

r,;-;1 a: A; P(a)
L:':'J 3x: A- P(x) Ax

This rule is often used in backwards reasoning: to show that a value exists satisfying
a predicate, one may produce a witness value and show that the witness satisfies the
predicate.

Recall the elimination axiom for disjunction ('v-E'), the basis of case distinction. The
axiom for eliminating existential quantification is analogous: if a value satisfying the
predicate P is known, and if, for any value satisfying P, it is possible to prove some
assertion e, then one can conclude e:

3x:A ·P(x)

IEJ y: A, P(y) ~ e Ax

e

As indicated in Section 1.3.5, if the sequent variable y occurs as a free variable in the
expression instantiating e, the sequent variable should be renamed prior to instantiation
of the rule.

The other axioms for propositional disjunction describe interaction with negation. Again
the similarity with 3 holds. If one can show for an arbitrary x that P(x) is false, then there
cannot be an x for which P(x) is true. This is captured by the axiom:

x:A I; ~P(x)
I~ -3-I I ~ (3y: A- P(y)) Ax

If there does not exist a y such that P(y) holds, then given any a, P(a) is false:

~ a:A; ~(3x:A·P(x)) = ~P(a) Ax

Given these axioms, it is possible to start proving useful derived properties of 3, describ
ing the quantifier's interaction with the other features ofLPF introduced so far, including
the propositional connectives. First consider substitution of the body of a quantified ex~
pression by a weaker predicate. If one knows that 3y: A· P(y), and that Q holds wherever
P holds, then one certainly expects 3y: A · Q(y):

3y:A · P(y)
ro::::;::l x: A, P(x) I; Q(x)

~ 3y:A·Q(y)

Attempting the proof of '3-subs' is instructive, chiefly because of the possibility of fol~
lowing a "blind alley". Consider the construction of the proof step by step. Begin as
usual by writing the hypotheses and conclusion:

from 3y: A · P(y); x: A, P(x) I; Q(x)

infer 3y: A · Q(y) (?? justify ??)

One possible strategy discussed in Chapter 2 is to examine the structure of the conclusion
and reason backwards to simplify the goal. Taking this approach, the conclusion should

3.3 Predicate calculus for LPF: proof strategies for quantifiers 43

be justified by '3-1', which requires introduction of a witness value. Updating the proof
yields the following:

from 3y:A · P(y); x:A, P(x) ~ Q(x)

I a:A
2 Q(a)
infer 3y: A · Q(y)

(?? justify ??)
(?? justify ??)

3-1 (1, 2)

Now one has to find the witness value a. The reader may by now feel this is leading
up a "blind alley", since the hypotheses give little clue to how it should be constructed.
Perhaps forwards reasoning from the hypotheses will help. The only available rule for
this is '3-E', yielding the following:

from 3y: A · P(y); x: A, P(x) ~ Q(x)

I from z: A; P(z)

infer???
2 ???

3 a:A
4 Q(a)
infer 3y: A · Q(y)

(?? justify ??)
3-E (hi, I)

(?? justify ??)
(?? justify ??)

3-I (3, 4)

One can apply the sequent hypothesis within Subproof I by renaming the sequent variable
x to be the z introduced in the subproof:

from 3y: A · P(y); x: A, P(x) 'x Q(x)

I from z: A; P(z)
1.1 Q(z)

infer???
2 ???

3 a:A
4 Q(a)
infer 3y: A · Q(y)

sequent h2 (l.hl, l.h2)
(?? justify ??)

3-E (hi, I)

(?? justify ??)
(?? justify ??)

3-I (3, 4)

This is sufficient to conclude 3y:A · Q(y) in Subproof I, and therefore on Line 2:

44 3 Predicate LPF with Equality

from 3y: A · P(y); x: A, P(x) ~ Q(x)

I from z: A; P(z)
1.1 Q(z)

infer 3y: A · Q(y)
2 3y:k Q(y)

3 a:A
4 Q(a)
infer 3y: A · Q(y)

sequent h2 (!.hi, l.h2)
3-I (!.hi, 1.1)

3-E (hi, I)

(?? justify ??)
(?? justify ??)

3-!(3,4)

Now Line 2 asserts the conclusion of the whole proof. So it appears that the proof can
be concluded by '3-E', without the use of the lines constructed by the initial attempt at
backward reasoning (3 and 4):

from 3y: A · P(y); x: A, P(x) ~ Q(x)

1 from z: A; P(z)
1.1 Q(z)

infer 3y: A · Q(y)
infer 3y: A · Q(y)

sequent h2 (!.hi l.h2)
3-I (!.hi, 1.1)

3-E (hi, I)

Thus the conclusion follows by '3-E' and not by '3-1', as at first suggested by examining
the conclusion. This is a good point at which to recall that all the proof strategies discussed
in this volume are merely heuristic. In fact this combination of '3-E' and '3-l', where
'3-r is placed within the '3-E' subproof, is very common in proofs about the existential
quantifier. It can be used to prove many other useful results about 3 and the propositional
connectives (shown in the Directory: Chapter 14). For example, the result

3x:A · P(x)
rc;----;-, x:A ~ (P(x) => Q(x))
13-=o-subs I 3x: A- Q(x)

can be proved using exactly the same strategy:

from 3x: A · P(x); x: A ~ (P(x) => Q(x))

I fromy:A; P(y)
1.1 P(y) => Q(y)
1.2 Q(y)

infer 3x: A · Q(x)
infer 3x: A · Q(x)

3.3.2 Universal quantification

sequent h2 (l.h I)
=>-E-left (1.1, l.h2)

3-I (!.hi, 1.2)
3-E (hi, I)

As with propositional logic, one could derive results and conduct proofs using only 3
and the propositional connectives, but that would lead to intractable proofs and would

3.3 Predicate calculus for LPF: proof strategies for quantifiers 45

not reflect intuition about predicates. Just as propositional logic was extended by defini
tions of A and other connectives, so predicate logic can be extended by adding universal
quantification. The 'if quantifier is defined in terms of, and 3. A predicate P holds
everywhere over a type A if there does not exist a value at which it does not hold:

del
\1x:A- P(x) = ~3x:A- ~P(x)

This definition allows proofs of assertions involving 'if to be reduced to proofs involving
the existential rules introduced already. For examply, the introduction and elimination
rules for \1 follow from the axioms for ~3 given above. Consider the '\1-1' rule, which
is analogous to 'A-1'. If P(y) can be shown to hold for an arbitrary y, the universal quan
tification holds:

y:A ~ P(y)

~ \1x:A · P(x)

The proof of this rule begins by using the definition of \1 to modify the goal:

from y:A ~ P(y)

~3x:A · ~P(x)
infer \1x:A · P(x)

(?? justify ??)
folding (I)

Now the rules of 3 and propositional logic can be applied. Working backwards from the
goal, '-,-3-1' can be applied, opening a subproof:

from y: A ~ P(y)

I from z:A

infer~(~P(z))

2 ~3x:A · ~P(x)
infer \1x:A · P(x)

(?? justify ??)
~ -3-I (I)

folding (2)

The proof is easily completed by appealing to the hypothesis and ·~~-1':

from y: A ~ P(y)

1 from z:A
1.1 P(z)

infer~(oP(z))

2 ~3x:A · ~P(x)
infer \1x:A · P(x)

sequent hi (l.hl)
~~-I (1.1)
~ -3-I (I)

folding (2)

The elimination rule for 'if is, not surprisingly, related to the elimination rule for...., 3. If
P(x) holds for any x in the type A, then it certainly holds for a particular value a of that
type:

46

l'o'-EI a:A; \tx:A·P(x)
P(a)

3 Predicate LPF with Equality

The proof of this rule again exploits the definition of \t. The \t hypothesis is replaced by
its definition in terms of...., 3 and the...., 3 is eliminated:

from a: A; \tx:A · P(x)
I ~:tx:A · ~P(x)
2 ~bP(a))

infer P(a)

unfolding (h2)
~-3-E (hi, I)

~~-E (2)

One could go on conducting proofs about ';;/ by expanding its definition in the way just
shown, but of course that would lead to unnecessarily long proofs. A theory of useful
results about 'V can be built up in much the same way as such a theory was built for A. It
is then possible to use rules such as '\t-1' and '\t-E' directly.

As in the case of 3, the theory can be extended to deal with the interaction of \t and
the propositional connectives. Here, instead of a '3-E/3-1' technique, the corresponding
'\t-!1\t-E' technique is valuable. As an example, consider the following rule, which
permits the substitution of a weaker predicate for a stronger one in the body of a universal
quantification:

\ty:A · P(y)
= x: A, P(x) I; Q(x)
~ \ty:A. Q(y)

Beginning the proof, it is apparent that little forward reasoning can be done from the V
hypothesis since '\i-E' requires an example value. Instead, begin by reasoning backwards
using '\1'-I':

from \ty: A · P(y); x: A, P(x) I; Q(x)

I fromy:A

infer Q(y)
infer \ty: A · Q(y)

{?? justify ??)
\t-1 (I)

Now the example value y is available within Subproof I and P(y) can be concluded by
''v'-E':

from \ty: A · P(y); x: A, P(x) 1; Q(x)

I fromy:A
1.1 P(y)

infer Q(y)
infer \ty:A- Q(y)

\t-E (!.hi, hi)
sequent h2 (l.hll.l)

\t-1 (I)

The same ''V-IN-E' technique can be used in many of the proofs of the results relating
\t and the propositional connectives shown in the Directory (Chapter 14).

3.3 Predicate calculus for LPF: proof strategies for quantifiers 47

The definition of "i/ in terms of 3 leads one to suppose that there are analogues of the
deMorgan laws for propositional disjunction and conjunction. In the same way as

I~ -A-E-deM I
--, (et A e2)

one expects the following to be true:

~('v'x:A-P(x))
1~-'1>'-->3-deMI 3x:A-~P(x)

Since no rules for--, V have yet been given, the proof must rely on the definition ofV':

from~ ('v'x: A· P(x))
I ~~3x:A · ~P(x)
infer 3x: A · ~ P(x)

The complementary deMorgan law:

I I 'ix:A · ~P(x)
~--> ~ -3-deM ~ (3x: A- P(x))

has a simple proof by ·~-3-1':

from 'ix:A · ~P(x)
I fromy:A

infer ~P(y)
infer ~(3x:A · P(x))

unfolding (hi)
~~-E (I)

li-E (l.hl, hi)
~ -3-I (I)

and the other two deMorgan laws, shown below, are proved similarly:

I 3x:A · ~P(x)
3-->~-'1>'-deMI ~('ix:A ·P(x))

~ (3x: A · P(x))
1~-3--> '1>'-deMI 'ix:A. ~P(x)

The de Morgan laws can be used to prove useful properties of--, 'r/. Consider, for example,
the proof of the following rule:

I I a:A; ~P(a)
:'-'1>'-I-~ ~ (\fx: A· P(x))

The proof is straightforward using '3 -7 --, M 'V -deM'. Note that it does not have to refer
back to the definition of If:

from a: A; ~P(a)
I 3x:A · ~P(x)
infer~ 'ix: A · P(x)

3-I (hi, h2)
3-7 ~-'i-deM (I)

48 3 Predicate LPF with Equality

3.3.3 N-ary predicates and mixing quantifiers

The rules introduced so far generally concern unary predicates. Each quantifier binds a
single variable, so the formula

3y:B · P(x,y)

is a predicate with a single free variable (x), while the following

3x:A · 3y:B · P(x,y)

is a proposition, having no free variables. In cases where the variables are all of the same
type, an abbreviated notation may be used informally. Thus the formula

3x:A · 3y:A · P(x,y)

may be abbreviated to

3x,y:A · P(x,y)

Of course, quantifiers can be mixed:

\tx:A · 3y:B · P(x,y) A Q(y)

One should be able to develop rules to deal with expressions involving n-ary predicates.
Consider the case of binary predicates. The following rules concern values of x for which
P(x,x):

I;-::;;;] ~-';3x"': ~A__:· P~(xc;:, x;;-)
~---.: 3x:A · 3y:A · P(x,y)

The proofs use the '3-E/3-l' and 'V-IN-E' strategies. For example, consider the proof
of '3-split'. Applying '3-E' in backwards reasoning mode, the state of the proof is:

from 3x:A · P(x,x)
1 fromx:A; P(x,x)

infer 3x:A · 3y:A · P(x,y)
infer 3x:A · 3y:A · P(x,y)

(?? justify ??)
3-E(h1, 1)

The conclusion of Subproof 1 follows by two applications of '3-l', one for each of the
bound variables:

from 3x: A· P(x,x)
1 from x: A; P(x, x)
1.1 3y:A · P(x,y)

infer3x:A · 3y:A · P(x,y)
infer 3x: A· 3y: A · P(x,y)

3-I (l.h 1, l.h2)
3-I (l.h1, 1.1)

3-E (hi, I)

The application of '3-I' justifying Line 1.1 instantiates just one occurrence of the free
variable x in the binary predicate hypothesis P(x,x), effectively matching the unary pred-

3.3 Predicate calculus for LPF: proof strategies for quantifiers 49

icate P(_) in the '3-1' rule with the unary predicateP(x, _)in the proof. This form of partial
instantiation is intuitively reasonable: if P(x,x) is known then a witness value (namely x)
has been produced to justify 3y: A·P(x,y). Note that one could also conclude 3y: A-P(y,x)
and 3y: A· P(y,y) by applying the same rule with different pattern matchings to the same
hypotheses.

Returning to the derivation of useful rules about n-ary predicates, the following show the
ability to reorder quantifiers:

13-3-comm I 3x: A . 3y: B . P(x, y)
3y:B · 3x:A · P(x,y)

l3-11 __. \l-3 l ,3x=: A-;;-· 't!""'y'-:-: B.-· Pn:(,_x,"-y~)
't!y: B · 3x: A · P(x,y)

I \1-\1-comm I 't!x: A- 't!y: B. P(x,y)
'tly:B · 't!x:A · P(x,y)

These are proved using the usual strategies. Note that the converse of '3-V' ~ 'v'-3' is
not true.

The proofs of many of the rules discussed so far in this section involve stripping away and
adding quantifiers one-by-one using the appropriate introduction and elimination rules.
After a while, this process can seem repetitive for rules involving many quantifiers. This
suggests that some derived rules could simplify the proofs. For example, the following
rule describes substitution of weaker predicates in fonnulae with two existential quanti
fiers :

3x:A · 3y:B · P(x,y)
x:A, y:B, P(x,y) 1-;,, Q(x,y)

3x:A · 3y:B · Q(x,y)

A proof using the rules introduced so far is shown below. Note how the quantifiers are
introduced and eliminated one by one:

from3x:A·3y:B·P(x,y); x:A, y:B, P(x,y) I:;,Q(x,y)

1 from x: A; 3y: B · P(x, y)
1.1 from y: B; P(x,y)
1.1.1 Q(x,y)
1.1.2 3y:B · Q(x,y)

infer 3x: A· 3y:B · Q(x,y)
infer 3x: A · 3y: B · Q(x, y)

infer3x:A · 3y:B · Q(x,y)

sequent h2 (l.h 1, l.l.h 1, l.l.h2)
3-I (l.l.hl, 1.1.1)

3-I (l.hl, 1.1.2)
3-E (l.h2, 1.1)

3-E (hl, 1)

The following rules allow the existential quantifiers to be removed and added in one go,
almost as though they were a single quantifier binding two variables:

[ill] ...,a_: A.;-; -:ob,.-: Be;; ;"P-i;(a7, '-'b),-
3x:A · 3y:B · P(x,y)

3x:A · 3y:B · P(x,y)
= x:A, y:B, P(x,y) 1:;, e
LE.::'.I .

e

Given these two rules, the proof of '33-subs' is simpler:

50 3 Predicate LPF with Equality

from 3x:A · 3y: B · P(x,y); x:A, y: B, P(x,y) 1:;,, Q(x,y)

I fromx:A; y:B; P(x,y)
1.1 Q(x,y)

infer3x:A · 3y:B · Q(x,y)
infer3x:A · 3y:B · Q(x,y)

sequent h2 (l.hl, l.h2, l.h3)
33-1 (l.hl, l.h2, 1.1)

33-E (hi, I)

The same approach simplifies proofs of the other substitution rules relating '33' and the
propositional connectives (A, v, etc.). The rules '3-3-comm' and '3-split' can also be
proved using '33-1' and '33-E'. The rules '33-1' and '33-E' are themselves proved by
the more pedestrian rules for the single quantifier. A similar approach is of benefit in
dealing with multiple occurrences of "'if'.

Finally in this section, a note on quantification over empty types. A universally quantified
expression can be true if the type is empty: if there are no values of type A then certainly
P(x) is true for all x in A. One cannot therefore generally conclude 3x: A · P(x) from
\fx:A · P(x). The rule governing this property has a hypothesis to ensure that the type in
question is inhabited:

~ \fx:A · P(x); inhabited(A)
~ 3x:A·P(x)

The constant inhabited is simply defined as follows:

inhabited(T) del 3x: T · true

A type is non-empty if some value of the type is known to exist. To show this by '3-1'
involves producing a witness value.

3.3.4 Definedness of qnantified expressions

In Chapter 2, the symbol li, indicating definedness of an expression, was introduced.
When should quantified expressions be considered to be defined? Recall that a logical
expression e is defined (written 8(e)) if it is either true or false, i.e. one can prove e v -,e.

Consider now the definedness of the expression 3x: A · P(x). From the rules already
defined, if a witness value a can be produced to show P(a), then certainly 3x: A · P(x)
follows by '3-1', and hence li(3x:A · P(x)) by 'Ii-I'. Conversely, if it can be shown that
a witness value does not exist, then --,3x:A · P(x) follows by '--,-3-I' and once again
li(3x:A · P(x)) is shown by 'Ii-I-~'. However, there is a third case: the predicate Pis
known to be defined at every value in the type A, but one has insufficient information
to either produce or refute the existence of a witness value at which P is true. In this
case, one cannot prove either 3x: A · P(x) or~ 3x: A · P(x), but one does know that one or
the other is true, and so li(3x:A · P(x)) is known. To cover this third case, the following
additional axiom is introduced:

. . x: A I:; liP(x)
lo-3-mhentl li(3x: A . P(x)) Ax

From this, the corresponding result for 'V can be proved:

3.4 Reasoning about equality: substitution and chains of equality 51

. . y: A ~ oP(y)
lo-'1-mhend o('tx:A·P(x))

by appealing to the definition of If.

3.4 Reasoning about equality: substitution and chains of
equality

There are many ways of referring to the same value. For example, the natural number '9'
is the same number as that denoted by the expression '32 ' or '22 + 2 x 3- I', or any of
a multitude of other expressions. If a property P is known to hold for the value denoted
by expression e, (written P(e,)) then it should be possible to conclude P(e2) for any e2
which is equal to e1.

Within the logical frame used here, the equality symbol is a binary predicate, taking two
expressions as its arguments. Its properties are given by just a few axioms, the simplest
of which states that equality is reflexive:

a: A ~--Ax
~a=a

The typing hypothesis may seem unusual. In LPF, equality (called weak equality in
[BCJ84]) is defined only over denoting terms and is polymorphic (i.e. is defined for all
types).

The value of equality lies in the ability to substitute equal values in predicates. This is
captured by a collection of substitution rules, the first of which permits substitution of the
expression on the left of an equality by the expression on the right:

a: A; a= b; P(a) I =-subs-right(a) I P(b) Ax

This axiom's name is suffixed '(a)' because the a in the rule is typed. Like other such rules,
it has a '(b)' form, a derived result, presented later. A complementary axiom describes
substitution by the expression on the left of the equality:

b:A; a b; P(b) I -subs-left(b) I P(a) Ax

The following axiom asserts that weak equality is defined when both of the operands are
denoting:

~ a:A;b:A = o(a-b) Ax

The axiom above states that equality is defined when both the arguments of'=' are of the
same type. What about equality between values of differing types? In the proof theory for
VDM presented here, values of different types can be ascribed a common supertype (the
union of their own types) so that equality is defined, although one may not have enough
information to work out whether the equality is true or false. This point is discussed
when type constructors are introduced in Section 4.2 and revisited as an advanced topic
in Section 13.3.

52 3 Predicate LPF with Equality

The requirement in LPF that the arguments of equality be denoting leads to an abun
dance of typing hypotheses in rules relating to equality. Such hypotheses are tiresome,
but straightforward, to discharge in proofs. A mechanised proof support system could
take advantage of static type checking to reduce the need to manually discharge typing
assumptions.

If the axiomatisation of equality presented so far reflects intuition, it should be possible
to derive the three main properties of equality: reflexivity, symmetry and transitivity.
Reflexivity is an axiom already. The first rule for symmetry is:

a·A- a=b I =·symm(a) I . b•- a

The proof is straightforward. Begin by writing down the hypotheses and conclusion in
the usual way:

froma:A; a=b

infer b =a (?? justify ??)

Given the axioms for equality, it is a safe bet that this proof will involve the application of
substitution. What predicate should form the subject of the substitution? The conclusion
of the proof suggests '_ = a' as a possibility. This would allow the conclusion of the
proof to match the conclusion of '=·subs-right(a)', provided P(a) (i.e. a =a) is available.
This follows immediately by reflexivity of equality. The final proof is therefore:

froma:A; a=b
1 a =a
inferb =a

=·self·! (hi)
=·subs-right(a) (hi, h2, I)

A similar rule, with a similar proof, allows for the case where b is known to have a type:

b·k a=b I =·symm(b) I . b'- a

Note that the typing assertion '_ : _' is itself a predicate, so substitution of equals can be
applied to it too. giving rules about simple inheritance of type across equality:

a:kb=a I =·type-inherit-left! b: A
b:k b=a

1-·type-inhcrit-right I ~:A

These are simply proved by applying the substitution rules, with the typing hypothesis
used twice. For example, '=-type-inherit-left' has the proof:

from a: A; a= b
infer b:A =·subs·right(a) (hi, h2, hi)

The symmetry and type inheritance properties of equality allow the proof of two additional
substitution rules which complement the substitution axioms given above:

3.4 Reasoning about equality: substitution and chains of equality 53

a: A; a= b; P(b) I =-subs-left(a) I P(a)
,-::::;::-:-:c.=:-cJ b: A; a = b; P(a) I =-subs-nght(b) I P(b)

The proofs of these rules are very straightforward and use the type inheritance rules
introduced above. For example, '=-subs-left(a)' is proved as follows:

from a: A; a= b; P(b)
1 b:A
infer P(a)

The proof of '=-subs-right(b)' is similar.

=-type-inherit-right (h 1, h2)
=-subs-left(b) (1, h2, h3)

Another important property of equality is its transitivity. For example:

a: A; a= b; b = c I =-ttans(a) I a = c

Transitivity follows directly from the rules of substitution. In applying the rules, the
predicate P is set to correspond to equality with a third value. For example:

from a: A; a= b; b = c
infer a= c =-subs-left(a) (hl, h2, h3)

A variety of transitivity rules are provided in the Directory (Chapter 14) to cope with
various combinations of typing hypotheses and variously commuted equalities.

Finally in this section on equality, an example of some equality rules at work. This is
inspired by the squaring function on page 67 of [Jon90]. A function sq which squares
natural numbers has been defined recursively. The axioms corresponding to its definition
are:

I sq-def-0 I sq(O) 0 Ax
n:N; -,(n=O)

lsq-def--,OI sq(n)-sq(n-1)+2xn-l Ax

The proof that sq actually implements its specification (i.e. it returns the square of its
argument), is inductive over the natural numbers, but for this example the reader need
only be concerned with a part of the proof: the induction step. This requires a proof that,
if sq is correct at n, then it is correct at n + 1, i.e.

. n: N; sq(n) = n2

lsq-md-stepl sq(n+ I)- (n+ I)'

Although the class of natural numbers, N, has not yet been formally introduced, the reader
should be able to construct a straightforward informal argument that 'sq-ind-step' holds.
Begin by laying out the skeleton of the proof:

from n: N; sq(n) = n2

infer sq(n+ 1) = (n+ 1)' (?? justify ??)

54 3 Predicate LPF with Equality

Expand the definition of sq:

from n: N; sq(n) = n2

1 sq(n+l)=sq((n+l)-1)+2x(n+l)-1 sq-def-~0

infer sq(n + 1) = (n + 1)2 (?? justify ??)

Simplify the right hand side of the equality, appealing to the properties of natural numbers:

from n: N; sq(n) = n2

1 sq(n+ 1) = sq((n+ 1)-1)+2x(n+ 1)-1
2 =sq(n)+2x(n+!)-!
3 = sq(n) + 2 x n + 1

infer sq(n + 1) = (n+ 1)'

sq-def-~0

N, 1
N,2

(?? justify ??)

The second hypothesis allows sq(n) to be rewritten as n2 . Then the conclusion follows
by again appealing generally to the natural numbers:

from n: N; sq(n) = n2

1 sq(n+l)=sq((n+l)-1)+2x(n+l)-1
2 =sq(n)+2x(n+!)-!
3 =sq(n)+2xn+!
4 =n2 +2xn+l
infer =(n+1)2

sq-def-~0

N, 1
N,2

h3,3
N,4

The informal proof shows clearly the "chain of equality" involved in Lines 1-4. When this
proof is made formal, the application of N has to be clarified and the chain of equality is
seen as a sequence of applications of substitution, transitivity and type inheritance rules.
For example, consider Line 1. To formalize this, the hypotheses of the 'sq-def-~ 0' rule
have to be discharged:

from n: N; sq(n) = n2

1 n+ l:N
2 ~cn+l =0)
3 sq(n+l)=sq((n+l)-1)+2x(n+l)-1

infer sq(n + 1) = (n+ 1)2

Lemma 1 (hl)
Lemma 2 (hl)

sq-def-~0 (1, 2)

(?? justify ??)

The reader has no information to hand about the theory of natural numbers. When a
formal proof is conducted in such a state of ignorance, it is good practice to record the
properties on which one relies as lemmas to be proved at a later stage. The assumed
properties of Lines 1 and 2 are recorded as follows:

3.4 Reasoning about equality: substitution and chains of equality

n:N
ILemmall n+l:N

n:N
1Lemma21 ~(n+ 1 _ O)

55

The ability to record precisely the limits of one's reliance on other theories is an advan
tage of formal proof over rigorous argument. Carrying on with the example, the first
simplification of Line 3 replaces the expression (n + 1) -1 by n. One of the substitution
rules is used:

from n: N; sq(n) = n2

I n+ l:N
2 ~<n+l =0)
3 sq(n+ I)= sq((n+ 1)-1)+2x(n+ I)-I
4 (n+l)-l=n
5 sq(n+ I) =sq(n)+2x(n+ I)-I

infer sq(n +I)= (n + 1)2

where 'Lemma 3' is:
n·N

1Lemma3l (1). 1 n+ - -n

Lemma I (hi)
Lemma 2 (hi)

sq-def- ~ 0 (I, 2)
Lemma 3 (hi)

=-subs-right(b) (hi, 4, 3)

(?? justify ??)

The proof is completed in a similar way. The remaining lemmas are as follows:

n:N
1Lemma 4 12x(n+l) l-2)in+l

n:N
I Lemma 51 2xn+ l:N

n·N
!Lemma6l iN

n:N
!Lemma?! (n+IJ'-n2 +2xn+l

The completed proof is as follows:

from n: N; sq(n) = n2

I n+ l:N
2 ~<n+l =0)
3 sq(n+l)=sq((n+l)-1)+2x(n+l)-1
4 (n+l)-l=n
5 sq(n+ I)= sq(n)+2x(n+ I)-I
6 2x(n+l)-1=2xn+l
7 2xn+l:N
8 sq(n+ I)= sq(n)+2xn+ I
9 n2:N
10 sq(n): N
11 sq(n+l)=n2 +2xn+l
12 (n+IP=Ii+2xn+l
13 (n+ J)':N
infer sq(n +I)= (n +I)'

Lemma I (hi)
Lemma 2 (hi)

sq-def-~0 (1,2)
Lemma 3 (hi)

=-subs-right(b) (hi, 4, 3)
Lemma 4 (hi)
Lemma 5 (hi)

=-subs-right(b) (7, 6, 5)
Lemma 6 (hi)

=-type-inherit-left (9, h2)
=-subs-right(a) (10, h2, 8)

Lemma 7 (hi)
Lemma 6 (I)

=-trans-right(b) (13, 11, 12)

56 3 Predicate LI'Ji With Hquallty

In this example, it is possible to have considerable confidence in the informal proof.
Formalizing it is a tedious exercise, and one which would benefit from machine assistance.
Furthermore, the final form of the proof tends to hide the chain of equality which forms
the proof's basis. A machineMbased proof-support mechanism should allow the "chain of
equality" style of reasoning while ensuring that the underlying lemmas are recorded and
the substitution rules correctly applied.

The "chain of equality" style of reasoning centres on the rewriting of terms. In this
example, the rewriting has been chiefly to simplify the right hand side of an equality. The
more general case of rewriting terms on both sides of an equality is discussed when it
arises in an example from the theory of finite sequences (Section 8.5.4).

3.5 Extensions to typed predicate LPF with equality

Given all the logical constructs introduced so far, it is possible to add more operators to
the language. These range from the simple abbreviation for inequality (Section 3.5.1) to
the unique choice operator axiomatised in terms of the unique form of existential quantifi
cation (Sections 3.5.2 and 3.5.3). Having equality in the logic also permits the definition
of conditionals (Section 3.5.4). A convenient notational extension to allow quantification
over finite sets is introduced at a later stage (Section 6.4).

3.5.1 Inequality

The commonly used notation for inequality, e1 :;I!: e2 , can be formalized through a simple
definition:

3.5.2 Unique existential quantification

The "exists unique" quantifier '3!' records the fact that exactly one value satisfies a pred
icate. The quantifier is defined as follows:

def
3!x:A · P(x) = 3x:A · P(x)" Vy:A · P(y) => y =x

As with other defined constructs, it is possible to build up a theory of unique quantification
which obviates folding and unfolding its definition in proofs. Example derived rules are:

3!x:A ·P(x)
r;;-;;1 y:A, P(y), Vz:A·P(z) => z=y~ e
~------------------~~-e

r:;;-;l a: A; P(a); Vy: A · P(y) => y = a
t.=:.'.J 3! x: A · P(x)

In Section 2.5 it was indicated that '0-=-I' could form the basis of useful case distinctions
in proofs. An example of this arises in the proof of properties about the 3! quantifier. The
following rule asserts that if two witness values satisfy a uniquely quantified predicate,

3.5 Extensions to typed predicate LPF with equality

then the witnesses must be equal:

r-==1 a: A; b:A; P(a); P(b); 3!x:A · P(x)
~ a-b

Its proof proceeds by such a distinction.

from a: A; b:A; P(a); P(b); 3!x:A · P(x)
I o(a=b) o-=-I (hi, h2)
2 from ~(a= b)
2.1 a*b
2.2 ~3!x:A-P(x)

infer a= b
infer a= b

folding 2.hl
~-3!-1 (hi, h2, h3, h4, 2.1)

contradiction (h5, 2.2)
o-E (1, triv, 2)

57

Observe that the first limb of the case distinction relies on the trivially true subproof that
a=b ~a=b.

3.5.3 Unique choice

The t (iota) operator allows the selection of the unique element from a class of values
satisfying the predicate. Thus the expression

!X: A· P(x)

is read as "that x of type A satisfying P(x)". In terms of the logical frame, the t symbol
is a binder. Unlike 3!, it is defined by axioms rather than direct definition, because it is
necessary to record the requirement that there should exist only one element satisfying
the predicate:

3!x:A ·P(x)
It-form! (ty:A-P(y)):A Ax

3!x:A · P(x)
[ill P(ty:A- P(y)) Ax

As usual for definitions of operators yielding values of a given type rather than truth
values, the definition consists of afonnation axiom giving the type of expressions formed
from the operator and an introduction axiom showing when the operator can be used in a
proof.

Choice in the case where more than one value satisfies P is discussed as an advanced
topic (Section 13.7.1).

3.5.4 Conditionals

The "if a then b else c" construction describes simple choice. If the discriminator a is
true~ the expression evaluates to b:

b:A' a
I condition-true I (if a then b ~lse c) - b Ax

When the discriminator is false, it evaluates to c:

58 3 Predicate LPF with Equality

G~~~~~1111Q~c~:~A~;i~~a~~c-condition-false Ax
(if a then b else c) c

In order to be denoting, the discriminator must be defined, but the alternatives b and c
need only be denoting when they apply. The following formation rule is provable from
the axioms above (and the rules for equality):

lia
a~ b:A

I ITE-fonn-sqt I -,a 1- c:A

(if a then b else c):A

3.6 Summary

It is worth briefly reviewing the main points of this chapter:

• Propositional logic limits ability to reason about arbitrary values. A predicate in
volving a number of free variables allows properties of values or relationships
between values to be expressed.

• The quantifiers 3 and V bind the free variables in predicates, quantifying them over
classes of values or types.

• Proof strategies for the quantifiers have been shown ('3-E /3-I' and 'V-I I V-E').

• As in Chapter 2, rules have been given for defined constructs, reducing the need to
fold/unfold their definitions in proofs.

• Rules (e.g. thedeMorgan laws and the '33' rules) have also been given for common
kinds of formula, which again simplify proofs involving these formulae.

• Equality is defined on denoting values of the same type (extension to equality be
tween values of different types is discussed in Section 4.2).

e Axioms and derived rules show equality to be reflexive, symmetric and transitive.
Substitution of equal values and type inheritance are supported.

• The "chain of equality" style of reasoning has been illustrated: the chain of equality
becomes a succession of application of substitution, transitivity and type inheritance
rules when formalised.

• The calculus has been extended with definitions of inequality, unique quantification,
unique choice and conditionals.

3. 7 Exercises

1. Distribution of 3 over A and v

Use the '3-E(:l-I' strategy to prove the following results:

3. 7 Exercises

3x:A · P(x)
rc;---;c:1 x: A ~ P(x) ¢'> Q(x)
13-<o>-subs I 3x: A . Q(x)

I I 3x: A · P(x) " Q(x)
3-A-E-Ieft 3x: A . Q(x)

I . I 3x:A · P(x)" Q(x)
3-A-E-nght 3x: A . P(x)

Use these rules to show that existential quantification distributes over conjunction:

. 3x: A · P(x) "Q(x)
13-A-dlSt-expand I (3y: A . P(y)) A (3z: A . Q(z))

59

The corresponding property for disjunction has a slightly more complex proof, but follows
the same style: reason forwards by '3ME' and perform a case distinction ('v-E') on the
P(x) v Q(x) due to the hypotheses.

. 3x: A · P(x) v Q(x)
13-v-dlSt-expandl (3x:A. P(x)) v (3x:A. Q(x))

2. Quantifier pair rules

Prove the following rules about double universal quantification:

~ x:A, y:B ~~ P(x,y)
1 -."'"x-: A-.--;· "'"y-: "'s'--. "'P('x-, y-.)

~ a: A; b:B; "'x:A · "'y:B · P(x,y) = P(a,b)

The following rule describes the substitution of a predicate in the bcx:ly of an expression
quantified by 3 "':

3x:A · "'y:B · P(x,y)
x:A, y:B, P(x,y) ~-' Q(x,y)

j3\l-subsl 3x:A. "'y:B, Q(x,y)

Prove the rule by application of the '3-E /3-1' and'"/-! I "1-E' strategies. Posit a rule for
'3"1-1' and use it to (slightly) simplify the proof.

3. Equality and Conditionals

Suppose that an operatorfac is defined to represent the factorial calculation:

fac(i) del if i = 0 then 1 elsefac(i- 1) xi

Part of the proof that this is denoting involves showing that, if fac(n) denotes a natural
number, thenfac(n+ I) also denotes a natural number:

n: N; fac(n): N
fac(n + 1): N

This rule is proved informally as follows:

60

from n: N; fac(n): N
1 (n+1)-1 =n
2 fac((n+1)-1):N
3 (fac((n+ l)-1)x(n+ l)):N
4 (if n+ 1 = 0 then 1 elsefac((n+ 1)- 1) x (n+ 1))
inferfac(n+ l):N

3 Predicate LPF with Equality

N,h1
h2, 1

N,2,h1
conditionals, 3
defn. of fac, 4

Formalise the proof. There are a number of ways of doing this. One is to unfold the
conclusion and then apply 'ITE-form-sqt'. Remember to record any assumptions about
natural numbers as lemmas.

4, Conditionals

The following rule is a stronger version of the formation rule for conditionals. Prove it
from the weaker one.

lia; b:A; c:A I ITE·form I .
(1f a then b else c):A

Chapter 4

Basic Type Constructors

4.1 Introduction

The logic developed so far has been concerned primarily with reasoning about arbitrary
assertions: propositions or predicates. Although the concept of values drawn from a type
has been introduced (Section 3.2), the reader has only so far seen primitive types such as
the natural numbers N. Recall, however, that the logic being developed here is intended
for the interpretation of VDM specifications. Such specifications are based on models of
system states built using a rich repertoire of types and type constructors (e.g. sequences,
maps, sets). The logic developed so far needs to be extended to allow interpretation of
these types. The rest of Part I of this book describes such an extension.

In this chapter, basic constructors for building more elaborate types from basic compo
nents are introduced. The reader also has the opportunity to practice some of the proof
skills gained so far on examples based on these constructors.

4.2 Union types

A simple way to build a more complex type from basic ones is to join them together by
constructing their union. In VDM-SL, the type definition

T=TIITZ

means that the type Tis composed of all the values of types Tl and T21• The union is
non-disjoint in that any values common to Tl and T2 appear only once in the union type
T: they are not tagged or otherwise distinguished. The axioms describing type union
are straightforward. Introduction axioms simply state that an element of one type is an
element of the union of that type with any other. Separate axioms allow the new type to
be added on either side of the original type:

b:B
11-l-Iefll b: (A I B) Ax

. a:A
11-I-nghtl a: (A I B) Ax

1 In VDM-SL, a union type may be composed of an arbitrary number of types. Here the discussion is
restricted to binary unions, since the union constructor _ 1 _ is a constant in tenus of the logical framework
used, and constants have fixed arities.

62 4 Basic Type Constructors

These axioms may suggest to the reader a similarity between type union and propositional
disjunction (v): if e: (A I B) then e:A or e:B. The elimination rule for union bears this
out, being similar in principle to the 'v-E' rule, but dealing with a predicate rather than a
proposition. If some property P holds for all elements of types A and B, then it holds for
any element of their union:

u:(A I B)
a: A I;; P(a)

b:B fo P(b)
~ P(u) Ax

The union operator is associative and commutative, as one would expect. Consider asso
ciativity, described by the two rules shown below:

a:(A I B) I C
I l-ass-left I a: A I (B I C)

. a: A I (B I C)
11-ass-nght I a: (A I B) I C

The proofs are straightforward and use the elimination rule '1-E' as the basis for case
distinction. Consider as an example the proof of 'l-ass-left'. Begin by writing down the
hypotheses and conclusion. The hypothesis suggests the form of a case distinction based
on '1-E'. The proof so far is therefore:

lroma:(A I B) I C
1 from b: (A I B)

infer b:A I (B I C)
2 from c: C

infer c:A I (B I C)
infer a: A I (B I C)

(?? justify ??)

(?? justify ??)
I-E (h1, 1, 2)

The first subproof (Subproof 1) suggests a nested case distinction formed by a further
application of '1-E':

froma:(AIB)IC
1 from b: (A I B)
1.1 from d:A

1.2
inferd:A I (B I C)
fromd:B

inferd:A I (B I C)
inferb:A I (B I C)

2 from c:C

inferc:A I (B I C)
infer a: A I (B I C)

(?? justify ??)

(?? justify ??)
1-E (l.h1, 1.1, 1.2)

(?? justify ??)
I-E (hl, 1, 2)

4.3 Cartesian product types

The subproofs are completed by simple application of the introduction rules:

froma:(AIB)IC
1 from b: (A I B)
1.1 from d:A

inferd:A I (B I C)
1.2 from d: B
1.2.1 d: (B I C)

infer d:A I (B I C)
infer b:A I (B I C)

2 from c: C
2.1 c: (B I C)

infer c:A I (B I C)
infer a:A I (B I C)

1-1-right (l.l.hl)

l-1-right (1.2.hl)
1-1-left (1.2.1)

1-E (l.hl, 1.1, 1.2)

1-1-left (2.hl)
1-1-left (2.1)

1-E (hl, 1,2)

63

The parallel with disjunction in propositional LPF continues in that 'l-ass-right' can be
proved using 'l-ass-left' and commutativity, in much the same way as 'v-ass-right' follows
from 'v-ass-left' (see Exercise 2 in Section 2.7).

Union types are of importance in ensuring the definedness of equality. Recall that in
Section 3.4, the following rule for defineduess of equality was introduced:

~ a:A;b:A = o(a-b) Ax

This requires both arguments of an equality not merely to be denoting, but to have the
same type. It was indicated that the more general result shown below holds:

,...--;---, a:A; b:B
16-=-1-gen I <5(a- b)

This can be proved from 'o-=-l' by straightforward application of the union type intro
duction rules. If a: A and b: B then both a and b are members of a common supertype
A I B and so equality between them is defined:

from a: A; b:B
1 a: (A I B)
2 b: (A I B)
infer o(a =b)

l-1-right (hl)
1-1-left (h2)
o-=-I (1, 2)

Equality being defined does not imply that the rest of the theory of A and B actuaily gives
enough information to determine whether the equality is true or false. Equaiity between
elements of disjoint types is discussed further in Section 13.3.

4.3 Cartesian product types

The Cartesian product type Ax B is the class of all ordered pairs (a, b) of elements of
A and B respectively. For an arbitrary pair p of type A x B, the elements of the pair are

64 4 Basic Type Constructors

extracted by the selectors fst and snd for the first and second elements respectively.

Three operators on elements of the cartesian product type have just been described: two
selectors (fst and snd) and a constructor (., .). Axioms are given to fix the definitions
of these operators. In each case, a fonnation axiom indicates when an application of
the operator is well-formed, while a definition axiom gives its meaning in terms of other
operators. For example, consider fst Its formation axiom states that its argument is a pair
and fst returns an element of the first type of the product:

p·AxB
I fst-fonn I f~t p: A Ax

The corresponding definition axiom relates fst to the pair constructor by defining fst to be
the first element of the pair:

== (a,b):AxB.
~ fst(a,b)=a Ax

The axioms for the other selector are analogous:

~~~ p·AxB 
I snd-fonn I s~d p: B Ax 

I I (a,b):AxB 
snd-defn snd (a, b)= b Ax 

The pair constructor has formation and definition axioms relating it to the selectors as 
follows: 

a:A; b:B I pair-fonn I Ax 
~~~ p:AxB 
I pair-defn I (fst p, snd p) = p Ax (a,b):A xB

Two pairs are equal if their corresponding components are equal:

p 1:AxB; p2:AxB; fstp 1 fstpzAsndp, sndpz
I pair---merge 1

Pt Pz

and vice-versa:

I . ;· I Pt: A X B; Pt = P2 rur-=-s 1t
P .p fst Pt = fst pz A snd Pt = sndpz

These results can be proved from the definitions given so far and the properties of equality
from Chapter 3. Consider the first, 'pair-=-split'. The structure of the conclusion suggests
proof by 'A-I':

1 fstp 1 =tstpz
2 sndp1 = sndpz
infer fstp 1 = fstp2 A sndp1 = sndpz

(?? justify ??)
(?? justify ??)

A-l (1, 2)

Consider the equality in Line 1. From the first hypothesis, fst is well-formed on p 1•

Reflexivity of equality gives fst Pt = fst Pt and since Pt and pz are equal, substitution
gives fst Pt = fst p2. A similar argument works for the second conjunct of the conclusion,
yielding the proof:

4.3 Cartesian product types

fromp1:AxB; PI ~P2
1 fstp1:A
2 fstp1 =fstp1
3 fstp1 = fstp2
4 sndp1:B
5 sndp1 ~ sndp1
6 sndp1 ~sndp2
infer fst Pt = fst P2 A snd Pt = snd Pz

fst-form (hl)
=-self-I (1)

=-subs-right(a) (hl, h2, 2)
snd-form (hl)

~-self-! (4)
~-subs-right(a) (hl, h2, 5)

A-! (3, 6)

65

This proof raises an interesting point about proof technique. Notice how the arguments of
Lines 3--5 and 4-6 follow the same pattern. This suggests that it may be worth abstracting
a more general rule which can be used in similar circumstances in other proofs. In this
case, the following rule about substitution of equals in value expressions is suggested:

a: A; a= b; E(a):B
1=-extend(a) I E(a)- E(b)

Using this rule, the above proof would become:

fromp1:A xB; PI ~ P2
1 fstp1:A
2 fstp1 ~ fstp2
3 sndp1:B
4 sndp, = sndpz
infer fst PI = fstpz A snd PI = snd P2

fst-form (hi)
~-extend(a) (hi, h2, I)

snd-form (hi)
~-extend(a) (hi, h2, 3)

A·l (2, 4)

The proof of ·~extend(a)' itself encapsulates the use of ·~-self-!' which was repeated in
the original proof:

from a: A; a~ b; E(a):B
I E(a) ~ E(a)
infer E(a) = E(b)

~-self-! (h3)
=-subs-right(a) (hl, h2, I)

Note that the proof of ·~-extend(a)' would not be possible without the hypothesis that
E(a) is denoting. If E(a) is non-denoting, the conclusion could be ill-formed (given that
weak equality is undefined when either or both of its arguments are undefined).

It is also worth noting some differences between this approach to Cartesian products and
the product types of VDM-SL. The present form ofVDM-SL allows arbitrarily long prod
uct types (e.g. T1 x ... XT11), the elements of which are n~tuples rather than pairs. Element
selectors like fst and snd are not provided. In the formalism described here, the number
of components is fixed, so to model VDM-SL exactly, a separate constructor would be
needed for each arity, with additional selectors (third, fourth etc.). "Associated" product
types such as (A x B) x C can also be described in the formalism used here, since such
types are classes of pairs, the first elements of which are themselves pairs. However, the
logical frame used here prevents a completely general theory of arbitrarily long product
types being written, except insofar as long tuples could be "encoded" as pairs, the sec-

66 4 Basic Type Constructors

ond element of which is a tuple until the last pair is reached (thus mk-(a, b, c, d) of type
A xB x C x Dis interpreted as (a, (b, (c,d))) of type Ax (B x (C x D))).

VDM-SL uses a tuple constructor called mk-(-). Thus an element of type A x B would
be written mk-(a, b). Since this notation is used primarily for tool support involving
automatic parsing of specifications, it is not employed here.

Section 4.2 above showed the use of type union to construct a conunon supertype so that
equality is defined on elements of different types. A similar approach to constructing
supertypes is needed for reasoning about types built using the other constructors. For
example, the following rules allow a pair to be an element of a larger type:

, p:A xB I prur-1-extend-left I p: (A I C) X B
. . p:AxB I prur-1-extend-nght I p: A X (B I C)

These are both derived rules with straightforward proofs, relying on the formation and
definition rules for the Cartesian product type. For example, the proof of the first rule
above is as follows:

tromp: A xB
I fstp:A
2 tstp: (A I C)
3 sndp:B
4 (fstp,sndp):(AIC)xB
5 (fstp,sndp)=p
infer p: (A I C) xB

fst-form (hi)
1-l-right (I)

snd-form (hi)
pair-form (2, 3)

pair-defn (hi)
=-type-inherit-right (4, 5)

There are similar rules for the other type constructors described in this and subsequent
chapters (see the exercises in Section 4.8).

4.4 Optional types

An optional type (written [A]) extends a type A with the additionai value nil. It can be
thought of as a union type between the main type and a type containing only the nil value.
The first axiom states that nil belongs to any optional type:

I nH·fonn I nil: [A] Ax

The second axiom shows an optional type being introduced. The optional type [A] is a
supertype of A:

a: A I opt-Ij a: [A] Ax

Finally, an axiom for the elimination of the optional type, which shows the parallel with
union types: constructing an optional type [A] is just like forming a union between A and
a type containing only the value nil:

4.5 Subtypes 67

= a: [A]; P(nil); b:A c,; P(b) = P(a) Ax

This permits proof of another rule, allowing elimination of the optional type when dealing
with non~nil values:

a: [A]; a¢ nil I opt-E-•-nill a: A

4.5 Subtypes

The subtype of A inhabited by only those elements satisfying a predicate P is written
< x:A I P(x) :J>_ Tite subtyping construction binds a variable in the unary predicate
which forms its body_ Subtyping properties are given by just three axioms. The first
returns a value to its supertype:

I I a:< x: A I P(x) :J>
supcrtype A Ax a:

The elimination axiom allows the instantiation of the predicate on any value of the sub
type:

I I a:< x:A I P(x) :J>
subtype-E P(a) Ax

The introduction axiom asserts that a value of the supertype satisfying the predicate in
habits the subtype:

a:A; P(a) I subtype-! I Ax a:< x:A I P(x) :J>

The predicate part of the subtype construction can be weakened:

a:< x:A I P(x) :J>

~~~ __ y:~A_,P_~~)~~~Q~~~)-f'SubtvnP-subs I 
~ "~ a:<x:A I Q(x) :J> 

The proof uses the axioms of subtyping: 

from a: < x: A I P(x) :J>; y: A, P~) ~ Q~) 

I a:A supertype (hI) 
subtype-E (hi) 

sequent-E-gen (1, 2, h2) 
subtype-! (1, 3) 

2 P(a) 
3 Q(a) 
infer a: < x: A I Q(x) :J> 

Line 3 involves a rule which generalises the application of a sequent hypothesis with 
sequent variables. Until now, sequents have only been applied directly in proofs: the 
local variable of the sequent is matched only against local variables in the proof, not 
to metavariables or other expressions. The more general application of sequents is de~ 
scribed by sequent elimination rules, which can be proved from the more restricted fonn 



68 4 Basic Type Constructors 

of sequent application. The most basic sequent elimination rule is 'sequent-E-basic': 

a: A; x:A 1:; P(x) 
I sequent-E-basic I P(a) 

It is proved simply by using the "i/ quantifier to capture a as a variable: 

from a: A; x: A 1:; P(x) 

1 Vx:A- P(x) 
infer P(a) 

V-I (h2) 
V-E (hl, 1) 

The subtype constructor allows this to be conveniently generalised to the following rule: 

a: A; P(a); x: A, P(x) 1:; Q(x) 
I sequent-E-gen I Q(a) 

Its proof uses 'sequent-E-basic', with the P property captured in a subtype of A: 

from a: A; P(a); x: A, P(x) 1:; Q(x) 

1 a:«: x:A I P(x) ~ 
2 from y: «: x: A I P(x) ~ 
2.1 y:A 
2.2 P(y) 

infer Q(y) 
infer Q(a) 

subtype-! (hl, h2) 

supertype (2.hl) 
subtype-E (2.hl) 

sequent h2 (2.1, 2.2) 
sequent-E-basic (1, 2) 

Other rules describing the replacement of the predicate part of the subtyping construct 
are considered in the exercises (Section 4.8). 

4.6 A note on composite types 

This chapter has introduced the basic type constructors needed to reason about VDM 
specifications. Later chapters deal with the more elaborate constructors such as sets, 
sequences and maps. Composite types also play a vital role in VDM specification. They 
are essentially tagged tuples. A VDM-SL type definition of the form: 

Comp ::a :A 
b : B 
c: c 

defines a constructor mk-Comp which builds a Comp from an A, a Band a C; and three se
lector functions a, band c, which extract the relevant fields from a Comp. The constructor 
and selectors can be defined by formation and definition axioms. For example: 

p:A; q:B; r:C 
I mk-Comp-fonn I mk-Comp(p, q, r): Comp Ax 



4.7 Summary 69 

u:Comp 
I mk·Comp-defl mk-Comp(u.a, u.b, u.c)- u Ax 

It is not possible within the logical frame used here to give a completely general theory 
of composite types. However, it is possible to give a theory for each composite type 
definition in a particular specification. This is considered in detail in Chapter 10. which 
deals with the means whereby a theory can be built for a given specification. 

4.7 Summary 

• Basic type constructors from VDM-SL have been modelled. Axioms and defini
tions have been given for type union, Cartesian product types and optional types. 
The type constructors are represented by constants in the logical framework, so 
they have fixed arity, in this respect differing slightly from their full VDM-SL 
counterparts. 

• The axioms of the subtype constructor have been introduced. This is used to model 
types restricted by invariants in VDM-SL. 

• No general theory of composite types is given within the logical framework used 
in this book. Each composite type in a specification is dealt with on its own. This 
is discussed in depth in Chapter 10. 

• The union type constructor _ 1 - can be used to extend types in proofs. This allows 
operators such as equality to be defined on elements drawn from different types. 

• The section on Cartesian product types showed how spotting a repeated line of 
reasoning in a proof often suggests a more general result. 

4.8 Exercises 

1. Type extension rules 

Section 4.3 discusses the type extension rules for Cartesian product types. Prove the 
following related rules for the other constructors of this chapter: 

a: [A] I opt·l·extend-rightl a: [A I B] 

a:« x:A I P(x) > I subtype-1-extend-rightl a:« x: (A I B) I P(x) > 

Hint: In proving 'opt-1-extend-right', use o(a =nil) and a case distinction. 

2. Relating subtypes, type union and logical disjunction 

Prove the following rule relating subtyping involving logical disjunction to union types: 



70 4 Basic Type Constructors 

a:<{: x: A I P(x) v Q(x) > 
I subtype-v-to-!1 a: ( <{: x: A I P(x) >1<{: x: A I Q(x) >) 

3. Sequent elimination rules 

Section 4.5 shows the use of subtyping in the proof of a rule for generalised application 
of a sequent. Construct a proof of the following sequent elimination rule, which deals 
with sequents having two variables: 

a:A; b:B; P(a); Q(b) 
r=:-=~c::-;;"1 x:A, y:B, P(x), Q(y) ~, R(x,y) 
I sequent-E-gen-21 R(a, b) 

Hint: Follow the pattern of proof of the one-variable rule, by first proving the basic 
version: 

I sequent-E-basic-21 

a:A; b:B 
x:A, y:B ~-Y P(x,y) 

P(a,b) 

using straightforward application of the introduction and elimination rules for double 
universal quantifiers (see Exercise 2 in Section 3.7). 



Chapter 5 

Numbers 

5.1 Introduction 

Amongst the basic data types provided in VDM-SL are various classes of numbers: the 
natural numbers 0, 1, 2, 3, ... and the positive natural numbers 1, 2, 3, ... , written re~ 
spcctivcly as Nand Nt; the integers (positive and negative), denoted by Z; the rationals, 
comprising all positive and negative fractions and represented by the symbol Q; and the 
real numbers, including all numbers, both rational and irrational, and denoted by the 
symbol ~- By and large these data types are so familiar and their properties are taken 
for granted to such an extent that it is very difficult to contemplate constructing fully 
formal proofs about them. For instance, it is generally accepted as being "obvious" that 
if some number n1 is greater than some other number n2 then n1 + 1 is greater than n2 + 1, 
even though the proof of this fact is by no means immediate (see Exercise 2). In view of 
this, this chapter does not attempt to give a full axiomatisation of all classes of numbers; 
rather it uses the natural numbers and the positive natural numbers as a familiar basis 
around which to discuss not only some widely applicable aspects of the axiomatisation 
of theories but also some general proof techniques. 

The chapter begins by discussing how to construct a model of the values of a data type 
based on the ideas of generators and induction, using the natural numbers N as an example. 
Section 5.3 explores ways of defining operators on the data type axiomatically and shows 
how properties of such operators can be proved by induction. Section 5.4 goes on to 
discuss further aspects of proof by induction, illustrating how induction can be applied to 
rules in which the hypotheses involving the chosen induction variable are not all simple 
typing assertions. Finally, Section 5.5 illustrates how the technique of direct definition, 
used in Sections 2.4 and 3.3.2 above in the definition of logical operators like " and 'i, 
can be applied to the definition of subtypes and of general operators on data types. The 
positive natural numbers Nt and the familiar ordering relations on numbers (>, <, etc.) 
serve as examples here. This section also discusses some potential problems with using 
definitions. 



72 5 Numbers 

5.2 Axiomatising the natural numbers 

The goal in formalizing a theory is to come up with a set of basic axioms and defini
tions which express sufficiently many properties of the domain being formalized to allow 
reasoning to take place. It is important to aim for a small set of independent axioms, 
to increase confidence in their correctness. There are two ways of doing this: first, by 
keeping the number of primitive concepts to a minimum and by using direct definitions 
as much as possible, and second, by defining orthogonal (non-interfering) concepts as far 
as possible so as to minimize the chance of unintended interactions. 

The first stage in this process is to consider the various new types that are to be introduced 
in the theory. Here, two different types are required, the natural numbers N and the 
positive natural numbers N1• However, the fact that the values of the latter are a subset 
of the values of the former indicates that the positive natural numbers should be defined 
as a subtype of the natural numbers (see Section 5.5). Thus, only one new primitive type 
is required, the natural numbers N. 

The next step is to consider how elements of the new primitive type(s) can be generated. 
A good way of doing this for a data type with an implicit ordering like the natural numbers 
is to give a definition of the "smallest" member of the data type and of an operator which 
steps from one element of the data type to the next. In the case of the natural numbers, 
the smallest element of the data type is the number zero (0) and the stepping function is 
the function succ which simply adds one to any given natural number (succ(n) = n + 1). 
These concepts are formalised by giving formation axioms for each. The first states that 
zero is a natural number: 

!O-fonnl O:N Ax 

the second that, if n is a natural number then so is succ(n): 

n·N 
I sucdonn I C ) N Ax succ n : 

Clearly any given natural number can be constructed by adding one to zero sufficiently 
many times (alternatively by applying succ to 0 sufficiently mariy times). In addition, 
this process only yields natural numbers. Zero and the successor function therefore form 
a set of generators for the natural numbers. This means that an induction rule can be 
formulated. 

The induction rule also makes use of the implicit ordering relation. The basic idea behind 
it is that if it is possible to prove on the one hand that some property P holds for the 
smallest element of the data type and, on the other hand, that if P holds for some given, 
arbitrary element of the data type then it also holds for the next element of the data type, 
then that is sufficient to ensure that P holds for all elements of the data type. The first 
of these two cases is called the base case of the induction, and for the natural numbers 
involves showing that P holds for 0 (i.e. that P(O) is true). The second case is called the 
induction step, which, for the natural numbers, corresponds to showing that if P holds 
for some arbitrary value k then it also holds for succ(k) (i.e. that P(succ(k)) is true on the 
assumption that P(k) is true; P(k) is called the induction hypothesis here.). The induction 
rule for natural numbers is formalised in the following axiom: 



5.2 Axiomatising the natural numbers 

n: N; P(O) 
k: N, P(k) f:i P(succ(k)) 

I N-indn l----oc7------- Ax P(n) 

73 

Induction is sometimes also called the "stepping stone principle" because its operation 
can be pictured in terms of a line of stepping stones. The first stone corresponds to the 
base case of the induction, and the induction step corresponds to stepping from one stone 
to the next. In essence, the induction principle says that if the first stone can be reached 
(corresponding in the proof to showing that the required property P holds for the base 
case) and if from any arbitrary stone it is possible to reach the next stone (corresponding 
in the proof to the induction step), then it is possible to reach any given stone simply by 
starting at the first stone and stepping from one stone to the next sufficiently many times. 

The induction rule is a great labour-saving device because it effectively makes it possible 
to prove that some property is true for all elements of the data type by considering only 
two cases, the base case and the induction step. Its use is illustrated in various places 
below. 

When developing an axiomatisation of a theory, it is important to know when to stop, 
that is when the set ofaxioms is sufficient to provide a complete description of the data 
type(s) being modelled. A useful technique for determining this is to check whether the 
axioms are consistent with other unintended models. 

In the case of the natural numbers, the intended model is a semi-infinite chain starting at 
zero and with the successor function providing the means of stepping from one node of 
the chain to the next (see Figure 5.1). The first three axioms given above are consistent 
with this picture- '0-fonn' defines 0 to be a natural number; 'succ-form' states that if n 
is a natural number then so is succ(n); and the model clearly embodies the stepping-stone 
interpretation of induction directly. However, they do not rule out another interpretation, 
shown in Figure 5.2, in which 0 is the only element of Nand succ(O) = 0. (The induction 
rule is consistent with this interpretation because if 0 is the only member of N then the 
only possible valid instantiation for the induction variable n is 0 for which instantiation 
the rule becomes trivially true as its conclusion becomes the same as the hypothesis P(O).) 
The axioms given so far are therefore not sufficient to provide the intended model of the 
natural numbers. 

succ 

Figure 5.1: The desired model for N with 0 and succ. 

Part of this problem can be avoided by adding another axiom stating that 0 and succ(n) 
are distinct for all natural numbers n: 

n·N 
I succ • 0 I succ(n) * 0 Ax 



74 5 Numbers 

0 

Figure 5.2: A possible model of the axioms with succ(O) = 0 

However, the model depicted in Figure 5.3, in which there are only two distinct elements 
0 and succ(O) of N (with succ(succ(O)) = succ(O)), is still a valid interpretation of the 
axioms which means that even with this extra one they are still not adequate. 

0 
SIICC 

Figure 5.3: A possible model of the first four axioms for zero and the successor function. 

One way of eliminating this unwanted model is to add another axiom stating that succ(n) 
and n are different for any natural number n: 

n:N 
-s:-u-,c""c("n') -,-,.-n-.Ax 

but, although this rules out all models with only two values (because 0, succ(O) and 
succ(succ(O)) all have to be different), it still admits a model in which these three values 
are the only possible values, with succ(succ(succ(O))) = succ(O) (see Figure 5.4). 

Another axiom would then be needed to eliminate the models with only three different 
elements, and so on. This stepwise approach thus requires an infinite number of axioms 
so is clearly unsatisfactory. 

This leads one to the suspicion that there is a more fundamental property which could 
be stated which captures the fact that applying the successor function repeatedly to 0 
generates a new value each time. The best way of doing this is to recognize that the 
successor function has to be injective (one-to·one): that is, succ yields different values 
when applied to different arguments. This can be stated via the following axiom: 



5.3 Axiomatisation of addition and proof by induction 75 

succ 

0 succ succ 

Figure 5.4: Another possible model, with succ(x) ;tx for all elements x of the model. 

This axiom eliminates all the unwanted finite models illustrated above as it rules out any 
loops (because no two links in the diagrams may terminate in the same node). On the 
other hand, it is consistent with the intended model of the natural numbers under the 
successor function, the semi-infinite chain depicted in Figure 5.1. However, the question 
still remains: are these axioms sufficient to allow all the desired operators on the natural 
numbers to be defined and their expected properties to be proved? The best way of 
settling this issue is to attempt to define some of these operators and to attempt to prove 
their required properties. This is done in the next section. 

5.3 Axiomatisation of addition and proof by induction 

Having developed a set of axioms which consistently model the values that natural num
bers can take and rule out all the unwanted models that one can think of, the next step is 
to formulate axioms describing operators acting on those values. 

With a data type defined in terms of generators and an induction rule, the basic principle 
behind axiomatising operators on that data type is to formulate an axiom defining the 
operator for each of the generators. The idea behind this approach is that any element 
of the data type can be expressed as some combination of the generators, so that these 
axioms, together with the induction rule, are sufficient to define the operator completely. 
However, care must be taken to ensure that the axioms are chosen so as to mesh appro
priately with the induction rule in order that proofs about the operators, which are carried 
out using induction, are facilitated. All these principles are illustrated by considering the 
axiomatisation of addition on the natural numbers and how the axioms can be used to 
prove additional rules by induction. 

The first step is to define addition for the two generators of the natural numbers, 0 and 
succ. However, there are potentially several different axioms that one could write down 
here. For 0, these might be: 

E!hl"::f!ill 0 . +n-n 
n-N n:N I +-defn-0-right I n + 

0 

whilst for succ there are a number of possibilities, including: 

n 



76 

I I 
nt:N; nz:N 

+-defn-succ-left -c---:c=-;-:'-::-'---"'c:-c,.-~---c
SUCC(nl) + nz- succ(n, + nz) 

I -~-~--~n7,~:N2;~n~,:~N~--~ +-defn-succ-right 
n, + succ(nz) - succ(n, + nz) 

I I ~:~ ~:N +-defn-succ-lefHev 
succ(n,) + nz succ(nz + n,) 

I ~ n,:N; n2:N 
+-defn-succ-lef~ ( ) ( ) succ n1 + nz - n1 + succ nz 

I =~------.~n~·~:~N~;~n~z~:N~~----+-defn-succ-Ieft-switch-~ 
succ(n,) + nz = succ(nz) + n, 

I +-defn-succ-right-re~ 
n, + succ(nz) - succ(nz + n,) 

n1 + succ nz nz + succ n1 

5 Numbers 

How does one go about choosing which should be axioms and which are derivable? 

A good way of getting some hints on this is to look at the proofs of some of the other 
properties one would expect to be able to derive from the chosen axioms. The most 
obvious of these for addition is the fonnation rule: 

~ n,:N; nz:N 
~ (nt+nz):N 

which states that the result of adding two natural numbers is itself a natural number. As 
indicated above, such properties are proved using the induction rule, so consider the first 
step in the proof of the formation rule. namely the application of the induction rule. 

The natural number induction rule 'N-indn • is typical of all induction rules in that it has 
a hypothesis of the form a: A, which assigns a type to the induction variable a, and a 
conclusion of the form P(a), the induction goal, which represents an arbitrary expression 
involving the induction variable. When applying an induction rule it is imperative that 
both the induction variable and the induction goal should be determined. The induction 
goal, being the conclusion of the rule, should be chosen from amongst the current goals 
of the proof. The induction variable should be some subterm of the selected induction 
goal which is known to be, or which can be proved to be, of the correct type_ 

Applying these principles to the proof of '+-form' using natural number induction, the 
induction goal has to be the overall conclusion of the proof (n1 + n2): N as this is the only 
goal, and the induction variable n has to be some subterm of this expression which is of 
the correct type N. There are therefore two possible choices for the induction variable, 
namely n1 and n2. (Terms constructed by applying succ to either n1 or n2 would also 
be known to be of the correct type but these can be ruled out as there is no subterm of 



5.3 Axiomatisation of addition and proof by induction 77 

(n1 + nz): N involving succ.) Consider each of the two possible cases separately. 

If n1 is chosen as the induction variable, the metavariable Pin the induction rule must be 
chosen so that P(n1) matches the induction goal (n1 +n2): N, which means that P(.) must' 
be(-+ n2): N. Instantiating the induction rule in this way yields: 

n,:N; (O+n,):N 
k: N, (k + n,): N I; (succ(k) + n2): N 

(n, + n,):N 

applying which to the proof of '+-form' leads to the following partial proof: 

I (0 + n,): N 
2 from k:N; (k+n,):N 

infer (succ(k) + n,): N 
infer (n1 + n2): N 

(?? justify ??) 

(?? justify ??) 
N-indn (hi, I, 2) 

This proof represents induction over or on flt, with Line 1 corresponding to the base case 
of the induction and Subproof2 corresponding to the induction step. Looking first at the 
base case, proving this clearly depends on being able to rewrite 0 + n2 to n2, from which 
the required result follows because the type of n2 is known (hypothesis h2). This suggests 
that the rule '+-defn-0-left' is required as an axiom defining addition on zero. 

Turning now to consider the induction step, a similar argument suggests that being able 
to justify the conclusion of Subproof 2 relies on being able to rewrite the expression 
succ(k) + n, to some expression whose type can be inferred, this latter being determined 
by considering the combinations of k, n2 and succ whose type is known within Subproof2. 
Now the right-hand side of the equality in the conclusion of each of the suggested axioms 
involves addition, and since the formation rule for addition is the subject of the current 
proof it is not yet available for use. The only way of constructing some term which 
involves addition and whose type is known is thus by applying a more fundamental op
erator to some term involving addition whose type is already known. The only such term 
is k+n2, and the only available function of the correct signature is the successor function. 
Altogether, then, this argues that Subproof 2 can be completed by rewriting succ(k) + n2 

to succ(k + n2), pointing to the need to choose '+-defn-succ-leff as an axiom defining 
addition on the successor function. With these two axioms the proof of the formation 
rule can be completed: 

1 In fact there is strictly another possible instantiation of P, namely when it is independent of its parameter 
(i.e. with P(_) "" (n1 + n2): N). This instantiation is never useful, however- when P is independent of its 
parameter P(O) in the hypotheses of the induction rule is identical to P(n) in the conclusion, so the rule 
becomes trivially true and nothing is to be gained by using it. 



78 

from n1:N; nz:N 
1 O+nz=n2 
2 (O+nz):lll 
3 from k:lll; k+nz:l\l 
3.1 succ(k + n2): Ill 
3.2 succ(k) + n2 = succ(k + n2) 

infer (succ(k) + nz): Ill 
infer (nt + nz): N 

5 Numbers 

+-defn-0-left (h2) 
=-type-inherit-left (h2, I) 

succ-form (3.h2) 
+-defn-succ-left (3.hl, h2) 

=-type-inherit-left (3.1, 3.2) 
111-indn (hl, 2, 3) 

Consider now what would have happened if nz had been chosen as the induction variable 
in this proof instead of nt. In this case, the first stage in the proof (after applying the 
induction mle) would have been: 

I (nt +0):111 
2 from k: Ill; (nt + k): Ill 

infer (n1 + succ(k)): Ill 
infer (nt + nz): Ill 

(?? justify ??) 

(?? justify ??) 
111-indn (hl, I, 2) 

From this point, the argument would be entirely analogous to the one given above, except 
that it would lead to the conclusion that '+-defn-0-right' and '+-defn-succ-right' should 
be chosen as axioms. The question now arises, are both pairs required as axioms or is 
one pair sufficient? 

The way to determine this is to attempt to prove one pair of rules from the other. Consider, 
for instance, trying to prove '+-defn-0-right' from '+-defn-0-left' and '+-defn-succ-left'. 
The proof again proceeds by induction, the first step being: 

from n:N 

I 0+0=0 
2 from k:N; k+O = k 

infer succ(k) + 0 = succ(k) 
infer n+O = n 

(?? justify ??) 

(?? justify ??) 
111-indn (hi, 1, 2) 

Here, Line I (the base case) can be justified directly using the rule '+-defn-0-left' together 
with '0-form'. In Subproof 2 (the induction step), the induction hypothesis k +0 = k can 
be used to substitute k + 0 fork in the right-hand side of the equality in the conclusion of 
the subproof, whence the rule '+-defn-succ-left' is sufficient to complete the proof: 



5.4 More on proof by induction 

from n:N 
I O:N 
2 0+0 = 0 
3 fromk:N; k+O=k 
3.1 succ(k)+O = succ(k+O) 

infer succ(k) + 0 = succ(k) 
infern+O = n 

0-form 
+-defn-0-left (I) 

+-defn-succ-left (3.hl, I) 
=-subs-right(b) (3.hl, 3.h2, 3.1) 

N-indn (hi, 2, 3) 

79 

The rule '+-defn-succ-right' can be proved in a similar fashion, indicating that it is suffi
cient to take '+-defn-0-left' and '+-defn-succ-left' as axioms: 

n·N I +-dcfn-0-lcft I O · Ax · +n-n 
I +-defn-succ-lcft! nt: 1\1; nz: N Ax 

succ(nt) + nz - succ(nt + nz) 

The symmetry of the rules means that one could equally have chosen '+-defn-0-right' and 
'+-defn-succ-right' as axioms. The real correlation is that the induction variable should 
be chosen to be the same variable used in the defining axioms as the basis for the case 
distinction on the generators. 

Other rules about addition, for example the commutativity and associativity rules 

~ n1:N; n,:N; n3:N 
s -('n-,'"'+'"'n",") +-:'-n..:., "'--n"t-'+:"7( n'"',-+:-n-

3
-,-) 

can be proved in a similar fashion, and the general techniques illustrated in this section 
can be applied similarly to the axiomatisation of other operators, e.g. multiplication (see 
Exercise 1). 

5.4 More on proof by induction 

In the previous section the rules on which proof by induction was demonstrated were all 
somewhat special in that their hypotheses were all simple typing assertions. This section 
investigates proof by induction for rules where this is not the case. 

Consider, for example, the rule 

~ nt:N; nz:N; nt+nz=O 
~ nt-0An2-0 

which states that if the sum of two natural numbers is zero then each of the numbers 
must itself be zero. Applying the induction rule as described above with n1 chosen as the 
induction variable2 leads to the following partial proof: 

2Since the rule is symmetric in n1 and n2 because both A and+ are commutative there is no loss of 
generality in making this choice. 



80 

from n1:N; nz:N; n1 +nz =0 

1 0=0Anz=O 
2 fromk:N; k=0An2 =0 

infer succ(k) = 0" nz = 0 
infer n1 = 0 A nz = 0 

5 Numbers 

(?? justify ??) 

(?? justify ??) 
N-indn (h1, 1, 2) 

Looking at the induction step (Subproof 2) of this proof, the induction hypothesis states 
that both k and nz are zero, from which it must be proved that both succ(k) and n2 are 
zero. This is clearly false - it is known (from the rule 'succ '# 0' as well as from basic 
understanding of numbers) that succ(k) cannot be zero. This means that the proof cannot 
be completed from this point. 

The problem is that applying induction as above effectively amounts to attempting to 
show that the chosen induction goal, in this case the assertion n1 = 0 A n2 = 0, is true 
for all values of the induction variable, namely n,, which is patently false. Rather, the 
assertion nt = 0 A nz = 0 is true for all values of n1 satisfying the condition n1 + n2 = 0, 
the non-typing hypothesis of the rule. This hypothesis therefore has to be brought into 
the induction in some way before the proof can be carried out successfully. 
The way to do this is to first of all apply the rule '=>-E-left' to it and the overall goal. 
This yields the following partial proof: 

n1 + nz = 0 => nt = 0 A nz = 0 
infer n, = 0 A nz = 0 

(?? justify ??) 
=>-E-left (1, h3) 

This might seem like a reu'Ograde step- it goes against one of the·heuristics for selecting 
useful rules because the new goal it generates is more complicated than the original one. 
However, this is necessary to bring the non-typing hypothesis into play. 

Now applying the induction rule with the assertion on Line 1 as the induction goal and 
nr as the induction variable leads to: 

1 O+nz=0=>0=0Anz=O 
2 tromk:N; k+n1=0=>k=OAnz=O 

infer succ(k) + nz = 0 => succ(k) = 0" nz = 0 
3 n1 + nz = 0 => n1 = 0 A nz = 0 
infer nt = 0 A nz = 0 

(?? justify ??) 

(?? justify ??) 
N-indn (h1, 1, 2) 
=>-E-left (3, h3) 



5.5 Using direct definitions 81 

The conclusion of the induction step is now an implication whose left-hand side is false 
because succ(k) + m cannot be zero (though this still needs to be proved). The base case 
(Line I) can also be discharged because both sides of the implication can effectively be 
simplified to nz = 0. The completed proof is: 

from n1:N; n2:N; n1 +n2 = 0 
I O+nz=nz 
2 O:N 
3 0=0 
4 c5(nz=O) 
5 fromnz=O 

inferO = OA nz = 0 
6 nz=0=>0=0Anz=O 
7 0+nz=0=>0=0Anz=O 
8 fromk:N; k+nz=O=>k=OAnz=O 
8.1 (k+nz):N 
8.2 succ(k) + nz = succ(k + nz) 
8.3 succ(k + m) "0 
8.4 succ(k + m): N 
8.5 succ(k) + nz ;< 0 
8.6 ~ (succ(k) + nz = 0) 

infer succ(k) + nz = 0 => succ(k) = 0 A n2 = 0 
9 n, + nz = 0 => n, = 0 A nz = 0 
infernt =OAn2=0 

+-defn-0-left (h2) 
0-form 

=-self-! (2) 
c5-=-l (h2, 2) 

A-! (3, 5.hl) 
=>-! (4, 5) 

=-subs-left(b) (h2, I, 6) 

+-form (8.h I, h2) 
+-defn-succ-left (8.hl, h2) 

succ " 0 (8.1) 
succ-form (8.1) 

=-subs-left(b) (8.4, 8.2, 8.3) 
unfolding (8.5) 

=>-1-right-vac (8.6) 
N-indn (hi, 7, 8) 
=>-E-left (9, h3) 

It is worth remembering that this "trick" of using '=>-E-left' as the first step is necessary 
when proving rules about other data types when those rules have hypotheses involving 
the chosen induction variable which are not all simple typing assertions (see for instance 
Section 7 .6). 

5.5 Using direct definitions 

In Section 5.2 addition was defined axiomatically- by giving axioms which describe its 
basic properties- and other properties were derived from these axioms and the axioms 
for natural numbers. Wherever possible, however, it is preferable to give a definition 
of a new concept directly in terms of other already defined concepts - the advantage of 
this is not only that it keeps the number of axioms to a minimum but also that adding a 
new definition to a theory cannot compromise the soundness of that theory: a consistent 
theory remains consistent when a new definition is added to it. (Problems of retaining 
consistency when adding new axioms are discussed in Section 6.7 in relation to the ax
iomatisation of set comprehension.) 
This section concentrates on defining the positive natural numbers and the familiar or
dering relations on numbers. As stated above, the fact that the first of these should be 
defined as a subtype is suggested by the fact that the possible values of N, form a subset 



82 5 Numbers 

of those of the natural numbers N. This involves formulating some (total) predicate on 
the natural numbers which is true for the positive natural numbers and false for all other 
natural numbers. There are two obvious candidates: n:;:. 0 and n > 0. 

Using the first of these predicates, the positive natural numbers N1 can be defined via: 

def 
N, = «n:Nin;tO:;p 

then the ordering relation > can be defined in terms of this via: 

def 
n>m = 3k:N1 ·m+k=n 

.With the second predicate, however, the ordering relation would have to be defined in 
terms of 0, + and succ. This might be done via: 

def 
n > m = 3k:N· m+succ(k) = n 

with the positive natural numbers then being defined as: 

def 
N, = «n:Nin>O> 

However, these definitions are more complicated than the first pair given above, which 
are therefore to be preferred. 

The reverse relation "less than" (<)can be defined directly in terms of> via: 

def 
n<m = m>n 

The fact that N, is defined as a subtype means that the prope1ties of subtypes (see Sec
tion 4.5) can be used to deduce: 

I I n:N, 
N1 -supertype n: 1\1 

The first of these is very important because it means that all the properties of the natural 
numbers, for instance the axioms and derived rules for addition, are valid for the positive 
natural numbers as well. This is one of the major advantages of defining types using 
the subtype construct. Of course, other rules which are special to the positive natural 
numbers can be developed, for instance an induction rule for 1\11 (see Exercise 3). 

Unfortunately there is no such labour saving when operators are given by definition rather 
than axiomatically. Proofs about> therefore rely on folding and unfolding of the defini
tion, though they may make use of existing rules about the operators used in that defini
tion. For instance, the proof that> is a total relation on the natural numbers: 

l5·>l n,:N; n2:N 
15(n, > n2) 

uses the rules '15-3-inherit' and '15-=-I' for the definedness of the existential quantifier 
and equality and is straightforward (left as an exercise for the reader). Other properties 
that can be proved are that> is irreftexive and transitive: 

n:N I >-irreflexive I ( ) -, n> n 



5.5 Using direct definitions 83 

and that it defines a total ordering on the natural numbers (see Exercise 4). 

A final point which is worth making at this stage is that, although definitions are a very 
useful way of defining new operators, care must be taken when formulating them to ensure 
that unwanted interpretations have not been included. One way in which this can happen 
is when the definition contains a polymorphic operator like equality. For instance, one 
might try to define the relation "greater than or equal to" (;:::.) verbatim via: 

del 
n:C.m = n>mvn=m 

The problem with this is that the polymorphism of the right-hand disjunct is partially 
"inherited" into the definition of;::::: since the rule '=-self-1' implies that any denoting 
term is equal to itself, the above definition implies in turn that any denoting tenn is 
greater than or equal to itself. This definition is therefore defining the operator;::: outside 
its normal range (namely the theory of numbers) which may not be what was intended 
when the definition was formulated3

• 

In this particular case this is not a problem as an alternative definition can be formulated 
which does not rely on equality: 

n;e.m del 3k:N·m+k=n 

Again the definition of the reverse relation is straightforward: 

del 
n=::;,m = m':2n 

It is not always possible to find a reasonable alternative to the intuitive definition, however. 
Consider, for instance the double relation_ :::;; _ :$ -· This might be defined via: 

del 
nt :5 nz =::;, n3 = nt =::;, nz 1\ nz =::;, n3 

but again there is a problem because the value of the whole definition may be determined 
by only one pan of it, namely if one of the conjuncts is false. In that case, the whole 
definition is false even if the other conjunct is undefined, more particularly even if the 
third parameter is not of the correct type (for example the above definition would imply 
that the expression true s; 4 =::;, 2 is false and not undefined as one might expect or wish). 

In such a situation, the preferred solution is to define the operator axiomatically: 

i:N; j:N; k:N 
1~-<-defnl '< '<k ·,;. '<k Ax 

I -J _ ~I J 1\j-

Note here that, although the same intuitive definition is effectively being used in such a 
rule, the problem described above does not arise - the type of the parameters is enforced 
by the typing hypotheses of the rule. (See also the discussion of the proper subset relation 
in Section 6.5. 1.) 

In conclusion, it is worth pointing out in passing that recursive definitions do not present 
any special problems provided the recursion is well-founded. These are discussed in 
Section 8.5. 

3Indeed this goes against the philosophy adopted in this book which would say that ~ should be unde
fined if its arguments are not of the correct type. 



84 5 Numbers 

5.6 Summary 

This chapter has discussed: 

• How to determine a set of axioms for modelling a data type. 

• A basic introduction to the principle of induction. 

• Examples of proofs using induction. 

• How to axiomatise operators in terms of generators. 

• Proof by induction using the '=>-E-left' "trick". 

• Some advantages and some problems with using definitions. 

5. 7 Exercises 

1. The axiornatisation of multiplication 

Use the techniques described in Section 5.3 to develop an axiomatisation of multiplication 
on the natural numbers in terms of 0 and succ. Prove the formation rule for multiplication 
from the axioms chosen. 

2. The successor function preserves the> relationship 

Prove the rule: 

I succ- >-inherit! nt: N; n2: N; nt > n2 
succ(n1) > succ(nz) 

3. An induction rule for N1 

The arguments used in formulating the induction rule for natural numbers could just as 
easily be applied to the positive natural numbers, yielding the following induction rule 
forN1: 

n: 1\h; P(succ(O)) 
k: N1, P(k) I; P(succ(k)) 

P(n) 

However, because the positive natural numbers form a subset of the natural numbers, this 
rule can be proved from the properties of the natural numbers. Construct the proof. 

4. The relation > defines a total ordering on N 

Prove that > is a total ordering on N: 

I >-total-order! nt: N; n2: N 
nt > n2 v nt - n2 v n2 > nt 



Chapter 6 

Finite Sets 

6.1 Introduction 

A set is essentially just a collection of objects. There is no concept of order associated 
with the objects in the collection, and no concept of multiple occurrences of an object in 
the collection. This means that it is only possible to express the notion of whether or not 
a particular object belongs to a set (is an element or member of a set), and not how many 
times it occurs nor where it occurs. 
In VDM, the notation s:A-set is used to represent the assertion that sis a/mite set, each 
of whose elements is of type A. Thus, for example, the set { 13, 4, 7} is of type N-set as 
each of its elements is a natural number (is of type N). 

This chapter begins by showing how an axiomatisation of finite sets can be given in terms 
of generators and an induction rule. A worked example shows how the induction rule 
can be used to prove properties of finite sets, and illustrates too how to develop derived 
rules to correspond to the son of arguments one uses in informal reasoning. The notion 
of quantification introduced in Chapter 3 is then extended to cover quantification over 
sets. The next section introduces the idea of a subset and shows an example of where 
problems can arise when giving definitions of new constructs instead of defining them 
axiomatically. This section also deals with set equality and cardinality and shows how 
a useful set of derived rules can be generated by considering special cases of a general 
derived rule. The standard set constructors are then introduced, and an example proof 
shows how reasoning about set equality is done in practice. The final section introduces 
the notion of set comprehension and points out potential pitfalls, due to considerations 
of finiteness and definedness, that can arise when trying to decide on a reasonable set of 
axioms for constructs defined by comprehension. Some examples involving reasoning 
about set comprehension expressions are also discussed. 

6.2 Generators for sets; set membership; set induction 

As explained in Section 5.2, an ordered data type like the natural numbers can be axioma
tised in terms of generators by defining the smallest element of the data type together with 
a function which steps from one element of the data type to the next. Any element of 
the data type can then be uniquely expressed as the stepping function applied to the base 



86 6 Finite Sets 

element the appropriate number of times, and an induction rule for the data type can be 
formulated on this basis. 

In fact, this technique is not just applicable to data types like the natural numbers which 
are completely ordered: it can also be applied to data types like finite sets which are 
only partially ordered. Here, the idea is to define a set of operators (the generators) in 
such a way that every element of the data type can be expressed in some not necessarily 
unique way as a finite combination of these operators. In general this means introducing a 
concept to denote the smallest (or the largest) member of the data type, together with one 
or more stepping functions, each of which adds (or removes) one new level of complexity 
to any given element of the data type. 

Applying these principles to the axiomatisation of finite sets, the smallest member of the 
data type is the empty set, represented by the symbol { }, and only a single stepping 
function is needed, the function add which adds an element to a set. These fonn a pair 
of generators for finite sets because any finite set is either empty or can be expressed as a 
finite series of applications of add to the empty set. Thus, for exaruple, the set { 13, 4, 7} of 
natural numbers can be expressed as add(13,add(4,add(7, {}))).This decomposition is 
not unique, however, as any permutation of the order of the applications of add produces 
the same result. 

Developing an axiomatisation of these operators follows the principles outlined in Sec
tion 5.2 in relation to developing an axiomatisation of the natural numbers in terms of 0 
and succ. First, the formation rules for the generators are given. For the empty set, which 
represents an empty collection of arbitrary type, the formation rule is: 

I {}-fonn I {}:A-set Ax 

Note how the polymorphism of the empty set is captured by making the type A of the set 
a metavariable. 

The function add adds an element to a set, with the expression add(b, s) representing the 
result of adding the element b to the sets. If the sets is of type A-set and the element b 
is of type A the resulting set add(b, s) is also of type A-set. The formation rule for add is 
therefore: 

ladd-fo;;;}l a:A; s:A-set Ax 
add( a, s): A-set 

The next step is to formalise the notion of membership of a set. This is expressed by the 
symbol 'e ',so that the expression a E s represents the assertion that some object a is an 
element of the sets. The negation of this relation, namely that a particular object is not 
an element of a given set, is denoted by the symbol '«',defined simply as: 

def 
a " s = , (a E s) 

Since a set is completely defined by the collection of elements it contains, defining the 
membership relation for a newly-defined set is sufficient to define the set itself. Thus, the 
empty set contains no elements, which can be formalised by saying that some arbitrary 
object a is not a member of the empty set: 

a· A I {}-is-empty I a ~· {} Ax 



6.3 Proof using set induction 87 

Further, an object a is a member of the set add(b,s) if, and only if, either a is already a 
member of the sets or a is the same as the new element being added (namely b). The set 
add(b,s) is therefore defined by the membership rule: 

a: A; b:A; s:A-set I e -add-defn I Ax 
ae add(b,s) <=>a-bvae s 

This technique of defining sets by giving a formation rule and a membership rule is also 
used later to define operators on sets (see Section 6.6). 

Finally, the fact that { } and add form a set of generators for finite sets means that they 
also form the basis for an induction rule. Generally, such an induction rule is founded on 
the principle that in order to show that some property P holds for all elements of the data 
type it is sufficient to show first (the base case) that P holds for the base element of the 
data type and second (the induction step) that if P holds for an arbitrary element e of the 
data type then it also holds for each of the generators applied to e. For finite sets, the base 
case corresponds to showing that P holds for the empty set, the induction step to proving 
that if P holds for some arbitrary set s' then it also holds for the set add( a, s') where a is 
some arbitrary new element. The induction rule for finite sets is therefore: 

s: A-set; P( {}) 

= a: A, s':A-set, P(s'), a e s' 1;;,. P(add(a,s')) 

~ P(s) Ax 

Note the additional local hypothesis a i! s' in the sequent hypothesis (corresponding to 
the induction step) in this rule, which ensures that the element a is not already in the 
set s'. This hypothesis is not strictly necessary but can be assumed without any loss 
of generality. This is because if a is already in the set s' adding it again has no effect as 
there is no concept of multiple membership of a set. In this situation the sequent becomes 
trivially true because add(a, s') is the same ass', hence, by substitution of equality, its local 
conclusion P(add(a, s') is the same as its assumption P(s'). The extra local hypothesis 
therefore simply rules out the case where the sequent hypothesis is automatically true. 

6.3 Proof using set induction 

As an example of a proof using set induction, consider the rule 'e-v-~ ': 

~ a:A; s:A-set 
aesva~s 

TI1is states that, given an arbitrary object a and an arbitrary sets, either a is an element of 
s or a is not an element of s. The proof of this relies on set induction and the propertieS 
of add. It is presented in some detail here in order to give some idea of how induction 
proofs about sets are performed. 

Using the 'set-indn' rule to prove 'e- v- <"' yields two subgoals. The first of these is the 
base case of the induction and requires that the expression a E { } v a e { } should be 
shown to be true. The other subgoal is the induction step. The induction assumption is 
that a e s' v a ~ s' is true for some arbitrary set s'. From this, the goal is to show that 
a e add(b, s') v a <! add(b, s') is true for some arbitrary new element b. After applying 
this rule the proof looks like: 



88 

from a: A; s: A-set 

I aE{}va<t{} 
2 from b:A; s':A-set; a e s' v a e: s'; be: s' 

infer a E add(b, s') v a e add(b, s') 
inferae svae: s 

6 Finite Sets 

(?? justify ??) 

(?? justify ??) 
set-indn (h2, I, 2) 

Proving the base case (Line I) is easy: the rule ' {}-is-empty' implies that a .,; {}, 
whence a E {) v a e {)follows directly by 'v-I-left'. 

Proving the induction step (Subproof2) is somewhat more complicated but not difficult. 
The first thing to note is that the goal effectively amounts to showing that a either is or is 
not in the set add(b, s') from the assumption (the third local hypothesis of the induction 
step) that a either is or is not in the sets'. Reasoning informally to start with, it is clear 
first of all that if a is in the set s' then it is also in the larger set add(b, s'). If a is not in 
s', however, it is impossible to tell immediately whether or not it is in the set add(b, s) as 
this depends on whether or not a is the same as b. This all suggests that a good strategy 
for approaching this proof is to reason using two case distinctions. The first of these case 
distinctions is on whether or not a is in the sets', the second on whether or not a is equal 
to b. Note that this second case distinction is only needed in the case where a is not ins', 
however. The first case distinction comes from applying the 'v-E' rule to the third local 
hypothesis of the induction step (a e s' v a e; s'), whilst the second arises from the rule 
'=-cases' from the theory of equality. 

Performing these two steps yields the following (still incomplete) proof: 

from a: A; s: A-set 
I ae {} 
2 ae {)vae {} 
3 from b: A; s':A-set; a e s' v a e s'; be s' 
3.1 from a e s' 

3.2 
3.2.1 

3.2.2 

infer a e add(b, s') v a e add(b, s') 
from a e; s' 

froma=b 

infer a e add(b,s') v a e add(b,s') 
froma=tb 

infer a e add(b, s') v a e add(b, s') 
infer a E add(b, s') v a e add(b, s') 

infer a E add(b, s') v a e add(b, s') 
inferae svae s 

{}-is-empty (hi) 
v-I-left (I) 

(?? justify ??) 

(?? justify ??) 

(?? justify ??) 
=-cases (hi, 3.hl, 3.2.1, 3.2.2) 

v-E (3.h3, 3.1, 3.2) 
set-indn (h2, 2, 3) 



6.3 Proof using set induction 89 

At this stage one would like to complete each of the subproofs (3.1, 3.2.1 and 3.2.2), 
corresponding to the cases described above, in a way that mirrors the informal argument. 
However, this was based on an intuitive understanding of the notion of set membership, in 
particular of the circumstances under which the element a is a member of the set add( b. s}, 
which does not correspond directly to the only available inference rule describing this re
lationship, namely the rule 'e -add-defn'. This suggests that the next stage in the proof of 
'e-v-e' should be the development of a series of lemmas which express the member
ship properties of add in a way which parallels the way one reasons about this construct. 
This essentially amounts to promoting one side of the equivalence in the conclusion of 
the membership rule 'e-add-defn', possibly negated, to become a hypothesis of a new 
rule whilst making the other side of the equivalence, negated where appropriate, its con
clusion. As part of the process the properties of conjunction, disjunction, and negation 
thereof are used to simplify propositional expressions. This gives rise to the following 
series of rules relating properties of a, b and s directly to assertions about whether or not 
a is a member of the set add(b, s): 

l."j((itji] a: A; b:A; s:A-set; a e add(b,s) 
a-bvaes 

a:A; s:A-set I e -add-1-elem I 
a e add(a,s) 

I I a: A; b:A; s:A-set; a e s 
e -add-1-set a e add(b, s) 

a: A; b:A; s:A-set; a#:.b; a e s 
1<-add-ll a<! add(b,s) 

I I a: A; b:A; s:A-set; a~ add(b,s) 
• -add-E-Ief! 

a<! s 

I I a: A; b:A; s:A-set; a<! add(b,s) 
e -add-E-right a ;t b 

A useful variant of the second of these is: 
a: A; s: A-set; a = b 

le-add-1-elem-=1 a e add(b,s) 

The proof of each of these rules is trivial, following simply from 'e -add-defn' and the ap
propriate rule for introduction or elimination of equivalence. They are left as an exercise 
for the interested reader. 
Returning to the abandoned proof of 'e - v - e ', the missing details in the incomplete 
subproofs are now easy to complete. In Subproofs 3.1 and 3.2.1 the first step is to prove 
that a is in the set add(b, s') (using the rules 'e -add-I-set' and 'e -add-I-elem-=' respec
tively). then the required conclusion follows by using the rule 'v-I-right' in both cases. 
In Subproof 3.2.2 the rule '<!-add-!' is used to prove that a is not in add(b, s'), then the 
required conclusion follows from the 'v-I-left' rule. The completed proof is thus: 



90 

from a: A; s: A-set 
1 a e {} 
2 ae {}vae {} 
3 from b:A; l:A-set; a e s' v a e s'; be s' 
3.1 from a e s' 
3.1.1 a e add(b,s') 

3.2 
3.2.1 
3.2.1.1 

3.2.2 

infer a e add(b, s') v a e add(b, s') 
from a e s' 

froma=b 
a e add(b, s') 

infer a e add(b, s') v a e add(b, s') 
from a ::;:..b 

6 Finite Sets 

{}-is-empty (hl) 
v-I-left (1) 

e -add-1-set (hl, 3.hl, 3.h2, 3.1.hl) 
v-I-right (3.1.1) 

e -add-! -elem-= (hI, 3.h2, 3.2.1.h I) 
v-I-right (3.2.1.1) 

3.2.2.1 a e add(b, s') e -add-! (hl, 3.hl, 3.h2, 3.2.2.hl, 3.2.hl) 
infer a e add(b, s') v a e add(b, s') v-I-left (3.2.2.1) 

infer a e add(b,s') v a e add(b,s') =-cases (hl, 3.hl, 3.2.1, 3.2.2) 
infer a e add(b,s') v a e add(b,s') v-E (3.h3, 3.1, 3.2) 

infer a e s v a e s set-indn (h2, 2, 3) 

From this result and the definitions of e and 0 it is easy to prove the related rule: 

ro::l a:A; s:A-set 
~ li(ae s) 

stating that set membership is well-defined. 

6.4 Quantification over sets 

When dealing with a specification involving sets in some way it is often desirable to assert 
that some predicate P(x) holds for some or for all elements x of one of those sets. This 
can be done using the universal and existential quantifiers introduced in Chapter 3 by 
asserting on the one hand that there is some x of the appropriate type A such that x is an 
element of the set s and P(x) is true: 

3x:A·xe sAP(x) 

and on the other hand that for each x of type A, if xis an element of the sets then P(x) is 
true: 

Vx:A·xe s=>P(x) 

These expressions are rather clumsy, however, and reasoning about them can easily get 
rather cumbersome. To simplify things, therefore, the notion of quantification is extended 
to include quantification over sets. The assertion that there is some elementx in the sets 
for which P(x) is true is then written 

3x E S · P(x) 

and the assertion that P(x) is true for every element of the set s is written 

Vxe s·P(x) 



6.4 Quantification over sets 91 

It is tempting to formalise these notions by simply giving axioms asserting the equivalence 
of the two sets of expressions given above, for example 

s:A-set 
~----~~~~~------~,_-Ax 
3x e s · P(x) <=> 3x: A · x e sA P(x) 

but this is incorrect as it allows one to deduce undefined <=> undefined when the predicate 
P(x) is undefined. Instead, following the procedure set out in Chapter 3, axioms are 
defined for the introduction and elimination of the existential quantifier over sets and of 
its negation: 

s:A-set; 3x e s · P(x) 
~ y:A, yes, P(y) ~e 
~ Ax e 

a: A; s:A-set; a e s; P(a) 
!3-I-set I 3x e s . P(x) Ax 

1~-3-E-setl a:A; s:A-set; ae s; ~(3xe s·P(x)) Ax 
~P(a) 

s:A-set; x:A, xe s~~P(x) 
J~-3-I-setJ ~(3ye s·P(y)) Ax 

Then, continuing the parallel, universal quantification over sets is defined in terms of 
existential quantification over sets via: 

del Vxe s-P(x) = ~3xe s·~P(x) 

and introduction and elimination rules for this can be derived: 

s: A-set; y: A, y e s ~ P(y) 
JV-1-seti----~Vux--e~s~-'pv~')~---

a:A; s:A-set; ae s; Vxe s·P(x) 
JV-E-setl P(a) 

In a similar way, unique existential quantification over sets can be defined by the obvious 
extension of the definition given in Section 3.5.2: 

3! X e s · P(x) def 3x e s · P(x) A Vy E S · P(y) => y =X 

and the counterparts of the introduction and elimination rules can be proved: 

a: A; s: A-set; a e s; P(a); Vy e s · P(y) => y = a 
I3!~I~s~l-=~~~~~~~~~~~~~~~~-=-

3!x e s · P(x) 

s: A-set; 3! x e s · P(x) 
y:A, yes, P(y), Vxe s·P(x) =>X=y~ e 

e 

Finally, the unique choice operator t over sets can be defined via axioms analogous to 



6 hnite Sets 

those given in Section 3.5.3: 

I I 
s:A-set; 3!xe s·P(x) Ax 

t-form-set (ty E s, P(y)):A 
s: A-set; 3! x e s · P(x) 

ft~I-set I Ax 
P(ty E s · P(y)) 

Note that no axiom of the form 

s:A-set; x:A, x e s ~ liP(x) 
16-3-inherit-setl li(3x e s, P(x)) 

analogous to the rule 'D-3-inherit', is required as this is provable from the above axioms 
.(see Exercise 3). 

Rules relating quantification over sets to the corresponding expressions in terms of quan
tifications over types are also derivable from the axioms and rules given above. These 
are also the subject of Exercise 3. 

6.5 Subsets; set equality; cardinality 

6.5.1 Subset and proper subset 

A set s1 is said to be a subset of a set s2 (written s1 !:; s2) if any object which is a member 
of the set s1 is also a member of the set s2 • This property is expressed via the ·~-defn' 
rule: 

r=-:w:1 s1: A-set; Sz: A-set Ax 

~ St!:;';;Sz<::>'<faESt•GESz 

A simple specialisation of this rule can be obtained by considering the special case in 
which both St and Sz are the same sets. Then the universal quantification reduces to true, 
so the left-hand side of the equivalence must also be identically true in this case. This 
leads to the following rule stating that any sets is a subset of itself: 

~ s:A-set 
s ~s 

Since one sometimes wishes to talk about sets which are strictly smaller than other sets, 
the related notion of proper subset is introduced. This is written St c Sz and denotes the 
assertion that s1 is a subset of s2 but is not equal to it. 

It is tempting to define proper subset directly in terms of subset using the above idea, via: 

def 
St CSz = St ~SzASt '#Sz 

but this leads to problems due to the polymorphism of inequality. For example, 7 = 7 
is certainly true in the theory of natural numbers, from which it follows (using simple 
propositional arguments) that 7 ~ 7 A 7 "7 is false. The above definition would then 
imply that 7 c 7 is false. However, this goes against the interpretation that proper subset 
describes relationships between sets, which would require it to be undefined when the 
arguments are not of the correct type (cf. the discussion of;>: in Section 5.5). 

The problem with the above definition can therefore be attributed to the fact that it is 
impossible to attach to it the information that it should only be used when s 1 and s2 are 



6.5 Subsets; set equality; cardinality 93 

sets. This means that if proper subset is to be defined in this intuitive way it has to be 
defined axiomatically: 

~ -:--::s::c'c.'A:.:_:-s:.:ecct;c-:s00zc;:A:.:.,:-s:.:e::.t -:-:- Ax 
St CSz <=>St ~SzASt'::t:.Sz 

Note, however, that it is possible to make use of the intuitive meaning of proper subset 
embodied in the above incorrect definition; the only difference here is that the hypotheses 
of the rule can hold the required typing information on the parameters. 

6.5.2 Set equality 

Two sets St and sz are equal if they have exactly the same collection of elements. This 
can be expressed using the notion of subset introduced above: s1 and sz are equal if s1 

is a subset of sz and if Sz is a subset of St - the first of these conditions ensures that any 
element of the set St is also an element of the set s2, the second condition the converse. 
The rule '=-set-defn' expressing equality of sets thus has the form: 

I =·set-defn 1--'s:..:'.c' Ac:_c-s:.;:e:.et;...:s:..:zcc: A:::-:.;:s:.;:e.:..t -c-- Ax 
St - Sz <=> St ~ Sz A Sz !:;; St 

A good way of deciding on useful variants of a rule is to consider special cases of its 
parameters. Here, one might think about taking s2 to be the empty set. Naive substitution 
into '=-set-defn' yields: 

s,:A-set; {}:A-set 
St {) ¢'> St I; {) A { f~;; St 

Since it is known (from' {}-form') that the empty set is a set of arbitrary type, the second 
hypothesis is always true and can therefore be removed. Next, consider the clause { } ~ s1 

in the conclusion of this rule. This can in tum be simplified by considering the special 
case of the '~:;-defn' rule where s1 is the empty set. This yields the rule 

{}:A-set; sz: A-set 
{} I; St ¢'>'fa E {}·a E s2 

The first hypothesis is always true as above, so can be removed. Moreover, universal 
quantification over the empty set is identically true for any predicate, so the right-hand 
side of the equivalence in the conclusion of the above rule reduces to 'true' and can 
therefore be removed as well. This (after renaming sz to s) gives a rule stating that the 
empty set is a subset of any set: 

s:A-set I {)·is-subset I {} !: s 

Returning now to the consideration of the special case of '=-set-defn'. this rule can be 
used to reduce the right-hand side of the conjunction to 'true', and then the conjunction as 
a whole can be replaced simply by its left conjunct. This, after renaming s1 to s, yields: 

s:A-set 
s-{)<o>s~;;{) 



94 6 Finite Sets 

Using the properties of equivalence this can be reduced to the following rule for deducing 
that some set is empty: 

s:A-set; s c {} 
s- {} 

The process could, of course, stop here, but using this rule to prove that some set is empty 
would mean proving instead that the set is a subset of the empty set which in turn would 
require manipulation of the equivalence in the conclusion of the ·~-defn' rule. The point 
here is that this manipulation would have to be done every time the equality rule was used. 
Thus it is better (in the sense of saving repeating work) to perform these manipulations 
.on the basic rule and remove the expression involving subset from the hypotheses by 
rewriting it in some way. 

The first step in this process is to use the properties of equivalence to promote the left
hand side of the '>;;-defn' rule to a hypothesis in the same way as was described above 
for the lemmas relating membership and the add operator (see Section 6.3). This yields 
a rule of the form 

St: A-set; sz: A-set; Va e St · a e s2 

St ~S2 

for introducing subsets, which, after application of the rule'"'/ -1-set' to its third hypothesis, 
can be converted to 

s1:A-set; s2:A-set 
~ a:A, ae St ~ae s2 

- SJ ~Sz 

Considering the special case of this rule where S2 is the empty set, the conclusion of the 
sequent hypothesis reduces to 'false' (by the ' {}-is-empty' rule), which, combined with 
the fact that the '0-e' rule implies that its premise is defined, means that its premise must 
also be false. This yields the following version of the above rule for showing that some 
set is a subset of the empty set: 

s: A-set 
a:A~aes 

s (;; {} 

Finally, combining this with the last version of the rule aimed at deducing that some set 
is equal to the empty set, yields 

s: A-set 
r=:JUl a: A I;; a e s 
C'..c:.t s - {} 

Of course one can take this process further, for example rewriting the rule '=-set-defn' 
using the familiar properties of equivalence together with the rule ·~-I' to produce aver
sion of the general set equality rule which doesn't simply reduce the problem to reasoning 
about subset: 



6.5 Subsets; set equality; cardinality 

I =-set-1-sqt I 

s1: A-set; Sz: A-set 
a: A, a E S1 f;; a E S2 

b:A,bESzf;bESt 

Si- Sz 

95 

All this might seem very informal, but it is worth remembering that this is the sort of 
reasoning one ought to be using both to develop new rules and to convince oneself that a 
given rule is provable before starting out on the formal proof. In fact given an argument 
like any of the above it can easily be formalised as the steps described simply correspond 
to intuitive application of one or more inference rules. The basic idea behind the process 
described above is that in general it is helpful to develop a set of rules which express 
the properties of some new construct (in this case set equality) directly in terms of some 
old, well-understood and above all primitive construct about which reasoning can be 
performed directly and naturally (in the example above set membership). TI1at the formal 
proofs bear a close relationship to the informal argument can be seen from the following 
proof of the '!;;;-I' rule: 

fromst:A-set;.sz:A-set; a:A, ae s1 ~ae s2 

1 St ~sz ~ Vxe St·XE Sz 

2 'Vxe St·XE Sz 

infer St !.: Sz 

6.5.3 Cardinality 

!;-defn (hl, h2) 
V-I-set (hl, h3) 

¢>-B-right (1, 2) 

The cardinality of a set is defined to be the number of elements it contains. This is a 
meaningful concept as all VDM sets are assumed to be finite. Thus, the cardinality of 
the empty set is 0, whereas the cardinality of a set of the form add(a,s) for some sets 
and some element a not already in s is simply one greater than the cardinality of the set 
s. These properties are expressed via the rules 'card-defn-{}' and 'card-defn-add': 

lcard-defn-{}1 card{} 0 Ax 

a: A; s:A-set; a~ s 
I card-defn-add I Ax 

cardadd(a,s)- succ(cards) 

From these it is simple to show (using set induction) that the cardinality of a set is a 
natural number: 

s:A-set 
I card-fonn I cards: Ill 

Other rules for cardinality can be found in Chapter 14. 



96 6 Finite Sets 

6.6 Other set constructors 

The simplest sets other than the empty set are unit sets, that is sets which contain only 
a single element. The easiest way of describing unit sets is by defining them directly in 
terms of the empty set and the add operator via: 

{a} def add(a, { }) 

From this it is easy to show (using the formation rules 'add-form' and'{ }-form' for add 
and the empty set) that {a} represents a set: 

a: A 
I {a}-forml {a}:A-set 

Other operators which construct new sets from existing sets are defined axiomatically by 
giving a formation rule and a rule defining the membership properties of the constructed 
set. These include set union, set intersection, set difference, distributed union and inter
section, and power set. 
The union of two sets s1 and s2, written s1 v s2, is the set formed by adding together all 
the elements of s1 and all the elements of s2 . An element a is therefore a member of this 
set if it is a member of either s1 or sz. In addition, if both St and sz are of type A-set then 
the resulting set s1 vsz is also of type A-set. The rules 'v-form' and 'e-v-defn' defining 
set union therefore have the form: 

I u-form! St: A-set; sz: A-set Ax 
St u Sz : A-set 

I e -u-defn 1--::---::=a:-: A'-=-;; ":s,_,, :'cA=c-s:::e:.:t;'::-"s''-'''cA'c-s:O:e=:tc-:-_ Ax 
ae St usz ~ ae St vae Sz 

The intersection of two sets s1 and s2 , written s1 ns2 , is the set formed by selecting those 
elements which are common to both St and Sz. An object a is thus a member of the set 
s1 n sz if it is a member both of St and of sz. Again, if both s1 and s2 are of type A-set, 
the resulting set s1 n s2 is also of type A-set. Set intersection is t~erefore defined by the 
rules 'n-fonn' and 'e-n-defn': 

j n-form! St: A-set; sz: A-set Ax 
St n Sz : A-set 

I I 
a:A; St:A-set; sz:A-set 

e -n-def~ -::-::c--c-::-:'----:--,-:-'::c--"---::-::-:- Ax a E St (1 Sz ~ a E St 1\ a E Sz 

The difference St \ Sz of two sets St and Sz represents those objects which are elements of 
the set s1 but which are not elements of the set s2 • This directly defines the membership 
rule 'e -diff-defn'. The form of the formation rule 'diff-form' follows the pattern of those 
given above for union and intersection: 

I . I a:A; St:A-set; sz:A-set 
. e -d1ff-defn. Ax a E St \ Sz ~a E St 1\ a It: Sz 

St: A-set; sz: A-set 
I diff-form I Ax 

St \ sz : A-set 



6.6 Other set constructors 97 

The distributed union 'U' and distributed intersection 'n' operators can best be thought 
of as being generalisations of the standard union and intersection operators to an arbitrary 
number of sets. Distributed union takes a set of sets s as its single argument and returns 
the set constructed by taking the union of all the elements in all the sets in s. Thus, if 
the arguments is of type A-set-set the resulting set Us is of type A-set. Furthermore an 
object is an element of the set Us if it is an element of some set in s. This leads to the 
following rules defining distributed union: 

~ s:A-set-set 

U A I 
Ax 

s: -se 
a: A; s: A-set-set 

le-u-defnl ae Us <=>3te s·de t Ax 

Distributed intersection similarly takes a set of sets s as its argument, this time returning 
the set fanned by taking the intersection of all the sets ins. Again, one would expect the 
distributed intersection ns to be of type A-set if sis oftypeA-set-set, and one ntight also 
expect some object to be a member of the set ns ifitis a member of all sets ins. There is a 
problem here, however, in that, if the sets is empty, any object is automatically a member 
of every set ins (by universal quantification over an empty domain) and hence any object 
would also be a member of the distributed intersection over the empty set <n{ ) ). Since 
this collection of objeCts may be infinite, this contradicts the restriction that all sets must 
be finite, leading one to the conclusion that the expression n{ ) cannot represent a set. 
This case has therefore to be ruled out in the axiomatisation, and the defining rules for 
distributed intersection are thus: 

rrv:=l_s_: _A.c-s,;e.c.t-"-se,t;':-:-:s _¢_,{_,}_ Ax 
~ ns:A-set 

I n I a: A; s:A-set-set; s .. {} 
E· -defn Ax 

ae ns {::} l.ifte s·ae t 

The last set constructor of this form is the power set, written :Fs. This represents the set 
of all subsets of the set s (including the empty set and the set s itself). Thus, if s is of 
type A-set, its power set is of type A-set-set. Furthermore, some set s' of type A-set is a 
member of the power set of s if it is a subset of s. The power set constructor is therefore 
defined by the following pair of rules: 

s: A-set 
w-form Ax lpo I Fs: A-set-set 

6.6.1 Relating add and union 

It should be clear from the definitions given earlier in this chapter that some redundancy 
has been introduced as the expressions add( a, s), {a} us, and s u {a} all represent the 
result of adding the element a to the sets. Thus one would expect to be able to prove the 
following rules: 

a: A; s: A -set 
lactd->ul add(a,s)- {a} us 

a:A; s:A-set 
{a)us-su{a} 

However, it is also clear from the symmetry (in St and s2) of the rules defining union that 
union is commutative: 



98 6 Finite Sets 

lu-comml 
St: A-set; sz: A-set 

so that the second of the rules above is simply a specialisation of this more general com
mutativity rule to the case where s1 is a unit set. Its proof is therefore straightforward and 
follows immediately from 'u-comm' and' {a)-form'. 

The proof of 'add-> u' is longer and is typical of proofs where one is trying to show 
that two sets are equal. 

Although several rules for showing that two sets are equal were introduced in Section 6.5.2 
(and indeed others can be found in Chapter 14), it should be clear from the accompanying 
.discussion that one of the most useful in practice tends to be the sequent fonn '=-set-I-sqt'. 
Applying this to the proof of 'add -> u' gives: 

from a: A; s: A-set 

1 add( a, s): A-set 
2 {a) us: A-set 
3 from b: A; b E add( a, s) 

inferbE {a} us 
4 fromc:A; CE {a} us 

infer c E add( a, s) 
infer add( a, s) = {a} us 

(?? justify ??) 
(?? justify ??) 

(?? justify ??) 

(?? justify ??) 
=-set-1-sqt (1, 2, 3, 4) 

The typing assertions (Lines 1 and 2) are easy to discharge using the formation rules for 
add, union, and unit sets ('add-form', 'u-form', and '{a)-form'). The strategy for the 
two subproofs is to work on the second hypothesis of each to reduce it to atomic state
ments about properties of b, a and s or c, a and s respectively using elimination rules 
for membership of the appropriate composite set, then to combine these using the intro
duction versions of the membership rules as appropriate to deduce the conclusion of the 
subproof. This requires the development of the series of rules describing the membership 
properties of union and unit sets analogous to those for add discussed in Section 6.3. The 
ones relevant here are 

le~u·E! a: A; s1:A~set; sz:A-set; a e s1 us2 
ae s, vae s2 

I e -u-I-Iefd a: A; s,: A-set; s,: A-set; a E s, 
ae StUS2 

I l_a_:_Ac.; _s-'-, :_A..,-s,..e='t;-:s-"',-' A,-,·_s_et-'-; _a_E_s,,__ e-u-1-right 
. · ae StUS2 

a: A; b:A; bE {a} 
le-{a}·EI b a 

a:A; b=a 
le-{a}-l·=l bE {a} 



6. 7 Set comprehension 99 

Note that because the conclusion of the first of the above elimination rules contains a 
disjunction, some intermediate reasoning by cases is also required. This leads to the 
following complete proof: 

from a: A; s: A-set 
1 add(a,s):A-set 
2 {a}:A-set 
3 {a} vs:A-set 
4 fromb:A; be add(a,s) 
4.1 b=avbe s 
4.2 from b =a 
4.2.1 be{a} 

inferbe {a}vs 
4.3 from be s 

inferbe {a}vs 
inferbe {a}vs 

5 fromc:A; c e {a) us 
5.1 ce {a} vee s 
5.2 fromce {a} 
5.2.1 c=a 

infer c E add( a, s) 
5.3 from c e s 

infer c e add( a, s) 
infer c e add( a, s) 

infer add( a, s) = {a} v s 

6. 7 Set comprehension 

add-form (h1, h2) 
{a}-form (h1) 

v-form (2, h2) 

E -add-E (4.h1, h1, h2, 4.h2) 

e -{a}-!-= (h1, 4.2.h1) 
E -V-I-right (4.hl, 2, h2, 4.2.1) 

e-v-1-left (4.h1, 2, h2, 4.3.h1) 
v-E (4.1, 4.2, 4.3) 

E-V-E (5.h1, 2, h2, 5.h2) 

E -{a }-E (h1, 5.h1, 5.2.h1) 
e -add-1-elem-= (5.h1, h2, 5.2.1) 

e -add-1-set (5.h1, h1, h2, 5.3.h1) 
v-E (5.1, 5.2, 5.3) 

=-set-1-sqt (1, 3, 4, 5) 

Quite often it is useful to define a set implicitly by stating some property that all its 
elements are to satisfy. This idea is expressed via the following set comprehension ex-
pression: 

{x:A I P(x)) 

which denotes all objects x of type A for which P(x) is true. 

Care is needed when trying to write down formation and membership rules for this con
struct, however. First, since VDM imposes the restriction that a set must be finite, it is 
necessary to ensure that the formation rule does not allow the construction of infinite sets, 
and second, it is imperative that the new axioms are consistent with the properties of sets 
which follow from the axioms given so far. 

The frrst of these potential pitfalls becomes clear" when one considers a particular example 
of the set comprehension expression in which P(x) is everywhere 'true' and the type A is 
the natural numbers. Then the expression reduces to 

{x:N I true} 



100 6 Finite Sets 

which is to be interpreted as those natural numbers for which 'true' is true, which in turn 
amounts to all the natural numbers. The problem is that the natural numbers are infinite, 
so that the above construct cannot be regarded as a set. 

The obvious solution here is to insist that there are only finitely many objects x for which 
P(x) is true. One way of doing this might be to introduce some new primitive concept 
embodying this notion of finiteness, but a neater way is to use the finiteness property of 
sets and insist that there must be some set s which contains all those elements x satisfying 
P(x). This method effectively amounts to showing that there is some set of which the set 
comprehension expression is a subset. This leads to a hypothesis to the formation rule 
for set comprehension of the form 

3s: A-set· \iy: A · P(y) => y E s 

The second problem is somewhat more subtle. On the basis of the interpretation of the 
set comprehension expression given above, it is tempting to define membership via the 
predicate 

a E {x:A I P(x)} <o> P(a) 

which states that an element a is a member of the set {x: A I P(x)} if P(a) is true and 
not a member of the set if P(a) is false. The problem here is that, assuming the set 
comprehension expression does indeed represent a set, the rule 'S-e ' given above (see 
Section 6.3) implies that the left-hand side of the above equivalence is either true or 
false, from which it follows by simple propositional logic that the right-hand side must 
also be either true or false. To put this another way, from the above membership predicate 
together with the rule '0-e' it is possible to prove SP(a) on the sole assumption that the 
set comprehension expression {x: A I P(x)} denotes a set. To avoid an inconsistency, 
therefore, it is necessary to insist that the set comprehension expression only denotes a 
set if the characteristic predicate P(x) is everywhere well-defined, that is if 

\ix: A · c5P(x) 

This assertion then becomes an additional hypothesis of the formation rule, the correct 
version of which is: 

\ix:A · c5P(x) 

I 1...:3=s.:..:: A.:..·::;se":t -.· \i'-fy'io: A:i:i· Pi-:'(y";')'-==>-:0--'Y...:E:....:...s . those-fonn.-
{x:A I P(x)}:A-set 

The membership rule, with the predicate given above as its conclusion, requires the same 
hypotheses in order to ensure that the set comprehension expression occuning therein is 
well-formed: 

a: A 
\ix:A · c5P(x) 

3s:A-set·\iy:A·P(y) =>yEs 
a E {y: A I P(y)} <o> P(a) 

In fact VDM admits a more general form of set comprehension than the one described 
above. This is written 

{f(x) I x: A · P(x)} 



6. 7 Set comprehension 101 

and stands for all objects of the formf(x) generated from those objects x which satisfy 
the predicate P(x)1• Of course, considerations of finiteness and consistency must be taken 
into account here just as for the simplified case described above. Here, however, one 
requires the additional constraint thatf(x) must be well-formed for each x satisfying the 
characteristic predicate P. This leads to formation and membership rules of the form: 

I set-comp-form I 

ltx:A · liP(x) 
x:A, P(x) ~f(x):B 

3s: B-set · lty: A · P(y) => f(y) E s Ax 

{f(x) I x: A · P(x) }:B-set 

b:B 
ltx:A -liP(x) 

x:A, P(x) ~f(x):B 

3s: B-set · lty: A · P(y) => f(y) e s I e -set-comp-defn I 
b e {f(x) I x: A · P(x)} <=> 3a: A · P(a) A b f(a) Ax 

Note that these axioms do not insist that there are only a finite number of values of x 
satisfying the characteristic predicate P(x), rather that these values of x generate a finite 
number of different values of f(x). The first condition would be too restrictive as it is 
perfectly possible for the number of different values of/(x) to be finite even if the number 
of possible values of x is infinite. 

The simple form of set comprehension described above can now be thought of as a special 
case of this more general form, namely the case where f(x) = x, with the formal definition 

{x:A I P(x)) del {x I x:A · P(x)) 

The formation nlle 'those-form' and the membership rule 'e-those-defn' for this sim
ple form can be proved from the rules 'setMcomp-form' and 'e-set-comp-defn' for the 
generalised form given above (see Exercise 4). 

The notation can be further extended so that the quantification ranges over a set instead 
of a type. This is written' 

{f(x) I x e s · P(x)} 

It is defined axiomatically via 

s:A-set 
ltx e s · liP(x) 

x: A, X e s, P(x) ~f(x): B 

31: B-set · \fy E S • P(y) => f(y) E I 
I set-comp-defn-set 1-{f""(x') 'l_x..:e=s...:·:..:P~('x)~):..._::...r{f"(x'-)""lf-x-:'-'A'-"-'· :..x:.e.:..s_A_P""(-c-x""))' Ax 

A simplified form of the notation omits the predicate P(x) when it is identically true: 

{f(x) I x e s} del {f(x) I x e s · true} 

1This notation can be further extended in the obvious way to allow/ andP to depend on more than one 
variable. 

2 Again, the extension to more than one variable is obvious. 



102 6 Finite Sets 

Its formation rule, which is derivable from the more general rules given above, is rela
tively simple: 

s:A-set 
x:A, XEs f;f(x):B 

§mp-fomHet-ident I 31: B-set · \iy E S -j(y) E I 
{f(x)ixe s}:B-set 

This can be further simplified to: 

s:A-set 
x:A f;f(x):B 

I set-comp-fonn-set-ident-globall-{f=(x"')'l""x"=e'-s""}": -,;8:-:_5:-::8:-1 

whenj(x) is of type B for all x of type A (i.e. not just for those x in the sets) as finiteness 
is ensured by the rule 

s:A-set; x:A f;f(x):B 
I finite-set-image I ~3"'t"": B"-""'s""et,-·"'lf"x""e::--':cs-· f"("'x)'ec::-:--1 

Finally, for completeness, a shorthand notation for the case where the quantification is 
over a type and where the predicate is identically true can be defined via: 

def 
{f(x)lx:A} = {f(x)lx:A·true} 

though its usefulness is limited as it is only finite if the type A is finite or if f(x) takes the 
same value for all but a finite number of elements of A. 

6.8 Reasoning about set comprehension 

The fact that the formation and membership rules for set comprehension contain finite
ness and definedness hypotheses which have to be discharged when reasoning about set 
comprehension expressions can not only make this task seem somewhat daunting but can 
also lead to much repetition of work if the proofs are not structured sensibly into lemmas. 
The following example illustrates how this can be done. 

A common specialisation of set comprehension is the interval (of numbers) or set range 
expression. This is written {i, ... ,j} and denotes those natural numbers lying between 
the natural numbers i andj inclusive, so that, for example, the interval {4, ... , 7} denotes 
the set {4,5,6, 7}3 . 

Intervals can be defined directly in terms of set comprehension via: 

{i, ... ,j} def {n: N I i $ n $j} 

Reasoning informally to begin with, it is easy to see that the characteristic predicate in the 
above set comprehension expression is well-defined for all natural numbers i and j, and 
that there are finitely many values of n which satisfy it. This indicates that the expression 

3Jn fact VDM has a wider notion of intervals than this whereby i and j can be real rather than natural 
numbers, with the expression {i, ... ,j} then denoting those integers lying between i andj. To describe this 
would require a significant extension to the limited theory of numbers presented in Chapter 5, however, so 
this more general fonn is not discussed here. 



6.8 Reasoning about set comprehension 103 

does indeed represent a set and suggests that the following formation and membership 
rules for intervals should be valid: 

i:N; j:N I interval-fonn I r l N z, ... ,J . -set 

. i:N; j:N; k:N 
IE -mterval-defn I k r '} . < k < . 

E l, ••. ,) <=:} l - -) 

Turning now to consider the formal proofs of these rules, it is clear that the first step in 
each must be expanding the definition of the interval, after which the formation or mem
bership rule for set comprehension ('those-form' and 'e-those-defn') can be applied as 
appropriate. The point to note here is that the hypotheses of these two rules are identi
cal, so that after these steps the proofs of both the formation and membership rules for 
intervals reduce to discharging the same definedness and finiteness hypotheses. Whilst it 
is true that there is not much to be lost by repeating the justification of the definedness 
hypothesis, this being a simple consequence of the properties of natural numbers (in par
ticular the rule '0- ~-~·),the finiteness hypothesis is a different matter entirely as its 
proof is far from immediate. The best strategy at this point is therefore to state a new 
lemma asserting the finiteness property required. This has the form: 

. . i:N; j:N I mterval-finttel 3 _ N V . N . < < . s. -set· y. · 1 - y -1 => y E s 

The proofs about intervals are now easy to complete. That for the formation rule is: 

from i: N; j: N 
1 fromx:N 
1.1 li(i $x $}) 

infer Vx: N · li(i,;; x $)) 
2 3s:N-set. Vy:N· i ,;;y $)=>yes 
3 {n:Nii$n$j}:N-set 
infer { i, ... ,j): N-set 

/i-$ _,(hi, !.hi, h2) 
V-I (I) 

interval-finite (hi, h2) 
those-form (I, 2) 

folding (3) 

That for the membership rule is similar, differing only in the last two lines: 

from i: N; j: N; k: N 
I fromx:N 
1.1 li(i $x $)) 

infer Vx: N · li(i,;; x $)) 
2 3s:N-set · Vy:N· i ,;;y $)=>yEs 
3 ke {n:Nii$n$j}<o>i$k$} 
infer k E {i, ... ,j) <=> i,;; k $) 

/i-$ _,(hi, !.hi, h2) 
V-1 (I) 

interval-finite (hi, h2) 
e -those-defn (h3, I, 2) 

folding (3) 

The lemma 'interval-finite' can be proved by induction (left as an exercise for the reader). 



104 6 Finite Sets 

6.9 Summary 

This chapter has dealt with the following topics: 

• Proof using set induction. 

• Quantification over sets. 

• Constructing useful variants of a rule by considering special cases of its meta vari
ables. 

• Ensuring finiteness and definedness of constructs defined by comprehension. 

• Reasoning about set comprehension expressions. 

6.10 Exercises 

1. A non·empty set is inhabited 

Use set induction to show that a set which is non-empty contains some element: 

I 
s:A-set; s>'{} I non-empty-set-inhabited -

3 
A · · a: ·GE S 

2. Distributed union 

Show that the distributed union of the empty set is the empty set: 

I U-defn-{} I U{ } = {} 

3. Relating quantification over sets and quantification over types 

Use the rules and definitions given in Section 6.4 to prove the following rules relating 
existential and universal quantifications over sets and the corresponding quantification 
over types: 

s: A-set; 3x: A· x E sA P(x) 
13-->3-setl 3xE s·P(x) 

I I s:A-set; 'tx:A ·XEs=> P(x) 
'11-->'11-sct VxE s·P(x) 

l3-set--> 3 l s: A-set; 3x E s · P(x) 
3x:A ·X E sA P(x) 

l'll-set-->V'I s:A-set; 'ixE s·P(x) 
'ix:A·XE s=>P(x) 

Prove also the definedness rule for existential quantification over sets: 

s: A-set; x: A, X E s ~ oP(x) 
I li-3-inherit-sctl o(3x E s. P(x)) 



6. 10 Exercises 105 

4. The simplified form of set comprehension 

Prove the formation and membership rules for the simplified form of set comprehension: 

\fx:A · oP(x) 

J those-fonn I 3s:A-set · \fy:A · P(y) => y e s 
{x:A I P(x)):A-sel 

a: A 
\fx:A · l!P(x) 

I e -those-defn I 3s: A-set · \fy: A · P(y) => y e s 
a e {y:A I P(y)) ""P(a) 

from the general forms 'set-comp-fonn' and 'e -set-comp-defn' and its derivatives. 





Chapter 7 

Finite Maps 

7.1 Introduction 

A map can best be thought of as a collection of associations or maplets recording some 
relationship between objects, with, for example, the map let associating the object b with 
the object a being written a ._, b. Here, a is called the ®main value of the maplet 
a ~---+ band b the range value. Just as for sets, there is no concept of order associated with 
the collection, but there is a restriction that no two maplets in the co11ection may have 
the same domain value but different range values, that is a map cannot contain both the 
map let a ~---+ b and the maplet a ~-+ c when c :1:- b. 

In VDM, the notation m: A ~ B represents the assertion that m is a finite map whose 
domain type is A and whose range type is B, that is a finite collection of maplets each of 
which associates an object of type B with an object of type A. As an example, the map 
{ 1 ._, false, 2 ._, true, 3 >-> true, 4 ._, false) is of type N ...."'.., nl as the domain value 
of each maplet is a natural number (of type N) and the corresponding range value is a 
boolean value (of type nl; see Chapter 9 for the full description of the boolean data type). 
Note that it is possible for a map to associate the same range value with two different 
domain values, as in this example. 

The first section of this chapter gives a basic axiomatisation of finite maps in terms of 
generators, analogous to the axiomatisation of sets in terms of the generators add and 
{ } discussed above in Chapter 6, and presents the corresponding induction principle. 
Together, these form the basis of the next section, which illustrates various ways of ax
iomatising operators in terms of generators. Next, a worked example is presented which 
illustrates how one can often structure a proof by spotting that a particular step repre
sents an instance of some more general lemma, perhaps belonging in a more fundamental 
theory. The following section discusses the use of subsidiary definitions when defining 
new operators as specialisations of other operators, illustrating this by developing a the
ory of map union from properties of map override. The penultimate section then shows 
how to define polymorphic subtypes, using bijective or one-one maps as an example, and 
also shows how to formulate new induction rules on these subtypes. The chapter closes 
with a discussion of map comprehension, with the problems of ensuring finiteness and de
finedness encountered when considering set comprehension expressions (see Section 6.7) 
again coming to the fore. 



108 7 Finite Maps 

7.2 Basic axiomatisation 

By analogy with the discussion of sets in Chapter 6, axiomatising maps in terms of gener
ators requires the introduction of a primitive object representing the empty map (written 
{>-+})and an operator for adding a new maplet to an existing map (written addm). Again, 
the empty map represents the empty collection of maplets of arbitrary type (strictly of ar
bitrary domain type and arbitrary range type). Its properties are embodied in the formation 
rule' {>-+}-form': 

1{~}-forml {>-+):A~B Ax 

The situation is slightly more complicated with the operator addm, however, as the re
striction that no two maplets may have the same domain value means that one cannot in 
general simply add an arbitrary maplet to an existing map. 

There are potentially two ways one could proceed here, depending on how one interprets 
the functionality of addm. One possibility is to say that the expression addm(a >--+ b, m), 
which adds the maplet a ~--+ b to the map m, only represents a map if m does not already 
contain a maplet whose domain value is a or if m contains the maplet a ~-+ b already (in 
which case addm(a >-+ b, m) simply yields m). This ensures that the condition of non
repeating domain values is maintained, and leads to a formation rule for addm having a 
hypothesis ensuring that the relevant condition is met. In terms of the map domain and 
map application operators to be introduced later (see Section 7.3), this has the form: 

a: A; b:B; m:A ~ B; a E domm:} m(a) = b 
addm(a ~-+ b, m): A ~ B Ax 

The problem with this sort of treatment is that it is inextricably linking the definition of 
addm with the definitions of map domain and map application, and since these concepts 
will have to be defined in terms of addm, this sort of link can easily lead to tortuous 
circularities in reasoning. Not only that, but every other rule involving addm would 
need similar hypotheses to ensure the well-formedness of each occurrence of addm, thus 
making those rules much more cumbersome to use. 

The other way of interpreting addm is to say that the expression addm(a ~--+ b,m) always 
denotes a map, but does not simply add the new maplet a >-> b to the map m, rather having 
a value depending on the value of m. Again, there are two possible interpretations in the 
case when m already contains a maplet of the form a ~--+ c for some c: either one could 
say that addm(a >-+ b,m) does nothing in that case, or one could say that it replaces (or 
overwrites) the maplet a ~--+ c with a ~-+ b (of course there is no difference between the 
two interpretations if cis the same as b). Both these approaches lead to the same simple 
formation rule for addm: 

a: A; b:B; m:A ~ B 
I addm-form I dd ( b )·A m B Ax a rna~-+ ,m . ............... 

the differences between them showing up in the basic axioms defining the properties of 
addm. 

In fact it generally turns out to be easier to write axioms for other operators defined in 
terms of the generators if the element being explicitly added is actually present in the 
composite object being constructed, as this enables one to reason about something whose 



7.3 Axiomatisation using generators 109 

explicit form is known. This argues for choosing the interpretation that addm(a ~-+ b,m) 
overwrites any maplet of the form a ~-+ c already present in the map m. This property is 
captured axiomatically by considering the effect of successive applications of addm with 
map lets having the same domain value. This yields a rule of the form: 

!addm·overwritel a: A; bt:B; bz:B; m:A ~ B Ax 
addm(a >--+ b,,addm(a >--+ b2,m))- addm(a >--+ b,,m) 

Lastly, it is necessary to describe the unordered property of a map. Again this can he done 
by considering the effect of successive applications of addm, this. time with the maplets 
having different domain values. The lack of ordering is then expressed by saying that the 
order of application of the two addm's is unimportant: 

a:A; b:B; c:A; d:B; m:A ~B; a¢.c I addm-comm I Ax 
addm(a >--+ b,addm(c >--+ d,m))- addm(c >--+ d,addm(a >--+ b,m)) 

Clearly any finite map can be expressed as a finite series of applications of addm to the 
empty map, with each application adding a different maplet. This suggests formulating 
an induction rule based on the principle that, if some property P can be shown to hold 
for the empty map and, further, if by assunting that P holds for some arbitrary map m it 
can he shown that P also holds for the map constructed by adding a new maplet a >--+ b 
tom, then P holds for all finite maps. The only problem with the above statement is how 
to express the fact that a new maplet is being added in the induction step as there is no 
analogue of the set membership operator E for maps. The key to this is to realise that 
it is sufficient to insist that there is no maplet already in m with the same domain value 
(namely a) as that of the map let being added. This leads to the introduction of the notion 
of the domain of a map (written domm), this being simply the set of all the domain values 
of all the maplets in the map. Its defining axioms are given in the next section. 
Now the fact that a new maplet is being added in the induction step can he expressed 
using simple set membership, namely by saying that the domain value of the new maplet 
is not in the domain of the map. The induction rule for ~nite maps therefore has the form 

mo:A ..."0., B; P( { >--+}) 

a: A, b:B, m:A ..."0., B, P(m), ali! domm ~'"' P(addm(a >--+ b,m)) 
I map-indn I P(mo) ' Ax 

Note that, as for the local hypothesis a e; s' in the induction step of the induction rule for 
sets ('set-indn '), the local hypothesis a e domm is not strictly necessary: it simply rules 
out a case which can be reached by other means (namely by adding the maplet a >--+ b to 
the map obtained by removing the map let with domain value a from m). 

7.3 Axiomatisation using generators 

A common way of axiomatising operators on data-types defined via generators is to give 
a series of axioms which define the operator for the base element (here, the empty map) 
and for each of the generators (here, the maplet addition function addm). The parallel 
with the induction principle is clear, and it should therefore come as no surprise to learn 
that proofs about operators defined in this manner generally proceed by induction. 

A simple example of how to proceed is provided by the domain operator dom. As ex-



IIU 1 .rmue Maps 

plained above, this represents the set of all the domain values of all the maplets in a map. 
Considering first the base case, since the empty map contains no maplets the set of all 
the domain values, and hence the domain itself, must be the empty set. This leads to the 
following rule: 

Turning now to the addm case, the idea is to define the domain of a map of the form 
addm(a ,_, b, m) for an arbitrary map m and an arbitrary map let a ,_, b (with a and b 
being of the appropriate type, of course). These parameters, together with their types, 
.then form the hypotheses of the definition rule, the conclusion of which will be of the 
form domaddm(a ,_, b, m) = .... It remains to be decided what expression should form 
the right-hand side of this equality. 

One point worth noting is that, to maintain the parallel with the induction rule (and in
cidentally to make the proofs about domain more tractable), this expression should only 
depend on a, band domm. To put this another way, the aim is to express the domain of 
the extended map in terms of the domain of the smaller map. 

Because the value of addm(a ,_, b, m) may depend on whether or not the map m already 
contains a maplet whose domain value is a, both these cases must be considered when 
determining the value of domaddm(a ,_, b, m). In the first of these cases, the maplet a ,_, 
b replaces an existing map let of the form a ,_, c for some c, so the domain of the extended 
map is the same as the domain of the smaller map (so thatdomaddm(a ,_, b,m) = domm). 
In the second case, a map let with a new domain value is added tom so the domain of the 
extended map is simply formed by adding this new value (a) to the domain of m (so that 
domaddm(a ,_, b,m) = add(a,domm)). However, the first case can also be described by 
this same expression - in that case a is already in the set domm, so adding it again has 
no effect. Thus, the appropriate rule defining domain for the generator is: 

a:A; b:B; m:A ~B I dom-defn-addm I d addm( b ) dd( d ) Ax om a ~---+ , m -a a, omm 

Note here that the fact that domaddm(a ,_, b,m) can be expressed as add(a,domm) ir
respective of whether or not a is in domm is important as it effectively "decouples" the 
definition of domain and the induction rule for maps - although the basic properties of 
domain have to be proved by induction these proofs do not rely on the last hypothesis 
of the induction step (a e domm). This is illustrated by considering the proof of the 
formation rule for domain: 

m:A~B ! dom~fonn ! --"=:_--,.:_.:::__ 
domm:A-set 

Note how the induction step (Subproof 4) uses the rule 'dom-defn-addm' and does not 
depend on hypothesis 4.h5. 



7.3 Axiomatisation using generators 

fromm:A~B 
I {}:A-set 
2 dom{>->}={) 
3 dom {>--->}:A-set 
4 from a: A; b:B; mt:A ~ B; domm1:A-set; a e dommt 

111 

{}-form 
dom-defn- { >--->} 

=-type-inherit-left(!, 2) 

4.1 domaddm(a >---> b,m1) = add(a, domm,) dom-defn-addm (4.hl, 4.h2, 4.h3) 
4.2 add(a,domm1):A-set add-form (4.hl, 4.h4) 

infer domaddm(a >4 b,m1):A-set =-type-inherit-left (4.2, 4.1) 
inferdomm:A-set map-indn (hi, 3, 4) 

A similar technique can be used to develop a set of axioms describing the range (rng) of 
a map, that is the set of all the range values of all the map lets in a map. Again, the base 
case is simple as this set is empty 

(Tng-defn-{ ~}] rng { >--->} _ { } Ax 

and the case for the generator involves determining the value of the defining expression 
(which is here rngaddm(a >---> b,m)) in the two cases a~ domm and a E domm. For the 
first of these two cases, a new maplet is being added to the map m and, although m might 
or might not already contain a maplet with the same range value b but with a different 
domain value (e.g. c 1-4 b for some c different from a), the properties of set addition once 
more allow both these cases to be described by the same expression, namely add( b. rngm). 

Going on to consider the value of rngaddm(a ~---+ b,m) in the case where a e domm is 
not so simple, however. The condition a e domm means that m contains a maplet of the 
form a f-lo c for some c, which is overwritten when the maplet a ~---+ b is added. However, 
although overwriting a ~---+ c with a !--). b certainly means that b is a member of the range 
of the extended map addm(a f-lo b, m), whether or not cis present depends on whether or 
not m contains some other maplet of the form d ~---+ c for some d. The problem here is 
that there is no obvious way to describe this situation using the map operators introduced 
so far. 

However, the basis for axiomatising an operator using generators is that the axioms should 
be sufficient to define the operator for all maps. Thus, the same principle used in formu· 
lating the induction step of the induction rule, namely that any map can be expressed as 
a finite series of applications of addm to the empty map with each application adding 
a maplet with a distinct domain value, can be used here. This means that an operator 
is completely defined by giving its value for the empty map and its value for the map 
addm(a >---> b,m) for arbitrary values of a, band m but assuming that a is not already in 
the domain of m (cf. the premises of the sequent representing the induction step in the 
induction rule 'map-indn '). The rule 'rng-defn-addm-~' 

a: A; b:B; m:A ~ B; a~ domm I mg-defn-addm-•1 dd ( b ) dd(b ) Ax rnga mal--7 ,m -a ,rngm 

is therefore sufficient to complete the definition of the range operator, and the relevant 
formation rule can be proved from it (by induction): 



112 

m:A~B 
I rng-form I rng m: B-set 

7 Finite Maps 

One might wonder whether there is ever any point in attempting to write a single defining 
rule covering both the cases a e dam m and a e dom m, as was done for the domain 
operator above. In fact there is, as the resulting rule has fewer hypotheses than the corre
sponding rules covering only one of these cases and can therefore be applied more widely. 
This is not to say that rules representing the individual cases would never be used, of 
course - for instance, if one wanted to deal in some proof with an expression of the form 
domaddm(a r-~o b,m) and it was known that a was in the domain of m then one or two 
lines of reasoning could be saved by using a specialisation of the rule 'dom-defn-addm' 
of the form 

I I a: A; b:B; m:A-"'-> B; a E domm 
. dom-defn-addm-e . d dd ( b ) d oma maH ,m- omm 

instead of the general form 'dom-defn-addm' directly. This rule can easily be proved 
from 'dom-defn-addm' using the properties of sets and equality. 

The next question is how one might formulate and prove a similar rule for the range 
operator. The key to the former is to notice that the map formed by adding the maplet 
a ~---+ b to a map m which already contains a maplet of the form a .....,. c is the same as 
the map which would be formed by adding the same maplet a ..., b to the map m from 
which the maplet a ..., c has been removed. This operation is described by the domain 
subtraction operator. The discussion of the range operator resumes after introducing this 
and the analogous domain restriction operator. 

Domain subtraction, which is written s~m, represents the map formed by removing from 
the map m those maplets whose domain value is in the set s. For example, the domain 
subtraction expression {1,4,7} ~ {2 >-> true,3..., false,4..., true} represents the map 
{2 ~---+true, 3 ~---+false}. Note that the sets can contain elements which do not occur in the 
domain of the map m, as in this example. 

The axiomatisation of domain subtraction proceeds in the standard manner. Consider first 
the case where the map m is empty. Here, whichever sets is chosen no map lets can be 
removed by the domain subtraction since there are none in the empty map, so the defining 
rule is simply 

1 
s:A-set I ~-defn-{~} s ~ {>->} _ {>-->} Ax 

Note that the fact that s must be a set but can be of arbitrary type is captured by the 
hypothesis s: A-set. 

Turning now to the addm case, the expression s~addm(a..., b,m) has to be evaluated for 
an arbitrary map let a ~--+ b, an arbitrary map mandan arbitrary sets, all of appropriate type 
(a: A, b: B, m: A -"'-> B, s: A-set for arbitrary types A and B). Since domain subtraction 
involves removing any maplets whose domain value is in the set s, the value of this 
expression depends on whether or not the new maplet being added to m is going to be 
removed by the domain subtraction, i.e. on whether or not a e s. These two cases 
must therefore be considered separately. Further, in each case one must consider the two 
subcases corresponding to whether or not a is in the domain of m. 
It is sometimes helpful when evaluating this sort of defining expression to think "pro-



7.3 Axiomatisation using generators 113 

grammatically".Thus, considering the case a E s, in the first subcase (a e domm) the 
maplet a ~-----+ b is first added to the map m, overwriting an existing maplet a ~-----+ c, then 
it is removed by the domain subtraction. The same effect can be achieved by removing 
the maplet a >--> c directly from m by domain subtraction without first adding the maplet 
a ~-----+ b, so this first subcase is described simply by the expressions~ m. In the second 
subcase (a e domm) the new maplet a~-----+ b is first added tom then immediately removed 
by the domain subtraction, so it might as well never have been added in the first place 
and this second subcase can also be described by the expression s ~ m. This leads to the 
following rule describing the case a E s: 

I I a: A; b:B; m:A--"'-> B; s:A-set; a E s 
~-defn-addm-e . , "" ( b ) , Ax 

s~auuma~----+ ,m -s"qm 

Turning now to the case a ~ s, the first subcase again replaces the maplet a ~-----+ c with 
the maplet a ~-----+ b which is not removed by the domain subtraction. This effect can 
be emulated by first applying the domain subtraction to m, during which process the 
maplet a ~-----+ c survives because a is not in s, then overwriting the resulting map with 
the maplet a ~-----+ b. (Recall that in all these cases of developing axiornatisations in terms 
of generators the object is to express the operator applied to addm(a >--> b, m) in terms 
of a, b and the operator applied to m.) This subcase can therefore be described by the 
expression addm(a ~-----+ b, s~m). This expression also describes the second subcase because 
addm(a >--> b,m) adds a completely new maplettom and this is not affected by the domain 
subtraction so the order of application can be commuted. Thus, the case a e sis described 
by the rule 

a: A; b:B; m:A ~ B; s:A-set; a e s 
j '4-defn-addm-~ ] Ax 
· · s ~ addm(a ,__, b, m) addm(a >--> b, s ~ m) 

This completes the definition of domain subtraction. 
The axiomatisation of the domain restriction operator proceeds entirely analogously. This 
is written s <l m and denotes the result of removing those maplets from the map m whose 
domain value is not in the set s (alternatively of preserving only those maplets whose 
domain value is ins). Its defining rules are 

s:A-set 
1~-defn-(~JI s~{,__,} {,__,} Ax 

a: A; b:B; m:A ~ B; s:A~set; a E s 
14-defn-addm-e I s~addm(a ,__, b,m)- addm(a ,__, b,s~m) Ax 

~ki,~d.n~~a~:A~;~b~:~B~;~m~:A~__.=m~B~;~s~:~A~-~se~t~;~a~e~s Ax ~~-defn-addm-•1 s ~ addm(a ,__, b,m) - s ~ m 

Formation rules for both these operators 

~ m:A ~B; s:A-set = s~m:A __.B 
~ m:A--"'-> B; s:A-set 
~ s<1m:A~B 

can easily be proved from their defining rules (by induction). 

It is now possible to fonnulate a rule defining the range operator in the case where the 



114 1 t<mneMaps 

maplet being added overwrites an existing maplet with the same domain value, as the 
notion of removing a map let from a map can be expressed using domain subtraction and 
the unit set (as {a) ~ m). The required rule is therefore 

a:A; b:B; m:A ~B; ae domm 
I mg-dcfn-addm-e l-,-ng-a"""diCd"-m7(a-'-...,---'--b;-,:.:.m"'") -_-a-.dd'"'(;;:b-, r-"ng-(;.7{-a ),:"~-;-m-=-)) 

Its proof is covered in detail in Section 7 .4. 

Operators analogous to domain subtraction and restriction can also be defined for range. 
Thus, range subtraction which is written m~s. represents the result of removing from the 
map m every maplet whose range value is in the set s, whilst range restriction, written 
m t> s, similarly represents the result of removing the maplets whose range value is not in 
s. In both these cases s must be of type B-set if m is of type A ~B. 

Axioms for these operators are developed in a way similar to that described above for the 
corresponding domain operators except that this time the top~ level case distinction for 
the addm rules is whether or not the range value of the added maplet is in the subtracting 
(or restricting) set. Also, the trick of domain subtracting the unit set to remove unwanted 
maplets, which was described above in connection with the formulation of the rule 'rng
defn-addm-e ',has to be used. This yields the following defining rules 

s:B-set 
~~-defn-{~\1 {>->}~s- {>-->} Ax 

I ~-defn-addm-E I a: A; b:B; m:A ~B; s:B-set; be s 
addm(a >--> b,mns {aH (m~s) Ax 

a: A; b:B; m:A ~ B; s:B-set; b ~ s I ~-defn-adctm-•1-addm~:.:.:.,.(a=-H~b,.::, .:.:m"") ~;-s ---=a'-';ddm-7'-'(;:...a.:.H::.::.,b::., m-=,.:~'"'s),-- Ax 

a: A; b:B; m:A ~ B; s:B-set; be s 
I ~-defn-addm-E I addm(a H b, m) ~ s - addm(a >--> b, m ~ s) Ax 

a: A; b:B; m:A ~ B; s:B-set; b q: s I ~-defn-addm-•1-=ad"-'Tdm;:..:.:;(a:c...:.H:.::bc-,'--m') .,-~-"s '-'_-.:;{:.:.a'"} '-';~:;:(m-'--C-~-=;s):...::.... Ax 

from which the formation rules 

'-= m: A --"0., B; s: B-set = m~s:A --->B 

can be proved (again by induction). 

m:A ~ B; s:B-set 
m~s:A --->B 

The last operator to be dealt with in this section is map application, written m(c) and 
denoting the range value of that maplet belonging to the map m whose domain value is 
c. This clearly has to be treated somewhat differently from ali the examples discussed 
so far as it certainly cannot be defined for the empty map (as this contains no maplets). 
Map application therefore represents a partial function which is not well-defined for ali 



7.4 Extraction and abstraction of lemmas 115 

maps. More specifically, the expression m(c) is only well-defined if cis in the domain of 
the map m. Note that this condition automatically ensures that the map m is non~empty. 

In actuality, this example is not so different from the earlier ones as it might appear. These 
all proceeded with the aim of developing a series of rules defining a particular operator 
for all maps, using as a basis for this the fact that any map can be written as a (possibly 
empty) series of applications of the generator addm to the empty map. Taking a broader 
view, however, one could instead think of this process as developing a series of rules 
defining an operator for all those maps for which it is well-defined, with all the operators 
considered so far being well-defined for all maps (total functions). This is in fact the 
correct way of looking at things and fonns the basis for the treatment of partial operators. 

For the case of map application, it is therefore necessary to construct a series of rules 
which define m(c) for all values of m and c for which the expression is well-defined, 
namely whence domm with m non-empty. Now the most general way of representing 
a non-empty map is as addm applied to some other map, say as addm(a >-> b, m), and the 
element c is in the domain of this map if c is the same as a or if c is in the domain of 
m but is different from a. In the first of these cases the range value associated with the 
appropriate domain value is b, whilst in the second case it is simply the map m applied 
directly to c (note that the fact that c has been assumed to be in the domain of m in 
this case means that the expression m(c) is well-defined). The basic rules defining map 
application are therefore 

~dcin.;~~~~a~:4Ai;~b~:~B~;~m~:~A~~~~B~ I at-defn-addm·-1 Ax 
addm(a ,_, b,m)(a)- b 

a: A; b:B; c:A; m:A -~ B; c:Pa; c e domm 
r;;t:lkrn-addffi4] Ax 

addm(a H b,m)(c)- m(c) 

The proof of the formation rule 

~ a:A; m:A ~B; ae domm = m(a):B 

proceeds in the by now familiar way. 

Map application is the final ingredient required for the definition of equality on maps. The 
basic idea here is that two maps m1 and m2 are equal if they contain the same collection 
of map lets. This condition is satisfied if the domains of the two maps are equal and if, 
for all domain values in the maps, the result of applying m1 to some domain value is the 
same as applying m2 to that domain value. This property is encapsulated in the defining 
rule 

mt:A ~ B; mz:A ~ B 
domm1 = domm2; 'da E domm, · m,(a) = m,(a) 

1--map-defn I Ax . . mt-mz 

7.4 Extraction and abstraction of lemmas 

Quite often when developing a proof, whether a proof about maps or one about something 
entirely different, one reaches a point where the particular step under consideration actu-



116 7 Finite Maps 

ally represents an instance of a rule which could itself have been proved from the other 
rules available but which simply had not been thought of up to then. This step could, of 
course, be completed "in-line" in the current proof, but doing so would mean not only 
that one would be losing generality by proving an instance of a useful rule instead of the 
more basic form but also that work would have to be duplicated if some later proof also 
contained a step representing an instance of this same rule. Not only that, but proofs con
structed in this manner would be longer and more complicated, and hence more difficult 
to understand, than they need be. Thus, although the technique of matching knowns and 
goals against the hypotheses and the conclusion of available rules is often useful when it 
comes to deciding how to progress in a proof, it should not be applied indiscriminately. 
Rather one should additionally consider whether it might be possible to formulate some 
new rule which would help with the current proof and which might be useful in later 
proofs too. These "subsidiary" rules or lemmas can arise naturally in the course of con
structing a proof, but can also come to light simply by considering the plan of the proof. 
Both these situations are illustrated by considering two different approaches to proving 
the rule 'mg-defn-addm-e' introduced in the previous section. 

In the first approach it is assumed that the proof is begun by searching for matching 
rules. Of the available rules about maps only 'map-indn' offers any chance of progress, 
but, as has already been seen in Section 5.4, the presence of the non-typing hypothesis 
a E dom m means that this cannot be applied immediate! y as the appropriate instance of 
this hypothesis is required in the induction step of the proof. This means that the trick of 
applying ~ =>-E-left' to transform the goal into an implication is needed again. The first 
stage of the proof is therefore: 

from a: A; b:B; m:A _!!!_:,. B; a E domm 

l ae domm=>rngaddm(a>-->b,m)=add(b,rng({aHm)) 
infer rngaddm(a >-> b, m) = add(b, rng ({a} ~m)) 

(?? justify ??) 
=>-E-left (I, h4) 

Now the induction rule can be applied. The base case of the induction involves showing 
that a E dom{>-->} => rngaddm(a >--> b, {>->)) =add(b,rng({a) 4 {>-->}))which is entirely 
trivial because the left-hand side of the implication is false. 

One point worth noting here is that, although this step corresponds to a single deduction 
as far as one's intuition is concerned, justifying it actually requires several lines of proof: 
first, 'dom-defn-{ >->}'and' { }-is-empty' would have to be used to deduce dom { >->} = { } 
and, (a E { } ) respectively, then the desired result follows from these by substitution of 
equals. This suggests defining a new rule embodying this step: 

a· A 
l~-e-dom-{~0] ,(ae dom{>->}) 

which has a proof as outlined above and which can be used directly in the justification of 
the base case in the proof of 'rng-defn-addm-E' as shown: 



7.4 Extraction and abstraction of lemmas 117 

from a: A; b:B; m:A ~ B; a e domm 
I ~(aE dom{>->}) ~-E-dom-{>->}-I(hl) 
2 aE dom{>->} => 

rngaddm(a >--> b, {>->}) = add(b,rng({a) ~ {>-->})) =>-I-right-vac (I) 
3 from Gt:A; bt:B; mt:A ~ B; 

aE domm1 => rngaddm(a>->b,m 1 )=add(b,rng({a)~ml)); 
at~ dommt 

infer a e domaddm(at ~ bt,md:::) 
rngaddm(a H b,addm(al H b1,mi)) = 

add(b, rng ( {a} ~ addm(al >-> bt. m1))) 
4 a e domm => 

rngaddm(a H b,m) = add(b, rng( (a}~ m)) 
infer rngaddm(a H b,m) = add(b, rng ({a} ~m)) 

(?? justify ??) 

map-indn (h3, 2, 3) 
=>-E-left (4, h4) 

Turning now to the induction step (Subproof3 in the above incomplete proof) the first step 
is to use '::)-I' to justify the conclusion, generating 8(a e domaddm(at 1--4 bt, m1 )) as a 
new goal, together with a new subproofhaving a E domaddm(a1 H b1,m1) as its hypoth
esis and rngaddm(a H b,addm(a1 >--> b1,m1)) = add(b, rng ({a H addm(a1 >--> b1, m1))) 
as its conclusion (the left- and right-hand sides of the implication respectively). The 
definedness goal is straightforward to justify, and could also be split off as a lemma 

I I .a·;;,l :.:.' A:;:.;...:ac.;2cc: A.:c;...:b:,:TB'o; ccmc.: A:.:,__.,m__,B,-S-e -dom-addm-1. __..., 
li(ai E domaddm(a2 H b,m)) 

In the subproof, the hypothesis can be used to deduce that either a = a 1 or a E domm" 
again via a lemma 

I l_a:..:I._: Ac.;,_a2,_:_A.,_; .cbc.: B_;'-m._: A _ __,_mc-c-B,c; _,a_,.l_,E=do_m_accdccdc.m.c(._a2,__H-'-'b,'-m-')-
. e -dom-addm-E . · · 

Gt-G2 YGt E domm 

or a different lemma, making use of the induction hypothesis a1 ~ dommh might be used 
to deduce additionally that a1 must be different from a in the second case 

a1:A; a2:A; b:B; m:A ~B 

I I 
a1 E domaddm(a2 H b,m); a2 e domm 

e -dom-addm-E-E 
a1-a2 va, e dommAa2:f:Gt 

Either way there are two cases to consider, a = Gt and a* at A a e dommt. In the first of 
these cases, after substituting a1 for a in the required goal the rule 'addm-overwrite' can 
be used to rewrite addm(al H b,addm(al >--> b1,mi)) to addm(al >--> b,m1) in the left
hand side of the equality, then the resulting term rngaddm(a1 H b,m1) can be rewritten 
to add(b, rngm1) using the rule 'rng-defn-addm-e' because a1 e domm1. Similarly the 
right-hand side of the equality can be rewritten to add(b, rng ( {a!} ~ m1) using '~-defn
addm-E' (because a1 E {at}). It therefore remains to be shown that add(b, rngm1) = 
add(b, rng ({a!}~ m1). 

One could of course proceed to show this directly, but the similarity in the structure of 
the two sides of the equality is an indication that some more general rule might be found. 



118 7 Finite Maps 

In such a situation, the aim is to find the smallest subtenns of each expression which are 
equal in the current context, and the appropriate strategy is to look first at those subterms 
which are different on the two sides of the equation. If these can be shown to be equal 
then their equality represents the required rule. If not, larger and larger containing terms 
must be considered until a provable equality is discovered. 

In the current example, the subterms which are different on the two sides of the equation 
are m1 and {at}~ mh and since it is known that a1 E domm1 these two subtenns are 
equal. This suggests proving a lemma of the form 

I {} I 
a:A; m:A ..'?'-,s; ae; domm 

~-defn- a -• { } , a ~m=m 

whence the required equality follows easily by substitution. 

In the remaining subproof (a# a1 1\ a e domm1) the left-hand side of the equality in 
the goal can be rewritten to rngaddm(a1 >--> b"addm(a >--> b,m1)) using the rule 'addm
comm', then thefactthata1 ~ domaddm(a >--> b,mt)(because a1#a anda1 ~ domm1) can 
be used, together with the rule 'mg-defn-addm-e; ',to yield add(b" rngaddm(a >--> b,m1)). 
Meanwhile the right~hand side of the equality can be rewritten in a similar manner, first 
to the expression add(b, rngaddm(a, >--> b1, {a)~ m1) using a lemma 

m 

I f I 
a 1:A; az:A; b:B; m:A----> B; a1 #a2 <4-de n-addm-{a}-:t= 

{at) ~addm(az >--> b,m) = addm(az >--> b, {at) ~m) 

which is easily proved from ·~-defn-addm-~ ', thence to add(b, add(b,, rng ({a H m1))), 

again using the fact that at ~ dom ( {a)~ m1) together with the rule 'mg-defn-addm-~ '. 
Substitution of the induction hypothesis and the commutativity of add (rule 'add-comm' 
from set theory; see Chapter 6) completes the proof. 

An alternative proof of the rule 'mg-defn-addm-e 'might involve trying to identify useful 
new lemmas right at the start. In that case, the earlier discussion, which led to the obser
vation that overwriting an existing maplet in a map using addm yields the same map as 
would be obtained by applying addm to the map from which the maplet to be overwritten 
has been removed, suggests that a useful lemma might be 

a: A; b:B; m:A ~ B 
laddm-defn~-{aJ-'"] addm(a >--> b,m)- addm(a >--> b, {a) ~m) 

The conclusion can be rewritten to rngaddm(a >--> b, {a}~ m) = add(b, rng( {a}~ m) using 
this lemma, and this follows directly from the rule 'rng-defn-addm-e 'in conjunction with 
a lemma stating that a is not in the domain of {a} ~ m: 

a:A; m:A~B 
1<-dom-~-!-{aJI a~ dom({aHm) 

The completed proof is: 



7.5 Using subsidiary definitions 

froma:A; b:B; m:A ~B; ae domm 
I addm(a >--+ b,m):A ~ B 
2 {a}:A-set 
3 ({aHm):A ~ B 
4 a e dom({aHm) 
5 addm(a >--+ b,m) =addm(a >--+ b, {a) ~m) 
6 rngaddm(a >--+ b, {a H m) = add(b, rng( {a)~ m)) 
infer rngaddm(a >--+ b,m) = add(b, rng ({a}~ m)) 

119 

addm-form (hi, h2, h3) 
{a)-form (hi) 
~-form (h3, 2) 

e -dom-~-1-{a) (hi, h3) 
addm-defn+{a}-= (hi, h2, h3) 
mg-defn-addm-.,; (hi, h2, 3, 4) 

=-subs-left(a) (1, 5, 6) 

Note that, although this proof is significantly shorter than the first attempt discussed 
above, all the work has been factored out into the lemma 'addm-defn-~- {a)-='. This 
is of course good technique, especially if that lemma can be similarly proved in a few 
lines by applying similar principles to identify other useful lemmas, as it leads to much 
clearer and much more manageable proofs. Not only that but the new lemmas identified 
in this way are likely to be useful in future proofs, thus making those proofs easier to 
discover and correspondingly simpler. 

Note also that the above proof does not actually depend on the final hypothesis a e domm. 
That hypothesis can therefore be removed yielding a proof of the stronger rule: 

a: A; b:B; m:A ~ B 
Jrng-defn-addmj rngaddm(a >--+ b, m)- add(b, rng ({a}~ m)) 

7.5 Using subsidiary definitions 

Just as one generalises the generator add of set theory to obtain the binary set union 
operator which represents the result of adding each element of one set to another set, 
so one can also generalise addm on maps to obtain the notion of map override, written 
mt t m2 and denoting the result of overwriting the map m1 with each maplet from the map 
m2. Map override can be axiomatised in terms of the generators for finite maps exactly 
as described in Section 7.3 above, and is in fact described by the rules 

m:A~B 
J t-defn-{~ }-rightj m t { >--+} _ m Ax 

I a:A; b:B; mt:A ~B; m2:A ~B 
t-defn-addmj m1 t addm(a >--+ b,m,)- addm(a >--+ b,m, t m,) Ax 

It shares many of the properties of set union, for example idempotence, associativity, and 
that the empty generator is an identity for it 

m:A~B I t-serrl ~'-;:---=-
mtm-m 

\ t-defn-{ ~}-left\ 
m:A~B 

{>-+}tm m 

mt:A ~B; m2:A ~B; m3:A ~B 
(mt t m,) t m, - m, t (m2 t m,) 



120 7 Finite Maps 

but is not in general commutative due to the fact that the maplet addition may replace 
rnaplets in the map mt with those from m2 having the same domain values. It is commuw 
tative, however, in the special case where every value a which is common to the domains 
of the two maps m1 and mz has the same associated range value in both maps, that is if 
m1 (a) = mz(a) for every a in domm, rl dommz. Two maps which satisfy this condition 
are said to be compatible, and they can be combined using a commutative map merge op
erator~ which is a specialisation of the override operator and which is a direct analogue 
of set union. 

From the description given above one can easily formulate an axiomatisation of map 
merge via a rule 

mt:A ~B; mz:A ~B; 'Vae dommt ndommz·mt(a)=mz(a) Ax 

mt 'elmz -mt t mz 

where the third hypothesis represents the condition that the two maps must be compat
ible for the map merge to be defined. However, this rather cumbersome compatibility 
hypothesis means that proofs using this rule will involve reasoning about that long ex
pression. This is avoided by introducing a subsidiary definition representing the notion 
of map compatibility into the theory. A set of rules describing its essential properties can 
then be developed, and these can in turn be used to reason about map merge. 

Because of the inability to record essential typing information, map compatibility can
not be introduced by direct definition and must instead be defined axiomatically. The 
appropriate rule simply makes use of the defining predicate introduced above and is 

lcompatible-defnl . mt:A ~B; mz:A ~B Ax 
compatLble(mi,mz) <=> 'Va E dommt ndommz · mt(a)- mz(a) 

Simple introduction and elimination rules can then be proved from this using the basic 
properties of equivalence: 

I compatible-rj 

I compatible-E I 

mt:A~B; m2:A ~B 
Va E dommt r>dommz · mt(a) = mz(a) 

compatible(mt, mz) 

m1:A ~B; mz:A ~B; compatible(mt,mz) 
Va E dommt r>dommz · mt(a)- mz(a) 

The next step is to develop a library of rules about compatibility. Obvious ones, suggested 
by the fact that the defining predicate is symmetric in m1 and mz and is also trivially true 
if either mr or mz is the empty map, are 

m1: A ~ B; m2: A ~ B; compatible(mt, mz) I compatible-comm I 
compatible(mz, mtl 

m:A~B I compatible-dcfn-{ ~ )-lcftl-c-
0
-m-'p"a':Ctici-bl'""e""( {'...,">-) .-m_,)-

m:A~B 
1 compatiblc-dcfn-{~ }~ 'b/ ( { } ) compatl e m, ~----+ 



7.5 Using subsidiary definitions 121 

Also it is clear that the defining predicate is everywhere well-defined, suggesting a rule 
of the form 

I I mt: A ..'!'.., B; m,: A ..'!'.., B 
~-compatible o(compatible(m,,m,)) 

Two other useful rules, which are perhaps not quite so obvious but which arise naturally 
as lemmas when addressing proofs about map merge, are: 

I eompatible-t-1-lefli 

@ompatible-t -1-right I 

mt:A ~ B; mz:A ~ B; m3:A ~ B 
compatible(m,,m,); compatible(m,, m3 ) 

compatible(mt t m,, m,) 

mt:A ~B; mz:A ~B; m3:A ~B 
compatible(m,, m,); compatible(mt, m3) 

compatible(m,, m2 t m,) 

The main point to note here is that, although one of these rules has to be proved us
ing the basic definition of compatibility, the other can be proved much more easily by 
making use of the first in conjunction with the commutativity property of compatibility. 
Thus, assuming 'compatible-t-1-left' has been proved from basic principles, the proof of 
'compatible-t-1-right' is: 

frommt:A ~B; mz:A ~B; m3:A ~B; 
compatible(m, m,); compatible(m1,m3 ) 

1 mztm3:A~B 
2 compatible(m2, mt) 
3 compatible(m3, mt) 
4 compatible(m2 t m,,m1) 

infer compatible(mt,m2 t m,) 

t-form (h2, h3) 
compatible-comm (hl, h2, h4) 
compatible-comm (hi, h3, h5) 

compatible-t-1-left (h2, h3, hi, 2, 3) 
compatible-comm (1, hi, 4) 

Now the map merge operator can be defined in terms of compatibility via the rule 

r::;;:-:w::, mt:A ~ B; mz:A ~ B; compatible(mt.mz) 
~~~~--~~~~--~~~~~~~~Ax 

mtl.!:!!Jmz -mt tmz

and its properties follow easily from the properties of compatibility and those of map
override. Thus, for example, rules defining compatibility and override for the empty map
('compatible-defn-{ >->}-left', 'compatible-defn-{ >--+}-right', 't-defn-{ >->}-left' and 't
defn-{ >->}-right') lead to counterparts '""·defn-{ >->)-left' and ',_defn-{ >--+}-right' defin
ing map merge with the empty map:

m:A~B
J "-defn-{ ~ }-rightj m "" { >->} _ m

and rules defining compatibility of map override ('compatible-t-1-left' and 'compatible
t-1-right'), together with the associativity rule for map override ('t-ass'), lead to an as
sociativity rule for map merge:

122 7 Finite Maps

The proofs of all these rules follow a similar pattern, as illustrated by the following proof
of '~.e~-ass':

frommt:A ~ B; mz:A ~ B; m3:A ~ B; compatible(mt,mz);
compatible(m,, m,); compatible(mt, m,)

I
2

mt tmz:A ~B
mztm3:A~B

3 mt t (m, t m,): A -"'-+ B
4 mz~&m3 =mz tm3
5 mtle'mz=mt tmz
6 compatible(mt. m, t m,)
7 mt "" (m, t m,) = mt t (m, t m,)
8 compatible(mt t m,, m,)
9 (mt tm,)"""'' =(mt tm,)tm,
10 (mt t m,) t m, = mt t (m, t m,)
11 (mt t m,) ""m, = mt t (m, t m,)
12 (mt t m,)..,m, = mt ""(m, tm,)

13 (mt """'') """'' = mt ""(m, t m,)
infer (mt leJ mz) lei m3 = mt I& (mz leJ m3)

t-form (hi, h2)
t-form (h2, h3)

t-form (hi, 2)
""-defn (h2, h3, h5)
""-defn (hi, h2, h4)

compatible-t-I-right (hi, h2, h3, h4, h6)
""-defn (hI, 2, 6)

compatible-t-I -left (hI, h2, h3, h6, h5)
""-defn (1, h3, 8)
t-ass (hi, h2, h3)

=-trans(c) (3, 9, 10)
=-trans-right(c) (3, 11, 7)

=-subs-left(b) (1, 5, 12)
=-subs-left(b) (2, 4, 13)

The proof of the commutativity of map merge would seem at first sight to require a
different strategy as map override is not commutative in general. However, a little thought
reveals that, by formulating a more specialised rule which relies on the fact that map
override is commutative if the two maps are compatible

I t -comm I-'"'=I =.:.A:__-"'-+ _ _;cB_,_; .:."'cc'c.':.cA:...---->_m_B:_:_; .:,c::..om=p=-at:.:.ib:..:l.:.e.c.(mc.lc.• ;.;."'::;2,_)

· · mt t mz - mz t mt

the same strategy illustrated above can be followed. The proof of the commutativity of
map merge

is then easy. The rule 't-comm' is proved by induction.

7.6 Polymorphic subtypes and associated induction rules

It is quite common when writing a specification to define an invariant on a type defini
tion or on a state declaration which effectively amounts to a statement that only those
elements of the type which have a particular property are of interest. In many cases these
invariants contain clauses which place restrictions on basic data-types or straightforward
type constructors, for example that a particular natural number should be non-zero, and

7. 6 Polymorphic subtypes and associated induction rules 123

some of these restrictions can be quite common, occurring in a whole range of different
and unrelated specifications. Identifying these common restrictions and developing new
theories for the subclasses of the basic types they correspond to can save a lot of work
as the rules describing the properties of the subclass of the type are useful when it comes
to proving properties of all specifications which use it. One example of a restriction to
a basic type has already been seen in Chapter 5, where the data-type N1 corresponding
to the positive natural numbers was introduced. This section illustrates how to define a
subclass of a type constructor.

The basic idea here is to formulate a predicate on the basic type constructor which charac~
terises the required property of the subclass, then the new type constructor is defined as a
subtype (see Chapter 4) of the basic type constructor with that predicate. As an example,
consider the type of bijective or one~one maps. A bijective map is one in which no two
maplets have the same range value, which can be stated as a predicate

Va,b e domm·m(a) = m(b) =>a= b

where the shorthand notation for multiple quantifiers has been used.

On the basis of the lessons learned in the previous section, it makes sense to introduce a
subsidiary definition to represent this predicate to save having to manipulate the compli~
cated expression when reasoning about bijective maps and to bring the formal theory into
line with one's fundamental understanding. Thus, a predicate is~l~l is introduced and is
defined axiomatically via the rule

m:A~B
lis~I~l·defnl Ax

is-1-l(m) <=> Vx,y e domm · m(x) m(y) => x y

The bijective map type, written A ~ B, can then be defined in terms of this via

m def A m • I I(A <----> B = ~ m: _, B I 1s- - m) >

Note that the definition is polymorphic as it is parameterised on the types A and B.

From this definition and the properties of subtypes it is easy to prove the following basic
rules about bijective maps:

m:A~B
[bimap-supertype I m: A ~ B

I bimap-fonn \
m:A-"!.., B; is-1-l(m)

m:A~B

I bimap·EI
m:A~B

is-1-l(m)

One could of course stop here and convert every proof involving bijective maps into a
proof involving only maps in general by using these three rules together with primitive
introduction and elimination rules for the predicate is-1-1:

m:A~B

Vx,y e domm · m(x) = m(y) => x = y
is-1-l(m)

m:A-"!.., B; is-1-l(m)
\is-1-1-E \-w:::-cc-::"':;:,o-,-.:_.:;:;::c.:.,.zi-:c-,--:-:--,:Vx,y e domm · m(x)- m(y) => x- y

124 7 Finite Maps

This approach leads to much repetition of work, however, and it is far better to develop
a theory of bijective maps in their own right.

A particularly useful strategy when constructing a theory describing some subtype of a
type which has an associated induction rule is to develop a specialisation of the induction
rule for that subtype. In general, formulating this rule amounts to putting additional
constraints on the induction step (in the form of extra premises in the sequent hypothesis
which represents it in the rule) to ensure that it steps from one value of the subtype to
the next. Also it is necessary to modify the typing information throughout the rule, and
possibly the base case as well if the base case for the main type is not a member of the
subtype. For bijective maps, it is easy to see that the induction step can be restricted to
step only between bijective maps if an additional constraint is imposed to the effect that
the range value of the map let being added should not already be in the range of the map.
It is also easy to see that the base case need not be altered because the empty map is
bijective. The induction rule for bijective maps is therefore

mo: A <-"'-+ B; P({ H})

a: A, b: B, m:A ..."'--. B, I:: P(addm(a H b,m))
I b. . d I P(m), a E domm, bE rngm ,,.,..

This rule can be proved from the ordinary induction rule for maps as follows. The first
stage is to apply the rules 'bimap-supertype' and 'bimap-E' to the typing hypothesis to
deduce mo:A ...!"..,Band is-1-l(mo) respectively. The ordinary map induction rule can
then be applied after is-1-l(mo) has been introduced into the induction step using the
standard technique of applying '=>-E-left'. Doing all this leads to

from mo:A ..."'--. B; P({H))
a: A, b: B, m: A ..."'--. B, P(m), a E domm, b E rngm !-;,,.,.. P(addm(a >-> b, m))

1 mo: A ...!".., B bimap-supertype (h 1)
2 is-1-l(mo) bimap-E (hi)

3 is-1-l({H }) => P({>->}) (??justify??)
4 from at: A; bt: B; mt: A ...!".., B; is-1-l(mt) => P(mt); at E dommt

inferis-1-l(addm(at H bt,mt)) => P(addm(at H b~omt))
5 is-1-l(mo) => P(mo)
infer P(mo)

(?? justify ??)
map-indn (1, 3, 4)

=>-E-left (5, 2)

The base case (Line 3) is easy to complete, following directly from the hypothesis P({ H})
by vacuous implication introduction (rule ':::>-1-left-vac'). Moreover it is clear that the
induction step has to make use of the sequent hypothesis, and, since the right-hand side
of the implication in the conclusion of the induction step is the same expression that
appears as the conclusion of the sequent hypothesis (after suitably renaming variables),
this suggests that an appropriate strategy is to first apply '=:}-I' to the conclusion of the
induction step, then to use the sequent hypothesis to justify the conclusion of the resulting
subproof. This yields

7.6 Polymorphic subtypes and associated induction rules 125

from mo:A ,.!"...., B; P({.__. })
a: A, b:8, m:A ,.!"...., 8, P(m), a~ domm, be rngm !;;,,,. P(addm(a .__. b,m))

I mo: A --"'-. B bimap-supertype (hI)
2 is-1-l(mo) bimap-E (hi)
3 is-1-I({...,})=>P({...,}) =>-l-left-vac(h2)
4 from a1:A; b,:8; m1:A--"'-> 8; is-1-l(mt) => P(mt): a1 e domm1

4.1
4.2

4.2.1
4.2.2
4.2.3

o(is-1-l(addm(at b,,mt)))
from is-1-l(addm(a, .__. b1,mt))

(?? justify ??)

mt: A ,.!"...., B (?? justify ??)
bt e rngm, (??justify??)
P(mt) (??justify??)

infer P(addm(a1 .__. b1,m1)) sequent h3 (4.hl, 4.h2, 4.2.1, 4.2.3, 4.h5, 4.2.2)
infer is-l-l(addm(a1 .__. b1,m1)) => P(addm(a1 .__. b1,m1)) =>-! (4.1, 4.2)

5 is-1-l(mo) => P(mo) map-indn (I, 3, 4)
infer P(mo) =>-E-left (5, 2)

Now Line 4.2.1 follows from 'bimap-form', generating a new goal is-1-l(m1). This,
together with the induction hypothesis is-l-l(m1) => P(m1), justifies Line 4.2.3. The
remaining goals can easily be made the subject of lemmas about is-1-1 following the
strategies discussed in Section 7 .4. The finished proof is:

frommo:A ,.!"....,8; P({))

1
2
3

a: A, b:B, m:A ,.!"...., B, P(m), a e domm, b.,; rngm !;;,,,. P(addm(a .__. b,m))

mo: A --"'-> B bimap-supertype (hI)
is-1-l(mo) bimap-E (hi)
is-1-1({ .__.}) => P({ .__.}) =>-l-1eft-vac (h2)

4 from a1:A; b1:B; m1:A--"'-. B; is-1-1(m1) => P(mt): a1 e domm1

4.1
4.2
4.3
4.3.1
4.3.2
4.3.3
4.3.4

addm(a1 >-> bt,m1):A--"'-. B addm-form (4.h1, 4.h2, 4.h3)
O(iS-1-I(addm(at H bt.mt))) 0-is-1-1 (4,1)
from is-1-l(addm(a1 >-> bt.mt))

is-1-l(m1) is-1-1-addm-E-e -map (4.hl, 4.h2, 4.h3, 4.3.h I, 4.h5)
m1:A ,.!"...., 8 bimap-form (4.h3, 4.3.1)
bt e rngm1 is-1-1-addm-E-~ -rng (4.hl, 4.h2, 4.h3, 4.3.hl, 4.h5)
P(mt) =>-E-1eft (4.h4, 4.3.1)

infer P(addm(a1 >-> b1,m1)) sequent h3 (4.h1, 4.h2, 4.3.2, 4.3.4, 4.h5, 4.3.3)
infer is-l-1(addm(a1 >-> b,,m1)) => P(addm(at .__. b,,m,)) =>-! (4.2, 4.3)

5 is-1-l(mo) => P(m0) map-indn (1, 3, 4)
infer P(mo) =>-E-1eft (5, 2)

The following lemmas have been used:

126

m:A~B
lo-is-1-11 li(is-1-l(m))

I is-1-1-addm-E-< -mg I

I is-1-1-addm-E-< -map I

a:A; b:B; m:A ~B
is-l-1(addm(a >--+ b,m)); a" domm

b <! rngm

a:A; b:B; m:A ~B
is-1-1(addm(a >--+ b,m)); a" domm

is-1-1(m)

7 Finite Maps

·This induction rule can now be used to prove new rules about bijective maps.

7. 7 Map comprehension

The notion of set comprehension described above in Section 6.7 effectively provides a
means of defining a set implicitly by giving a predicate which all its members should
satisfy. A similar mechanism, map comprehension, allows maps to be defined in an
analogous way.

The map comprehension expression1

if(a) >--+ g(a) I a: A · P(a)}

represents the collection of maplets with domain value /(a) and range value g(a) for all
values a satisfying the predicate P(a). Just as the analogous set comprehension expression
does not necessarily represent a set, so this map comprehension expression does not
necessarily represent a map. The first condition that has to be satisfied if the above
expression is to denote a map of type B ~Cis thatf(a) and g(a) must respectively be
of types B and C for all values of a satisfying P(a). This leads to hypotheses of the form:

a: A, P(a) I;; f(a): B a: A, P(a) I;; g(a): C

The next constraint arises as a result of the condition that no two maplets in a map may
have the same domain value but different range values. This effectively means that if
there are two (or more) distinct values a1 and a2 which satisfy the defining predicateP(a)
and which are equal under f (i.e. if /(at) = f(a2)) then they must also be equal under g
(i.e. g(a,) = g(a,)). This is expressed by a hypothesis

Two final constraints arise in a similar way to the corresponding ones on the set com
prehension expression. The first is that the predicate P(a) must be well-defined for all
values of a in order that the contents of the map be well-defined. The second is that the
number of maplets in the map must be finite. Note that this latter condition is expressed
by saying that the number of different possible domain values (that is values of f(a)) is

1 Again, the extension to the case where/, g and P involve more than one variable is obvious.

7. 7 Map comprehension 127

finite, making the domain of the map finite. That the range of the map is also finite is a
consequence of this (see Exercise 5 below). Together these constraints give rise to two
more hypotheses:

Vx: A -oP(x)

3s: B-set · Va: A · P(a) => f(a) e s

The formation rule for map comprehension is therefore:

I map-comp-form I

Vx:A -oP(x)
x:A, P(x) f;.f(x):B

x:A, P(x) f;. g(x): C

3s: B-set · Vy: A · P(y) => f(y) E s
Va, az:A · P(at) A P(az) A[(a,) =f(az) => g(a,) = g(az)

{f(x) >-> g(x) I x:A · P(x)):B ____, C Ax

Of course defining the formation rule alone is not sufficient to define map comprehension
entirely- that only allows one to show that some map comprehension expression denotes
some map, but says nothing about which map that might be. The latter is best defined
by linking map comprehension to the definition of map equality. Since this is defined in
terms of domain and map application, defining both of these for the map comprehension
expression is sufficient to define it completely.

The domain of the map comprehension expression is very easy to define, being simply the
set of all possible values of f(a). This is expressed most easily using set comprehension:

Vx:A · oP(x)
x:A, P(x) ~f(x):B

x: A, P(x) fx g(x): C

3s:B-set · Vy:A · P(y) => f(y) e s

r.-~~--~--V~a1~,a~2~:A~-P~(~a~t)~A~P~(~a~z)+A~[~(a2,~)_=~fT.(a~z)~=>~g~(Fa,~)~=~g~(~~~) I dom-defn-map-comp I dom {f(x) >-> g(x) 1 x: A · P(x)) - {f(x) I x: A · P(x)} Ax

Map application is harder to define, however, and needs to make use of the unique choice
operator of Section 3.5.3. This description works because it is known from the discussion
of the formation rule above that all values of a which generate the correct domain value
yield the same range value. The rule describing the application of a map comprehension
expression is therefore:

b:B
Vx: A · IJP(x)

x:A, P(x) f;.f(x):B

x: A, P(x) ~ g(x): C

3s: B-set · Vy: A · P(y) => f(y) e s
Va,, az:A · P(a,) A P(az) A[(a,) = f(az) => g(a,) = g(az)

b e dom {f(x) >-> g(x) I x: A · P(x)} I at·defn-map-comp [-'{f"'(x"')-,...-
8
-=,(x..:;)"'l ::x:::.:A;.c·"'Po;;(x",)')(~b"') '-'_==~='----- Ax

tc:C · Vx:A -P(x)A b=f(x) => c =g(x)

Other fom1s of the notation, analogous to those given for set comprehension at the end
of Section 6.7, can be formalised. Thus, the variant of the general form in which the

128 7 Finite Maps

quantification ranges over a set instead of a type, which is written

is defined axiomatically via:

if(x) >---> g(x) I x e s · P(x)}

s:A-set
Vx e s · liP(x)

x:A, X E s, P(x) 1:;/(x): B

x:A, X E S, P(x) f; g(x): C

3t: 8-set· Vy E s · P(y) => f(y) E t

~~~~~~-~V~a~,,~a~z~eds~·fP~0Tt~)A~P~0~z)~A~/r(~a~,)~/~0~zl)~=>~g~0~,)~g~(~a~,) Lmap-comp-defn-setl if(x) >---> g(x) I X E s. P(x)} Ax 

if(x) >---> g(x) I x:A ·XEs AP(x)) 

and the specialisations of both forms to the case where the predicate P(x) is identically 
true are directly defined by: 

del 
if(x) >---> g(x) I x E s} = if(x) >---> g(x) I x E s · true} 

del if(x) >---> g(x) I x: A} = if(x) >---> g(x) I x: A · true} 

Again, the first of these special cases has a relatively simple formation rule, particularly 
whenf(x) is of type B for all x of type A: 

s:A-set 
x:A 1:;/(x):B 

x:A, XEs f; g(x):C 

'Ia,, a, e s·f(a,) =f(az) => g(at) =g(az) 
if(x) >---> g(x) I x E s}:B __, C 

and the usefulness of the second is limited by considerations of finiteness. 

7.7.1 Reasoning about map comprehension 

As might be expected from the complexity of the axioms, reasoning about the general 
form of map comprehension described above is even more tortuous than reasoning about 
set comprehension. Again, the best strategy is to divide the task up into a series of lemmas. 
In this way, expected properties of map comprehension can be proved, for example that 
applying the map to a domain element of the formf(a) yields g(a): 

a:A; P(a) 
Vx: A· liP(x) 

x:A, P(x) 1:;/(x):B 
x: A, P(x) 1:; g(x): C 

3s: B-set · Vy: A · P(y) => f(y) E s 
Va1,a2:A · P(a1) A P(a2) A/(at) = f(az) => g(at) = g(az) I at-dcfn-map-oompj(a) I if(x) >---> g(x) 1 x: A . P(x))(f(a)) _ g(a) 



7.8 Summary 

and that the range is formed from the set of possible values of g(x): 

\fx:A-IiP(x) 
x: A, P(x) V<x): B 
x:A, P(x) ~ g(x): C 

3s: B-set · \fy: A · P(y) ~ f(y) e s 
\fa,,az: A· P(a,) 1\ P(az) Aj(at) = f(az) ~ g(a1) = g(az) 

I rng-defn-map-comp I rng {f(x) ,.., g(x) I x: A . P(x)} - {g(x) I x: A . P(x)} 

129 

Reasoning about special cases of map comprehension can be much simpler than this, 
however. For example, the map comprehension expression 

{x ,.., f(x) I x e s} 

is described by the following rules: 

s:A-set 
x:A, X E S ~f(x):B I map-comp-form-left-setl -,---,-;-;:-;----'::..,.-;---,;r-;;:-

. · {x,..,f(x)lxes):A-+8 

s:A-set 
x:A, XEs ~f(x):B I dom-defn-map-comp-Icft-setl-d-:-

0
-m-{,..x-,..,-,/"'(x')--clc...x_e_s 1,.---_-

8 

a: A; s: A-set; a e s 
x:A, X E s ~f(x):B I at-defn-map-comp-left-set 1-{'x-,..,----c/"(x-c)-cl x-e-'s~).,.(a-c) ---,/""(a-,-) 

An example of the use of these rules appears in Exercise 4 in Section 12.5.3. 

7.8 Summary 

Points covered in this chapter include: 

• Axiomatising operators on a data type in terms of generators. 

• Structuring a proof into lemmas. 

• Introducing new concepts to help with reasoning. 

• Developing induction rules for subtypes. 

• Map comprehension expressions. 

7.9 Exercises 

1. Map composition and distributed map merge 

Two map operators which are sometimes useful but which have not been described above 
are map composition and distributed map merge. 



130 7 Finite Maps 

Map composition, written m1 a m2. represents a map which is constructed from the map 
m2 by applying the map m1 to the range value of each of its map lets (leaving the domain 
value untouched). For example, the expression 

{b1 H CJ,bz H c,,b, H c,) o {a1 H b1,az H bz} 

represents the map 

{a! H CJ,az H C2} 

If the map mz is of type A --'!'.., B and the map m1 is of type B --'!'.., C then the composed 
map m1 o m2 is of type A ~ C. Map composition is a partial function which is only 
Well-defined if rngm2 s; domm1. 

Distributed map merge, written merges, generalises the binary map merge operator 1.!!;.1 

introduced above (see Section 7.5) to a set of maps s (compare the set union and the 
distributed set union operators on sets described in Section 6.6). This represents the map 
formed by combining all the map lets from all the maps in the set of maps s, and is only 
well-defined if all the maps in the set are compatible. 

(a) Use the techniques described in Section 7.3 of this chapter to develop an axiomatisa
tion of these two operators. 

(b) State and prove the appropriate formation rules. 

2. The proof of 'addm-defn-~-{a )·=' 

Use the techniques described in Section 7.4 of this chapter to develop a set of subsidiary 
lemmas to prove 'addm-defn-~-{a )-=·. 

3. The proof of 'is-1-1-addm-E-~ -rng' 

Prove the rule 'is-1-1-addm-E-e -rng'. Hint: use 'e -rng-E' and 'contradiction'. 

4. Map inverse 

The inverse of a one-one map m is written m-1 and effectively reverses each maplet in m so 
that the domain value becomes the range value and vice versa. It is defined axiomatically 
via: 

m:A~B 
I '
·nv-dcfn 1--~~_::.:_:.:.:_.:.._~::._--~ Ax 

· · m·' = { m(a) H a I a E domm) 

Prove: 

(a) that the range of the inverse map is the domain of the map: 

m:A~B I mg-defn-invl ( •1) d . rng m = omm 

(b) that the domain of the inverse map is the range of the map: 

m:A~B I dom-dcfn-inv 1-d~o...:m:.:(:.:.n:., ;,.l)_=_:.r..::n:_g_m_ 



7.9 Exercises 

(c) that the inverse map is of type B ~A if the map is of type A ~ B: 

m:A~B 
linv-fonnl m ':B ~A 

5. The range of a map comprehension expression is finite 

Prove the rule 
a:A; P(a) 

\fx:A · oP(x) 
x:A, P(x) f;f(x):B 

x: A, P(x) f; g(x): C 

3s:B-set·lfy:A·P(y) =>f(y)e s 

I e -dom-map-comp-l,{(a) I If a,,a,:A · P(a,) A P(az) A/(a,) = f(az) ==> g(a,) = g(az) 
/(a) e dom {f(x) >-> g(x) I x: A · P(x)} 

Use it to prove 

I dom-finitc=>rng-finite I 

\fx:A · oP(x) 
x:A, P(x) fxf(x):B 

x: A, P(x) f; g(x): C 

3s: B-set · \fy: A · P(y) ==> f(y) e s 
Ita,, a,: A· P(a,) A P(az) A/(a,) =f(a,) ==> g(a,) = g(az) 

3t: C-set · If a: A · P(a) ==> g(a) e t 

131 





Chapter 8 

Finite Sequences 

8.1 Introduction 

This chapter introduces the theory of finite sequences, sometimes simply called lists. A 
sequence is an ordered collection of elements, with repetitions allowed. In VDM~SL, the 
expression A" stands for the type of finite sequences of elements drawn from the type A. 
For example, N* consists of lists of natural numbers, r•• consists of lists of lists of values 
ofT, and so on. 

Section 8.2 gives the basic axiomatisation of lists in terms of generators and an induction 
rule. A worked example illustrates the proof of a useful derivative of the induction rule. 
Section 8.3 introduces the partial hd and tl operators, and equality is defined on lists in 
Section 8.4. This basic repertoire of operators is expanded in Section 8.5, which also 
affords opportunities to illustrate a number of proof strategies including rewriting both 
sides of an equality, the use of lemmas corresponding to limbs of a conditional, and an 
extension to strategies for proof by induction. Section 8.6 shows how consideration of 
alternative sets of generators for a data type can simplify some proofs. 

8.2 Basic axiomatisation 

Lists can be given explicitly by listing their members in order: [4, 3, 3] for example. In 
order to reason effectively about lists, however, it is necessary to develop a slightly more 
abstract notation which allows general rules about lists to be formulated independently 
of their length and contents. To do so, it is first necessary to choose a set of generators 
for the type of lists. 

One particularly simple set of generators for A • consists of the empty list [] and the 
operator cons which appends a single element onto the front (left-hand end) of a list. For 
example 

[5] = cons(S, []) 

[3, 7, 9] = cons(3, cons(?, cons(9, [ ]))) 

Since any finite list can be built up by sufficiently many applications of cons and [ ], these 
two operators are generators for finite sequences. There are many other possible choices 
of generator set, one of which is discussed in Section 8.6, but this choice is probably the 
simplest and most fantiliar to many people. 



134 8 Finite Sequences 

The axiomatization of this theory starts with formation rules for the generators: 

The empty sequence is polymorphic: the same value [] is used to represent the empty 
list of numbers, the empty list of lists of numbers, the empty list of characters, and so on. 
The symbol A+ stands for the type of non-empty lists over A and is defined by 

A+ def <s:A'Is¢[]?> 

The formation axiom for cons states that the generator produces a non-empty sequence: 

a:A; s:A* I cons-form:::§:'] ( )·A+ Ax cons a,s. 

The following rules can be proved by application of the rules of subtyping (Section 4.5): 

a:A; s:A* a:A; s:A* I cons-form I· ( ) A, I rons4-[ J I ( ) [] · · cons a, s : cons a,s * 
Having chosen a set of generators, the next step is to formulate the appropriate induction 
rule. Recall that, in the induction rule for natural numbers (Chapter 5), the base case 
of the induction corresponds to zero and the induction step to going from k to succ (k) 
for arbitrary k. The rule was valid because every natural number can be generated by 
applying the successor operator to zero sufficiently many times. The analogous induction 
rule for lists is 

s:A'; P([]) 
.--:-.-,--, h:A, t:A', P(t) 1;;,, P(cons(h,t)) 
I seq-mdn I . P(s) Ax 

TI1e base case corresponds to the empty list. The induction step corresponds to going from 
t to cons(h, t) for arbitrary h and t of agreeing types. More precisely, given an arbitrary 
element h of type A and an arbitrary list t of type A', the induction step is to prove 
that P(cons(h, t)) holds under the assumption that P(t) holds (the induction hypothesis). 
Examples of the use of 'seq-indn' are given below. 

The following "head normal form" rule is a simple consequence of the induction rule: 

s:A+ 
h:A, t:A' 1;;, P(cons(h,t)) 

I seq+-hnfl P(s) 

It says that, in order to prove that P holds for any non-empty lists, it suffices to consider 
lists of the form cons(h, t). The proof of 'seq+-hnf' is by sequence induction. Because 
the hypothesis s: A+ really represents the two hypotheses s: A • and s * [ ], the '=}-E-left' 
strategy of Section 5.4 is employed. Recall that this centres on the use of the induction 
rule to prove an implication with the non-typing hypotheses appearing as antecedents. In 
this case, the implication to be proved is 

S¢ [] =* P(s) 

The skeleton of the proof is therefore: 



8.2 Basic axiomatisation 

froms:A•; h:A, t:A' 1-;;,,P(cons(h,t)) 

I s:A' 
2 s;<[] 

3 s" [] => P(s) 
infer P(s) 

seq+-supertype (hI) 
seq+-E (hi) 

(?? justify ??) 
=>-E-left (3, 2) 

135 

Now the object is to prove the implication on Line 3. The assertion on Line 1 allows 
'seq-indn' to be applied, yielding the following: 

froms:A•; h:A, t:A' 1-;;,, P(cons(h,t)) 
1 s:A• 
2. s;<[] 

3 [];<[] =>P([]) 
4 fromh':A; t':A'; {;t[] =>P(t') 

infer cons(h',t')" [] => P(cons(h',t')) 
5 s;<[]=>P(s) 
infer P(s) 

seq+-supertype (hi) 
seq+-E (hi) 

(?? justify ??) 

(?? justify ??) 
seq-indn (1, 3, 4) 

=>-E-left (5, 2) 

The antecedent of the base case on Line 3 is false, suggesting that it should be justified by 
'=>-1-right-vac'. The induction step is also straightforward: the sequent hypothesis (h2) 
is directly applicable to the local assumptions of Subproof 4. The finished proof is as 
follows: 

froms:A•; h:A, t:A' 1-;;,,P(cons(h,t)) 

I s:A' 
2 S¢[] 
3 []:A' 
4 ~([];<[]) 

5 [];t[] =>P([]) 
6 from h':A; t':A'; t'" [] => P(t') 
6.1 P(cons(h', t')) 

infer cons(h',t') => P(cons(h', t')) 
7 s" [] => P(s) 
infer P(s) 

seq+-supertype (hi) 
seq+-E (hi) 

[]-form 
~-;<-self-! (3) 

=>-1-right-vac (4) 

sequent h2 (6.hl, 6.h2) 
=>-1-left-vac (6.1) 
seq-indn (1, 5, 6) 

=>-E-left (7, 2) 

Note that the induction hypothesis (6.h3) has not been used in the proof. This should make 
the reader suspicious that the proof need not necessarily be done by induction. In fact, the 
induction rule has merely been used as a way of introducing names for the head and tail 
of the lists. The concept of a destructor operator allows one to reason directly about the 
constituent parts of a list in a less contrived way. The next section introduces destructors, 
while Exercise 1 (Section 8.8) affords a comparison of proofs with and without the use 
of destructors. 



136 ~ .Finite Sequences 

8.3 Destructors 

Operators which build new values from other values are called constructors. Operators 
which break constructed values into their constituent parts are called destructors. The 
destructors corresponding to cons are called hd (for head) and II (for tail). When applied 
to a non-empty list, hd returns the leftmost element in the list and tl returns the remainder 
of the list. For example: 

hd[x,y,z] =X 

tl[x,y,z] = [y,z] 

The axioms defining hd and t1 are 

a·A' s·A· I hd-defn-cons I hd · '( · ) Ax cons a,s -a 
a:A; s:A• I tl-defn-cons I Ax 

t1 cons( a, s) - s 

The hd and t1 operators are not defined on the empty list. From these the following 
formatipn rules can be proved using 'seq+-hnf': 

s:A+ 
I hd-form I hd s: A 

Destructor operators are the "inverse" of constructor operators in that a value can be 
reconstructed from its constituent parts. Thus, it is possible to derive the following rule 
by a simple application of 'seq+-hnf' and the axioms above: 

s:A+ 
lcons-11----~~~~-

cons(hds, tis)- s 

8.4 Equality between lists 

Two lists are equal if and only if they contain exactly the same elements in exactly the 
same order. The following rules are consequences of the definitions already given: 

I I a1:A; az:A; St:A•; sz:A• 
--seq-dcfn-cons 

. . cons(at,St)- cons(az,Sz) ~ a1- az A St - Sz 

j--seq+-defn j S! Sz ¢:::> hdSt hds2 A tlSt 

8.5 Operators on lists 

This section gives definitions of some standard operators on lists in VDM-SL and illus
trates how to reason about them. Some proof techniques of more general applicability 
are discussed. 



8.5 Operators on lists 137 

8.5.1 The singleton list 

The singleton list constructor[-] denotes lists with only one element. Its direct definition 
is very simple: 

def 
[a] = cons( a, []) 

The following rules are proved from the the rules given already by folding the definition 
of the singleton: 

a: A 
lla]-fonnl [a]:A' 

a: A I hd-defn-[all hd [a] 

8.5.2 The length of a list 

a 
a: A 

lu-defn-[all tl[a] _ [] 

The length of a list is given by the len operator. Its direct definition is as follows: 

lens def if s = [] then 0 else succ(len (tis)) 

This definition is "recursive" in the sense that unfolding lens in a proof yields another 
expression in tenns of len. It is important to check that it is well-founded. This can be 
done by proving the formation rule, which states that the len operator always returns a 
denoting value: 

s·A"' 
llen-fonn I le~s: J\J 

The proof proceeds by induction on s: 

from s:A"' 

I len[]:JIJ 
2 fromh:A; t:A'; lent:lll 

infer len cons(h, t): J\J 
infer lens: 1\1 

(?? justify ??) 

(?? justify ??) 
seq-indn (hi, I, 2) 

The base case is straightforward, elintinating the conditional in the definition of len be
cause the condition is true: 

froms:A"' 
I O:J\J 
2 []:A' 
3 (if [] = [] then 0 else succ(len (tl [ ]))) = 0 
4 len[]=O 
5 len[]:lll 

0-form 
[]-form 

condition-true-ident (2, I) 
folding (3) 

=-type-inherit-left (I, 4) 



138 8 Finite Sequences 

The induction step is similar. In order to eliminate the conditional, one must show 
~(cons(h,t) = [])and succ(len(tlcons(h,t))):N. The former follows from the defini
tion of equality on sequences, and the latter from the induction hypothesis and formation 
rules of succ, tl and cons. Since the length of a sequence is a natural number, the proof 
relies on some elementary properties of natural numbers, as discussed in Chapter 5. The 
rest of the proof is as follows: 

from s:A* 

6 
6.1 
6.2 
6.3 
6.4 
6.5 
6.6 

6.7 

fromh:A; t:A'; lent:N 
t1 cons(h, t) = t 
lentlcons(h, t): N 
succ(len (tlcons(h, t))): N 
cons(h, t)" [ 1 
~ ( cons(h, t) = [ ]) 

tl-defn-cons (6.hl, 6.h2) 
=-subs-left(b) (6.h2, 6.1, 6.h3) 

succ-form ( 6.2) 
cons4-[] (6.hl, 6.h2) 

unfolding (6.4) 
(if cons(h, t) = [ 1 then 0 else succ(len (tlcons(h, t)))) = 

succ(len (tl cons(h, t))) condition-false (6.3, 6.5) 
len cons(h, t) = succ(len (tlcons(h, t))) folding (6.6) 

infer lencons(h, t): N =-type-inherit-left (6.3, 6.7) 
infer lens: N seq-indn (hl, 5, 6) 

8.5.3 The set of elements in a list 

The operator elems gives the set of elements in a list. It is defined recursively as follows: 

elemss def if s = [] then {} else add(hds, elems (tis)) 

The following formation rule is proved in an analogous way to 'lenwform' above: 

s:A'" 
! elcms-form I elemss: A-set 

8.5.4 List concatenation 

The operator,.., concatenates one list onto the front of another list. For example: 

[9, 23,51 ~ [9, 41 = [9, 23, 5, 9, 41 

A direct definition such as 

~ del . [1 ( ~ ) s t = 1fs = thent else cons hds,tls t 

is unsatisfactory since it places no type restrictions on t and thus allows nonsensical 
statements such as ([ 1 ~ 0) = 0 to be deduced. (Similar problems were encountered with 
the definition of c in Chapter 6.) Since s ..... t should be undefined when either sort is 
not a list, an axiomatic definition is more appropriate than a direct definition here. The 



8.5 Operators on lists 

axioms are as follows: 

s:A* 
1~-defn-[]-leftl []~s-s Ax 

From these axioms can be derived rules such as 

s:A• 
~~-defn-[]-rightl s~ [] _ s 

139 

and the associativity of'"', as well as the following rules which relate various operators 
defined so far and the theories of sets and natural numbers: 

]ien-defn:··] !t:A*; Sz:A* 
len (St sz) - len St +len Sz 

St:A*; sz:A* I elems-defn-~ i---,--,-~"-7'-'--'_c:.;.:..:.:__--,-__ 
elems(st sz)- e1emss1 u elemssz 

The proof of 'len-defn-.... , provides an opportunity to discuss the use of the rules introduced 
so far in the context of a proof based on rewriting of terms. The proof proceeds by 
induction on St: 

I len([]~sz)=len[]+lensz 
2 fromh:A; t:A'; len(t~ s) = lent+lens2 

infer len (cons(h, t) ~ s2) = len cons(h, t) + lensz 
infer len (s1 .... sz) = lens1 + lensz 

(?? justify ??) 

(?? justify ??) 
seq-indn (hi, I, 2) 

The proofs of both the base case and induction step are essentially done by rewriting the 
conclusions. For example, if one were presenting an informal proof of the base case, the 
argument might take the following form. 11te base case involves proving that 

len ([] ~ sz) = len[]+ lensz 

which can be done by first rewriting the left-hand side to len s2 because [] .... s2 = s2: 

lensz = len[]+lensz 

Then the right-hand side rewrites to 0 + lens2 because len [] = 0, giving the following: 

tens2 =0+1ens2 

This final result is known to be true because len s2 is a natural number and n = 0 + n for 
any natural number n. 



140 8 Finite Sequences 

In the formal framework used here. each rewriting step is a backwards application of an 
'=-subs' or related ('=-trans' or '=-type-inherit') rule, with the relevant equality coming 
from forwards reasoning from the hypotheses. Consider the base case again: 

1 len([]~ s2) =len [] + lens2 (?? justify ??) 

The first rewriting is of len ([] ~ s2) to lens2. This is formalised as follows: 

1 lens2 =len[]+ lens2 
2 len([]~ s2) = len[]+lens2 

(?? justify ??) 
=-subs-??(?, 1) 

The validity of the rewriting depends on showing [] ~ s2 = s2, which follows by applying 
'~-defn-[ ]-left' to hypothesis h2: 

fromst:A•; sz:A• 
1 []~s2=s2 

2 lens2 =1en[]+lens2 
3 len([]~ s2) = len[]+lens2 

~-defn-[ ]-left (h2) 

(?? justify ??) 
=-subs-left(b) (h2, 1, 2) 

The second rewrite proceeds similarly, using 'len-defn-[]': 

from St:A•; Sz:A• 
1 []~ 82 = 82 

2 O:N 
3 len[] =0 

4 tens2 =0+tens2 

5 lens2=len[]+lens, 
6 len([]~ s2) =len [] + 1ens2 

~-defn-[ ]-left (h2) 
0-form 

len-defn-[] 

(?? justify ??) 
=-subs-left(b) (2, 3, 4) 

=-subs-left(b) (h2, 1, 5) 

The base case is completed by appealing to the theory of natural numbers and the forma~ 
tion rule for len, as suggested by the informal argument. The completed formal proof of 
the base case is: 



8.5 Operators on lists 

froms1:A•; s2:A~ 
1 [J~s2 =s2 
2 0:1\J 
3 len[] =0 
4 lens,:l\1 
5 lens2=0+Iens2 
6 lens2 = len[]+lens2 

7 len([]~ s2) = len[]+lens2 

~-defn-[ ]-left (h2) 
0-form 

len-defn-[] 
len-form (h2) 

+-defn-0-left-rev (4) 
=-subs-left(b) (2, 3, 5) 

=-subs-left(b) (h2, 1, 6) 

141 

A similar process leads to completion of the induction step, the goal of which is as follows: 

len (cons(h, t) ~ s2) = (lencons(h, t)) + (lens2) 

The left-hand side of this expression can be rewritten to len cons(h, t ..... s2) by •'""-defn
cons-left', thence to succ(len (t ~ s2)) by 'len-defn-cons', and finally to succ(len t + lens2) 

by the induction hypothesis. The right-hand side of the induction goal can be rewritten 
to succ(len t) + lens2 by 'len-defn-cons', and thence to succ(len t+ lens2) by '+-defn-succ
left-comm' from the theory of natural numbers. The formal proof of the induction step 
is as follows: 

8 tromh:A; t:A'; len(t~s2)=1ent+lens2 
8.1 t~ s2 :A' 
8.2 cons(h,t~ s2):A' 
8.3 cons(/z, t) ~ s2 = cons(h, t ~ s2) 

8.4 lent~ s,: N 
8.5 succ len(r~ s2):N 
8.6 len cons(h, t~ s2 ) = succ len (t~ s2 ) 

8.7 len r: N 
8.8 succ len 1: N 
8.9 len cons(h, t) = succ lent 
8.10 succ(lent+ lens,)= succ lent+ lens, 
8.11 succ(len t +lens,) = len cons(h, t) +lens, 
8.12 succlen(t~ s2 ) = lencons(h,t)+lens, 
8.13 len cons(h, t ~ s2 ) = len cons(h, t) +lens, 

infer len (cons( h. t) ~ s,) = len cons(h, t) +len s2 

~-form (8.h2, h2) 
cons-form (8.hl, 8.1) 

~-defn-cons-left (8.h1, 8.h2, h2) 
len-form (8.1) 

succ-form (8.4) 
len-defn-cons (8.hl, 8.1) 

len-form (8.h2) 
succ-form (8.7) 

1en-defn-cons (8.h1, 8.h2) 
+-defn-succ-left-comm (8.7, 4) 

=-subs-left(b) (8.8, 8.9, 8.10) 
=-subs-left(a) (8.4, 8.h3, 8.11) 

=-trans(b) (8.5, 8.6, 8.12) 
=-subs-left(b) (8.2, 8.3, 8.13) 

It is interesting to compare this proof based on rewriting terms to the example of a "chain 
of equality" proof in Section 3.4. The "chain of equality" style of reasoning is a special 
case of the more general rewriting of terms on both sides of the equality discussed in this 
section. In fact, the proof in Section 3.4 could be given the same systematic treatment 
that 'len-defn-~' has received here. 



142 ~ t'mne ~equences 

8.5.5 Distributed concatenation 

The distributed concatenation operator cone, when applied to a sequence of sequences s, 
returns the concatenation of all the sequences ins. For example: 

cone[[!, 3], [5], [ ], [3]] =[I, 3, 5, 3] 

The cone operator is defined recursively in a way by now familiar to the reader: 

cones def ifs=[] then[] else(hds)~conc(tls) 

.The appropriate fonnation rule is as follows: 

s· A** 
leone-form! · A* cones: 

Its proof by induction is in principle straightforward, but is made difficult to follow by 
the introduction and elimination of the conditional expressions corresponding to the ex
pansion of cone. The proof is as follows: 

from s:A.-. 
[]:A' 

2 (if[]=[] then[] else hd[]~(conctl[])) = [] 
3 cone[]=[] 
4 conc[]:A' 
5 tromh:A"; t:A""'; conct:A• 

[]-form 
condition-true-ident (1, I) 

folding (2) 
=-type-inherit-left (I, 3) 

5.1 (h~ (cone t)):A' ~-form (5.hl, 5.h3) 
5.2 tlcons(h, t) = t tl-defn-cons (5.hl, 5.h2) 
5.3 hdcons(h, t) = h hd-defn-cons (5.hl, 5.h2) 
5.4 cons(h, t)" [] cons-¢-[] (5.hl, 5.h2) 
5.5 ~(cons( h. t) = []) unfolding (5.4) 
5.6 (if cons(h, t) =[]then[] else h~(conct)) = (h~(conct)) 

condition-false (5.1, 5.5) 
5.7 (if (cons(h, t) = [])then [] else (h ~(cone t))): A' 

5.8 

5.9 

=-type-inherit-left (5.1, 5.6) 
(if (cons( h. t) = [])then [] else (hdcons(h, t) ~(cone t))): A • 

=-subs-left(b) (5.hl, 5.3, 5.7) 
(it (cons( h. t) =[])then []else (hdcons(h, t) ~(cone tlcons(h, t)))):A' 

infer (cone cons(h, t)): A • 
infer cone s: A" 

=-subs-left(b) (5.h2, 5.2, 5.8) 
folding (5.9) 

seq-indn (hl, 4, 5) 

In many cases where an operator is defined via a conditional, proofs can be simplified 
by using lemmas corresponding to the application of the conditional in cases where the 
condition does and does not" hold. In the case of the cone operator, these lemmas are as 
follows: 



8.5 Operators on lists 143 

I cooc-dcfn-[J I cone [] _ [] 

The proof of 'cone-form' (and any number of other proofs) can now exploit the lemmas, 
instead of expanding the definition of cone, resulting in the simpler proof shown below: 

from s:A"'* 
I []:A' 
2 cone[]=[] 
3 conc[]:A' 
4 fromh:A•; t:A"'*; cone t:A* 
4.1 (h~ccnct):A' 

4.2 ccnc cons(h, t) = h ~cone t 
infer (cone cons(h, t)): A' 

infer cone s: A • 

8,5,6 Sequence application 

[]-form 
ccnc-defn-[] 

=-type-inherit-left (1, 2) 

~-form (4.hl, 4.h3) 
ccnc-defn-cons (4.hl, 4.h2) 
=-type-inherit-left (4.1, 4.2) 

seq-indn (hi, 3, 4) 

When a sequence is applied to a non-zero natural number i, the result is the ith element 
of the sequence. Sequence application is therefore only meaningful for a non-empty 
sequence and numbers up to the length of the sequence. These restrictions on the use of 
sequence application mean that, as in the case of sequence concatenation (Section 8.5.4), 
a direct definition is not appropriate. Instead, application is defined axiomatically. If the 
(non-empty) sequence is applied to the number I, the head is returned: 

s:A+ I appl-defn-hd I s(l) _ hd 
5 

Ax 

If s is applied to i and i is an index of s not equal to I, the result is the (i-l)th element of 
the tail of s: 

I I s:A+; i:N1; i;<l; i,;lens Ax 
appl-dcfn-H s(i) _ (tl s)(i _ I) 

The formation rule is as follows: 

I I s:A+; i:N1; i ,;lens 
appl-form s(i): A 

The proof of 'appl-form' is not presented in full here. However, it does illustrate an 
important extension of the '=>-E-left' strategy for proofs by induction. Using this strategy 
on 'appl-form', one expects to prove 

i,; lens=> s(i):A 

by induction on s. However, an attempt at proving this fails in the induction step because 
the value of i is related to the sequences introduced in the global hypothesis of the proof 



144 8 Finite Sequences 

rather than to the sequence introduced in the induction step. At the induction step, the 
k.nowns are: 

s: A+; i: N1; i ~lens 

The step itself introduces an h and t along with the induction hypothesis. The skeleton is 
as follows: 

I 
2 

s:A+; i:Nt; i::;; lens 
from h:A; t:A'; i,; lent"* t(i):A 

IJ(i ,; len cons(h, t)) 
from i,; lencons(h, t) 

infer cons(h, t)(i): A 
infer i ,; lencons(h, t) "* cons(h, t)(i): A 

(?? justify ??) 

(?? justify ??) 
:}-I (1, 2) 

The body of the step proceeds by 'IJ-E' on /l(i = 1). The case where i =I is completed 
easily from 'appl-defn-hd'. In the case where i * I, the defining axiom 'appl-defn-tl' 
indicates that cons(h, t)(i) = t(i-1). However, there is no information relating to (i-1) in 
the knowns. In particular. the induction hypothesis cannot be applied because it relates 
i, and not (i -I) tot. This suggests that the induction hypothesis should state that t(i):A 
for all j among the indices of t. The formula to be proved by induction should therefore 
be Vj: N1 • j,; lens => s(i):A. The '=*-E-left' strategy is therefore extended to include a 
''II -E'. The reader should bear this extended strategy in mind where metavariables other 
than the subject of the induction (such as i) are linked to the subject of the induction by 
hypotheses in the rule to be proved. Employing the extended strategy, the skeleton of the 
proof is as follows: 

I Vj: N1 • j,; len[] =* [](i): A 
2 fromh:A; t:A'; '1/j:N,·j,;lent "* t(i):A 
2.1 from k: N, 

2.1.1 
2.1.2 

o(k,; len cons(h, t)) 
from k ,; len cons(h, t) 

infer cons(h, t)(k): A 
infer k ,; len cons(h, t) => cons(h, t)(k): A 

infer 'Ilk: N1 • k,; len cons(h, t) => cons(h, t)(k): A 
3 'ij: N1 • j ,; len cons(h, t) => s(i): A 
4 i ,; len cons(h, t) => s(i): A 
infer s(i): A 

(?? justify ??) 

(?? justify ??) 

(?? justify ??) 
=>-I (2.1.1, 2.1.2) 

V-I (2.1) 
seq-indn (1, 2) 

'11-E (h2, 3) 
=>-E-left (4, h3) 

The base case follows vacuously. The induction step is based on 'IJ-E' over ll(k = 1). 



8.6 An alternative generator set 145 

Where k ~ I, 'appl-defn-hd' is applied; where k ¢I, the induction hypothesis and 'appl
defn-tl' are used. The reader should be able to complete the proof. 

8.5. 7 The indices of a list 

In the rules for sequence application, the fact that i is a valid index for a sequence s 
is expressed by stating that i: N, and i :;;; lens. The same fact can be expressed more 
succinctly by using the inds operator, which returns the set of valid indices. One could 
give a definition in the style used for sequence length and elements: 

indss del if s ~ [] then {} else add(succ(len(tls)), indstls) 

However, a more direct definition can be given in terms of the set range construct intro
duced in Section 6.8: 

indss del {!, ... ,lens} 

Proofs may now use results from the theory of set range. For example, the proof of the 
formation rule for inds: 

. s:A• 
I mds-fonn I inds s: N1-set 

follows directly from the rule 'initia!-interval-1-form': 

n:N I initial-interval-1-form l-,.--.::::.;..:.,.-c{!, .... n):lllt-set 

The proof is simple: 

from s:A• 
I lens:N 
2 {I, ... ,lens}:N1-set 
infer inds s: N1 

len-form (hi) 
initial-interval-1-form (I) 

folding (2) 

Induction is not required, the base and induction cases having been considered in the 
proof of the rule from the theory of set range. In particular, where lens ~ 0, the set range 
constructor returns { } , as required by the semantics of inds. 

8.6 An alternative generator set 

The empty sequence [] and cons do not form the only possible set of generators for lists. 
An alternative set is [ ], [-] and~. The relevant induction rule using these constructors 
has two base cases, corresponding to the empty list and singleton lists. The induction 
step takes two arbitrary lists s, and Sz and, assuming P holds for each of them, requires 
proof that P holds for their concatenation s1 ..... s2: 



146 

s:A"; P([]) 
a: A I;; P([a]) 

8 Finite Sequences 

s1:A", s2:A", P(s1), P(sz) ~'"' P(s, ~s,) I scq-~-indn I 
P(s) 

The proof of 'seq-~-indn' is straightforward and is a good illustration of the use of sequent 
hypotheses: 

from s:A"; P([]); a: A I;; P([a]); 

1 
!.! 
1.2 
1.3 
1.4 
1.5 

s1:A", sz:A", P(s,), P(sz) ~'"' P(s, ~ sz) 

from h:A; 1:A"; P(l) 
[h]:A" 
P([h]) 
P([h]~ 1) 
[h]~I:A" 

cons(h, I) ~ [h] ~ 1 
infer P( cons(h, I)) 

infer P(s) 

[a)-form (l.hl) 
sequent h3 (l.hl) 

sequent-E-gen-2 (!.!, l.h2, 1.2, l.h3, h4) 
~-form(!.!, l.h2) 

[-]-~-cons (l.hl, l.h2) 
~-subs-left(b) (1.4, 1.5, 1.3) 

seq-indn (hl, h2, 1) 

In some cases the new induction rule is more convenient than 'seq-indn'. As an example, 
consider the proof that the reverse of the reverse of a sequence is the same as the original 
sequence. The operator for reversing the order of the elements in a sequence can be 
defined directly': 

rev(s) def if s ~ [] 
then [] 
else rev(tl s) ~ [hds] 

The following rules can be proved from the definition: 

s:A* 
I rev-form I rev(s): A. I rev-defn-[] I rev[] _ [] 

a: A I rev-defn-[_J I rev[ a]- [a] 

St:A\ s2:A• I rev-defn-~ 1-:::=~.::--'-i:.:...,~S""'=="'"' rev(s1 sz)- rev(sz) ~ rev(s,) 

The theorem to be proved is formally stated as follows: 

s:A* 
I rev-rev-id I rev(rev(s))- s 

Consider the proof using the new induction rule. The base case for the empty list requires 
showing that rev(rev([])) ~ [ ], which follows from the lemma 'rev-defn-[ ]' and the rules 
of substitution. The base case for singleton lists requires proving rev(rev[a]) ~ [a] for 
an arbitrary element a of type A, which again is straightforward using the 'rev-defn-[.]' 
lemma above. For the induction step, suppose s1 and Sz are arbitrary lists of type A • 
and assume the induction hypotheses that rev(rev(s,)) ~ s, and rev(rev(sz)) ~ Sz. The 

1The rev operator is not slrictly part of the VDM-SL language. It is introduced here for illustrative 
purposes. 



8.7 Summary 

following chain of equality completes the proof: 

rev(rev(st ~ Sz)) = rev(rev(s,) ~ rev(s,)) 
= rev(rev(sJ)) ~ rev(rev(s2 )) 

=St.-. S2 

A proof using 'seq-indn' is much more clumsy. 

8.7 Summary 

by rev-defn-~ 
by rev-defn-~ 
by induction hyps 

147 

• The notions of constructor and destructor for a data type have been introduced and 
illustrated on sequences. 

• The following operators on sequences have been defined: the singleton list, list 
length, list elements, concatenation, distributed concatenation, sequence applica
tion and indices. 

• The definition of operators by recursive direct definition has been illustrated. 

• Lemmas describing the limbs of a conditional definition are useful in simplifying 
proofs using the definition. 

• Formalisation of proof by "rewriting" has been shown. 

• An alternative generator set has been illustrated for sequences. 

1\vo VDM-SL constructs relating to finite sequences have not been considered: sequence 
comprehension and the extraction of subsequences. The latter is the subject of an exercise 
below. Sequence comprehension is complex enough for it to be beyond the scope of this 
tutorial text. Briefly, the notation 

[f(n) I n: Ill· P(n)] 

is the sequence of /(n) formed from taking each natural number n which satisfies P in 
order. Thus: 

[n2 + II n:lll· n < 5] = [1,2,5,10,17] 

As well as describing this, an axiomatisation for sequence comprehension should ensure 
that the result sequence is finite and that /(n) is denoting for each applicable n. Full 
VDM-SL has a more general form of sequence comprehension, in which n may be drawn 
from a set of real numbers. 

8.8 Exercises 

1. Separability of sequences 

The induction proof of 'seq+-hnf' as discussed in Section 8.2 does not use the induction 
hypothesis. Prove the rule using the following lemma instead of 'seq-indn', using only 
rules introduced in Section 8.2: 



148 8 Finite Sequences 

s:A• 
I seq-sep I s- (] v 3h:A. 3t:A" · s- cons(h,t) 

Now prove 'seq-sep' by 'seq-indn', using only the rules of Section 8.2 (i.e. without using 
hd or tl). The introduction of hd and t1 obviates the need to use induction just to provide a 
name for head and tail components of a list: prove 'seq-sep' using the destructors, basing 
the proof on a case distinction over s = [ ]. 

2. Induction on non-empty sequences 

Prove the following rule for induction over non-empty sequences using the '=::)-E-left' 
trick: 

I seq+-indn I 

s:A+ 
a: A~ P([a]) 

h:A, t:A+, P(t) !J;, P(cons(h,t)) 

P(s) 

The proof is similar to that of 'bimap-indn' in Section 7.6. Also see Exercise 3 in Chap
ter 5. 

3. Subsequences 

The expression s(i, ... ,j) refers to the subsequence of sequence s beginning at index i 
and ending at j. Write axioms defining the subsequence operator where the indices are 
natural numbers greater than zero. If the sequences is empty, s(i, ... ,j) =[].Otherwise, 
if j exceeds the length of s, the subsequence from i up to the end of s is taken. If i > j, 
then s(i, ... ,j) = [ ]. Consider the various possible cases for i and j, as was done in the 
axiomatisation of domain and range subtraction and restriction in Section 7.3. 

Sketch the proof of a formation rule for the subsequence operator. 

Aside: VDM-SL has a wider definition of subsequence than this: i and j can he real 
rather than natural numbers, with the expression s(i, ... ,j) denoting those s(k) for which 
k is a positive integer lying between i and j and less than lens. As with the extension to 
set range discussed in Section 6.8, to describe this would require a significant extension 
to the limited theory of numbers presented in Chapter 5, so the more general form is not 
discussed here. 



Chapter 9 

Boo leans 

9.1 Introduction 

The boolean data type IB consists of the two values true and false, so that the elements of 
IB are those propositions which have well-defined values. In logics which admit no con
cept of undefinedness (such as classical logic), all propositions are well-defined, so that 
boolean logic is indistinguishable from the basic logic of propositions. In LPF, however, 
propositions may also be undefined, so that those which are either true or false essentially 
constitute a subset of all possible propositions, namely those propositions e for which Oe 
is true. All the axioms and rules which hold for propositional LPF, therefore, are also valid 
for boolean-valued propositions, though those involving 0 can generaily be simplified. 

In specifications there are typically two places where booleans are used- first as a ·baM 
sic data type from which other type definitions or state definitions are constructed, and 
second as the implicit type of preconditions and postconditions of operation and function 
definitions and of invariants (see Chapter 10). Proofs involving booleans thus almost 
invariably involve showing that a given expression is boolean-valued (of type B). 

The first section of this chapter gives axioms for booleans and shows that they represent a 
two-valued subset of propositional LPF. Formation rules for the primitive boolean-valued 
operators are then discussed, and it is shown how boolean-valued propositions which are 
constructed from subtenns which may become undefined are dealt with. This section 
is also used to show examples of how conjectures are constructed. The final section 
illustrates these techniques by working through an example of a well-formedness proof 
such as typically arises as a proof obligation from a specification. 

9.2 Basic axiomatisation 

The link to the defined subset of propositional LPF is most easily formed by identifying 
boolean-valued with definedness (delta) via the two rules: 

~ lia 
~ a:9 Ax 

a:9 
ls-.oi8"<ZAx 

These effectively allow one to deduce that any defined proposition is boolean-valued and, 
conversely, that any boolean-valued proposition is defined. 



150 9 Booleans 

The link between propositions and values (that is 'true' and 'false') is provided by a third 
rule 

a<=>b 1¢>->-1 Ax a-b 

which states that boolean values are equal if they are equivalent. Note that this rule does 
not require typing hypotheses a: Ill or b: nl as these are deducible from the equivalence 
using the rule 'li -> Ill' and the rules 

from propositional LPF. 

Note also that a rule relating equality and equivalence in the other direction 

a:lll; a=b 
1=->"'1 a<=>b 

can be proved, though this does require a typing hypothesis a: Ill to ensure that the equiva
lence in its conclusion is well-defined. (Without the typing hypothesis the polymorphism 
of equality would induce polymorphism in equivalence so that, for example, it would be 
possible to prove len [] <=> 0, which is clearly meaningless.) The proof is straightforward, 
using 'UI-> li', '<=>-self-!' and substitution of equals: 

from a: IS; a = b 
1 lia 
2 a¢:>a 
infer a <=> b 

9.2.1 IS is two-valued 

il-t li (hl) 
<=>-self-! (1) 

=-subs-right(a) (hl, h2, 2) 

The fact that the type Ill has only two values true and false is embodied in the rule 'B-e val': 

a: Ill 
ls-~rul--~~~~~-a - true v a - false 

The proof is fairly straightforward. Clearly there is only one possible choice for each of 
the first two steps, namely first to apply 'B -> li' to the hypothesis, then to apply 'li-E' to 
reason by cases. The first subproof then has a as its local hypothesis, which means that 
it is necessary to prove a= true. A backwards application of'<=>~=' yields a new goal 
of a <=> true, which follows easily from the rules for equivalence in propositional LPF. 
The other subproof is entirely analogous. 



9.3 Formation rules for boolean-valued operators 

from a: !B 
I lia 
2 from a 
2.1 true 
2.2 a <::> true 

2.3 a= true 
infer (a= true) v (a= false) 

3 from -,a 
3.1 ~false 

3.2 a "" false 
3.3 a= false 

infer (a= true) v (a= false) 
infer (a= true) v (a= false) 

!51 

fil-> li (hi) 

true-I 
¢'>-I (2.hl, 2.1) 

¢o> -> = (2.2) 
v-I-right (2.3) 

-.-false-I 
¢o>-I-~ (3.hl, 3.1) 

¢o> -> = (3.2) 
v-I-left (3.3) 
li-E (I, 2, 3) 

9.3 Formation rules for boolean-valued operators 

As stated above, most of the proofs involving booleans which arise in specifications have 
to do with showing that a particular expression is boolean-valued. These proofs typically 
use the derived rules discussed in this section. The conclusion of each of these rules is of 
the form x: Ill, where xis some expression. Rules where x only involves propositional op
erators are dealt with in the first subsection. The second subsection deals with quantifiers 
and relations. 

9.3.1 Basic formation rules for propositional operators 

The overall aim of this section is to define a basic set of formation rules for the proposi
tional operators. Each of these rules will have a conclusion of the form x: IB, where x is 
the simplest possible expression that can be constructed out of a particular propositional 
operator, that is x will contain only one operator and only one occurrence of that operator. 
Thus, there will be rules with conclusions true: 01, <~e): Ill, (e, A ez): Ill, (e, ~ ez): fil, and 
so on. It is instructive to look at how to decide what the hypotheses of such rules should 
be. 

First, consider the constants true and false. Their formation rules will have conclusions 
true: IB and false: !B respectively, and it is clear that these represent true statements in their 
own right. The rules therefore need no hypotheses and simply take the form 

! true-form! true: IB I falsa-fonn I false: Ill 

It is also clear that the formation rule for negation must have the form 

a: ill 
1~-fonnl ba):lll 



152 9 Booleans 

as the only way to ensure that-, e is either true or false is to make e either true or false. 
The ruleS for the binary operators are, however, perhaps not quite so obvious. Consider, 
for example, the formation rule for disjunction (v). It will have a conclusion of the form 
(e1 v ez): IB, which amounts to the statement that e1 v e2 is either true or false. It is 
certainly the case that if both e1 and ez are either true or false then so is e1 v ez, giving a 
formation rule 

~ e,:OI; ez:OI 
(e, v ez): 01 

but is this the best one can do? Well, e, v ez is only false if both e, and ez are false, 
which is covered by the above case, but it is true if either e1 or e2 is true even if the other 
is undefined. On the other hand e1 v e2 is undefined if both e1 and ez are undefined. This 
suggests a stronger form of the formation rule which requires that one of the arguments 
is defined but only requires the other to be defined in the case where the first is false. The 
second hypothesis thus becomes a sequent, and the more general form of the rule has the 
form: 

Note that the rule 'v-form' above follows immediately from 'v-form-sqt' as ez: 01 dis
charges the sequent e1 ~ e2: 01 directly (see Exercise 4 in Section 2.7 for a similar exam
ple). 

The proof of the rule 'v-form-sqt' follows the by now familiar pattern: after reducing the 
goal to li(e, v ez) by a backwards application of the rule 'li -> B', deduce lie, from e,: 01 
using the rule 'til-+ 0', then use 'c5-E' to consider the two cases. The sequent hypothesis 
is used in the second subproof to deduce e2: Ill, which is treated in the same way. Simple 
propositional logic completes the proof. 

from e1: IB; -, e1 f- e2: IB 
1 lie, 
2 from et 

infer li(e1 v ez) 
3 from--, et 
3.1 ez: B 
3.2 liez 
3.3 from ez 

3.4 
3.4.1 

infer li(e1 v ez) 
from --, e2 

~(e 1 v ez) 
infer li(e1 v ez) 

infer li(e1 v ez) 
4 li(e, v ez) 
infer (e1 v ez):OI 

11-t li (hl) 

li-v-1-right (2.h 1) 

sequent h2 (3.hl) 
B-> li (3.1) 

li-v-1-left (3.3.hl) 

~-v-1 (3.hl, 3.4.hl) 
li+~ (3.4.1) 

li-E (3.2, 3.3, 3.4) 
li-E (1, 2, 3) 

li -till (4) 

The rules for conjunction and implication are treated similarly to those for disjunction 



9.3 Formation mles for boolean~ valued operators 

given above. Again, there are two forms of each: 

I A-form-sqt\ 

\ =>-form-sqt\ 

e1: Ul; e1 I- e,: Ul 

(e, Ae2):UI 

e1:11J; e1 1- e2:1B 

(e, => e2): Ul 

153 

Their proofs are simpler, however: first, the conjunction or implication is replaced by its 
expanded definition, then the proof is completed using the formation rules for negation 
and disjunction already proved. 

The formation rule for equivalence is the odd~one-out in this set as the equivalence is only 
defined if both its arguments are defined. There is thus only one form of the equivalence 
formation rule and this has hypotheses stating that both arguments must be boolean
valued: 

I ¢o>-form I e,: Ul; e,: Ill 
(et <o> e,): Ill 

Its proof is straightforward and follows directly from the definition of equivalence and 
the (non-sequent forms of the) formation rules for implication and conjunction. 

9.3.2 Basic formation rules for quantifiers and relations 

The quantifiers 'if, 3 and 3! and relational operators like E and< are also boolean-valued 
and have similar formation rules. In the case of the quantifiers it is easy to see that the 
quantified expression is boolean-valued if its predicate is boolean-valued everywhere. 
Thus the formation rule for 'if is 

y:A ~ P(y):lll 
~ '(;:;-'if x"':7A ~. P"'(x"")<"C): Ill"' 

with sintilar rules for 3! and 3. 

Versions of these rules dealing with quantification over sets, for example 

s:A-sel 
y:A, yEs ~P(y):lll 

\V'-form-sct\ ('ifxe s·P(x)):DI 

can be derived. 

For the relational operators the situation is even simpler as it is known from rules like 
'8-e ' (see set theory, Chapter 6) that they are always defined. Thus, rules like 

~ a:A; s:A-set = (ae s):D! 

are immediate consequences of the corresponding definedness rule and '0 ~ IIJ'. 



!54 9 Booieans 

9.4 An example of a well-formedness proof obligation 

As an example of how proofs involving booleans arise in practice, consider the following 
simple and partial specification of a parts store: 

Store :: parts : Part~ Partlct+" 
configs : Config ....":., (Part ....":., Part/d) 

inv (parts, configs) ~ Vm e rng configs · V n e domm · 
n e domparts A m(n) e eiemsparts(n) 

In this specification, the first field of the composite type records the different versions 
·of each part which are available, whilst the second records how particular versions of 
different parts can be combined. The use of non-empty sequences (see Chapter 8) and 
one-one maps (see Chapter 7) in the definitions of the fields means that there must be 
at least one version of each part and that it is not possible to build a configuration using 
different versions of the same part. The invariant imposes the additional constraint that 
configurations must be composed of existing parts. 

As is explained in more detail in Chapter 10, associated with a type definition which has 
an invariant there is a proof obligation to ensure the soundness of the definition, namely 
that the invariant must be a boolean-valued function of its variables. For the example 
above, this is expressed by the rule 

parts: Part ~ PartliJ+; configs: Config ....":.,(Part ....":.,Part/d) 
(Vm E rngconfigs · Vn e domm · n E domparts A m(n) e eiemsparts(n)): II 

The proof of this rule follows a pattern which is typical of those of "well-formedness" 
proof obligations in general (invariants, preconditions, postconditions and initialisation 
conditions; see Chapter 10). The basic strategy is always to reason backwards, first 
using the formation rules for the boolean-valued operators and quantifiers given earlier 
in this chapter to eliminate the propositional operators and the quantifiers, then using the 
formation rules for relations on the resulting subgoals to generate a new set of sub goals 
which do not involve the boolean data-type, and finally using the standard formation rules 
for the basic operators on sets, maps, sequences and numbers to complete the proof. 

Generally, these proofs are simple in that for a given sub goal there is only one of these 
rules which can be applied, namely the formation rule associated with the main operator 
of that subgoal. Thus, returning to the example, the main operator of the overall goal is 
a universal quantifier over a set, so the first step is to apply the rule '\;/-form-set', giving: 

from parts: Part ~ Partltf+; configs: Config ~ (Part~ Part/d) 

rngconfigs: (Part <-"'--• Part/ <f)-set 
2 fromm:Part~Partld; me rngconfigs 

infer (Vn E domm · n e domparts A m(n) E elemsparts(n)): nl 
infer (Vm e rngconfigs ·'in e domm · 

n E domparts A m(n) E elemsparts(n)): nl 

(?? justify ??) 

(?? justify ??) 

V-form-set (I, 2) 



9.4 An example of a well-formedness proof obligation 155 

Line 1 follows directly from the formation rule for range on one-one maps ('rng-fonn
bimap'), and the only other goal again involves showing that a universal quantification 
over a set is boolean-valued. The rule 'V-form-set' is therefore applied to this, yielding: 

from parts: Part ~ PartlcJ+; con.figs: Config ~(Pan ~Part! d) 
I rngconfigs: (Part...."'-. Part! d)-set mg-form-bimap (h2) 
2 fromm:Part ~Partld; me rngconfigs 

2.1 
2.2 

domm: Part-set 
from n: Part; n E domm 

infer (n E domparts A m(n) E elemsparts(n)): 8 
infer (Vn e domm · 

n E domparts A m(n) E elemsparts(n)): 8 
infer (V m E rng configs · \in E dom m · 

n E domparts A m(n) E elemsparts(n)): 8 

(?? justify ??) 

(?? justify ??) 

V-form-set (2.1, 2.2) 

V-form-set (I, 2) 

The first of the resulting sub goals is easy to discharge using the formation rule for domain 
for one-one maps ('dom-form-bimap'). In the second, however, it must be shown that 
a conjunction is boolean-valued, and there are thus two formation rules which could be 
applied, 'A-form' and 'A-form-sqt'. Here, and in all cases where there is a choice between 
a basic formation rule and its corresponding sequent form, the choice is determined by 
considering whether or not the separate operands are boolean-valued. If so, then the basic 
formation rule should be used, if not the sequent form is required. In the case in question, 
the right-hand operand is clearly undefined, and hence not boolean-valued, if n is not in 
the domain of the parts map as the map application parts(n) is undefined in that case, so 
the sequent form of the rule must be used. This leads to the following partial proof: 

from parts: Part...."'-. Partld'; configs: Config ...."'-. (Part...."'-. Part! d) 

I rngconfigs: (Part ...."'-.Part! d)-set mg-form-bimap (h2) 
2 from m:Part ~ Panld; me rngconfigs 
2.1 domm:Part-set dom-form-bimap (2.hl) 
2.2 from n:Part~ n e domm 

2.2.1 
2.2.2 

(n E domparts): Hl 
from n E domparts 

infer (m(n) E elemsparts(n)): 8 
infer (n E domparts A m(n) E elemsparts(n)): 8 

infer (\in E dom m · 
n E domparts A m(n) E elemsparts(n)): 8 

infer (Vm E rngconfigs ·\in E domm · 
n E domparts A m(n) E elemsparrs(n)): Hl 

(?? justify ??) 

(?? justify ??) 
A-form-sqt (2.2.1, 2.2.2) 

V-form-set (2.1, 2.2) 

V-form-set (I, 2) 



156 9 Booleans 

It is worth noting at this point that there was an important correlation in the step just 
discussed between the form of the sequent formation rule for conjunction and the order 
in which the various subterms appear in the expression comprising the invariant, namely 
that both are written in such a way that any undefinedness always appears in the right
hand conjunct. At the same time, the left-hand conjunct forms a guard to ensure that the 
right-hand conjunct is defined where the value of the whole expression is not determined 
solely by the left-hand conjunct. Thus, the formation rule has e1: Dl and e1 l-e2 : Dl as its 

hypotheses and the appropriate subterm of the invariant follows the same ordering, being 
written as n e domparts A m(n) e elemsparts(n). Consider, however, what would have 
happened if the subterms in the invariant had been written in the opposite order, namely 
as m(n) E elemsparts(n) 1\ n E domparts. The proof up to the previous step would 
be identical to that already constructed, except that now the second of the two subgoals 
would be (m(n) E elemsparts(n) 1\ n E domparts): Dl. In this simple case, of course, it 
would be straightforward to prove a "commuted" form of the sequent formation rule 

e,:Ol; e,l- et:Dl 

(etA e2):Dl 

and then to use this to discharge that subgoal. One might even think that having this 
additional rule would be an advantage in that the two rules together would mean that the 
order of the subterms in the specification would be immaterial. In fact this is far from the 
truth, and the process of adding new formation rules to cope with different combinations 
of subterms soon gets out of hand. 

To see how this happens, suppose that one wishes to show that the expression 

(m(m(a)) = b 1\ a E domm) 1\ m(a) E domm 

is boolean-valued, where a and b are both of type A and m is of type A -!'!... A for some 
type A. In this case, although the whole expression is clearly boolean-valued, neither 
of the separate conjuncts in the main conjunction is itself boolean-valued so neither the 
standard sequent formation rule 'A-form-sqt' nor the commuted fonn mentioned above 
can be applied. This means that to deal with this case one would need either to prove 
a new rule dealing specifically with this particular combination of subterms or to prove 
rules, for example 

((a 1\ b) 1\ c): Dl 
(a 1\ (b 1\ c)): B 

(a A b): Dl 
(b 1\ a): Dl 

which allow the associativity and commutativity of conjunction to be used to rewrite 
the expression into a form to which the original version of the sequent formation rule 
(' A-form-sqt') can be applied. 

The lesson to be learned here is that it is often possible to make the task of proving proper
ties of a specification simpler by giving some thought to the way in which the specification 
is actually written. The more specific lesson is that when writing invariants, preconditions 
and postconditions, this simplification is achieved by ordering their subtenns in such a 
way that any undefinedness always appears in the right-hand operand of binary proposi
tional operators, at the same time structuring the left-hand operand to ensure that, in the 
case where its value does not determine the value of the overall expression, the right-hand 
operand is well-defined. 



9.4 An example of a weii-fonnedness proof obligation 157 

Returning now to the original example proof, the two remaining subgoals are both justified 
using the relational formation rule 'e -form', yielding: 

from parts: Part <--"'--> Partld'; configs: Config <--"'--> (Part<--"'--> Part! d) 
I rngconfigs: (Part <--"'-->Part! d)-set mg-form-bimap (h2) 
2 fromm:Part ~ Partld; me rngconfigs 
2.1 dom m: Part-set dom-form-bimap (2.h I) 
2.2 from n: Part; n e domm 

2.2.1 
2.2.2 
2.2.3 

2.2.3.1 
2.2.3.2 

domparts: Part-set 
(n e domparts): Ul 
from n e domparts 

m(n): Partld 
elemsparts(n): Partld-set 

infer (m(n) e elemsparts(n)): Ul 
infer (n E domparts" m(n) e elemsparts(n)): Ul 

infer ('<In e domm · 
n e domparts" m(n) e elemsparts(n)): nl 

infer (Vm e rngconfigs ·'<In e domm · 
n e domparts "m(n) e elemsparts(n)): n1 

(?? justify ??) 
e -form (2.2.hl, 2.2.1) 

(?? justify ??) 
(?? justify ??) 

e -form (2.2.3.1, 2.2.3.2) 
A-form-sqt (2.2.2, 2.2.3) 

'</-form-set (2.1, 2.2) 

'</-form-set (I, 2) 

and the proof is completed using the formation rules for domain, map application and 
elements from map theory and sequence theory (see Chapters 7 and 8): 

from parts: Part <--"'--> Partld'; configs: Config <--"'--> (Part <--"'--> Part! If) 
1 rngconfigs: (Part <--"'--> Partlli)-set mg-form-bimap (h2) 
2 fromm:Part ~ Partld; me rngconfigs 
2.1 domm:Part-set 
2.2 from n: Part; n e domm 
2.2.1 domparts: Part-set 
2.2.2 (n e domparts): Ul 
2.2.3 from n e domparts 
2.2.3.1 m(n):Partld 
2.2.3.2 parts(n): Partld' 
2.2.3.3 elemsparts(n): Partld-set 

infer (m(n) e elemsparts(n)): nl 

dom-form-bimap (2.h I) 

dom-form-bimap (hi) 
e-form (2.2.hl, 2.2.1) 

at-form-bimap (2.2.hl, 2.hl, 2.2.h2) 
at-form-bimap (2.2.hl, hi, 2.2.3.hl) 

elems-form-seq+ (2.2.3.2) 
e -form (2.2.3.1, 2.2.3.3) 
A-form-sqt (2.2.2, 2.2.3) infer (n e domparts" m(n) e elemsparts(n)): Ul 

infer ('if n e dom m · 
n e domparts "m(n) e elemsparts(n)): nl 

infer (Vm e rngconfigs · 'Vn e domm · 
n e domparts" m(n) e elemsparts(n)): Ul 

'</-form-set (2.1, 2.2) 

'</-form-set (I, 2) 



158 <J l:looleans 

9.5 Summary 

The following points have been discussed in this chapter: 

• The relationship between boolean values and well-defined propositions. 

• Taking account of undefinedness in the formulation of formation rules. 

• Using sequent forms of formation rules to reason about the well-formedness of 
partial functions. 

• A standard proof strategy for dealing with well-formedness proof obligations. 

• How treating undefinedness in specifications and rules systematically can lead to 
saving work in proofs. 

9.6 Exercises 

1. Substitution of equivalent values 

Substitution of equal values was discussed above in Section 3.4. Analogous rules permit 
the substitution of equivalent values: 

a <o> b; P(b) I ""-subs-left I P(a) 
a <o> b; P(a) I ""·subs-right I P(b) 

Prove these rules. 

2. The proof of '=>-form-sqt' 

Prove the rule '==>-form-sqt'. 



Part II 

Proof in Practice 





Chapter 10 

Proofs From Specifications 

10.1 Introduction 

The preceding chapters have dealt with the construction of proofs about the mathematical 
objects of the underlying logic and data types used in VDM specifications. These theories 
provide the basic context where it is meaningful to reason about specifications in general. 
Building on this platform, it is now relatively straightforward to define the mathemati
cal constructs corresponding to the constructions arising in each individual specification. 
These further theories provide the context where reasoning about individual specifica
tions can take place. This chapter deals with how these theories are built and how they 
are used in proofs concerning specifications. 

A VDM specification is a formal model which describes the behaviour of a system. Nor
mally, the concern is a software system, but the use of VDM to describe the behaviour 
of hardware systems, human processes or other systems is not precluded. At the heart 
of a VDM specification are usually a model for the state of the system and some state
transfornting operations. The description of the state model is supported by the language 
for defining the basic data types and type constructors of earlier chapters; the model for 
operations is given by the use of predicates which describe possible state transitions. 

From a purely syntactic viewpoint, a VDM specification consists of a series of definitions: 
definitions of types, a state, some functions, constants and some operations. This chapter 
considers reasoning about each of these forms of definition in tum. Well-fonnedness and 
satisfiability of a specification cannot be guaranteed by syntactic correctness alone, and 
in general can only be shown by construction of proofs. Each VDM specification haS 
a number of associated proof obligations, which are statements of properties that must 
hold true of the specification. Proof obligations also arise in reification, as described in 
the following chapter. 

The main aim of this chapter is to describe the definitions, axioms and proof obliga
tions which arise from a specification. Proof obligations are expressed as rules to be 
derived from the axioms and definitions. To avoid unnecessary detail, however, the main 
principles are illustrated on abstract examples. Chapter 12 contains numerous, specific, 
applications of the approach presented here. 



162 10 Proofs From Specifications 

10.2 Type definitions 

A substantial part of the design of a VDM specification is the choice of type definitions. 
The aim is to construct types that "naturally" model the state and the values passed and 
returned by the operations and to construct a specification that whilst formal is also at a 
level of abstraction suitable for the reasoning one wishes to perform. The basic types and 
type constructors described in previous chapters are used to form type expressions which 
are the building material for the types to be used. Type definitions are used in specifica
tions to name particular types relevant to the problem domain that is being specified. 

This section discusses the use of type expressions in simple and composite type definitions 
and how invariants can be given to restrict these types. Note that composite types and 
invariants can only be used in type definitions whereas the previous type constructions 
can be used wherever a type is expected. 

Discussion of recursion in type definitions and the construction of induction rules to rea
son about recursive types is deferred to Section 13.4. 

10.2.1 Simple type definitions 

A simple type definition associates a new name with some type expression. Consider an 
example similar to that Chapter I: 

Frame = Var ~ Loc 

This specifies the type name Frame as a synonym for the type of maps from Var to Loc. 
For a simple type definition of this form, there is no need for any explicit formation or 
definition rules. The corresponding definition in the logical framework is: 

Frame def Var ~ Loc 

in the theory of the specification. Folding and unfolding the type definition can be used 
to reduce proofs about Frames to proofs about maps. However, not all forms of type 
definition can be treated in this way and the following sections deal with some of these. 

10.2.2 Invariants 

Of crucial importance in the definition of sufficiently abstract types for modelling a sys
tem is the idea of type invariants. A type invariant (or simply invariant) is used to restrict 
the possible values of a type. For example, one may wish to give a model for the even 
numbers, ordered sequences or possible positions in the game of chess. For such defini
tions it is convenient to first describe a supertype which includes the values required and 
then eliminate the unwanted values from that type by giving a property that holds just for 
the desired values. The invariant is thus a predicate on the values of a type defined by a 
type expression. 

In narrowing down the possible values of the type, the invariant can help the reader of 
a specification to understand quickly and precisely how the type models the system in 
question. In particular, when used in a state definition, the invariant can be thought of as 
an assertion that certain states are unreachable and so can save the reader or verifier of 



10.2 Type definitions 163 

the specification needless concern about cases that never occur. In practice, the choice of 
type model and invariant can be a powerful tool in aiding understanding of the system 
being specified. 

In VDM, the type invariant is considered to be part of the type definition and so asserting 
type membership is implicitly also asserting that the invariant holds. 

Consider a simple example, the type Even of even numbers: 

Even =N 

inve L. e mod2=0 

It is convenient to introduce a definition for the invariant: 

inv-Even(n) del n mod 2 = 0 

particularly when the predicate is long. The type Even is treated as a subtype of the 
natural numbers, with the invariant forming the defining predicate: 

Even del < e: N I inv-Even(e) ~ 

From this definition and the rules for subtypes (Section 4.5) it is possible to derive rules 
that explicitly give properties of the even numbers to be used in proofs. Firstly, instantiat
ing the rule 'subtype-!' for the above definition gives a rule saying that a narural number 
that satisfies the invariant for Even is also an even number: 

I I n: N; inv-Even(n) 
Even-form E n: ven 

Furthermore, instantiating the rule 'supertype' yields a rule which states that all even 
numbers are natural numbers, and 'subtype-E' shows that all even numbers satisfy the 
inv-Even predicate: 

e:Even 
I Evens-are-Ns I e: N 

e:Even I inv-Even-I I ~"-'-.;c-'"'T"c
inv-Even(e) 

These three rules give the defining properties of even numbers. However, as with the 
primitive types from earlier chapters, it is worthwhile constructing a library of lemmas 
about the type Even that will raise the level of reasoning in proofs. For example, one 
might prove a lemma stating that the sums and products of even numbers are even. Once 
a sufficient number of such properties have been shown it should be possible to reason 
entirely at the level of evenness rather than remainders. 

Of course, there is a well-formedness obligation on the type definition which states that 
the invariant should be total and boolean-valued over the supertype: 

n:N 
I inv-Even-fonn I inv-Even(n): 18 

A simple validation condition that may be proved, without which the definition of a simple 
type with invariant is unlikely to be useful, is that the type is inhabited: 

I Even-inhab I inhabited( Even) 

This is not an obligation, as VDM-SL does not insist that every defined type is inhabited. 



164 lU t'roots rtom ::>pecltlcatzons 

10.2.3 Composite type definitions 

Composite type definitions allow the construction of types that are akin to Cartesian prod
uct types, but where the composite type has a named constructor function and each com
ponent (or field) has a named selector function. For example, one might wish to specify 
that locations are composed of a segment address and an offset: 

Loc :: segment : Even 
offset : N 

In addition to defining the type name Loc, this also defines a constructor for locations 
mk-Loc, and selectors (destructors) for each field •. segment and •. offset. The type defi
nition also gives rise to formation rules for the constructor and selectors: 

I mk-Loc-form I s:Even; o:N 
Ax 

mk-Loc(s, o): Loc 

l:Loc l:Loc I segment-form I /.segment: Even 
Ax I offset-form I /.offset: N 

Ax 

These rules can be thought of as defining the following signatures for the constructor and 
selectors: 

mk-Loc: Even x N --> Loc 
_.segment: Loc ~ Even 
-.offset: Loc --> N 

Two further axioms give definitions of the selector functions, -.segment and _,offset, 
which extract the relevant components of a Loc: 

mk-Loc(s, o): Loc I segment-defn0 I Ax . . mk-Loc(s, o).segment- s 

mk-Loc(s,o):Loc 
I o.ffset-dcfno I mk-Loc(s, o).offset- o Ax 

Note that the typing assertion mk-Loc(s,o):Loc is used to ensure that mk-Loc(s,o) is 
well-formed, that iss: Even and o: N. 

It can be shown from these axioms that each element of a composite type has a unique 
representation in terms of the mk-function for that type, that is, it is possible to prove: 

mk-Loc(s1, 01 ): Loc; mk-Loc(sz, oz): Loc 
mk-Loc(s1, 01) = mk-Loc(sz,oz) 

One further axiom is required to ensure that -.segment and -.offset together give enough 
information to reconstruct a Loc: 

/:Loc I mk-Loc-defn I Ax 
mk-Loc(l.segment, /.offset) - I 

This ensures that a Loc is characterised completely by its segment and offset selectors, 
that is, there is no "hidden" information in a Loc which the selectors cannot reveal. 



10.2 Type definitions 165 

Used judiciously, composite types have a number of advantages over Cartesian products. 
The field names are available as mnemonics for the components and can be used as selec
tor functions to "extract" the fields without the designer needing to remember the order 
in which they occur; and the constructor function ensures that values of the composite 
type cannot be confused with values of the product type that might be used elsewhere. 

10.2.4 Composite types with invariants 

In the same way that invariants can be used to restrict simple type definitions, they can 
also be used with composite types. One way that this can be done is to first make a type 
definition giving a name to the unrestricted type (often a subscript '0' is added to the 
type name for this "proto-type"). Then the desired type can be defined by giving the 
invariant as a predicate on the proto-type. The rules for reasoning about such a construct 
simply reflect its two stage definition. The unrestricted type is defined as a composite type 
without an invariant, then the restricted type is defined as a simple type with invariant. 

An alternative, more direct, approach is often preferred, particularly when it is convenient 
to write the invariant as a predicate on the separate fields. For this form some adaptation 
of the rules for composite types is required. 

Consider again the above example and suppose that an invariant is added to Loc: 

Loc :: segment : Even 
offset : N 

inv mk-Loc(s, o) 6 (s x 24 + o) < 220 

Here, the invariant is defined in terms of a pattern mk-Loc(s,o). It could also be defined 
in terms of a single variable of type Loc, though this would be less convenient for the 
present approach. 

As was done for invariants on simple type definitions, it is convenient to introduce a 
definition: 

inv-Loc(s,o) del (sx24 +o)<220 

which, just as for simple types, should be boolean-valued over the cross-product of the 
field types: 

s:Even; o:N I inv-Loc-fonn l--c-':.:..;~'-0-'"-7..inv-Even(s, o ): 01 

The formation axioms for the selectors, 'segment-form' and 'offset-form', are as before 
but there is an extra hypothesis in the formation axiom for the constructor, 'mk-Loc-form', 
which asserts that the invariant holds for the values being composed: 

I I s: Even; o: N; inv-Loc(s, o) 
mk-Loc-fonn k Lo ( )· Lo Ax m - c s,o. c 

Similarly, the introduction axioms 'segment-defno', 'offset-defno' and 'mk-Loc-defn' are 
as before but an additional axiom for asserting the invariant is required: 

mk-Loc(s, o): Loc I inv-Loc-rl Ax inv-Loc(s, o) 



166 10 Proofs From Specifications 

Together, these axioms capture the idea that the expression mk-Loc(s, o) has type Loc 
precisely when s: Even, o: N and the invariant holds for s and o. They also state that all 
values of type Loc can be formed in this way. 

As for simple types with invariants, it is worthwhile demonstrating that the defined type 
is inhabited. 

Note that the rules of the previous section (before invariants were considered) can be 
recovered as special cases of the rules of this section where the invariant is universally 
true. 

10.3 The state 

As described in Chapter 1, a VDM specification defines a state machine with labelled 
transitions. The type constructions are used to give a model for the state space and the 
transition system is implicitly defined by the operations. This section describes how 
reasoning can be performed about the description of the state. 

In VDM, the state is described as a composite type with an optional invariant. The 
separate fields of the type might be thought of as state variables and the invariant as 
a description of which states are of interest. As this may be an abstract specification, 
there is no requirement that these variables should correspond to the variables that will 
eventually appear in the implementation of the specification. (See data reification in the 
next chapter.) There may also be an initialisation condition describing the initial states 
for the system. 

Consider the following simple state definition: 

stateS of 
a:A 
b:B 

inv mk-S{x,y) 

in it mk-S(x, y) 
end 

!C. P(x,y) 

!C. Q(x,y) 

This defines a state S which consists of two components a and b of types A and B re
spectively. The invariant and initialisation are given in terms of a pattern mk-S(x, y) that 
matches the structure of the state model: the invariant is expressed as a predicate P(x,y) 
in x andy; similarly for the initialisation Q(x,y). 

Clearly, Sis a form of composite type with invariant. The same definitions and rules that 
appear in Section 10.2.4 apply. However, there is an extra dimension introduced by the 
initialisation predicate. 

10.3.1 Initialisation 

As for invariants, it is convenient to make a definition for the initialisation predicate. Un
like the definition for the-invariant (which is defined as a predicate in the components of 
the state) the initialisation is defined as a predicate in the entire state. In the VDM-SL def
inition of S above, the initialisation is defined (like the invariant) via a pattern mk-S{x,y)1, 



10.4 Functions and values 

and the definition of init-S in the logical framework uses the selector functions: 

init-S(u) del Q(u.a, u.b) 

167 

Obligations for well-fonnedness and satisfiability of the initialisation predicate are also 
required. Well-formedness requires that the initialisation predicate be boolean-valued 
over the state type: 

Vu:S. init-S(u):~ 

which can be formulated as a rule: 

u:S 
I init-S-form I inir-S( <J): ~ 

Satisfiability requires the existence of a state for which the initialisation predicate.holds: 

I init-S-satl 3u: S. init-S( <J) 

This last condition also demonstrates that the state type is inhabited, and reduces to in
habitedness when there is no initialisation given, that is, when the predicate is simply 
true. 

10.4 Functions and values 

In VDM, auxiliary functions are used together with type definitions to model concepts that 
arise in applications. Proving properties of these functions can help with reasoning about 
the specification by raising its level from that of the primitive constructs of the language 
to that of the auxiliary functions. Thus the use of auxiliary constructs in a specification 
is akin to the use of definitions in mathematics. Some work needs to be done to correctly 
fonnulate useful functions, and further work must be done to establish properties of these 
functions, but then reasoning can be conducted at the level of the defined concepts rather 
than those used in the definitions. 

In VDM, functions can be defined either explicitly by giving an expression that evaluates 
the result in terms of the parameters, or implicitly by stating a relation between the result 
and the parameters. Constants, or value expressions, can be thought of as functions 
without parameters. 

10,4.1 Explicit function definitions 

As a first example, consider a simple explicit function definition with no precondition: 

f:EvenxN->N 
f(x,y) ~ xx24 +y 

In order to be able to reason about the above function a rule is required that enables 
"folding" and "unfolding" of its definition. Such a rule is simple to state: 

1 See Section 13.6 for further discussion on patterns. 



168 

x:Even; y:N = 4 = f(x,y)-xx2 +y 

10 Proofs From Specifications 

but to give such a rule as an axiom would be dangerous. For example, if the body of 
the function were ill-formed, then the value of the function might be undefined and the 
equation in the conclusion would introduce an inconsistency (see the discussion of weak 
equality in Section 3.4). 

Thus, before asserting such an equality, it is necessary to ensure the well-fonnedness of 
the function body, that is to show: 

x:Even; y:N 
~ (xx24 +y):N 

Once this has been shown, the 'f -defn' rule given above can be used. 

This requirement to show well-formedness before using the definition rule is fmmalized 
by giving as an axiom a version of the definition rule with a "one-point" version2 of 
well-formedness as an extra hypothesis: 

x: Even; y: N; (x x 24 + y): N 
lf-defnol f(x,y)-xx2 +y Ax 

Now the "working version" of the definition rule given above can be justified by proving 
the general well-formedness rule and using it to discharge the extra hypothesis: 

from x: Even; y: N 
1 xx24 +y:N 
inferf(x,y) =xx24 +y 

f-wff (hl, h2) 
/-defno (hl, h2, 1) 

In this way, the well-formedness of the function body has been shown for once and for 
all and the axiomatic form of the definition rule with the extra hypothesis need never be 
used again. 

Note that even if a parameter is not mentioned in the body of the function, it is still 
included as a typing hypothesis to maintain strictness. For example, consider a function 
which only uses the first of its arguments, say: 

g:NxN·->N 
g(x,y) 0. x x 24 

This gives the axiom: 

r:= x:N; y:N; (xx24):N Ax 

~ g(x,y)-xx2 

Even though the type-soundness of the body of g only depends on g's first argument, this 
axiom permits the replacement of g(et, e2) in an expression by e1 x 24 only if both e1 and 
e1 are of type N. Consequently, an expression such as g(O, l/0) cannot be replaced by 0 

2Thc tenn "one-point" is used because in order to deduce (using the axiom :f-defno') thatf(x,y) is 
defined for some particular x and y, it is sufficient to show that the body expression is well-formed for 
those particular values of x andy, i.e. for one point of the domain off. It is not necessary to show that the 
body off is well-defined throughout the (claimed) domain off. 



10.4 Functions and values 169 

and hence the type of g(x,y) cannot be inferred. 

This requirement explains why functions are not treated as definitions. Such a function 
would present a number of problems if interpreted in the obvious way as a definition: 

g(x,y) def xx2' 

Firstly, at the syntactic level, unfolding the definition would lose information and so it 
would be impossible to fold it again: 

g(l,2) = 24 = g(l, ?). 

But even if some way were found to circumvent this, at the semantic level such a definition 
would be non-strict. For example, one could derive: 

g(l, 1/0) =(I x 24): N 

even though l/0 is undefined. 

Such problems could perhaps be avoided by some mechanism that introduces a superflu
ous mention of the unused parameter, for example one might define: 

g(x,y) def let y =yin x x 24 

but such a "syntactic trick" is unnatural, and the axiomatic interpretation is preferred. 

10.4.2 Preconditions 

Both explicit and implicit function definitions can have preconditions. The precondition 
is used to place restrictions upon the domain of applicability of the function, in addition to 
the typing constraints of the function signature. Function definitions with preconditions 
say nothing about the behaviour of a function when applied to values that do not satisfy 
the precondition (the function is not even guaranteed to terminate). To formalize this, 
the precondition can simply be added to the hypotheses of each of the above axioms and 
rules. 

In order to prevent having to write the precondition expression repeatedly, it is convenient 
to make a definition for it. If the example given above had a precondition: 

f :EvenxN-> N 
f(x,y) 0_ X X 24 + y 

pre X< 216 
AY < 216 

the following definition would be made: 

prej(x,y) def x < 216 "Y < 216 

and the axiom 'f-defn0 ' would have the precondition as an extra hypothesis: 

~ x:Even; y:N; prej(x,y); (xx24 +y):N 
o Ax f(x,y) -xx2 +y 

and similarly for the rules 'f-wff' and 'f-defn': 



170 lU Proofs J:fom Spec1tzcatwns 

~ x:Even; y:N; pre-f(x,y) 
~ (xx24 +y):N 

= x:Even; y:N; pre-f(x,y) 
~ f(x,y) -xx24 +y 

Once again, care should be taken to guard against possible ill~formedness of the precon
dition. It should be total in the arguments tof (that is, over EvenxN) and boolean-valued: 

r-....,-c;---, x: Even; y: N 
lprej-form I pre-f(x,y): Ul 

Again there is the issue of how to handle the case where a parameter is not mentioned. In 
this case the approach taken is to make the precondition a definition with fewer param
eters, ensuring that wherever the definiendum is used the correct arguments are selected 
to be used as parameters. 

10.4.3 Implicit function definitions 

The treatment of implicit functions is not too dissimilar to explicit ones. The same ex
ample might have been written implicitly as: 

f (x: Even,y: N) r: N 
prex<216 t>.y<216 

post r =x x 24 +y 

Definitions are introduced for the precondition and postcondition. The definition for 
a postcondition is similar to that for the precondition, with an extra parameter for the 
result: 

pre-f(x,y) def x < 2 16 AY < 2 16 

del 4 post-f(x,y, r) = r = x x 2 + y 

Well-formedness amounts to saying that, given arguments of the correct types satisfying 
the precondition, the postcondition must be a boolean-valued expression: 

I I 
x: Even; y: N; r: N; pre-f(x,y) 

post..j-fonn 
post-f(x,y, r): Ul 

A working formation rule can be given, stating thatf(x,y) is well-typed if the arguments 
are of the correct types and satisfy the precondition: 

8 
x:N; y:N; pre-f(x,y) 

f(x,y): N 

with the intention that this should be proven using the axiom 'f-forrlJ{J' (given later). 

As f is implicitly defined, it is not possible, in general, to give a precise value z such that 
f(x,y) = z;f is said to be under-specified (see Section 10.4.5.) The most that can be said 
is thatf(x,y) satisfies its postcondition (given the same conditions as above): 



10.4 Functions and values 

~ x:N; y:N; pre-f(x,y) 
n 

post-f(x, y,f(x, y)) 

171 

Before these rules can be used, the satisfiabi/ity proof obligation for f should be dis
charged (otherwise, there is no guarantee that the expression/(x,y) denotes a value). The 
satisfiability obligation can be described as the rule: 

= x:N; y:N; pre-f(x,y) 
~ 3r:N·post-f(x,y,r) 

Proof of satistiability for this example should present no problems. After some unfolding 
of definitions, a witness has to be chosen for the application of exists introduction. In 
effect, this requires one to build an expression which could be an explicit definition of 
the function. In this example, it is clear that one must choose x x 24 + y as the witness. 

Another way that one might be tempted to proof satistiability could be to choose the 
expression/(x,y) itself as the witness. The proof would then be completed by recourse 
to the 'f-defn' rule given above. Of course, such an argument would be quite circular 
and completely invalid. Clearly, satistiability must be proved without using the function 
itself in constructing the witness expression. 

In preference to requiring this meta-logical constraint on the proof of satisfiability, as 
for explicit functions, the working rules 'J-form' and '/-defn' are not given as axioms. 
Rather the axioms incorporate "one-point" versions of the satisfiability obligation, as for 
the explicit function example: 

= x: N; y: N; pre-j(x,y); 3r: N · post-f(x,y, r) 
~ f(x,y):N Ax 

= x: N; y: N; pre-f(x,y); 3r: N · post-f(x,y, r) 
~ post-f(x,y,f(x,y)) Ax 

Thus, before any properties of an expression which applies/ to a particular x andy can be 
derived, it must be shown that/ is satisfiable for those particular arguments. The working 
versions can be proved from these using the satistiability rule '/-sat'. 

10.4.4 Recursive functions and satisfiability 

It is interesting to see how the above axiomatisation deals with functions defined using 
recursion. As might be expected, for these functions reasoning tends to rely on induction. 
In this section, the proof of satisfiability for a recursively defined function is outlined. 

Consider the function sum on sequences of natural numbers, defined implicitly via3 : 

swn (s:N') r:N 
post if s = [] then r = 0 else r = hds +sum(lls) 

Using the scheme given previously, this generates two axioms and a definition for the 
postRcondition: 

I I s: N'; 3r: N · post-sum(s, r) 
sum-formo swn(s): N Ax 

3C!early this function could have been defined explicitly. In fact the same issues arise in either case. 



172 10 Proofs From Specifications 

r---cc-:-• s: N'; 3r: N · post-sum(s, r) 
I sum-defno I post-sum(s, sum(s)) Ax 

post-sum(s, r) def if s = [] then r = 0 else r = hd s +sum( tis) 

The task is to prove the following satisfiability obligation: 

s:N* 
lsum~~t!~-.~~~~~~ 3r: N · post-sum(s, r) 

From this, the working versions of the formation and definition rules can be proved: 

s:N* 
I sum-form I sum(s): N 

s:N* I sum-defn I 
post-sum(s, swn(s)) 

As might be expected, the proof proceeds by sequence induction. The point of interest 
is how the existential hypotheses in the axioms are discharged when they are used in the 
induction step. 

The first stage is to apply sequence induction backwards to the conclusion to give: 

from s:N* 

1 3r: N ·post-sum([], r) 
2 fromh:N; t:N'; 3r:N·post-sum(t,r) 

infer 3r: N- post-swn(cons(h, t), r) 
infer 3r: N · post-sum(s, r) 

(?? justify ??) 

(?? justify ??) 
seq-indo (hl, 1, 2) 

The base case is simple to justify by choosing the witness r to be 0, unfolding the definition 
of post-sum and using 'condition-true'. The induction step is justified by '3-l' choosing 
h + sum(t) as witness. Progress can also be made by working forwards from the local 
hypotheses of the induction step by using the 'sum-defno' axiom on t. Notice how the 
local hypothesis generated by the induction step is exactly what is required to be able to 
discharge the existential hypothesis in 'sum-defn0 •. Performing these two steps gives: 

from s:N• 

I 3r: N ·post-sum([], r) 
2 from h: N; t: N'; 3r: N · post-sum(t, r) 
2.1 post-sum(t, sum(t)) 

2.2 h + sum(t): N 
2.3 post-sum(cons(h, t), h + sum(t)) 

infer 3r: N · post-sum(cons(h, t), r) 
infer 3r: N · post-swn(s, r) 

(?? justify ??) 

sum-defn0 (2.h2, 2.h3) 

(?? justify ??) 
(?? justify ??) 

3-1 (2.2, 2.3) 
seq-indo (hi, I, 2) 

The fact that h+sum(t) is a natural number can now be proved using '+-form' and 'sum
forrno'. Note once again, that the existential local hypothesis is exactly what is needed to 



10.4 Functions and values 173 

be able to use 'sum-fofiD{)'. 

The remaining part of this proof, to justify post-sum(cons(h, t), h + sum(t)) from 
post-sum(t, sum(t)) is straightforward once the postconditions are expanded. 

One can see now why one-point versions of the satisfiability obligations are used to guard 
the formation and definition axioms. An alternative formulation which could be suggested 
would be to use the full satisfiability obligation as a sequent hypothesis in the axioms. 
Although this is perfectly satisfactory for non-recursive functions, the approach does not 
work for recursive functions. The induction in a proof such as that above becomes trapped 
in a "satisfiability loop": to show that sum is satisfiable at an arbitrary points, it must be 
shown to be satisfiable throughout its domain. (See Exercise 5.) 

10.4.5 Looseness in function definitions 

In VDM,looseness in the definition of functions is interpreted as under-specification (also 
known as under-determinism) rather than non-determinism. That is to say that it can be 
assumed that the function always evaluates to the same result even though the precise 
value may not be fully detennined. 

This looseness can arise either from the use of implicit functions where the body does 
not fully determine the result or from the use of loose expression constructs in explicit 
functions. (Loose expression constructs are discussed in Chapter 13.) 

For example, consider the function: 

f (x:N,y:N) r:N 
prex:S;y 
postx,;rAr,;y. 

Clearly it is easy to discharge well-formedness ('postj-form') and satisfiability (}-sat'). 
The latter can then be used with '/-forrno' and j-defno' to prove '/-form' and j-defn'. 
In this example, pre1 can be unfolded in '/-form' to give: 

r.=:= X: N; y: N; X ,; y 
~ f(x,y):N 

This can be used with '=-self-!' to prove: 

r;--;--c.-c.--,-.,--, x: N; y: N; X ,; y 
lt-deterrmmsuc I /(x, y) _ f(x,y) 

Thus, applying f to the same values always produces the same (natural number) value, 
or in other words, f is deterministic. 

Similarly, post-! can be unfolded in j-defn' to obtain: 

x:N; y:N; x,;y 
lt·prop,l x ,;f(x,y) A f(x,y) ,;y 

This captures the fact that the specification off is loose: the most that can be said about 
f is that it returns a number that lies between its arguments. 



17 4 10 Proofs From Specifications 

10.4.6 Polymorphic function definitions 

Many of the predefined functions in VDM-SL are polymorphic. For example, 'tl' can 
be applied to sequences of any type X. It is also possible to define new polymorphic 
functions in VDM-SL, whose signatures can contain one or more type variables. 

Polymorphic function definitions must be explicit, and when such a function is applied, 
any type variables in its definition must be instantiated to specific types (which can be the 
type variables of an enclosing function). As an example, the following defines a function 
which returns the last element of a non-empty sequence of items of arbitrary type: 

last [@elem]: @elem+--> @elem 
last(/) !':. if len/= 1 then hdl else last[@elem](tll) 

Here, the phrase '[@elem]' in the signature introduces a type variable '@elem'. When 
last is applied recursively, this type variable must be instantiated, in this case by itself. 

Now last can be used to define the function addlast, which adds the last elements of two 
non-empty sequences of natural numbers: 

addlast : N' x N' --> N 
addlast(/1, /2) !':. last[N](/1) + /ast[N](/2) 

Here the type variable in the definition of last is instantiated by N in each application. 

A polymorphic function definition can be handled in the theory of a specification much 
like any other explicit function definition: the only difference is that the polymorphic 
type variable becomes a metavariable For example, the formation rule for last is: 

1: Elem+ 
[i(lif_Oilll.J last([): Elem 

where Elem is a type metavariable in the rule, not the name of a type defined in the theory. 

When proving properties about an application of a polymorphic function, instantiation of 
the type variable is handled as part of the instantiation of the metavariables in applying (for 
example) the formation rule. (Consequently, there is no need for the explicit instantiation 
in VDM-SL polymorphic function application to be duplicated in the logical frame.) An 
example of this occurs in the following proof of •addtast-fonn': 

from /1:N'; /z:N' 
1 last(/!): N 
2 last(lz): N 
3 last(/1) + /ast(lz): N 
4 addlast(l~o lz) = last(/1) +last(/,) 
infer addlast(/1, /z): N 

last-form (hl) 
last-form (h2) 
+-form (1, 2) 

addlast-defn0 (hl, h2, 3) 
=-type-inherit-left (3, 4) 

In the use of the rule 'last-form' in Line 1, the type metavariable Elem is instantiated by 
N, in the same manner as I is instantiated by /1• 

Note that the logical frame supports the definition of polymorphic types as well as poly
morphic functions. For example, it is possible to define a type of non-repeating sequences 
of an arbitrary element type via: 



10.5 Operations 175 

is-non-repeating(xs) del Vn" n, E indsxs · (xs(n!) = xs(n2) => n1 = n2) 

NonRepSeq(X) del <. xs:X' 1 is-non-repeating(xs) :;? 

However, such a definition has no direct counterpart in VDM-SL, where only explicit 
function definitions can be polymorphic. Instead the specification must define a separate 
type for each instance of the polymorphic type required, for example: 

is-non-repeating [@elem]: @elem' ->Ill 
is-non-repeating(/) ~ Vn1, n2 E indsxs · (xs(n1) = xs(n2) => n1 = n2) 

NonRepNatSeq = N' 

inv ns ~ is-non-repeating[N](ns) 

10.4.7 Value expressions 

As stated earlier, value expressions, or constants, can be thought of as special cases of 
function definitions; simply explicit functions without arguments or precondition. Thus 
the value expression: 

v:T=E 

has the following associated axiom: 

E:T I v-defno I v = E Ax 

where the hypothesis can be discharged if the expression is well-formed. 

As in the case of functions, it is useful to prove well-formedness separately: 

r::.::=_ 
~E:T 

and then prove a working version of the definition rule: 

==v=E 

10.5 Operations 

Operations describe the possible changes in the state. Like functions, they can be given 
implicitly or explicitly. This section is concerned only with implicit operation definitions. 

An implicit operation defines a set of possible state transitions. For each state, the choice 
of state transition may depend on the values of arguments to the operations. The operation 
may also return a result. Where there is more than one possible transition from a given 
state, the operation specification is considered to be truly non-deterministic. That is to 
say that implementations may deliver different resulting state values each time they are 
called, even given the same parameters. 

Preconditions and postconditions play similar roles to those played in implicit functions 
except that they constrain the before and after states as well as the parameters and results. 



176 10 Proofs From Specifications 

Externals clauses specify the read and write frames of the operations and bind the state 
variables that appear in the predicates. 

The simplest case to consider is an operation with no arguments or result; its only action 
is to transform the state: 

OP 
ext rd r : R 

wrw: W 
pre Pr(r, w) 

post Po(r, w, w) 

As for implicit functions, definitions are made for the precondition and postcondition: 

del 
pre-OP(r, w) = Pr(r, w) 

~ del ~ 
post-OP(r, w, w) = Po(r, w, w) 

These definitions can now be used in the conjecture and proof of validation theorems and 
proof obligations about the specification. Detailed examples appear in the case study. 

10.5.1 Satisfiability 

As in the case of implicitly specified functions, it is necessary to show that an implicitly 
specified operation can be implemented. It is desirable to demonstrate this before devel
oping a detailed reification, to avoid wasted effort in trying to implement in inherently 
unsatisfiable operation specification. The satisfiability obligation is a rule that guarantees 
that the operation is implementable, without the need to develop a detailed implementa
tion as a demonstration. 

The usual satisfiability obligation, written in terms of the whole state cr: L might be given 
as: 

7i: :E; pre-OP(a) 

3cr: :E. posr-OP(a, cr) 

However, this formulation has two problems. Firstly, it is not always well-formed, be
cause in general pre-OP and post-OP can be predicates in only some of the components 
of the state. But even apart from that problem, the rule has ignored completely the infor
mation in the externals clauses of the operation. 

A first attempt to rectify these problems might be to restrict the obligation to the compo
nents in the read and write frames, for example: 

r:R; w: W; pre-OP(r, w) 
3w: W · post-OP(r, w, w) 

However, this form is not correct either, for this does not ensure that the operation main
tains the invariant. 

Thus the obligation should be written in terms of the whole state, but also distinguish
ing the individual components for the predicates. Supposing that the state is actually 
composed of the two components already introduced and additionally a third "unread" 



10.6 Validation proofs 

component, u, then the obligation can be stated as: 

r: R; w: W; u: U; inv-D_r, w, u); pre-OP(r, w) 
3w: W · inv-D.r, w, u) A post-OP(r, w, w) 

or, alternatively, using a pattern for the state: 

= mk-D_r, w, u):Z; pre-OP(r, w) 
~ 3mk-k(r, w, u): L · post-OP(r, w, w) A r = f " u = U 

177 

where the invariant is hidden by use of the state type L. The last two conjuncts arise, of 
course, because the variables outside the write frame, r and u, must be unchanged. This 
form of the satisfiability obligation is clearly the component by component version of the 
usual whole state obligation given earlier. 

The astute reader may still be slightly concerned by this formulation. Although it dis
tinguishes between read-only and read-write state components, no distinction is made 
between the read-only and unread components. In fact this is in agreement with the in~ 
terprctation of externals clauses in VDM-SL which does not make a semantic distinction 
between read and unread components. A discussion of the role of the read and write 
frames in operations, including an alternative formulation of the satisfiability which takes 
the unread nature of variables not mentioned in the externals clauses into account, can be 
found in [Bic93]. 

10.5.2 Parameters and results 

In the case where the operation has parameters and a result these are incorporated in the 
obvious way. For example, if the above operation had additionally a parameter x: X and 
a result y: Y the satisfiability rule would be: 

loP-sat! x:X; mk-Z(r, w, u)::E; pre-OP(x, r, w) 
3y: Y,mk-D_r, w, u): Z· 

post-OP(x,y,r, W, w) A r = f A u = U 

10.6 Validation proofs 

For any particular specification, there may be some specific propositions about an oper~ 
ation that can be postulated, or more general propositions may be stated about the speci
fication as a whole. Some examples of this kind of validation condition are discussed in 
the case study in Sections 12.4.3 and 12.4.6. 

There are also some other more general properties that it might be useful to show of 
any specification. For example, one might wish to show that there is always at least 
one operation that can be applied, i.e. that the disjunction of the preconditions of all the 
operations is true for all values of the state type. Or one may prove that certain states 
are unreachable by proposing a stronger invariant on the state and showing that it is 
maintained by the operations. In this way validation can not only serve to check that a 
specification exhibits properties that are desired for the system, but also, by helping the 
understanding of the model given, it can suggest improvements to that model or even 



178 10 Proofs From Specifications 

alternative models to consider. What appears to be a great deal of extra work- to try an 
alternative specification- may well pay dividends when proofs are being constmcted. 

One possibility for validation arises from VDM's implicit maintenance of the invariant by 
the postconditions. Often there is a choice of how much of the information implicit in the 
invariant should be repeated in the postcondition. There is often some tension between 
the most concise form of postcondition that relies on properties of the invariant for its cor
rectness, and a longer, but more explicit, form that includes some redundant information. 
This choice can be seen as an opportunity to prove the stronger forms from the weaker. 
Which formulation of the postcondition is chosen may make a significant difference to 
the complexity of the proofs: the form that most clearly conveys the information may not 
be the form that will be most useful in proofs. Indeed, the stronger form is more likely 
to be helpful when the specification is being proved to be a reification of another, and the 
weaker form when it is itself being reified. 

By building a theory of proved properties of a specification in this way, some of the burden 
of proof that would otherwise arise when trying to justify a refinement, can be discharged 
in an environment where one only has to consider a single specification. Clearly it is easier 
to reason in the context of a single specification than that of a refinement which relates a 
pair of specifications. The following chapter will discuss reasoning about refinements. 

10.7 Summary 

This chapter has dealt with the following topics: 

• Definitions and axioms for reasoning about elements of VDM~SL specifications: 
type definitions, the state model, explicit and implicit functions, value definitions, 
and implicit operations. 

• Treating type invariants as subtype restrictions integral to the type definition. 

• Introducing definitions for invariants, preconditions and postconditions. 

• The use of well~fonnedness guards on definitional axioms. 

• Proof obligations: well-formedness; satisfiability of implicit functions and opera
tions. 

• Validation proofs, e.g. that a type definition is inhabited (has at least one.value). 

10.8 Exercises 

I. The role played by invariants in proofs 

Consider the function 'double', defined as: 

double : N --> Even 
double(n) {', 2 x rz. 



10.8 Exercises 179 

(a) State and prove the formation rule 'double-form', analogous to }-form' in Sec
tion 10.4.1. 

(b) Repeat Exercise l(a) for the function 'halve', defined as: 

halve : Even -> N 
halve(e) £:. tn:N·n+n=e. 

(c) Suppose instead that the above functions had the signatures: 

double:N-> N 
halve:N-> N 

How does this affect the proofs of 'double-form' and 'halve-form'? What roles did the 
invariant on Even play in the original proofs? 

2. A satisfiability proof 

Prove the satisfiability obligation for the function/ as defined in Section 10.4.3: 

f (x: Even, y: N) r: N 
prex< 216 Ay< 216 

post r =X x24 +y 

B 
x:N; y:N; pre-j(x,y) 

t 
3r: N · post-f(x, y, r) 

Remember that the proof must not use '/Mdefn). 

3. An experiment in recursive function definitions 

Consider the explicit recursive function definition: 

sum :~t ~N 
sum(s) £:. if s = [] 

then 0 
else hds+sum(tls) 

Suppose that instead of the form suggested by Section 10.4.1, the definition axiom is: 

s:t\1'; s1:N' ~. (its1 =[]then0elsehds1 +sum(tls1)):1\1 
. Ax 

sum(s)- if s- [] then 0 else hds + sum(tls) 

where the sequent hypothesis corresponds to showing that the body of sum is well-defined 
for all N'. 

(a) Try to prove that the body of sum is well-defined, namely: 

s:N~ 

(if s - [] then 0 else hd s + sum(tl s)): 1\J 

Why does this fail? 



l~U lU /:'roots J<tom ~pec1t1catwns 

(b) Repeat the attempt, this time using the axiom: 

s:N'; (ifs []thenOelsehds+sum(tls)):N 
I sum-dcfno I sum(s) if s []then 0 else hds +sum( tis) Ax 

4. Alternative definitions of pre- and postconditions 

In the semantics of VDM-SL, the pre- and postconditions of an operation are predicates 
in the whole state of the specification, rather than just the components read and/or written 
by the operation. 

(a) Given the state definition: 

state L of 
r R 
w:W 

u: u 
inv mk-l:(r, w, u) 0_ Pi(r, w, u) 
end 

and an operation specification as in Section 10.5, that reads r, writes w and ignores u: 

OP 
ext rd r : R 

wrw: W 
pre Pr(r, w) 

post Po(r, w, w) 

how might pre-OP and post-OP be defined in terms of L? 

del pre-OP( CJ) = 

post-OP(cr, CJ) del 

Take care not to forget the role of the write frame. 

(b) Re-state the obligation 'OP-sat' (page 10.5.2) in terms of these new definitions. 

(c) Repeat (a) and (b) for one of the operations in the case study, and construct the proof 
of the satisfiability obligation. Compare this against the original. 



Chapter 11 

Verifying Reifications 

11.1 Introduction 

Chapter 1 introduced the broad principles of reification. It described how data reifica
tion and operation modelling combine to provide a more concrete specification which 
is in some way closer of an implementation whilst still exhibiting external behaviour 
compatible with that of its abstract counterpart. A fuller explanation of the principle of 
reification can be found in [Jon90]. There are many issues associated with fonnalising 
the idea of reification, some of which are discussed here and others as they arise in the 
case study. The primary objective of this chapter is to describe a set of formally-stated 
proof obligations for reification, the proof of which provides a sufficient justification for 
the preservation of external behaviour. The case study in the following chapter provides 
the major demonstration of how these proof obligations are applied in practice. 

There are many ways in which a specification can be reified in order to bring it closer to 
an acceptable implementation. The example in Section 1.2.3 discussed how a new data 
model for the state can be chosen in order to bring information required for more effi
cient implementation of the operations to the fore. It also mentioned how the operations 
themselves can be refined by the reduction of possible non-termination or the reduction 
of non-determinacy. Often, more than one of these forms are combined in a reification. 
In order to record the most general form for the proof obligations that arise in reification, 
the exposition in this chapter uses an abstract example. 

The next section deals with the reification of the state model. It fonnalises the idea of 
the retrieve function and describes the requirement for adequacy of the concrete modeL 
It also deals with reification of the initial states. Section 11.3 considers the operation 
modelling that arises as a consequence of such a data reification, giving the domain and 
result proof obligations in general format. There then follows (Section 11.4) a small 
example showing how the general proof obligations are specialised for a particular case 
and giving some example proofs. Section 11.5 discusses rules for reasoning about the 
satisfaction of implicit functions by explicit definitions. The last section briefly discusses 
how the form of reification presented here can be insufficiently general in some cases and 
how this can be overcome. 

This chapter, and indeed this book as a whole, restricts attention to what may be termed 
"data-centred" reification, namely those forms of reification that concentrate upon the 
consequences of changing data representations. Reification of actions, that is, the process 



182 11 Verifying Reifications 

of operation decomposition in VDM, is a large enough subject to merit a separate volume 
in its own right and is not addressed here. 

11.2 Data reification 

The key element in justifying a data reification in VDM is the retrieve function. This acts 
as the formal link between the data models of the abstract and concrete specifications. The 
abstract model was chosen to simplify high-level reasoning about the problem domain; 
now reification introduces some degree of implementation detail and with this comes an 
increase in the complexity of reasoning. Demonstrating the validity of a data reification 
is often a difficult task, however because reification is transitive, it can be performed in 
several stages where each step introduces a small amount of implementation detail and is 
relatively simple to justify. Although this does not reduce the complexity of the overall 
design, it has the benefit of structuring the design and verification process. 

Setting aside until the case study (Chapter 12) motivation for how and why one might 
choose a particular data model, this section describes the fonn of definitions and obliga
tions introduced by a data reification. This is done by reference to an artificially general 
pair of specifications which simply introduce names for the components of the state mod
els and operations that are used in the definitions and obligations. 

11.2.1 Retrieve functions 

Consider the following pair of specifications. For convenience in the definition of the 
operations that follow, it is assumed that the abstract and concrete states each have three 
components. The names of these components are chosen to reflect their use in the exter
nals clauses of the example operation in section 11.3, thus r stands for read-only, w for 
read-write, and u for unread. Arbitrary predicates in the state components are given for 
invariant and initialisation. 

state Sa of 
ra Ra 
Wa : Wa 
Ua : Ua 

Abstract State 

inv mk-Sa(ra, Wa, Ua) !:=_ inva(Ya, Wa, Ua) 

init mk-Sa(ra, Wa, Ua) !:=_ inita(Ya, Wa, Ua) 
end 

state Se of 
re Re 
We :We 
Ue : Ue 

Concrete State 

inv mk-Se(re, We, Ue) ~ inve(re, We, Ue) 

init mk-Se(re, We, Ue) ~ inite(re, We, Ue) 
end 

Note that, although the abstract and concrete state models have the same number of com
ponents with similar names, this is not meant to suggest that retrieval need be defined 
component-wise. More generally, retrieval is defined between the whole states Se and 
Sa. It is not intended that there need be any correspondence between the individual com
ponents of the states, nor indeed that there be the same number of components in each 
state. 

The first step in showing that Se is a reification of Sa is to construct a retrieve function. 
This should have the following form: 



11.2 Data reification 183 

retr-S : Sc ~ Sa 
retr-S(s,: S,) !'_ body-expression 

The same verification conditions that apply to any function definition (Section 10.4.1) 
also apply to retrieve functions. In addition, the retrieve function must be total over the 
concrete state model. This is formalised by the fact that it has no precondition. Note that 
the invariants of the abstract and concrete models have been "absorbed" within the type 
definition, as described in Section 10.2. 

One extra requirement for a retrieve function is to ensure that the concrete data model is 
adequate. Adequacy requires that every value of the abstract state model has a corre
sponding value in the concrete model. This obligation can be written as: 

I I 
~:~ 

retr-S-adeq -,-:-.,----"=-';;-;--c---
3sc: Sc · retr-S(sc)- Sa 

The importance of demonstrating these properties of the retrieve function cannot be over
stated. Attempting their justification can highlight many problems with a design which 
might not otherwise become apparent until much later. This might not only be the in
dication of a point of failure, but a proof that is difficult or ungainly may suggest an 
improvement to the concrete model, the retrieve function, or even in the abstract model. 
For example, in attempting a proof of adequacy, it may transpire that some abstract values 
have no concrete counterparts. This might be because the concrete model is inadequate, 
or it may be that the retrieve function is not correctly defined. However it could also 
indicate that the abstract model is insufficiently abstract. Such situations are discussed 
further in Section 11.6. 

11.2.2 Reifying initialisation 

In addition to showing that the concrete data model is an adequate representation of 
the abstract one, there is also a constraint on the initialisation conditions. Reifying the 
initialisation condition is rather like the modelling of an operation but a little simpler. 
Where unique states are defined by the initialisation predicate, then clearly they must 
be states which correspond under the retrieve function. That is, the abstract initial state 
should be the image under the retrieve function of the concrete initial state. Where there 
are a number of possible initial states that satisfy the initialisation condition, the criterion 
is that the concrete initialisation should exhibit no more non-determinacy that the abstract. 
This is formalised by saying that the image under the retrieve function of the set of states 
satisfying the concrete initialisation must be contained within the states satisfying the 
abstract one. This is formalised in the following obligation which describes "adequacy 
of initialisation": 

Sa: Sa; Sc: Sc 
Sa = retr-S(sc) 

init-Sc(Sc) 
j init-S-adeq j-:c.in:c.i:_t-"'sa"'("sa'7)-

As suggested, this is a special form of the result obligation that arises in operation mod
elling which is discussed in the next section. (See Exercise 11.8.1.) 



184 11 Verifying Reifications 

11.3 Operation modelling 

11.3.1 Modelling behaviour 

Once a new state definition is given for the concrete specification, new operations must 
be defined that model the operations of the abstract specification. In order to preserve 
external behaviour, there must be a concrete operation for each abstract operation and 
furthermore the argument and result types of corresponding operations must be the same. 
However, the body of each operation must be redefined in order to accommodate the new 
state type. 

In some cases the systems described by abstract and concrete specifications behave identi
cally but this is not an absolute requirement. Operation modelling is based on a definition 
of satisfaction. A concrete operation satisfies an abstract one so long as the behaviour of 
the concrete operation is in a sense compatible with that of the abstract operation. The 
definition of compatible behaviour is such that a user of the system should not be able 
to ascertain whether the system is behaving in accordance with the abstract or concrete 
specification. 

As stated earlier, the difference in specified behaviour can arise in two ways. First it can 
result from an increase in the domain of termination of the operation and second it may 
arise from a reduction of non-determinism. This leads to a closely-linked pair of proof 
obligations, the domain and result obligations. These two obligations are formalised in 
the next two subsections. 

Again in order to explore the most general case, the treatment is based on an abstract 
example. Consider a pair of corrcsponcling operations acting on the abstract and concrete 
states given above: 

Abstract Operation 

OPa (a: A) t: T 
ext rd ra : Ra 

wr Wa : Wa 

pre Pa(a, ra. Wa) 

post Qa(a, t, ra, Wa, Wa) 

Concrete Operation 

OP, (a: A) t:T 
ext rd re : Re 

wrwe : We 
pre Pe(a, re, We) 

post Qe(a, t, re, W;;, We) 

Note that the operations have corresponding names - albeit with different subscripts -
and the same "visible types", that is argument and result types. Sufficient generality for 
the present discussion is provided by assuming that each operation accesses one state 
component in read-write mode, one in read-only mode, and does not access the other at 
all. Recall that there is not necessarily any correspondence between the individual com
ponents of the states. Preconditions and postconditions are given as arbitrary predicates 
over the relevant state components. 

11.3.2 Reducing undefinedness 

It is enough to show that a concrete operation is no less defined than its abstract coun
terpart. The negative is chosen carefully. An abstract operation specification does not 
say that the operation cannot be invoked outside of its precondition, only that the con
sequences of so doing are not defined at this level of abstraction. An implementation of 



11.3 Operation modelling 185 

that operation may be defined over a wider domain, but its behaviour over the "extra" 
domain is not constrained by the abstract specification. Nonetheless, it is essential that the 
concrete operation should be defined at least wherever the abstract operation is defined. 
This is captured in the domain obligation which states that the concrete precondition must 
hold whenever the abstract one does. As the two operations are defined over different 
state models, the retrieve function is used to yield an "abstract view" of the concrete 
operation's domain. The domain obligation can be stated as follows: 

a:A; Sc:Sc; Sa: Sa 
Sa = retr-S(sc) 

"I o"'P'"""-ct"o-::m-:-o:;:b;-,tj pre-OP.(a. s •. r., s •• w.) 
pre-OPe( a, Sc.rc, Sc.Wc) 

This formal statement of the obligation uses one metavariable for each of the concrete 
and abstract states. An alternative formulation might introduce meta variables re, We, etc. 
with hypotheses of the form: 

mk-Se(re, We, Uc): Se 

A metavariable for the abstract state, together with the hypothesis equating it to there
trieved concrete state, is given here as its use simplifies the statement of the abstract 
precondition. 

One consequence of this "satisfaction-based" approach is that the precondition should 
not be interpreted as defining a domain outside which the operation cannot be invoked. 
Rather it says that for such invocations any outcome is possible. Requirements of this 
nature should be described directly in the postcondition by giving the exceptional result 
of such an invocation. 

11.3.3 Reducing non·determinacy 

In an abstract specification, the postcondition of an operation may well be "loose". That 
is, given a particular initial state there may be many possible final states that satisfy the 
relation. An implementation of this operation has the freedom to reduce this looseness by 
narrowing the choice of possible states. Indeed, as looseness in operations is interpreted 
as true non-determinism, an implementation that chooses different final states on different 
invocations is also valid so long as the postcondition is satisfied. 

The looseness available in implicitly-specified operations is a useful tool in developing 
abstract specifications. However, as progress is made towards an implementation, it is 
often natural to "tighten up" the postcondition of an operation, moving from a specifica
tion of the relationship between the initial and final states towards a description of how 
the final state can be constructed from the initial state. Another way to state this is to say 
that the concrete operation may reduce the non-determinacy of its abstract counterpart. 

The concrete operation should not break the postcondition of the abstract operation, so it 
is to be expected that the concrete postcondition should ensure the abstract postcondition 
(under the retrieve function, naturally). In other words, given a concrete state Se which 
satisfies pre-OPe, a condition something like the following should hold: 

post-OP,("S;;, s,) => post-OP.(retr-S("S;;), retr-S(s,)) 

However, recall that in the abstract specification any behaviour is allowed for the op-



186 11 Verifying Reifications 

eration outside its precondition. Thus it is sufficient to consider only cases where the 
abstract precondition holds. Taking this into account, and moving to an inference rule 
presentation, leads to an obligation of the form: 

Sc: Sc; Sc: Sc 
pre-0 P" (retr-S(Sc)) 

post-OPc(S;,sc) 

post-OP"(retr-S(Sc), retr-S(s,)) 

There are three ways in which this statement is still a little inaccurate. First, it omits 
consideration of the arguments and result of the operations. However these are trivial to 
incorporate. Second, the preconditions and postconditions have been given as predicates 
on the entire state, whereas elsewhere they have been treated as predicates in the separate 
state components. Third, the permissible final states are determined not only by the 
postconditions but also by the externals clauses of the operations. In particular, state 
components outside the "write frame" of each operation must not be changed. 

Taking these three considerations into account yields the following form for the result 
obligation: 

a:A; t:T 
Sa: Sa; Sc: Sc; Sa = retr-S(sc) 

Sa: Sa; Sc: Sc; Sa = retr-S(Sc) 
pre-OPa(a, S;;.ra, Sa.wa) 

post-OPc(a,t,Sc.rc, S,;.wc,Sc.Wc) A Sc.rc = S,;.rc A Sc.Uc = S;.uc 
I OP-,cs-obll post-OPa(a,t,Sa.ra, S;;".wa,Sa.Wa)A Sa.ra = Sa.ra A Sa.Ua = S;;.ua 

Although apparently rather ungainly in the form presented here, this obligation is often 
relatively concise for particular examples. 

11.4 An example reification proof 

This section presents a example illustrating the domain and result obligation for a simple 
specification and implementation. The example concentrates upon an operation PUU 
which removes and returns an element from a collection. 

The abstract specification pulls an arbitrary element from a set: 

state Sa of 
s : X-sel 

end 

operations 

PULL" ()x:X 
ext wr s : X-set 
P'e s >' {} 
poslxe sA s=s\{x) 

Naturally, the full specification would also include other operations. 



11.4 An example reification proof 187 

One data reification that might be considered would be to replace the set of X in the state 
by a sequence and an index into that sequence which defines the element that should be 
"pulled". An auxiliary function helps to make the definition of the operation concise: 

state Sc of 
I : X' 
i : N 

inv mk-S,(I, i) 6 if/= [] then i = 0 else i E indsl 
end 

functions 

remove : Nt X x+ --7 x· 
remove(i,l) ~ /(l, ... ,i-1)~ l(i+ I, ... ,len/) 

pre i e inds/ 

operations 

PULL, ()x:X 
extwri:X' 

wr i : N 
pre h• 0 

~~ 

postx= I ( i) A /=remove( i, I) 

The postcondition does not specify the new value of i. Thus any new index satisfying the 
invariant is arbitrarily chosen. The invariant ensures that i is a valid index of I when lis 
not empty and 0 otherwise. Thus, in the precondition for PULLc, the test for emptiness 
on I can be replaced by the test whether i = 0. Note however, that although this may be a 
more efficient test to implement, its use in the precondition will increase the complexity 
of reasoning required to show the domain and result obligations. 

It is claimed that the following is a valid retrieve function from Sc to Sa: 

retr :Sc ~sa 
retr(mk-S,(l,i)) ~ mk-S,(elemsl) 

This claim should be supported by constructing well-formedness and adequacy proofs. 
These are left as simple exercises. 

Following the recipe in Section 11.3.2, the domain obligation for modelling PULL, by 
PULL, is: 

In order to discharge this obligation, it is necessary to use the invariant of Sc. Since the 
empty list has no elements, Sc.l cannot be [ J, and so Sc.i cannot be 0. The following 
informal sketch of a proof indicates how the domain obligation can be discharged. The 
reader should by now be able to fill in the formal details: 



188 

from Sc: Sc; Sa: Sa; Sa = retr(sc); Sa.S * { } 
1 Sa = mk~Sa(elemssc.l) 
2 elemssc.l # {} 

3 Sc.l# [] 

4 Sc.i E indssc.l 
infer Sc.i :;6 0 

The result obligation for PULL can be given as follows: 

11 Verifying Reifications 

defn. of retr (h3) 
rewriting (1) with (h4) 
since elems [] = { } (2) 

(3) and inv-Sc 
seq index non-zero (3, 4) 

x: X; mk-S.(s): S.; mk-Sc(l, i): Sc 

mk-S.(s): s.; mk-Sc( T' T ): Sc 

mk·S.(s) = retr(mk·S0 (l,i)); mk-S.(s) = retr(mk·Sc(l, l)) 

s;e{); x= l(l)Al=remove(l,l) I PULL-res-obij----'--'--'-'-'-"-X-E-'=:S::'-'A-'S-'-="'=s=-\~{x.:.;}-'-'-'-:....:..-'----

Rather than using one metavariable per state as in the domain obligation above, one 
metavariable per state component has been used here. Although this makes the proof 
obligation a little more untidy, it improves the presentation of the proof. Definitions of 
precondition and postcondition have been expanded. Both PULLa and PULLc write the 
entire state, so there is no need for "rest unchanged" extensions to the postconditions. 

An informal partial proof of the result obligation, omitting typing issues and some detail, 
brings the main issue to light: 

!rom mk·S.(s) = retr(mk·Sc(l, l)); mk-S.(s) = retr(mk-Sc(l.i)); 

s * {}; x = l(l)A I= remove(l, l) 

1 S =elems l 
2 s = elemsl 

3 X= l(i) 

4 [=remove( i, I) 

5 eiemsremove(l, l) = elems l\ {l(l)) 

6 s=s\{x) 
7 X E S 

inler X E S AS= s\ {X) 

(h1), retr-defn, s-defn 
(h2), retr-defn, s-defn 

A-E-right (h4) 

A-E-left (h4) 

(?? . 'f ??) .. ]USU y .. 
rewriting (5) with (2, 4, 1, 3) 

(?? justify ??) 
A-! (6, 7) 

At this stage it is worth considering how the proof might proceed. Lines 5 and 7 need to be 
~~ ~ 

justified. Rewriting Line 7 using the equations in Lines 1 and 3 gives I ( i ) E elems I . 
~ ~ 

This follows if it can be shown that i e inds l which follows from the invariant 
~~ ~ 

inv-Sc(mk·Sc( I , i )) provided I is not empty. The invariant comes from the typing 



11.5 Implementing functions 

hypotheses, whereas I not being empty follows by Line I and h3. 

Now consider informally a strategy for the justification of Line 5: 

elemsremove(t,t)=elems t\{t(t)) 
L-. "-- "-- "--

189 

For this to hold, l ( i ) must not occur in remove( i , l ). Developing the reasoning a 
little further, unfolding the definition of remove gives: 

t(t)e elems(t(l, ... ,t\1)-t(t +!, ... ,lent)) 
~ ~ 

In other words, the i th element of I must not occur anywhere else in I . Unfortunately, 
this is not guaranteed by the concrete specification and the present obligation cannot be 
proved. 

If the state definition Sc is modified by extending the invariant to ensure that l is non
repeating, then the proof can be completed. The invariant is then sufficient to ensure that 

remove( i, 7) does not contain l ( i ). It is useful to prove some lemmas concerning 
non-repeating sequences including the following: 

1 I i:N,; I: X'; non-repeating(/); i E indsl 
. remove-lemma. . . 

non-repeatmg(remove(J, /)) 

Alternatively, the concrete specification could define a type of non-repeating sequences, 
and then define remove over this type (with the same body as before). The above lemma 
would then be discharged as part of the well-formedness obligation on remove. Either 
way, this would assist in proving that the final concrete state mk-Sc(l, i) is well-formed, 
which now involves the extra effort of having to show lis non-repeating. 

Ideally, the flaw in the original specification could have been detected earlier, perhaps 
through careful inspection of the design, or by any other software engineering practice. 
However, it is not guaranteed that such a design error will be detected by any of these 
means. Here, the proof process has revealed the error - more exactly, the error was 
revealed through careful consideration of the possible next stages in the proof. In this 
sense, the process of developing a proof acts as a filter for sifting out design flaws that 
can be used alongside other processes such as parsing, type-checking and animation. 

A formal proof of some property of a specification or reification is an extremely rigorous 
argument that the property does indeed hold. However it is always possible that there is 
an error in the proof itself or even a flaw in the proof system being used which will render 
it invalid. On the other hand, failure to prove the result may indicate a design flaw, but 
could equally have occurred because the correct approach to the proof was not tried, or 
because the proof system itself was incomplete. Thus neither proof nor failure to prove 
should be considered to be an end in itself. Rather it is the proof process that is important 
as a means to structure and document the justification of a design step. 

11.5 Implementing functions 

The previous sections have concentrated upon those obligations that arise through data 
reification. This section considers obligations that arise through the need to provide ex
plicit definitions of implicitly-defined functions. 



190 11 Verifying Reifications 

A VDM specification describes the external behaviour of a system through the set of op
erations which act upon some internal state. All that can be observed is the outcome of 
a sequence of operation invocations involving values passed as parameters and returned 
as results. Given such a viewpoint (cf. [Nip86, Sch86]), the functions of a VDM spec
ification can be considered to be merely "auxiliary", that is, they are defined simply to 
pem1it the succinct statement of the predicates in the specification. However, the values 
passed as arguments to operations can also be constructed through function applications. 
Thus at some stage in the development, an implicitly defined function may well have to 
be replaced by an explicit one. 

Taking the view that the argument and result types of operations are the "visible" types 
of the specification and are thus not reified during development, there is no need to con
sider data reification in function satisfaction. Hence only "direct" satisfaction of implicit 
functions by explicit ones is of relevance. The issues arising are thus just reduction of 
undefinedness and increase in determinism. 

Again abstract examples are used to convey the general formulation. Consider an implicit 
specification.fi and a candidate implementationfe: 

Implicit Function 

fi (a: A) r:R 
pre P;(a) 
post Q,(a, r) 

Explicit Function 

f,:A->R 
[,(a) !':. h(a) 

pre P,(a) 

In addition to well-formedness, it is necessary to show the counterpart of the domain 
obligation, namely that.fe is defined at least whenever fi is. This is formalised as: 

a: A; pre-fi(a) 
IM,-dom-ob!l /. ( ) pre- e a 

It is also necessary to show that over the domain required by the implicit function, the 
explicit function satisfies the implicit postcondition: 

a: A; pre-fi(a) 
IM,-satn I post-fi(a,f,(a)) 

11.6 Implementation bias and unreachable states 

Before proceeding to exercise the above techniques in a more realistic example in the 
next chapter, a brief word of caution about the treatment of reification presented here. It 
should be noted that there are occasions where, although there is preservation of external 
behaviour in a reification, it is not possible to define a suitable retrieve function between 
the data models. 

Two situations in which seemingly valid data reifications cannot be justified through the 
use of a retrieve function are where there are unreachable states or implementation bias 
in the abstract model. This section gives a very brief indication of what these terms mean, 
and one possible route to overcome such difficulties. A useful tutorial on data refinement 
which covers these matters in far more depth is [Cle93]. 

Implementation bias in a specification means that different states cannot be distinguished 



11.7 Summary 191 

by observing the subsequent external behaviour of the system. Such specifications are 
unduly biased towards a particular data model in the sense that an alternative model that 
coalesces the two indistinguishable states would exhibit the same external behaviour. If 
an abstract specification of a system has implementation bias that is not present in a con~ 
crete specification of that system, then no retrieve function can be found between them 
as different abstract states will correspond to the same concrete state. Such situations can 
be handled by using relational retrieve associations as described for example in [Nip86], 
however the resulting proof obligations are somewhat more difficult. An alternative ap
proach is to redesign the abstract specification to remove the implementation bias. 

Unreachable states arise where no combination of applications of operations can lead 
to the establishment of a particular value in the state. If there are unreachable states in 
the abstract model but, on the other hand, all the states in the concrete specification are 
reachable then there will be no retrieve function that is both total and adequate1• This is 
because the existence of an adequate retrieve function would imply the existence of a con
crete state that corresponds to an unreachable abstract state. However, this concrete state 
would then need to correspond to the reachable abstract state that arises by undergoing the 
same sequence of operations that achieves that state in the concrete specification and thus 
the retrieve function would not in fact be a function. Where there are unreachable states, 
strengthening the invariant to exclude them does not change the meaning of the specifi
cation and is generally a useful technique that helps to convey quickly an understanding 
of the system. In many cases the stronger invariant also allows simpler postconditions in 
the operations. 

This concludes the presentation of data reification in an abstract setting. The next chapter 
shows how it is used in practice. 

11.7 Summary 

This chapter has dealt with the following topics: 

• The retrieve function which provides the correspondence between the state models 
of the abstract and concrete specifications. 

• Totality and adequacy of the retrieve function. 

• Adequacy of initialisation. 

• Operation Modelling which is the definition of operations in the concrete specifi
cation which have behaviour compatible with the operations in the abstract speci
fication. 

• The characterisation of compatible behaviour by the domain and result obligations 
which formalise the requirements for reduction in undefinedness and reduction in 
non-determinism respectively. 

1 Strictly speaking the situation is a little more complicated than this. Where there are operations with 
non-trivial preconditions, their behaviour outside the precondition is completely free and so they could es
tablish any state. This complicates the notion of unreachable states and in some cases, where preconditions 
are weakened in the concrete specification. docs admit the possibility of a valid retrieve function. However 
the practical advice given here about strengthening the invariant still holds. 



192 11 Verifying Reifications 

• How the process of formalising the reification can lead to the discovery of errors 
even before fully formal proofs are attempted. 

• Implementing implicit functions by explicit ones. 

• The concepts of implementation bias and unreachable states. 

11.8 Exercises 

l. Modelling state initialisation as an operation 

In Section 11.2.2 it was stated that the initialisation adequacy obligation can be consid
ered as a special case of the operation modelling result obligation. Suppose that instead 
of a state initialisation clause for Sa there is a corresponding "abstract initialisation" op
eration: 

/NIT. () 
ext wr ra Ra, 

Wa Wa, 
Ua Ua 

pre true 
post init-Sa(mk-Sa(ra, Wa, Ua)) 

Note that init-S does not mention the previous state mk-Sa(r;, lV,;, ti;}. 

(a) Define a corresponding operation INITc for Sc. 

(b) State the result obligation for modelling /NIT. by /NIT,. 

(c) Derive (i.e. prove) the initialisation adequacy obligation given in Section 11.2.2 from 
this result obligation. 

2. Correcting an incorrect design 

Redo the example in Section 11.4 according to one of the suggested corrections: 

(a) by strengthening inv-Sc to add that lis non-repeating, or 

(b) by defining the type of non-repeating sequences. 

Formulate and prove some lemmas concerning non-repeating sequences. Fill in the details 
of the domain and result proofs. 

3. An alternative formulation of the result obligation 

Restate the general result proof obligation in the form given for the result obligation for 
PULL in Section 11.4. (One metavariable per state component, etc.) Show that the two 
forms are equivalent. 



Chapter 12 

A Case Study in Air-Traffic Control 

12.1 Introduction 

The purpose of this chapter is to illustrate, on an example which is neither trivial nor 
unrealistic, how the techniques of formal proof discussed in Chapters 2 to 11 can be 
applied in practice to help with the design and the analysis of formal specifications and 
formal developments. Amongst other things, it is shown how attempting to discharge 
the proof obligations of a specification or of a development step can reveal errors in the 
design which may otherwise go undetected until much later in the development process. 
It is also shown how the formulation and the proof of validation conditions can be used to 
demonstrate that the essential requirements of a system have been captured by the formal 
specification, even though they might not be explicit in the specification. 

The case study presented here concerns the allocation of aircraft to air-traffic controllers 
within an Air-Traffic Control (ATC) region. In particular, the specification deals with a 
simple systems management tool, such as might be used for overseeing communications 
between pilots and controllers (Fig. 12.1). Such a tool could, for example, act as a sup
plementary safety system, put in place alongside existing procedures and used to raise 
an alann if certain safety constraints are violated. In addition, it could be configured for 
anything from air-traffic control of a metropolitan airport to a major international ATC 
centre, so it is to that extent generic. Formal development of this system is a realistic 
consideration because of its appreciable safety-critical element. 

The layout of the chapter follows the basic stages one might go through in a formal de
velopment, although it must be stressed that in practice this process is rarely as linear 
as this layout might suggest. Section 12.2 can be thought of as the initial "requirements 
definition" of the system, in that it gives an informal description of the air-traffic control 
system under consideration and describes both its required properties and some simplify
ing assumptions which are made. This informal model is then formalised in Section 12.3, 
which gives a VDM state definition and outlines the associated theory and proof obliga
tions. This section also shows how statements taken from the informal requirements 
can be captured as validation conditions and discusses some representative proofs. The 
functionality of the ATC subsystem is then given in Section 12.4 via a series of VDM 
operations on the basic state, and again some proof obligations and their associated proofs 
are discussed. This section also illustrates how these proofs can help to uncover errors in 
the specification. Section 12.5 describes a possible data reification of the basic abstract 



'&' 
HE-5 

KEIS 

Figure 12.1: Air-traffic control subsystem showing major components: airspaces (e.g. 
NS-2, RA-1, RWY-1), controllers (Roger, Igor, Keis), and aircraft. 

state, and gives a corresponding concrete counterpart of one of the operations from the 
abstract specification. The theory of the refinement and the proof obligations and their 
proofs are also discussed. A second possible data reification is outlined in Section 12.6, 
and the chapter closes with a summary and some concluding remarks. 

12.2 The air-traffic control system 

12.2.1 Description 

In general terms, an air-traffic control system and the air-traffic controllers who run it are 
responsible for directing aircraft safely through a particular ATC region. It is assumed 
that this region is subdivided into a number of smaller component airspaces, possibly 
overlapping physically, each of which is the responsibility of a single controller. It is 
further assumed that any aircraft within the ATC region as a whole is at any time under 
the direction of a single controller who is responsible for it whilst it crosses his or her 
particular airspace. However, as an aircraft moves through the region it will move from 
one airspace to another, at which points its controller will change. 

A number of aspects of a full ATC system are beyond the scope of this case study and so do 
not feature in the model discussed here, though they might be included in a specification 
of a more elaborate system. First, only a single ATC region is considered; an additional 
level of functionality would deal with the transfer of aircraft between regions. Second, 
details of the physical shape, arrangement, etc. of the airspaces making up the ATC region 
are omitted at this level of abstraction. The specification is not, therefore, concerned with 
constraints regarding the movement of aircraft between airspaces, for example that an 



195 

aircraft can only move from one airspace to an adjacent airspace. Third, details of an 
aircraft's flight data (speed, elevation, etc.) other than its identity are not included. 

In addition, at this level of detail it is not specified what is meant by either an "airspace" or 
a "controller". In particular, no attempt is made to distinguish between different types of 
airspace or different types of controller. Thus, for example, the abstract term "airspace" 
may indeed denote a physical region of space, but may equally denote an airport runway 
and its surrounds or ground areas such as taxiing routes or parking bays. Similarly, "con
troller" might represent any of airport approach, arrivals, surface movement, departures, 
tower, or en-route controller. 

This is of course a gross simplification of the realities of an air-traffic control system. 
However, the system described here should not be thought of as a tool which deals with 
the full complexities of air-traffic control. Rather it should be regarded as a system which 
could be used in conjunction with existing air-traffic control procedures to oversee and 
maintain high-level safety properties. Indeed, viewed in this way, the overall picture is 
not totally unrealistic (cf. [lEE, Cha81, Cho88]). 

A single air-traffic controller is therefore responsible for ensuring the safe separation of all 
the aircraft within his or her allotted airspace and for keeping track of the flight paths, the 
elevation and the speed of each of those aircraft, while the subsystem is responsible for 
ensuring that each aircraft is allocated a controller and that the transfer of aircraft into the 
ATC region from an external region, between airspaces within the region, and out of the 
region to another region, is all handled correctly. In addition, the subsystem ensures the 
continuity of control as controllers come on and go off duty, and limits the responsibility 
of each controller, albeit rather crudely, by placing an upper bound on the number of 
aircraft that can occupy a given airspace. In this way, it might limit the capacity of an 
airspace according to its size or its location (for instance it might impose a restriction that 
at most one aircraft may occupy an airspace containing an airport runway) or change its 
capacity to take account of changing weather conditions, for example. 

12.2.2 Analysis 

On the basis of the informal description given above, the following basic components of 
the subsystem can be identified: 

• the controllers currently on duty; 

• the airspaces comprising the ATC region; 

• the aircraft occupying the ATC region. 

The essential relationships between these objects are: 

• each airspace has at most one controller; 

• each aircraft has exactly one controller; 

• each aircraft occupies one airspace; 

• the number of aircraft that can occupy any given airspace is limited. 



!Yo 1£ .f\ l..l:f..'iC:::: .::>WUY 111 .M.Jr~ .U<HJlt; L-UlJUUJ 

The following terminology is introduced in order to facilitate the description of the func
tionality and the safety properties of the system: 

commissioned An airspace is said to be commissioned if it is a component of the ATC 
region. This term is preferable to "controlled airspace" which is an official legal 
term carrying connotations not intended here (for instance, that an aircraft cannot 
enter a controlled airspace without official clearance). For the purposes of this spec
ification it is assumed that an airspace is commissioned if and only if its capacity 
is known. 

activated An airspace is said to be activated if a controller is assigned to it. 

deactivated An airspace is said to be deactivated if it is commissioned but has no as
signed controller. For example, an airspace relating in whole or in part to an airport 
may become deactivated when the airport shuts down for the night. 

utilised An airspace is said to be utilised if it is occupied by one or more aircraft. An 
airspace may be activated but not currently utilised, but not vice versa. 

assigned The current controller of a particular airspace is said to be assigned to that 
airspace. A controller is simply assigned if he or she is the controller of some 
airspace within the ATC region. 

available A controller who is on duty but not currently assigned is said to be available. 

known An aircraft is said to be known if it is utilising some airspace in the ATC region. 

The basic functionality of the system concerns the assignment of controllers to aircraft 
and the correct management of these assignments. This behaviour is described by the 
following operations on the model: 

• operations to commission and decommission an airspace, and to reset its capacity; 

• operations describing controllers coming on and going off duty; 

• operations to activate, deactivate, and reassign control of an airspace; 

• operations to add flight data to and remove it from the system, and to hand over 
flight data from one airspace to another. 

Finally, the following are identified as requirements on the system: 

Rl Only onMduty controllers can control airspaces. 

R2 An airspace can be activated only if it is commissioned. 

R3 All utilised airspaces in the ATC region are activated. 

R4 The capacity of each utilised airspace is not exceeded. 

RS A controller cannot be assigned to two different airspaces simultaneously. 



R6 Each known aircraft has a unique controller. 

R7 Each known aircraft occupies a unique airspace. 

R8 Each activated airspace has a unique controller. 

R9 An airspace which is not activated contains no aircraft. 

RIO The controller of a known aircraft is on duty. 

Note that this is not meant to be an exhaustive list of requirements. 

12.3 Formalisation of the state model 

12.3.1 The state of the system 

1~ I 

The formalisation of the model begins with the introduction of primitive types (or pa
rameters) of the specification corresponding to the basic components of the subsystem 
identified in Section 12.2.2 above. These are: 

• Controller, representing all possible air-traffic controllers; 

• Space, representing all possible airspaces; and 

• Aircraft, representing all possible aircraft. 

Their definitions are unimportant here. 

The overall state space of the ATC subsystem then has four state variables constructed 
from these primitive types: 

1. onduty: a set of Controllers, representing the controllers who are currently on duty, 
although not necessarily assigned. 

2. control: a oneAone map that records which controller is assigned to which airspace. 
The domain of the control map thus represents the currently activated airspaces, its 
range those controllers who are currently assigned. 

3. capacity: a map which gives the number of aircraft each airspace can safely ac
commodate. Its domain represents the commissioned airspaces. 

4. location: a map that associates an aircraft with the airspace it currently occupies. 
The domain of the location map represents the known aircraft, while its range 
denotes the currently utilised airspaces. 

The state space, without invariant and initialisation condition as yet, is written in VDM 
as follows: 



stateATCol 
onduty 
control 
capacity 
location 

inv ... 

init .•. 
end 

Controller-set 
Space ~ Controller 
Space ~N 
Aircraft ~ Space 

The invariant on the state has to be sufficiently strong to ensure that all the requirements 
Rl to RlO are actually properties of the formal specification. One way to do this, of 
course, is to simply make the invariant the conjunction of all the requirements, suitably 
formalised. The problem with this approach is that, because the requirements are gener
ally not all independent, the invariant then tends to be much larger than necessary, making 
any proofs which depend on showing that the invariant holds (e.g. satisfiability proofs; 
see Section 12.4) much longer than they need be. The trick then is to identify some small 
subset of the requirements, satisfying which is sufficient to ensure that all the other re
quirements are also satisfied. The invariant is then fanned from the conjunction of the 
subset of the requirements thus chosen, and the remaining requirements become valida
tion conditions on the specification, to be proved at some later stage (see Section 12.3.4). 

Here, the first four requirements Rl to R4 are chosen as the basic subset from which 
the invariant is to be constructed, and RS to RlO are treated as validation conditions. 
On the basis of the description of the relationship between the informal concepts and the 
various parts of the state components given above, these four requirements are formalised 
as follows: 

Rl Only on-duty controllers can control airspaces: 

rng control ~ onduty 

R2 An airspace can be activated only if it is commissioned. 

domcontrol ~ dom capacity 

R3 All utilised airspaces in the ATC region are activated: 

rng location ~ dom control 

R4 The capacity of each utilised airspace is not exceeded: 

V s E rng location· numOfAircraft(s, location) :5 capacity(s) 

and the invariant is simply the conjunction of these four expressions. 

The auxiliary function numO[Aircraft determines the number of aircraft in an airspace: 

numOfAircraft: Space x (Aircraft --"'->Space)--> N 
numOfAircraft(s, loc) ~ card (dom(locHs})) 



l.L. . .J rorma11saaon ot the state model 199 

In order to define the initialisation condition on the state, it is assumed that an off-the
shelf ATC subsystem has all fields empty. For this, it is sufficient to insist that the onduty 
set and the capacity map are both empty as the state invariant then implies that the control 
and location maps must also be empty. 

The complete state definition is thus: 

stateATC of 
onduty : Controller-set 
control : Space ~ Controller 
capacity : Space ~ N 
location : Aircraft ~ Space 

inv mk-ATC(cs, con, cap, Zoe) ~ rngcon k; cs A domcon ~ domcap A 

rng lac f: dom con A 'tl s E rng lac· numO/Aircraft(s, Joe) $ cap(s) 

inH <1 !;>_ <1.onduty = {}A <1.capacity = { >->) 
end 

12.3.2 Axiomatisation of the abstract state 

Following the procedures set out in Chapter 10, the theory describing the above state 
definition consists of: 

• type symbols Space, Controller and Aircraft corresponding to the primitive types 
of the specification; 

• a type symbol ATC representing the state; 

• a symbol mk-ATC representing the mk-function for the state; 

• symbols •. onduty, -.control, •. capacity and _,location representing the selector 
functions for the state components; 

• a defined symbol inv-ATC for the state invariant, defined via: 

inv-ATC(cs, con, cap, toe) def rngcon ~ cs A domcon ~ domcap A 

rng Joe f: dom con A 'tl s e rng Joe· numO/Aircraft(s, Joe) $ cap(s) 

• a defined symbol init-ATC for the initialisation condition, defined via: 

init-ATC(<1) def <1.onduty = {}A <1.capacity = { >->} 

• a symbol numOfAircrafl(., _)representing the auxiliary function; 

• axioms giving the formation and definition rules for the mkRfunction: 

cs: Controller-set~ con: Space ~ Controller 
cap: Space ~ N; toe: Aircraft ~ Space 

inv-ATC(cs, con, cap, lac) 
[mk-ATC-form[----7-~:;;,..===~'--'-7=.=---Ax 

mk-ATC(cs, con, cap, /oc):ATC 

<1:ATC 
[ mk-ATC-defn [ Ax 

mk-ATC(<1.onduty, <1.control, <1.capacity, <1./ocation)- <1 



200 12 A Case Study in Air-Jrattic Control 

mk-ATC(cs, con, cap, lac): ATC I inv-ATC-l I Ax inv-ATC(cs, con, cap, lac) 

• axioms giving the formation and definition rules for each of the selector functions. 
Those for the selector onduty are given below and are typical. Those for the other 
selectors are analogous and are given in Section 14.11. 

a:ATC 
I onduty-form I Ax . . cr.onduty: Controller-set 

mk-ATC(cs, con, cap, /oc):ATC I onduty-defn I Ax 
L-. --'---------'· mk-ATC(cs, con, cap, /oc).onduty - cs 

• an axiom defining the auxiliary function numOfAircraft: 

s: Space; loc: Aircraft ~ Space 
card(dom(loc~ {s})):N I numOfAircraft-defno! -c:-:==='='i:i:"7'c'T'-":':-:\Cf';:"::-T.-::=--.-::"' Ax . . numOfAircraft(s, lac) -card (dom(loc ~ {s})) 

The proof obligations are stated as rules to be proved in this theory. For the state definition 
these are: 

Proof obligation 1 The auxiliary function numO[Aircraft is well-defined: 

I . I s: Space; lac: Aircraft -"'-> Space 
numO[Atraaft-form O"A. ift( I ) N num 'J' zrcra s, oc : 

Proof obligation 2 The state invariant is well-defined: 

cs: Controller-set; con: Space ~ Controller 
cap: Space ~ 1\1; Zoe: Aircraft ~ Space 

I in,-ATC-form 1-----'--'--o--,-==':c--:-:-----:c:::-fc-:;cmc-'---inv-ATC(cs, con, cap, Zoe): Ill 

Proof obligation 3 The initialisation condition is well-defined: 

a:ATC 
I init-ATC-form I init-ATC( a): Ill 

Proof obligation 4 The initialisation condition is satisfiable: 

I init-ATC-satl 3a: ATC · init-ATC( a) 

Requirements RS to RlO, which become validation conditions, are treated just like the 
proof obligations in that they are stated as rules to be proved in this theory. However, 
the statements of these validation conditions make use of some of the terminology from 
Section 12.2.2, which was introduced to help to describe the system i!l terms correspond
ing to one's informal thinking. For this reason, it is useful to formalise the appropriate 
parts of this terminology as additional auxiliary functions in the specification. Thus, an 
activated airspace is one which appears in the domain of the control map: 



is-activated :Space x ATC -> ill 
is-activated(s, a) ~ s E dom ( a.control) 

and a known aircraft is one which is in the domain of the location map: 

is-known :Aircraft x ATC -> ill 
is-known(p, a) ~ p E dom(a.location) 

201 

The controller of some known aircraft can then be defined via the function contro/lerOf: 

contro/lerOf :Aircraft x ATC -> Controller 
controllerOf(p, a) !;:_ a.control( a.location(p )) 
pre is-known(p, a) 

The theory described above must now be extended to incorporate descriptions of each of 
these new functions. This requires new symbols is-activated, is-known, and control/erOf 
to represent the functions, a new defined symbol pre-controllerOf for the precondition of 
the auxiliary function controllerOf, defined via: 

pre-controllerOf(p, a) def is-known(p, a) 

and a defining axiom for each function (cf. the treatment of numOfAircraft above): 

I
. . d I s:Space; a:ATC; (s E dom(a.control)):ill 
Js-acttvare -dcfno . . Ax 

ts-acuvated(s,a) (s E dom(a.control)) 

p:Aircrafr, a:ATC; (p e dom(a.location)):UI 
! is-kn_o __ w __ 'n-defn0 I Ax = = is-known(p, a)- (p E dom(a.location)) 

p:Aircraft; a:ATC; pre-controllerOf(p, a) 
( a.control( a.location(p))): Controller I controii<'Of -defno 1-c-o_n_,t,"'o.;:ll;.:er"'O~Ij.;;(p=, a'"');:.===a=.::co-"n"t"ro"'l:,:( a::_:.;/o=cc:a:.:ti:::o:._n(p7"""C) ),-- Ax 

Additional well-formedness proof obligations are also required for each of these new 
functions. These are: 

Proof obligation 5 The auxiliary function is-activated is well-defined: 

. . s: Space; a: ATC 
l:s-actlvated-form I is-activated(s, a): IB 

Proof obligation 6 The auxiliary function is-known is well-defined: 

[· I p: Aircraft; a: ATC 
:s-known-form . k (p )• m ts- nown ,a ,ll) 

Proof obligation 7 The precondition of controllerOf is well-defined: 

p: Aircraft; a: ATC 
lpre-controlluOJ-form I pre-controllerOf(p, a): ill 



lUl LL- fi. case .:>wuy mAn- H<:Unt,; t.-uuuu1 

Proof obligation 8 The auxiliary function controllerOf is well-defined: 

I controllerOf -forml 
p:Aircraft; o-:ATC; pre-controllerOf(p, o-) 

. :J controllerOf(p, o-): Controller 

The validation conditions corresponding to requirements RS to RlO can now be fomm
lated as the following rules: 

Validation 1 A controller cannot be assigned to two different airspaces simultaneously: 

s1:Space; s2:Space; o-:ATC; is-activated(s1, o-) 

I 
. I is-acrivared(s2, o-); o-.control(s1) o-.control(s2) 

no-double-assignment 

Validation 2 Each known aircraft has a unique controller: 

. . p: Aircraft; o-: ATC; is-known(p, o-) I rurcraft-com.rollcr-umque I 31 C II II Of(p ) . c: ontro er · c - contra er , a 

Validation 3 Each known aircraft occupies a unique airspace: 

I . . . I p:Aircraft; o-:ATC; is-known(p, o-) 
rurcraft-m-umquc-space 31 S I . (p) 

. s: pace · s - u. ocatton 

Validation 4 Each activated airspace has a unique controller: 

I 
. 

1 
. I s: Space: o-: ATC; is-activated(s, o-) 

. auspace-contro lcr-umque. 3! c: Controller. c - (J .control(s) 

ValidationS An airspace which is not activated contains no aircraft: 

I . I s: Space; o-: ATC; ~ (is-acrivated(s, o-)) 
not actrvated =>empty nwnOfAircraft(s, G.location) - 0 

Validation 6 The controller of a known aircraft is on duty: 

,...--.,.,.-=---,,..-, p:Aircraft; o-:ATC; is-known(p, o-) 
I contro//erOf-ondutyl controllerOf(p, o-) E O'.onduty 

The proofs of these proof obligations and validation conditions are discussed in the next 
two sections. 

12.3.3 Internal consistency 

Although simply writing a formal specification of a system is likely not only to increase 
one's understanding of that system but also to reveal some errors in the basic design, 
errors can still be present, for instance because there may be logic~! inconsistencies or 
oversights in one's mental picture of the system. Sometimes such errors can be revealed 
by statically type~checking the specification using some appropriate tool, but there are two 
limitations to this process: first, type checking in VDM-SL is not in general completely 



12.3 Formalisation of the state mode/ 203 

statically decidable (because it cannot in general be statically checked that invariants 
hold), and second, there are some areas of verification (for example the satisfiability of 
operations; see Section 12.4) which simply do not lend themselves to static type checking. 
A specification can therefore only be shown to be completely error-free (in the sense of 
containing no logical inconsistencies) if all the proof obligations have been discharged. 
This section shows how proof obligations 1 to 8 given in Section 12.3.2 are dealt with. 

Proof obligation 1 The auxiliary function numOfAircrajt is well-defined. 

For an explicit, non-recursive1 function definition like this, the key to proving well
formedness is to first prove a rule asserting the well-formedness of the defining expres
sion. This proof is straightforward, consisting simply of a series of applications of the 
formation rules for the operators from which that defining expression is constructed. This 
rule is then used to prove the working version (see Section 10.4.1) of the definition rule, 
and the required formation rule for the function then follows by simple type inheritance. 

Applying this series of steps to the proof of 'numO/Aircraft-form' the rule asserting the 
well-formedness of the defining expression is: 

. s: Space; loc: Aircraft ~ Space 
I numOfA~rcraft-wff I card ( dom (Joe ~ { s })): N 

Its proof follows directly from the formation rules for card, dom, ~ and the unit set: 

from s: Space; loc: Aircraft ~ Space 
I { s}: Space-set 
2 /oc ~ { s}: Aircraft ---"'-> Space 
3 dom(Ioc~ {s)):Aircraft-set 
infercard(dom(/oc~ {s})):N 

The working version of the definition rule: 

r---cc=-c-c-oo s: Space; Joe: Aircraft ---"'-> Space 
I numOfAircraft·defn l--""',:;.=;__:__;,.:.,;:.:-c::c--:--"~-:---7C"-~-,-;c;num0fAzrcraft(s,/oc)- card(dom(Joc~ {s})) 

{a }-form (hl) 
Harm (h2, 1) 
dam-form (2) 
card-form (3) 

is then easy to prove as the well-formedness rule just proved justifies the third hypothesis 
of the basic definition rule 'numOfAircraft-defno' from the other two: 

from s: Space; loc: Aircraft ~ Space 
I card(dom(/oc~ {s})):N 
infer numOfAircraft(s, Joe) =card (dom (loc~ {s })) 

numO/Aircraft-wff (hi, h2) 
numO[Aircraft-defno (hi. h2, 1) 

The overall formation rule' numOfAircraft-form' then follows directly from these together 
with the rule '=-type-inherit-left': 

1 See the treatment of the function nonRptng in Section 12.5.5 for a discussion of recursive functions. 



204 12 A Case Study in Air-Traffic Control 

from s: Space; foe: Aircraft ~ Space 
I card(dom(loc~ {s})):N 
2 numOfA/rcraft(s,foc) = card(dom(loc~ {s})) 
infer numOfA/rcraft(s, foe): N 

Proof obligation 2 The state invariant is well-defined. 

numOfA/rcraft-wff (hi, h2) 
numOfA/rcraft-defn (hi, h2) 

=-type-inherit-left (1, 2) 

The proof that the invariant is boolean-valued follows the pattern described in Section 9.4. 
After expanding the definition of the invariant, the propositional operators are eliminated 
using the propositional formation rules of Section 9.3.1. Again, care must be taken to 
use the sequent forms of these rules where appropriate. Next, the relational formation 
rules given in Section 9.3.2 are used to eliminate the relational operators, and the proof 
is completed using the formation rules for the operators on the basic dataMtypes. 

from cs: Controller-set; con: Space ~ Controller; 

I 
2 
3 
4 
5 
6 
6.1 
6.2 
6.3 

cap: Space ~ N; Joe: Aircraft ~ Space 
rng con: ControllerMset 
(rngcon ~ cs):IB 
dom con: Space-set 
dom cap: Space-set 
(domcon ~ domcap):HI 
from dom con ~ dom cap 

rng loc: Space-set 
(rngfoc ~ domcon):lll 
from rng loc ~ dom con 

from s1: Space; s1 e rng loc 

mg-form-bimap (h2) 
(;;-form (1, hl) 

dom-form-bimap (h2) 
dom-form (h3) 
~;-form (3, 4) 

mg-form (h4) 
~-form (6.1, 3) 

6.3.1 
6.3.1.1 
6.3.1.2 
6.3.1.3 
6.3.1.4 

numO[Alrcraft(s,, foe): N numO[Aircraft-form (6.3.1.hl, h4) 
rngfoc ~ domcap ~-trans (6.1, 3, 4, 6.3.hl, 6.hl) 
St E domcap ~-E (6.3.l.hl, 6.1, 4, 6.3.l.h2, 6.3.1.2) 
cap(s,): N at-form (6.3.l.hl, h3, 6.3.1.3) 

infer (num0fA/rcraft(s1, loc) ,; cap(st)): IB ,;-form (6.3.1.1, 6.3.1.4) 
infer (Vs E rngloc · numOfA/rcraft(s, loc),; cap(s)): IB 

infer (rng loc ~ dom con A 

Vs E rngfoc · numOfAircraft(s, foe) ,; cap(s)): IB 
7 (domcon ~ domcap A rng!oc ~ domcon A 

Vs E rngfoc · numOfA/rcraft(s, foe) ,; cap(s)): IB 
8 (rngcon ~ cs Adomcon ~ domcapArngloc ~domcon A 

Vs E rng loc · numOfAircraft(s, foe) ,; cap(s)): IB 
infer lnv-ATC(cs, con, cap, loc): Ill 

V -form-set (6.1, 6.3.1) 

"-form-sqt (6.2, 6.3) 

"-form-sqt (5, 6) 

A-form (2, 7) 
folding (8) 



205 

Note how the innermost subproof (Sub proof 6.3.1) in the proof above relies on the well
formedness rule for numOfAircraft proved previously (proof obligation l). This subproof 
also involves showing that cap(s) is well-defined for all sin rngloc, which follows from 
the facts that rng foe ~ dom con and dom con ~ dam cap (the third and second conjuncts 
of the state in varian~ respectively). 

One point worth noting here is that proving the well-formedness of inv-ATC has done 
more to increase confidence in the model than "merely" showing its internal consistency: 
it has also performed a cross-check on whether or not a suitable subset of the requirements 
has been chosen to construct the invariant. For example, if either of the requirements R2 
or R3 had not been included in the state invariant, the oversight would have been revealed 
in the course of trying to prove the well-fonnedness of the final conjunct of the invariant 
(corresponding to the requirement R4). 

Proof obligation 3 The initialisation condition is well-defined. 

The proof of 'init-ATC-fonn' is straightforward, relying on the definition of init-ATC and 
the formation rules for equality and for the selector functions: 

from cr:ATC 
1 cr.onduty: Controller-set 
2 G.capacity: Space ~ N 
3 {):Controller-set 
4 {,__,):Space--"'-.N 
5 (cr.onduty = { }):01 
6 ( a.capacity = { ,__,} ): IB 
7 (cr.onduty= {}A a.capacity = {,__, }):01 
infer init-ATC( a): 01 

Proof obligation 4 The initialisation condition is satisfiable. 

onduty-form (hi) 
capacity-form (hi) 

{}-form 
{ ,__, } -form 

=-form (1, 3) 
=-form (2, 4) 
A-form (5, 6) 

folding (7) 

This requires showing the existence of some state satisfying the initialisation condition. 
Because the initialisation condition effectively implies that the initial state has all fields 
empty, as already stated above, the easiest way of doing this is by using '3-1' with 
mk-ATC( { }, { ,__, }, { ,__,}, {,__,})as the witness value. This involves showing that this value 
does in fact satisfy the initialisation condition (Line 19) and also represents a valid state 
(Line 15). The first of these is easy, relying only on the definition of the initialisation 
condition, propositional logic, and properties of the selector functions. For the second, it 
must be shown that the components of mk-ATC( { } , { ,__,}, { ,__, ), { ,__,)) are of the correct 
type (trivial; Lines 1 to 4) and that they satisfy the invariant on ATC. This last proceeds 
by substitution of the definitions of dom { ,__,} and rng { ,__,} from Lines 5 and 6 and simple 
predicate logic and set theory. The complete proof is: 



£VO 

from 
1 { } :Controller-set 
2 {~):Space<--"'--. Controller 
3 { ~}: Space --"'-> N 
4 {~):Aircraft --"'-> Space 
5 dom{~J={} 
6 rng{~->} = {} 
7 {}~{} 
8 rng{~->}~{} 

9 dom{~->} ~dom{~->} 
10 rng{~} ~dom{~->} 
11 rng { ~-->}: Space-set 
12 from y: Space: y e rng { ~) 

{}-form 
{ >-> }-form-bimap 

{~-->}-form 
{~-->}-form 

dom-defn-{ ~-->} 
mg-defn-{~->} 

{ }-is-subset (3) 
=-subs-left(b) (I, 6, 7) 
=-subs-left(b) (I, 5, 7) 
=-subs-left(b) (1, 5, 8) 

mg-form (4) 

12.1 ~(ye rng{~->}) ~-e-mg-{~->}-!(12.h1) 
infer nwnO[Aircraft(y, { ~-->}) ,; { ~--> )(y) contradiction (12.h2, 12.1) 

13 V s e rng { ~-->) · nwnO[Aircraft(s, { ~-->}) ,; { ~--> }(s) V -!-set (11, 12) 
14 inv-ATC({),{~).{~->),{~J) inv-ATC-1-separate(1,2,3,4,8,9, 10, 13) 
15 mk-ATC( {), { ~-->), { ~--> ), { ~--> }):ATC mk-ATC-form (I, 2, 3, 4, 14) 
16 (mk-ATC( {), { ~--> ), { ~--> }, { ~--> ))).onduty = {} onduty-form (15) 
17 (mk-ATC( { },{ >-> }, { >-> ), {~-->))).capacity= { ~-->} capacity-form (15) 
18 (mk-ATC({ ), {>->), {~-->), {~-->))).onduty = {}A 

(mk-ATC({ ), {~--> }, {>->},{>->))).capacity={>->} 
19 init-ATC(mk-ATC( {), { ~-->}, { ~-->}, { ~-->} )) 
infer 3cr: ATC · init-ATC( cr) 

A-l (16, 17) 
folding (18) 
3-I (15, 19) 

Proof obligations 5, 6, and 8 Each of the auxiliary functions is-activated, is-known 
and controllerOf is well-defined. 

These proof obligations are treated in exactly the same way as the corresponding proof 
obligation for the function numO[Aircraft (see proof obligation 1 above). 

Proof obligation 7 The precondition of controllerOf is well-defined. 

This follows immediately from the well-formedness of is-known. 

12.3.4 Validation of the state representation 

Although discharging the proof obligations on the state shows that the formal model is 
logically consistent, it does not mean that it actually represents the system described in 
the informal requirements. In particular, there is no guarantee at this stage that require
ments RS to RIO have actually been captured by the invariant, and there is probably 
already enough complexity present for this not to be obvious. This. step from informal 
requirements to formal specification can, by definition, never be made completely formal 
because there could easily be additional "requirements" which have simply been over
looked. Nevertheless, showing that the requirements that have been thought of are all 



l:L.:5 rormalisation of the state model 207 

consequences of the formal model is a very good way of increasing confidence that the 
model does actually represent the system required. This is done by transforming the origi~ 
nal informal requirements into formal validation conditions, rules representing essentially 
the formalisation of one's informal intuition about the system. Proving these rules demon
strates formally that .the corresponding requirements are logical consequences of the state 
invariant. 

For the ATC system, this informal intuition has been captured in the remaining require
ments RS to RIO and the corresponding formal rules have been given in Section 12.3.2. 
This section discusses the proofs of these rules. 

Validation 1 A controller cannot be assigned to two different airspaces simultaneously. 

Figure 12.2: A controller cannot be assigned to two different airspaces simultaneously. 

Where a boolean-valued auxiliary function like is-activated is used in the hypotheses of 
rules, a useful first step is to prove a lemma formalising the elimination of that function. 
This saves having to use the definition rule and substitution of equality every time the 
function appears. In this case the appropriate rule is 

1· . I s: Space; a: ATC; is-activated(s, a) 
1s-acuvated-B 

s E dom(a.control) 

the proof of which simply consists of the two steps mentioned above. 

After using this to eliminate both occurrences of is~activated (Lines 1 and 2 in the proof 
below), the overall result is an almost immediate consequence of the fact that the control 
map is one~one. Note how the hypotheses is~activated(s 1 , o-) and is-activated(s2, <r) are 
necessary to ensure the well~formedness of cr .control(s1) and a .control(s2). 



20~ 1£ A Case ::>tudy m Atr--ltattzc COntrol 

from s1: Space; s2: Space; a: ATC; is-activated(s,, a); 
is-activated(s2, a); a.control(s,) = a.control(s2) 

1 s1 E dom(a.control) 
2 s2 E dom (a .control) 
3 c; .control: Space ~ Controller 
infer St = s2 

is-activated-E (hl, h3, h4) 
is-activated-E (h2, h3, h5) 

control-form (h3) 
bimap-1-1 (hl, h2, 3, 1, 2, h6) 

Validation 2 Each known aircraft has a unique controller. 

Figure 12.3: Each known aircraft has a unique controller. 

This result follows directly from the well-formedness of the function controllerOf (see 
proof obligation 8) and the rule '3!-=-l': 

from p: Aircraft; a: ATC; is-known(p, a) 
I pre-controllerOf(p, a) 
2 controllerOf(p, a): Controller 
infer 3! c: Controller· c = controllerOf(p, a) 

folding (h3) 
controllerOf-forrn (hi, h2, I) 

3!-=-l (2) 



Figure 12.4: Each known aircraft occupies a unique airspace. 

Validation 3 Each known aircraft occupies a unique airspace. 

This is also a direct consequence of the well~formedness of the right-hand side of the 
equality in the conclusion and the rule '3!-=-I': 

from p: Aircraft; cr: ATC; is-known(p, cr) 
I p E dom(cr./ocation) 
2 (J.[ocation:Aircraft ~Space 
3 cr./ocation(p ): Space 
infer 3! s: Space. s = cr./ocation(p) 

is-known-E (hi, h2, h3) 
location-form (h2) 

at-form (hi, 2, I) 
3!-=-1 (3) 

Validation 4 Each activated airspace has a unique controller. 

This proof is entirely analogous to the previous one. It is left as an exercise for the reader. 

Validation 5 An airspace which is not activated contains no aircraft. 

The first step is to use the definition of numOfAircraft (Line 2) and the transitivity of 
equality to reduce the problem to showing that card(dom(cr.location~ {s})) = 0. Then 
simple manipulation using the rules for maps and sets reduces this to showing (Line 9) that 
s I! rng (a .location), which follows easily from the third conjunct of the state invariant 
which insists that occupied airspaces have controllers. 



~ 

~------

OUT OF 
ORDER 

Figure 12.5: An airspace which is not activated contains no aircraft. 

from s: Space; cr: ATC; --, (is-activated(s, a)) 
1 a.location: Aircraft ~Space 
2 numOJAircraft(s, a.location) = 

card (dom ( a.location ~ {s} )) 
3 numO/Aircraft(s, a.location): N 
4 rng ( a.location): Space-set 
5 CJ.control: Space ~Controller 
6 dom ( a.control): Space-set 
7 rng ( a.location) ~ dom ( a.control) 
8 s ~ dom (a .control) 
9 s E rng ( a.location) 
10 a.location~ {s) = {~} 
11 dom (a .location H s}) = {} 
12 card(dom(a.location~ {s})) =0 
infer numO/Aircraft(s, a.location) = 0 

location-form (h2) 

numO/Aircrajt-defn (hi, I) 
numO/Aircrajt-forrn (hi, I) 

mg-form (I) 
control-form (h2) 

dom-form-bimap (5) 
inv-ATC-I-clause3 (h2) 

~ -is-activated-E (hI, h2, h3) 
~-subset-! (hi, 4, 6, 7, 8) 
~-defn-(a )-" (hi, I, 9) 

dom-{ ~ }-! (10) 
card=O-I (11) 

=-trans( a) (3, 2, 12) 

Exercise 1 A possible variant of this validation condition says that if there is a non
zero number of aircraft in any airspace, then that airspace is activated. Formulate this 
validation condition as a rule and prove it. 0 



21! 

Validation 6 The controller of a known aircraft is on duty. 

After applying 'isMknown~E' to the hypotheses and using the definition of controllerOf 
to rewrite the conclusion, this proof reduces to showing that a .control( cr.location(p )) E 

<J.onduty fromp E dom (<J.location). This follows easily, if tediously, from the first and 
third conjuncts of the invariant (Lines 6 and 13) and the basic properties of subsets and 
map application (Lines 10 and 14 to 17). 

from p: Aircraft; <J: ATC; is-known(p, cr) 
I pre-controllerOj(p, cr) 
2 controllerOJ(p, cr) = <J.control(cr./ocation(p)) 
3 cr.control( <J./ocation(p )): Controller 
4 p E dom ( <J.location) 

5 a .location: Aircraft ~ Space 
6 rng ( <J.control) ~ <J.onduty 
7 cr.onduty: Controller-set 

8 a.comrol:Space ~Controller 
9 rng ( cr.control): Controller-set 
10 <J.location(p): Space 
11 rng ( <J./ocation): Space-set 
12 dom ( <J.contro/): Space-set 
13 rng ( <J.location) ~ dom ( <J.contro/) 
14 <J.location(p) E rng(cr.location) 
15 cr.location(p) E dom(cr.control) 
16 cr .control( <5 ./ocation(p)) E rng ( <J .control) 
17 cr.controi(<J.location(p)) E <J.onduty 
infer controllerOj(p, <J) E <J.onduty 

12.4 Top-level operations 

folding (h3) 
controllerOj-defn (hI, h2, h3) 

controllerOj-wff (h 1, h2, 1) 
is-known-E (h1, h2, h3) 

location-form (h2) 
inv-ATC-I-clause 1 (h2) 

onduty-form (h2) 
control-form (h2) 

rng-form-bimap (8) 
at-form (h1, 5, 4) 

rng-form (5) 
dom-form-bimap (8) 

inv-ATC-I-clause3 (h2) 
E -rng-I-at (h1, 5, 4) 

~-E (10, 11, 12, 14, 13) 
E -rng-1-at (10, 8, 15) 
~-E (3, 9, 7, 16, 6) 

=-subs-left(b) (3, 2, 17) 

To complete the top-level specification of the ATC subsystem, operations by which the 
state can be changed are specified. As described in Section 12.2.2, these are grouped into 
four categories: 

• operations to commission and decommission an airspace, and to reset its capacity; 

• operations describing controllers coming on and going off duty; 

• operations to activate and deactivate an airspace, and to reassign control of an 
airspace; 

• operations to add flight data to and remove it from the system, and to hand over 
flight data from one airspace to another. 

Each operation requires symbols to be added to the basic theory outlined in Section 12.3 
to represent the precondition (if any) and the postcondition of the operation. However, no 



additional axioms are required. In addition, each operation gives rise to proof obligations 
to show that both its precondition and its postcondition are well~formed (boolean-valued) 
and that it is satisfiable. 

One such satisfiability obligation is discussed in Section 12.4.1, and another in Sec
tion 12.4.2 where it is shown how failure to discharge the satisfiability proof can reveal er
rors in the specification. Validation conditions similar to those discussed in Section 12.3.4 
are also useful at the level of the operations to ensure that the functionality they describe 
matches one's informal intuition, and some of these are also discussed here. 

12.4.1 Commissioning an airspace 

The first operation is for commissioning a new airspaces, with capacity n: 

Commission (s: Space, n: N) 

ext wr capacity : Space ~ N 
pre s e dom capacity 

post capacity = ~ t { s >--+ n} 

The precondition simply says that the airspace is not already commissioned. 

As indicated above, defined symbols representing the operation's precorldition and post
condition are added to the theory: 

C . . ( ) del d pre- ommlsswn s, cap = s e om cap 

C . . ( ~ ) del ~ t { } post- ommzsswn s, n, cap, cap = cap= cap s ~---+ n 

each of which has an associated well-fonnedness proof obligation: 

Proof obligations 9 and 10 The precondition and the postcondition of the operation 
Commission are well-formed. 

I pre-Convnission-form j 

I post-Convnission-form I 

s: Space; n: N; cs: Controller-set 
con: Space A Controller; cap: Space ~ N 

loc:Aircraft ~Space; inv-ATC(cs, con, cap, lac) 
pre-Commission(s, cap): Ill 

s: Space; n: N; cs: Controller-set 

con: Space ~ Controller, Ciip: Space ~ N 
cap: Space ~ N; lac: Aircraft ~ Space 

inv-ATC(cs, con, cap, loc); pre-Commission(s, cap) 
post-Commission(s, n, cap, cap): Ill 

In this particular case, it is fairly obvious that these well-formedness conditions are satis
fied, so the proofs of these rules are not discussed here. The interested reader can easily 
apply the techniques described in Section 9.4 to construct them. 

The final proof obligation associated with this operation is the satisfiability obligation, 
which states that there must always be at least one state configuration satisfying the op-



J.£.<+ J.up-Ievei operaaons 213 

eration 's postcondition whenever the operation can legitimately be applied (i.e. when the 
system is in some legal state and when the operation's parameters satisfy its precondition 
in that state): 

Proof obligation 11 The operation Commission is satisfiable. 

s: Space; n: N; cs: Controller-set 
con: Space ~ Controller, Ciip: Space ~ N 

/oc: Aircraft --"'-> Space; inv-ATC(cs, con, cap, /oc) 
pre-Commission(s, cap) 

[ Commission·sat I -c3=-c_a_p_: S"p_a_c_e----.•m.---:Ncc-'· =--=..:====c..:.:=--------
post-Commission(s, n, cap, cap) A inv-ATC(cs, con, cap, loc) 

The first step in all these satisfiability proofs is to unfold the definition of the postcondi· 
tion in the conclusion. After that, there are generally two ways of proceeding: either a 
witness value (see Section 3.3.1) must be explicitly given which satisfies the existential 
quantification, or some appropriate induction rule might be used. In this case, the fact 
that the postcondition is a simple equality means that it effectively defines the appropriate 
witness value for the new value of the capacity field directly, namely that it must be 

~t{s>->n) 

Because of this, the appropriate rule to use is '3-I-lpt'. The proof (below) then reduces 
to showing that making this change to the capacity field preserves both the type of the 
capacity field (Line 10) and the state invariant (Line 17). 

The first of these goals is easy to discharge using the basic formation rules for the operators 
involved (map override and unit map). For the second, the fact that the first and third 
clauses of the invariant do not involve the capacity field means these will be unaffected 
when it is changed and will therefore still be true after the change (Lines 11 and 13). It 
is thus only necessary to show that the other two clauses of the invariant are similarly 
preserved by the change, that is: 

• an airspace can be activated only if it is commissioned (Line 12); 

• the capacity of each utilised airspace is not exceeded (Line 16). 

The first of these follows easily from the corresponding (second) conjunct of the invariant 
on the state prior to the application of the operation (Line 4) and the fact that overriding 
a map with another cannot reduce its domain. For the second, the first step is to apply 
''V-I-set', resulting in Subproof 15. Then the precondition of the operation, expanded in 
Line 3, can be used in conjunction with the second and third conjuncts of the invariant on 
the state before the operation is applied (Lines 4 and 13) to show that s ~ rng /oc (Line 14), 
which, taken together with the second hypothesis of Subproof 15, means thaty is different 
from s (Line 15.2). The properties of map override then allow (capt {s >--> n})(y) to be 
rewritten as cap(y) (Line 15.6), and the proof is completed using the fourth conjunct of 
the invariant (Line 8) and simple predicate calculus. 



214 u A case .')Way m AlrM Harne control 

from s: Space; n: N; cs: Controller-set; con: Space ~ Controller; 

I 
2 

Czip: Space ~ N; lac: Aircraft ~ Space; 
inv-ATC(cs, con, cap, /oc); pre-Commission(s, cap) 
con: Space ~ Controller bimap-supertype (h4) 

rng-form (h6) 

unfolding (h8) 

inv-ATC-E-clause2 (h3, h4, h5, h6, h7) 
dom-form-bimap (h4) 

dom-form (h5) 
<'-subset-! (hi, 5, 6, 4, 3) 

rng loc: Space-set 
3 s <0 domcap 

dom con ~dam Cap 
dam con: Space-set 
dam Ciif;: Space-set 
s e domcon 

4 
5 
6 
7 

8 Vx e rng foe· numOfAircraft(x, lac) ,; cap(x) 

9 { s ,_, n}: Space --"'-> N 

10 capt {s ,_, 11 ): Space --"'-> N 
11 rngcon s; cs 

12 domcan ~dom(capt {s ,_, n)) 
13 rngloc ~ domcon 
14 s ~ rng/oc 
15 from y: Space; y e rng loc 

15.1 numOfAircraft(y, foe),; cap(y) 
15.2 ~(y = s) 
15.3 

15.4 

15.5 

15.6 

y e domcon 

y e domCcip 

cap(y): N 

(capt {s ,_, n))(y) = cap(y) 

inv-ATC-E-clause4 (h3, h4, h5, h6, h7) 
{a ,_, b }-form (hi, h2) 

t-form (h5, 9) 
inv-ATC-E-clausel (h3, h4, h5, h6, h7) 

t-preserves-dom-1: (I, h5, 9, 4) 
inv-ATC-E-clause3 (h3, h4, h5, h6, h7) 

<'-subset-! (hi, 2, 5, 13, 7) 

V-E-set (15.hl, 2, 15.h2, 8) 
e -<' -contr (15.hl, hi, 2, 15.h2, 14) 

~-E (15.hl, 2, 5, 15.h2, 13) 

~-E (15.hl, 5, 6, 15.3, 4) 

at-form (15.hl, h5, 15.4) 

at-defn-t-{a ,_, b)4 (hi, h2, 15.hl, h5, 15.4, 15.2) 

infer numOfAircraft(y,loc),; (capt {s ,_, n))(y) 
=-subs-left(b) (15.5, 15.6, 15.1) 

16 Vx e rng lac · numOfAircraft(x, loc) ,; (capt { s ,_, n} )(x) V -!-set (2, 15) 

17 inv-ATC(cs,con,cap t {s ,_, n),loc) 
inv-ATC-1-separate (h3, h4, 10, h6, 11, 12, 13, 16) 

18 3cap: Space --"'-> N · 

cap= capt {s ,_, n) Ainv-ATC(cs,can,cap,lac) 3-I-Ipt(IO, 17) 
infer 3cap: Space ~ N · 

past-Commission(s, n, cap, cap) 1\ inv-ATC(cs, con, cap, loc) folding (18) 



..~...,,...,. ..tVJJ-1CvCI upcntuons 215 

12.4.2 Resetting the capacity of an airspace 

Next, consider an operation for resetting the capacity of an airspace. A first attempt to 
specify this might simply mimic the Commission operation given above: 

ReserCapacity (s: Space, n: Ill) 
ext wr capacity : Space ~ N 
pre s e dom capacity 

post capacity = .city t { s >--> n) 

The appropriate satisfiability proof obligation for this operation is 

s: Space; n: N; cs: Controller-set; con: Space ~ Controller 
Ccip: Space ~ N; loc: Aircraft ~ Space 

inv-ATC(cs, con, cap, /oc); pre-ReserCapacity(s, cap) I Rese/Capacity-sat I ~3"c_a_p_: s"p_a_c_e _ ___,--.im.--'ci\1;-;-· ~--'-'--'-'--'-------'---'-'--'---'-''---

posr-ResetCapacity(S, n, cap, cap) A inv-ATC(cs, con, cap, toe) 

with pre-ResetCapacity and post-ResetCapacity defined via 

pre-ResetCapacity(s,cap) def s E domcap 

. ~ def ~{} post-ReserCapaClty(s,n,cap,cap) = cap= capt s >--> n 

The proof proceeds as in the previous example: after expanding the definition of the post
condition and using '3-I-lpt' to supply the witness value for the existential quantification 
directly from the equality in the postcondition, the proof again reduces to showing that 
making the given change to the capacity field preserves both its type and the state invari
ant. The parallel with the previous example continues, the latter goal again reducing to 
having to show that: 

• an airspace can be activated only if it is commissioned (Line 3 in the proof below); 

• the capacity of each utilised airspace is not exceeded (Line 7). 

Considering now the second of these two subgoals, the next step which immediately 
suggests itself is to apply 'V-I-set', as before. However, since the precondition in this 
example is the negation of that in the previous example it cannot be used to yield y 7:: s 
as was done there. But the value of the expression (capt {s >--> n })(y) in the conclusion 
of Subproof 6 depends on whether or not y = s. This suggests that the next step should 
be to set up a case distinction on these two alternatives, this time using the rule '=-cases' 
which unifies into a single rule the combined application of '8-=-1' and '8-E' illustrated 
in Section 3.5.2. Substituting y = s from the hypothesis of the first of the two subproofs 
generated by this case distinction into its conclusion, and using the properties of map 
application to rewrite the resulting sub goal, then leads to the partial proof below: 



LlO 1£ li. l..-Cc~.':it: o.)LUUY l!l .tilf-1 TitllJC L.UllliV1 

from s: Space; n: N; cs: Controller-set; con: Space ~ Controller; 
Ccij;: Space ~ N; loc: Aircraft ~ Space; 
inv-ATC(cs, con, cap, foe); pre-ResetCapacity(s, eap) 

I Capt {s >-> n):Space--"'-> N 
2 rngcon~cs 

3 domcon,;;; dom(eap t {s >-> n)) 
4 rng loc ~ dom con 
5 rng foe: Space-set 
6 from y: Space; y E rng foe 
6.1 fromy=s 

(?? justify ??) 
(?? justify ??) 

(?? justify ??) 
(?? justify ??) 
(?? justify ??) 

6.1.1 (eapt {s >-> n})(s) = n at-defn-t-{a >-> b}-= (hi, h2, h5) 

6.1.2 numOfAircraft(s)oc),;, n (??justify??) 

6.1.3 numOfAireraft(s, foe),;, (eap t {s >-> n})(s) 
=-subs-left(b) (h2, 6.2.1, 6.2.2) 

infer numOfAircraft(y,foc),;, (eap t {s >-> n})(y) 
=-subs-left(b) (hi, 6.2.hl, 6.2.3) 

6.2 fromy;<s 

infer numOfAircraft(y, /oc) ,;, (eap t {s >-> n) )(y) (??justify??) 

infer numOfAircraft(y, /oc) ,;, (eap t {s >-> n))(y) =-cases (6.hl, hi, 6.1, 6.2) 

7 Vx E rng foe· numOfAircraft(x, foe) ,;, (eap t {s >-> n} )(x) V -!-set (5, 6) 

8 inv-ATC(cs, con, eap t {s >-> n }, loe) inv-ATC-1-separate (h3, h4, I, h6, 2, 3, 4, 7) 

9 3cap: Space --"'-> N · cap = eap t {s >-> n} tdnv-ATC(cs, con, cap, /oc) 
3-I-lpt (I, 8) 

infer 3cap: Space ~ N · 
post-ResetCapacity(s, n, eap, cap) A inv-ATC(cs, con, cap, foe) folding (9) 

From this point it is clear that Subproof 6.1 can only be completed if it is possible to 
prove that numOfAircraft(s, loc) ,;, n, but the only hypotheses available which give any 
information about s and n are the typing hypotheses on the two variables and the precon
dition. 

At this stage, if not before, it would probably occur to the verifier that the proof cannot 
be completed, and that in fact the precondition on the operation must be strengthened to 
say that the reset value n cannot be less than the number of aircraft currently occupying 
the spaces. This leads to a revised specification of the operation: 

ResetCapacity (s: Space, n: N) 

ext rd location : Aircraft ~ Space 
wr capacity : Space ~ N 

pres E dam capacity A numOfAircraft(s, location) ,;, n 

post capacity = ~ t { s >-> n} 



12.4 'lOp-level operations 217 

and a corresponding change in the proof obligation: 

s: Space; n: N; cs: Controller-set 
con: Space ~ Controller; Gap: Space ~ N 

toe: Aircraft -"'--> Space; inv-ATC(cs, con, cap, toe) 
pre-ResetCapacity(s, n, cap, toe) I ResetCapacity-sat I ~3"c_a_p_:-,Sp:-a-ce-~"mc"oN:-:-· --'-''--'-"'-'-"-'-''-""'-''-'-'"-''--------

post-ResetCapacity(s, n, cap, cap)" inv-ATC(cs, con, cap, toe) 

Note how the failed proof not only revealed that the precondition needed to be strength
ened, but also indicated what additional condition needed to be added to it. In fact, 
attempting to discharge the satisfiability proof obligation for an operation is a good way 
of checking that no preconditions or parts of preconditions have been overlooked. 

Another point worth noting here is that it is not necessary to start a new proof because 
an error in the precondition has been discovered: all of the steps done so far are still 
valid if the definition of the precondition is changed since none of them depend on it. 
Thus, the only change that has to be made is that extra arguments have to be added to 
pre-ResetCapacity in the hypotheses of the proof. Having made this change the proof can 
proceed by simply extending the proof constructed so far. 

12.4.3 Decommissioning an airspace 

The operation Decommission is for decommissioning an airspace, that is for removing 
from the system an airspace which is no longer operational. For example, it might he 
desirable to subdivide an existing airspace into new, smaller airspaces to accommodate 
increased demand in the ATC region, which could be achieved by first decommissioning 
the airspace and then commissioning new airspaces appropriately. 

This operation might be specified as follows: 

Decommission (s: Space) 
ext rd control : Space ~Controller 

wr capacity : Space ~ N 
pre s E (dam capacity\ dam control) 

post capacity= {s} ~ ~ 

Here, intuition would probably suggest that it should be meaningless to apply this op
eration to a utilised airspace, although it might not be immediately obvious that this is 
actually a property of the specification. The way to show this, then, is to formalise the 
validation property as a rule and to prove the rule: 

Validation 7 A utilised airspace cannot be decommissioned. 

I . . I s: Space: mk-ATC(cs, con, cap, toe): ATC; s E rng toe 
. Decommtsston-lemma. . . ) -,pre-Decommlsswn(s, con, cap 

The proof of this is fairly straightforward: after expanding the definition of the preconN 
clition it relies simply on the properties of sets and the third clause of the invariant. The 
completed proof is: 



218 12 A Case Study m Air-LrattiC Lbntrol 

from s: Space; mk-ATC(cs, con, cap,loc):ATC; s E rngioc 
I con: Space ~ Controller 
2 cap: Space ~ N 
3 foe: Aircraft ~ Space 
4 rng foe: Space-set 
5 dom con: Space-set 
6 dom cap: Space-set 
7 rngloc ~ domcon 
8 s e domcon 
9 s e (domcap\domcon) 
10 ~(s e (domcap\domcon)) 
infer -,pre-Decommission(s, con, cap) 

12.4.4 Controllers coming on duty 

control-fonn-mk (h2) 

capaciry-fonn-mk (h2) 
/ocation-fonn-mk (h2) 

rng-form (3) 
dom-form-bimap (I) 

dom-form (2) 
inv-ATC-I-mk-clause3 (h2) 

~-E (hi, 4, 5, h3, 7) 
e -diff-1-left (hl, 6, 5, 8) 

unfolding (9) 
folding (10) 

Turning attention now to controllers. the next operation registers the fact that a controller 
has "clocked on" (come on duty). It simply adds c to the onduty set. There is a precon
dition to say that c is not already on duty. Note that this precondition is not the weakest 
which permits the postcondition to be satisfied. It rather records an additional require
ment, namely a limitation on the use of the ClockOn operation. 

CiockOn (c: Conrroller) 
ext wr onduty : Controller-set 
pre c e onduty 

postonduty = ~v {c) 

12.4.5 Controllers going off duty 

The corresponding operation for "clocking-off" (going off duty) has a precondition which 
says that the controller clocking off must be on duty but may not be currently assigned: 

C/ockOff (c: Controller) 
ext wr onduty : Controller-set 

rd control : Space ~ Controller 
pre c e onduty \ rng control 

post onduty =~\{c) 

A controller will become deassigned when the airspace under his or her control is ei
ther assigned to some other controller via the operation Reassign (see Section 12.4.7) or 
becomes deactivated as a result of the operation Deactivate (see Section 12.4.8). 



219 

12.4.6 Activating an airspace 

Turning next to operations for assigning controllers to airspaces, the first deals with an 
airspace being activated, for example when an airport opens for the day. Recall that in 
this abstract model ~n airspace is activated if and only if it is under someone's control, so 
that the operation simply needs to assign the airspace to a controller. But how should the 
controller be chosen? Or rather, since this is a specification and not an implementation, 
what are the precise requirements for the choice? 

To give a little variety to the specification, the operation is left loosely specified at this 
level of abstraction. At a later stage in the development, a richer model of the state could 
be defined, which would include, say, infonnation pertinent to the choice of controller, 
taking into account such things as rosters, seniority, qualifications or whatever. Such 
detail would swamp the specification if introduced too early, making verification of cor
rectness properties far more complicated. Here the primary interest is to ensure that the 
choice of controller does not violate any of the requirements built into the state invariant. 

The operation has a precondition stating that airspaces is commissioned but not currently 
activated and that there should be a controller available. The latter can be stated as 
rng control,;:. onduty because it is known that rng control ~ onduty. The specification is: 

Activate (s:Space) c:Controller 
ext rd onduty : Controller-set 

wr control : Space ~ Controller 
rd capacity : Space ~ N 

pres e (dam capacity\ domcontrol) A rngcontrol,;:. onduty 

post control=~ t {s 1-) c} 

Another validation condition that might occur to the designer at this point is that the 
controller allocated to the new airspace as a result of this operation should have been 
available at the time, that is both on duty and unassigned: 

Validation 8 It is a consequence of the specification of Activate that the controller cho
sen by the operation was available at the time the operation was invoked. 

s: Space; c: Controller 

mk-ATC(cs, can, cap, loc): ATC; mk-ATC(cs, con, cap, loc):ATC 

pre-Activate(s, cs, COti, cap)~ post-Activate(s, c, COfi, con) 
I Activate-lemma 1--"::_:__:_::=====:.:c:ce=(c"s"\'"'r""n"'g'ic='o=n:::) =======--

Intuitively, the hypotheses of this rule record everything that is known about the state of 
the system after execution of the operation. In principle, the proof of the validation might 
depend on any or all of these hypotheses. 

Exercise 2 Prove the above validation. Hint: Use the fact that both Ciin and con are 
one-one. o 



£-£.V 1£ .M. Li1.'lC: .. >tuuy 111 .fill~ 1l<t1Jlt: LUJJUVl 

12.4. 7 Reassigning control of an airspace 

The next operation is for assigning a new controller to an already activated airspace, for 
example when a controller wants to clock off or simply take a break. Once again, there 
is a precondition that a controller is available, but the actual choice of controller is left 
loosely specified: 

Reassign (s: Space) c: Controller 
ext rd onduty : Controller-set 

wr control : Space ~ Controller 
pres e dom control" rng control :P. onduty 

post control=~ t {s >-> c} A c * ~(s) 
Note that the postcondition says that the original controller should not be re~chosen, since 
this would after all defeat the purpose of the operation. 

12.4.8 Deactivating an airspace 

The next operation is for deactivating an airspace, for example if an airport closes down 
for the night: 

Deactivate (s: Space) 
ext wr control : Space ~ Controller 

rd location : Aircraft ~ Space 
pres e (domcontrol\ rnglocation) 

post control = {s} ~ ~ontrol 

The precondition says that s must not be utilised at the time. Note that the operation 
simply deactivates s without decommissioning it. 

12.4.9 Adding new flight data to the system 

The last three operations concern flight handling. The first of these describes the arrival 
of a new aircraftp into the ATC region, at airspaces. For example, s might be the taxiway 
from the terminal to the runway in the case of a departing flight, or s might be one of the 
"frontier" corridors for incoming flights. 

There are three parts to the precondition: sis already under someone's control; pis a new 
aircraft, unknown in the current state; and s is not already at its full capacity. 

AddFlight (p: Aircraft, s: Space) 
ext rd control Space ~ Controller 

rd capacity : Space ~ N 
wr location : Aircraft ~ Space 

pres e dam control" p e dam location" 
numOfAircraft(s, location)< capaciry(s) 

post location = ~ t {p >-> s} 



221 

12.4.10 Handing over a flight 

The next operation handles the case of an aircraft p already in the ATC region and prepar
ing to move from one airspace to another, s say. In addition to the requirements in the 
precondition for AddFlight above, p should not already be in airspaces. 

Handover (p: Aircraft, s: Space) 
ext rd control Space ~ Controller 

rd capacity : Space ~ N 
wr location : Aircraft ~ Space 

pre s e dom control A p e dom location A location(p) #:- s A 

numOfAircraft(s, location)< capacity(s) 

post location = ~ t {p >-> s} 

12.4.11 Removing flight data from the system 

The last operation allows an aircraft to leave the ATC region, for example when an arriving 
flight has landed and docked at its gate, or when a departing flight hasreached the outgoing 
frontier of the region. 

RemoveFlight (p: Aircraft) 
ext wr location : Aircraft ~ Space 
prep e dom location 

post location= {p} ~ ~ 

Given a particular configuration of the ATC subsystem, it might be desirable to identify a 
particular set of airspaces from which it is permissible to leave the ATC region- such as 
parking bays and outgoing frontier airspaces - and to strengthen the precondition of this 
operation to only allow it to be invoked from those airspaces. This would mean making a 
change to the definition of ATC to incorporate such information, and is left to the reader 
as an exercise. 

12.5 First refinement step 

This section illustrates a possible first development step, in which the state is made more 
concrete and complex. This involves a change of emphasis, resulting in a model in which 
flight information is distributed across the system and the set of flights assigned to a 
controller is "implemented" as a queue. Amongst other things, this refinement illustrates 
how the structure of an implementation need not necessarily follow the structure of the 
original specification. 

The change of emphasis results from taking a different view of airspaces. The abstract 
specification given in Section 12.3 models a more-or-less physical view of airspaces as 
things in which aircraft are located. In the refinement given, airspaces are seen more 
through the eyes of the controllers, so that Space now represents, say, the informa
tion which might be presented to the controller on a monitor, for example as shown 
in Fig. 12.6. In modern systems, such information is more likely to be presented to the 
controller on a radar screen. This case study talks in terms of monitors, however, to 



l.t:- .r1. va~c; VLUU.f lU .r1.11- l J aJJH, 1...-VllUl.ll 

limit the complexity of the data structures involved. Such a change in perspective sug
gests, for example, a more distributed implementation of the ATC subsystem, whereby 
subcomponents such as monitors need only know about information which is relevant to 
them. 

Airspace RA-1 
ground em erg 

call sign altitude speed code 
BA-1506 5,000 530 
KLM-74 20,000 770 H 
Q-1 30,000 690 

system personalized for: Stephanie 

Figure 12.6: An airspace as its controller might see it via a monitor. 

Section 12.5 .1 below gives the specification for the new state space, and some aspects 
of its internal consistency are discussed in Section 12.5.2. In Section 12.5.3 the retrieve 
function relating the new state to the original one given in Section 12.3 is developed, 
and the associated well-formedness and adequacy proof obligations, which are necessary 
for the correctness of the refinement, are discussed in Section 12.5.4. To complete the 
refinement, it would then be necessary to give a counterpart for each of the operations 
specified in Section 12.4 and to prove, via the domain and result obligations, that each 
such operation implements its abstract counterpart correctly. This aspect of the refinement 
is dealt with in Section 12.5.5, but space permits only one operation to be discussed. 

12.5.1 The new state definition 

In this new view of the system, the position of an aircraft, recorded previously in the 
location field in the form of a map from Aircraft to Space, is instead stored in an assign
ment map. This associates with each airspace the queue of aircraft currently utilising it, 
and is specified as a new auxiliary data typeAssigMap with an invariant to the effect that 
no aircraft can appear in two different queues: 

AssigMap =Space -"'-> AircraftQueue 

inv ass ~ Vq1, q2 E rngass · q1 "'q2 => elemsq1 n elemsq2 = {) 

Here, AircraftQueue is an auxiliary data type modelling non-repeating sequences of air
craft (that is, sequences in which all aircraft are different): 

AircraftQueue =Aircraft' 
inv q ~ nonRptng[Aircraft](q) 

The function nonRptng is defined recursively: a sequence is non-repeating if it is empty 
or if its head does not occur in the elements of its tail and its tail is itself non-repeating. 
The function is also defined polymorphically (see Section 10.4.6) in terms of the type 
parameter @A. The specification is: 



223 

nonRptng[@A]:@A• ->Ill 
nonRptng(s) ~ s=[] vhdse elemstls"nonRptng[@A](tls) 

The new state definition then has an assignment map instead of the location field, the 
other three state components remaining unchanged: 

state ATCt of 
onduty1 Controller-set 
control1 Space ~ Controller 
capacity1 Space ~ N 
assigs1 AssigMap 

inv mk-ATC1(cs,con,cap,ass) 6 

rng con !:: cs 
A dom con ~ dom cap 
A dom ass = dom con 
"'<Is E domass ·lenass(s),; cap(s) 

inrr cr1 ~ cr,.onduty, = { } " cr1.capacity1 = { >--->} 
end 

The invariants on the state and the auxiliary data-types capture essentially the same subset 
of the requirements as before, but must additionally ensure that the restriction that an 
aircraft occupies a unique airspace (requirement R7) is maintained. (This came "free" 
in the original specification because the location field was specified to be a map from 
Aircroft to Space.) 

The initialisation condition on the state makes all fields empty as before. 

In fact the specification given above contains a subtle oversight, which might not become 
apparent until later in the development process, when it could be expensive to correct or 
have serious consequences. Fortunately, the error comes to light below in the course of 
attempting to discharge the proof obligations for the specification. 

12.5.2 Internal consistency of the new state definition 

The axioms, definitions and proof obligations for the new state ATC1 closely parallel 
those for the abstract state ATC given in Section 12.3.2 so are not discussed here. The 
interested reader should have no difficulty writing them down. However, the auxiliary 
data-type AssigMap and the auxiliary function nonRptng are worth considering in some 
detail as they make use of VDM-SL constructs which have not so far featured in the 
examples treated in this case study. 

The first of these represents a subtype, and is defined in exactly that way in the theory: 

AssigMap def ~ m: Space ~ AircraftQueue I inv-AssigMap(m) > 

Another defined symbol is introduced to describe the invariant on AssigMap: 

inv-AssigMap(m) def V QJ. q2 E rng m · q1 # q2 => elems q1 n elemsq2 = { } 

and there is the usual well-fonnedness proof obligation to show that this invariant is 
boolean-valued: 



m: Space ~ AircraftQueue I inv-AssigMap-form I inv-AssigMap(m): Ill 

The axiom and proof obligation for the auxiliary function nonRptng are: 

s:A•; (s=[]vhds~ elemstlsAnonRptng(tls)):lll 
I nonRptng-defno I nonRptng(s)- (s- [] v hds ~ elemstls A no1Uiptng(tls)) Ax 

s:A• 
I nonRptng-form I nonRptng(s): Ill 

Note how the type parameter @A in the specification simply becomes a meta variable (A) 
in these axioms. 
It is instructive to consider the proof of the well~formedness obligation as this illustrates 
how such proofs are tackled for recursive! y defined functions. The basic strategy for these 
proofs is the same as that for the non-recursive case illustrated above for the function 
numO/Aircraft (see Section 12.3.2), namely to begin by proving a rule showing the well
formedness of the defining expression: 

s:A* 
lnonRptng-wffj (s _ [] v hds ~ elemstls AnonRptng(tls)):lll 

However, it is clearly impossible to prove this using simply the formation rules for the 
operators comprising the expression which defines nonRptng as these include nonRptng 
itself. But the definition rule 'nonRptng-defno' effectively implies that if nonRptng is 
well-formed for the tail of some sequences then it is also well-formed for s itself because 
if nonRptng(tls) is boolean-valued the second hypothesis of the definition rule is also 
boolean-valued and nonRptng(s) is equal to it. This suggests that the proof should employ 
sequence induction. Performing this as a first step yields the following partial proof: 

from s:A* 

1 ([] = [] v hd [] ~ elemstl [] A nonRptng(tl [])):Ill (?? justify ??) 
2 fromh:A; t:A•; (t=[]vhdt~ elemstltAnonRptng(tlt)):lll 

infer (cons(h,t) = [] v 
hd cons(h, t) ~ elems t1 cons(h, t) A nonRptng(tlcons(h, t))): HI (?? justify ??) 

infer (s = [] v hd s e elems tl sA nonRptng(tls)): HI seq-indn (h1, 1, 2) 

An important point to note here is that, although it might seem reasonable to begin this 
proof by simplifying the conclusion immediately using the formation rule 'v-form-sqt' 
rather than by using sequence induction, this in fact does not lead to the simplest proof. 
The essential feature of the proof given above is that the second and third hypotheses of 
Subproof 2 match the hypotheses of the definition rule for nonRptng directly, and these 
can therefore be used to deduce 

nonRptng(t) = (t = [] v hd t e elems tl t A nonRptng(tl t)) 

and hence that nonRptng(t) is boolean-valued. Having done that, the rules 'hd-defn-cons' 



225 

and 'tl~defn-cons' can be used to rewrite the expressions hdcons(h,t) and tlcons(h,t) in 
the conclusion of Subproof 2, leading to: 

from s:A* 

1 ([] = [] v hd [] ~ elems tl [] " nonRptng(tl [ ])): Ul (?? justify ??) 
2 fromh:A; t:A'; (t=[]vhdt~ elemstltAnonRptng(tlt)):UI 
2.1 nonRptng(t) = 

(t = [] v hd t ~ elemstlt" nonRptng(tlt)) nonRptng-defn0 (2.h2, 2.h3) 
2.2 nonRptng(t): Ul =-type-inherit-left (2.h3, 2.1) 
2.3 hdcons(h, t) = h hd-defn-cons (2.h1, 2.h2) 
2.4 t1 cons(h, t) = t tl-defn-cons (2.h 1, 2.h2) 

2.5 (cons(h, t) = [] v h ~ elems t ArlOnRptng(t)): Ul (?? justify ??) 
2.6 (cons(h, t) = [] v 

hd cons(h, t) ~ elems t A nonRptng(t)): IJl =-subs-right(b) (2.hl, 2.3, 2.5) 
infer (cons(h, t) = [] v (hd cons(h, t) e elems tl cons(h, t) " 

nonRptng(tl cons(h, t)))): IJl =-subs-right(b) (2.h2, 2.4, 2.6) 
infer (s = [] v hds e elemstls" nonRptng(tls)): Ul seq-indn (h1, I, 2) 

from which point the proof can indeed be completed easily using standard formation rules. 

It is worth noting that the fact that the proof of the well-formedness of nonRptng has been 
completed successfully indicates that the recursion in its definition is in fact sound. Con
versely, failure to complete the well-fonnedness proof for a recursively-defined function 
is often a sign that the recursion itself is ill-formed. 

The overall formation rule 'nonRptng-form' is then proved from the above rule via the 
working version of the definition rule, just as for the non-recursive case. 

12.5.3 Relating this specification to the original specification 

In order to show that this new state ATC1 is a valid refinement of the original state ATC, 
a retrieve function must be defined relating values of the new state to values of the old. 
In this case, the only change in the state definition is that the location field has been 
replaced by an assignment map, so defining the retrieve function essentially amounts to 
reconstructing the location map from the assignment map. 

As a first step towards doing this, an auxiliary function is defined which returns all the 
aircraft known to the ATC system, corresponding in the top-level specification to the 
domain of the location map. This is simply given by the union of the elements of all the 
sequences in the range of the assignment map: 

knownAircraft : AssigMap -'>Aircraft-set 
knownAircraft(ass) "". U{elemsq I q E rngass) 



LLO 

Exercise 3 Write down the axiom(s) and proof obligation(s) for the auxiliary function 
knownAircraft. Construct the proof(s) of the proof obligation(s). D 

A second auxiliary function is then used to determine the airspace utilised by a known 
aircraft. This function simply returns the airspace whose queue of aircraft contains the 
aircraft in question. Since the invariant on AssigMap ensures that a given aircraft cannot 
appear in two different queues, this should be unique: 

locO!: Aircraft xAssigMap -->Space 
locOf(p, ass) ~ ts E do mass· p E elemsass(s) 

prep E knownAircraft(ass) 

Again, there are well-fonnedness proof obligations for the function as a whole and for its 
precondition: 

p: Aircraft; ass: AssigMap; pre-locOf(p, ass) 
IIocOJ-form I locOf(p, ass): Space 

p: Aircraft; ass: AssigMap 
lpre-locOf-form I pre-locOf(p, ass): Ul 

where pre-locO! is defined via: 

pre-locOf(p,ass) del p E knownAircraft(ass) 

Following the procedure set out in the discussion of the proof of the well-formedness 
of numOfAircraft (see Section 12.3.3), the first step towards proving 'locOj-forrn' is to 
prove the rule 

IIocOJ-wfq p: Aircraft; ass: AssigMap; pre-locOf(p, ass) 
. . (ts E domass · p E elemsass(s)): Space 

Here, the conclusion clearly has to be justified using the rule 't-form-set', which involves 
showing that there is a unique airspace in domass satisfying the given predicate. If the 
precondition of locO/ is then expanded, the proof reduces to showing that every known 
aircraft occupies a unique airspace, which is simply validation 3 restated in the context 
of the new specification. The rule for this validation is: 

I 
. . . I p: Aircraft; ass: AssigMap; p E knownAircraft(ass) 

aucraft-m-umquc-space1 3, d 1 ( ) .s E om ass· p E eemsass s 

In terms of this, the proof of 'locOf-wff' is: 

from p: Aircraft; ass: AssigMap; pre-locOf(p, ass) 
1 domass: Space-set 
2 p E knownAircraft(ass) 
3 3! s E dom ass · p E elems ass(s) 
infer(tsE domass·pe elemsass(s)):Space 

dom-form-AssigMap (h2) 
unfolding (h3) 

aircraft-in-unique-space1 (hl, h2, 2) 
t-form-set (1, 3) 

Turning now to the proof of 'aircraft-in-unique-space1 ',justifying a unique existential 
quantification over a set via the rule '3!-1-set' involves both producing a witness value of 



..<.r.. • .J t·U3L 1C1JtJCJJlCIIL :'iLCp 227 

the correct type belonging to the set and showing that all possible witness values in the 
set are equal to it. However, at the start of the proof no objects of type Space are available 
to use as witnesses. This indicates that the way to approach the proof is to try to generate 
some appropriate object of type Space by working forwards from the hypotheses. Of 
these, only the last is not a simple typing assertion, so this clearly offers the only hope of 
progress. 

Looking at the definition of knownAircraft and combining this with knowledge of the 
properties of distributed set union suggests a useful lemma (stated without proof) of the 
form: 

I 
. I p: Aircraft; ass: AssigMap; p e knownAircrqft(ass) 

e ~knownAlrcraft~E -'-----'-'~;-:--c---"--::-:-'-'-'-=--,-'-....,---"'-'--"'-''-
3q e rngass · p e elemsq 

Using this generates Line 2 of the proof below. Then application of '3~E~set' is indicated, 
yielding Subproof 3 and Line I, the latter being easy to justify using the rule 'rng-form
AssigMap'. Then the rule 'e -rng-E' can be used to deduce (Line 3.2) that there must be 
some airspace in the domain of the map ass which maps to the range value q. Again, 
the rule '3-E-set' is used, generating Subproof 3.4. Then, substituting the equality from 
hypothesis 3.4.h3 into hypothesis 3.h3, thereby generating Line 3.4.1, leads to a state in 
which the airspace a can be used as the witness to the unique existential quantification. 

At this stage, therefore, '3!-I-set' is used, and it remains to be shown only that the wit
ness value a is unique (Line 3.4.3). The appropriate rule here is 'V-I-set', yielding Sub
proof 3.4.2. Now the idea is to try to reach a point at which the invariant on AssigMap, 
the only piece of available information not used so far. can be brought into play. This 
requires producing two elements of rng ass. which is easy: the first, ass(y), arises from the 
properties of map application (Line 3.4.2.3), the second, ass( a), from simple substitution 
of equals (Line 3.4.2.4). Note that although q is already known to be in rngass (hypothe
sis 3.h2) this step transforming it to ass( a) is necessary because the required goal involves 
a andy and not q andy. 

from p:Aircraft; ass:AssigMap; p e knownAircraft(ass) 
I rng ass: QueueOf(Aircraft)-set rng-form-AssigMap (h2) 
2 3q E rngass · p e elemsq E -knownAircraft-E (hi, h2, h3) 
3 fromq:QueueOf(Aircraft); qE rngass; p e elemsq 
3.1 ass: Space ..."'.., QueueOf(Aircraft) 
3.2 dom ass: Space-set 
3.3 3a e domass · ass(a) = q 
3.4 from a: Space; a E dam ass; ass( a)= q 
3.4.1 p E elems ass( a) 
3.4.2 from y: Space; y e do mass 
3.4.2.1 inv-AssigMap(ass) 
3.4.2.2 'Vq,,q2 e rngass· q, ;tqz => 

3.4.2.3 
elems q1 !'\ elems q2 = { ) 

ass(y) e rng ass 

AssigMap-supertype (h2) 
dom-form-AssigMap (h2) 
E -rng-E (3.h I, 3.1, 3.h2) 

=-subs-left(b) (3.hl, 3.4.h3, 3.h3) 

inv-AssigMap-1 (h2) 

unfolding (3.4.2.1) 
E -rng-1-at (3.4.2.h I, 3. I, 3.4.2.h2) 



3.4.2.4 
3.4.2.5 

3.4.2.6 

3.4.2.7 
3.4.2.8 

3.4.3 

1L- A case .>wuy m Alr-1ra111t: t..uuuuJ 

ass(a) E rngass =-subs-left(b) (3.h1, 3.4.h3, 3.h2) 
'if qz E rng ass · ass(y) "'qz => 

elemsass(y) n elemsqz = {} 'if-E-set (1, 3.4.2.3, 3.4.2.2) 
ass(y) ¢ass( a) => 

elemsass(y) n elemsass(a) = { } 'if -E-set (1, 3.4.2.4, 3.4.2.5) 

o(p E elemsass(y)) 
from p E elems ass(y) 

infery =a 
infer p E elemsass(y) => y =a 
'ify e domass ·p E elemsass(y) => y =a 

infer 3! s e domass · p e elemsass(s) 

(?? justify ??) 

(?? justify ??) 
=>-! (3.4.2.7, 3.4.2.8) 

V-I-set (3.2, 3.4.2) 

infer 3! s e domass · p e elemsass(s) 
infer 3! s e domass · p e elemsass(s) 

3!-I-set (3.4.h1, 3.2, 3.4.h2, 3.4.1, 3.4.3) 
3-E-set (3.2, 3.3, 3.4) 

3-E-set (1, 2, 3) 

At this point it is known that pis in both elemsass(a) and elemsass(y) (Line 3.4.1 and 
hypothesis 3.4.2.7.h1 respectively), from which it clearly follows that the intersection 
of these two sets cannot be empty. This, by the contraposition of Line 3.4.2.6, means 
that ass(a) = ass(y). However, this is not sufficiently strong to ensure y =a as required 
because the map ass is not known to be one-one. The proof therefore cannot be completed. 

A moment's thought at this point should reveal that the invariant on AssigMap is not 
correct as it allows two different airspaces to contain exactly the same queue of aircraft. 
The specification must therefore be changed to rule out this possibility. The correct spec
ification of AssigMap is: 

AssigMap =Space ~ AircraftQueue 

inv ass ~ 'if s, Sz E dom ass· St "'s2 => elemsass(st) n elemsass(s2) = { } 

Fortunately, this change to the specification does not mean that the work expended in the 
construction of the above failed proof is useless. Indeed, far from it- the vast majority 
of the proof survives and can be used as the starting point for the proof of the correctness 
of the revised specification. The only changes required are that the old definition of the_ 
invariant must be replaced by the new in Lines 3.4.2.2, 3.4.2.5 and 3.4.2.6 (with some 
minor modifications to the justifications of these lines) and that Lines 3.4.2.3 and 3.4.2.4 
can be deleted (they have become redundant because the new invariant requires elements 
to be found from the domain of the map instead of the range). Other than this, discharging 
the new proof obligation simply requires completing those steps of the proof which were 
left unfinished in the original proof (Subproof 3.4.2). This is now very easy and is left as 
an exercise for the reader. 
The reconstruction of the location map from the assignment map is· completed with the 
help of another auxiliary function which simply constructs the map mapping each known 
aircraft to its location: 



extrLoc :AssigMap--> (Aircraft--"'-. Space) 
extrLoc(ass) t::. {p ,._, locOf(p, ass) I p e knownAircraft(ass)} 

This function is defined axiomatically via the following rule: 

ass: AssigMap 
{p ,._, locOf(p,ass) I 

p E knownAircraft(ass)):Aircraft---"'-> Space 
j extrLoc·defno I Ax 
· · extrLoc(ass)-

{p ,._, locOf(p, ass) I p e knownAircraft(ass)} 

and the corresponding proof obligation is: 

ass:AssigMap I exrrLoc-form I . m extrLoc(ass): Atrcraft __, Space 

Exercise 4 Prove the well-formedness rule 'extrLoc-form'. o 

The retrieve function retr1 is now easy to define: 

retr, : ATC 1 --> ATC 
retr, ( <Y) t::. mk-ATC( <r.onduty,, <r.controh, <r.capacity,, extrLoc( o-.assigsJ)) 

Of course, the retrieve function is on the one hand simply another auxiliary function, 
so it has the appropriate defining axiom and well-formedness obligation (the latter being 
sometimes called the totality obligation): 

o-:ATC, 
(mk-ATC( <r.onduty,, <r.control,, 

---~----~~~--~"~·c=a~p~ac=i~ty~"~e=xt~rLo~c~(~<r=.as=s=ig~s~,~))~):~A=T~C-1 retr1-defno I Ax · . retr1(<r)- mk-ATC(<r.onduty1, <r.contro/1, 
<r.capacity1, extrLoc( o-.assigs1)) 

In addition, however, it must generate all possible values of the abstract state ATC, a 
property which is embodied in the adequacy obligation: 

<r:ATC I retr1-adeq l-=c=-=~"-'-"'-7cc:-;----::-3o-1: ATC, · retr1 ( o-1) - <Y 

The proofs of this and the formation rule are discussed in the next section. 

12.5.4 The validity of the retrieve function 

The strategy of proving the formation rule is exactly the same as that used to prove the 
formation rule for any other explicitly defined function. The first step is therefore to prove 
the rule stating the well~formedness of the defining expression: 

<r:ATC, 
I retr,-wrq (mk-ATC( <r.onduty1, <r.control,, o-.capacity,, extrLoc( <r.assigsJ))): ATC 



1£.. .1"1. L-~~c::: VWUY 111 .1"1.J1-lli111H.: L.UlJUUl 

Working backwards from the conclusion as usual, the formation rule 'mk-ATC-fonn' 
requires that each of the arguments of the mk-function ( cr .onduty1, cr .contro/1, a .capacity1 
and extrLoc( cr.assigs!)) should have the correct type and that together they should satisfy 
the invariant on ATC. The typing information follows directly from the formation rules for 
the selector functions, in the last case in conjunction with the formation rule for extrLoc 
proved above. For the invariant, the first two conjuncts follow immediately as they are 
identical to the first two conjuncts of the invariant on the concrete state ATCt, so it remains 
to be shown only that: 

• rngextrLoc(a.assigs1) ~ domcr.control1 

• 'lise rngextrLoc(a.assigst) · 
numOfAircraft(s, extrLac( cr.assigs,)) ,; ( cr.capacity1)(s) 

This is best done with the help of a few lemmas (stated here without proof) giving proper
ties of assignment maps and relating these to the auxiliary function numO/Aircraft defined 
in the abstract specification. These are: 

ass:AssigMap 
I rng-extrLoc-Icmma! rng extrLoc(ass) ~ dam ass 

ass: AssigMap 
I dom-extrLoc-dcfn I --:.=-=:=-:-::;:o::':'i'c:.::i:"::-='7===~ dom extrLoc(ass) - knownAircraft(ass) 

s:Space; ass:AssigMap; s edam ass 
numO Aircra t-elm-dcfn . I if. ifi I numO/A~rcraft(s, extrLac(ass)) -lenass(s) 

which are relatively straightforward consequences of the definitions of the functions in
volved and the properties of map comprehension expressions. 

Exercise 5 Construct the proof of 'retr1-wff' based on the above outline. o 

At this stage one would nom1ally proceed by proving the working version of the definition 
rule in the form 

cr:ATC1 
j ,.,,,-dcfn 1-,-e-:-tr-,'( cr=c)c-_--------'----'-'-----------

mk-ATC( cr.onduty1, cr.contro/1, cr.capacity1, extrLac(cr.assigs, )) 

and thence the formation rule, but the fact that the refinement (and hence the retrieve 
function) is essentially defined componentwise suggests that it is likely to be more useful 
to formulate a working version of the definition rule which makes the componentwise 
nature of the refinement more explicit. This is done using the mk-function instead of a 
meta variable to represent the state, and the appropriate rule is: 

mk-ATCt (cs, con, cap, ass): ATC, ! retr1-dcfn-mk l-:c==cc--=~~::,=-',"":'::0::.:'=':;."-'-=:::.'.:..:.::C:::.'------. . retr, (mk-ATC1(cs, con, cap, ass)) -
mk-ATC(cs, con, cap, extrLac(ass)) 

The proof of the formation rule either follows as before from 'retrt·defn' or can be done 
directly: 



L;SJ 

from a:ATCr 
I (mk-ATC(a.onduty1, a.controlr, a.capacity1, extrLoc(a.assigs1 ))):ATC 

retrr-wff(h!) 
2 retr1(a)= 

mk-ATC( a.ondutyr. a.controlr, a.capacityr, extrLoc( a.assigs1)) 

retrr-defno (hi, I) 
infer retrr (a): ATC =-type-inherit-left (I, 2) 

Note that the above transformation relies on the fact that each element of the com
posite type has a unique representation in the form mk-ATC(cs, con, cap, lac) (see Sec
tion 10.2.3). 

Considerations of the specific form of a refinement can also be brought to bear when deal
ing with the adequacy obligation. The first step here is to make use of the componentwise 
nature of the refinement again to rewrite the obligation in terms of the mk-function: 

mk-ATC(cs, con, cap, loc): ATC 
I retr1-adeq-mk l-..,-::-c.,.cr;---c-::-7-::T--'-;c-"'",-'':-:-,--,-:c:-;---cc-

3a1:ATCr · retr1 (ar)- mk-ATC(cs, con, cap, loc) 

The adequacy obligation 'retr1-adeq' is then proved from this simply by making use of 
the rule 'mk-ATC-defn': 

from a:ATC 
I mk-ATC( a.onduty, a.contro/, a.capacity, a .location) = a mk-ATC-defn (hI) 
2 mk-ATC(a.onduty, a.contro/, a.capacity, a./ocation):ATC 

=-type-inherit-left (hi. I) 
3 3ar:ATCr · retrr(ar) = 

mk-ATC( a.onduty, a.control, a.capacity, a.location) retr1-adeq-mk (2) 
infer3a1:ATCr · retrr(ar) =a =-subs-right(b) (hi, I, 3) 

Now the fact that the refinement leaves the first three components of the state unchanged 
and only affects the fourth indicates that the value of <Yt chosen as the witness value to 
justify the existential quantification in the conclusion of the rule 'retr1-adeq-mk' must 
be of the form mk-ATC1(cs, con, cap, ass) for some assignment map ass. This suggests 
that the next step should be to formulate a simplification of the above rule involving only 
existential quantification over ass. 

Of course the value of ass must be chosen so that it satisfies the invariant on ATC1 and such 
that it retrieves to the given location map Zoe. By looking at the rule 'retr1-defn-mk' it is 
easy to see that the second of these two conditions will be satisfied if Zoe= extrLoe(ass) 
so that the required simplification of the adequacy obligation is the rule 

I 
. I mk-ATC(cs,con,cap,loc):ATC 

. retr1-adeq-ass1gs. 3ass: AssigMap . 

inv-ATC1 (cs, con, cap, ass) "loc = extrLoc(ass) 

The claim now is that the rule 'retrt-adeq-mk' can be proved from this. 



In fact the proof is not particularly difficult, as the rule 'retr1-adeq-assigs' directly asserts 
the existence of the assignment map required to construct the appropriate witness value 
for the existential quantification (as indeed it was intended to do). Of course, '3-E' has 
to be applied before '3-1' (see the discussion in Section 3.3.1) in order that the witness 
value be available. The full proof is: 

from mk-ATC(cs, con, cap, foc):ATC 
1 3ass: AssigMap · inv-ATC, (cs, con, cap, ass) A foe= extrLoc(ass) 

retr1-adeq-assigs (hl) 
2 from ass:AssigMap; 

2.1 
2.2 
2.3 
2.4 
2.5 
2.6 
2.7 
2.8 

inv-ATC1(cs, con, cap, ass) A foe= extrLoc(ass) 
cs: Controller-set onduty-forrn-mk (hl) 

control-forrn-mk (hl) 
capacity-form-mk (hl) 

A-E-right (2.h2) 
mk-ATC1-fonn (2.1, 2.2, 2.3, 2.h1, 2.4) 

location-fonn-mk (h1) 
A-E-left (2.h2) 

con: Space ~ Controller 
cap: Space~ N 
inv-ATCt(Cs, con, cap,ass) 
mk-ATC, (cs, con, cap, ass): ATC, 

loc: Aircraft ~ Space 
foe= extrLoc(ass) 
retr1 (mk-ATC1(cs, con, cap,ass)) = 

mk-ATC(cs, con, cap, extrLoc(ass)) retr1-defn-mk (2.5) 
2.9 retr1 (mk-ATC1 (cs, con, cap, ass)) = 

mk-ATC(cs,con, cap, foe) 
infer3cr1:ATC1 • retr1(a,) = mk-ATC(cs,con,cap,loc) 

infer 3cr1: ATC1 · retrt (cr1) = mk-ATC(cs, con, cap, loc) 

=-subs-1eft(a) (2.6, 2.7, 2.8) 
3-I (2.5, 2.9) 

3-E (1, 2) 

Now all that is required in order to complete the proof of the adequacy obligation is to 
prove the rule 'retrt-adeq-assigs'. Since this involves showing the existence of some 
value, there are again two potential strategies just as for the satisfiability proof obliga
tions discussed earlier (see Section 12.4): either a witness value must be supplied or the 
existence must be shown by induction. In this particular case, the induction proof would 
involve induction over loc, but the proof would be complicated by the fact that, because 
foe appears in (two clauses of) the invariant on ATC, (those parts of) the invariant would 
have to be combined with the overall goal using ':::::}-E-left' before the induction could 
be carried out. Thus the resulting proof is likely to be both long and cumbersome, and 
hence difficult to understand. 

The other alternative, namely supplying a witness value for the existential quantification, 
essentially amounts to constructing an "inverse" of the retrieve function2• Such a function 
does not strictly have anything to do with the formalisation of the refinement, being 
introduced purely to assist with reasoning about it. One way of treating it, therefore, is 
to introduce it directly into the theory of the refinement by developing an axiomatisation 
of it using the standard techniques for axiomatisation described in earlier chapters. This 
is not always the most convenient approach, however, and sometimes it is simpler to 
specify the function as an auxiliary function and then to develop the axiomatisation from 

2The indefinite article is chosen deliberately as the retrieve function only has a unique, well-defined 
inverse if it is one-one. 



l£ • .J rmo;t rt;nnemenr seep 233 

the specification as for any other auxiliary function (see Section 10.4). In this approach 
the specification is effectively being extended by some auxiliary "reasoning support" 
specification, which does not contribute to the description of the system being specified. 
This latter approach is adopted here simply because it provides a platform on which the 
discussion of two aspects of the verification and validation of specifications which have 
not so far been illustrated can be based: the fallibility of informal reasoning and the 
validation of implicitly specified functions. 

One of the big problems with reasoning informally about a specification without using 
formal proof to support and verify the arguments is that some aspect of the problem which 
has been overlooked may not be revealed by an informal argument as this is based on 
intuition which is incomplete or incorrect if some detail has been overlooked. An informal 
argument may therefore appear to be entirely convincing even though it is fallacious, 
being based on unsound or incomplete premises. Consider, for example, the following 
informal argument supporting the validity of the rule 'retr1-adeq-assigs' by constructing 
an inverse of the retrieve function: 

Constructing an inverse of the retrieve function effectively amounts to 
defining a function extrAss (say) which builds an assignment map out of a 
location map, for the same rea~on (see Section 12.5.3) that constructing the 
retrieve function proceeded by defining the function extrLoc which built a 
location map out of an assignment map. Since the location map maps an 
aircraft to the airspace it currently occupies and the assignment map maps 
an airspace to the (queue of) aircraft currently occupying it, an assignment 
map can be constructed by mapping each airspace in the range of the location 
map to the set of aircraft in the domain of the location map which map to 
that airspace, this set being ordered arbitrarily to form a non~repeating queue. 
This ordering can be described by an auxiliary function buildQueue, specified 
implicitly via: 

buildQueue (s: Aircrqft-set) q: AircraftQueue 
post elems q = s 

and the function extrAss can then be specified in terms of this using map 
comprehension: 

extrAss :(Aircraft~ Space) ~ AssigMap 
extrAss(loc) 0. 

{s ._, buildQueue(dom(loc~ {s))) Is E rngloc} 

The proof of the rule 'retr1-adeq-assigs' is then a consequence of the well
formedness of the function extrAss 

! extrAss-form I lac: Aircraft ~ Space 
extrAss(loc): AssigMap 



1.£ li. case o.)lUUY m li.IT-IraiiiC l..-ODU01 

and a lemma stating that extrAss is an inverse of extrLoc: 

lac: Aircraft ~ Space I extrAss-extrLoc-inverse I loc extrLoc(extrAss(loc)) 

by supplying extrAss(loc) as the witness value for the existential quantifica
tion. 

Despite the fact that this argument probably sounds fairly plausible, it contains a mis
take which the verifier may well not spot even on reviewing the argument. Moreover 
the argument could also convince some independent reviewer. An attempt to construct 
a formal proof based on the above skeleton would reveal the error, however, with the 
proof eventually breaking down. It should be pointed out that the error lies in the above 
argument and not in the rule it purports to prove- the rule retr,-adeq-assigs' is valid, 
the informal "proof" of the rule given above is not. 

Exercise 6 Find the mistake in the above argument and the correction required to make 
the argument sound by discovering the point at which the formal proof breaks down. 
Hint: The well-forrnedness of the function buildQueue is dealt with below and may be 
assumed, in the form of the rule 

s: Aircraft-set 
build ueue-form . . I Q I bwldQueue(s): AtrcraftQueue 

but the error may lie in any of the other three steps of the argument: the well-fonnedness 
of the function extrAss, the proof of the lemma 'extrAss-extrLoc-inverse', and the proof 
of 'retr1-adeq-assigs' itself. o 

Finally in this section, it is worth considering how the function buildQueue is treated as 
this is the first example of an implicitly defined function encountered in this case study. 

Following the template set out in Section 10.4.3, thiS function is described by two axioms: 

s: Aircraft-set; 3q: AircraftQueue · elems q = s I buildQueue-defno 1-'---'----"---:e'cle'-:m:cs-;bccu'"il"d"'Qc-u"eu"'e';("s):---cs-----'--'- Ax 

,---==-::-:--=::--,_:sc_::..:A.:._ir--=-crc:ao;,ifi:__t--=.se:.;t;,; __:_32q.:.:: Ac;':.;·rc:..:r7afic:t.=Qc:uc;e::;ue::-· e.:cl__:_em=s_,_q_=_:s:.._ Ax I buildQueue-form0 I · · buildQueue(s): AircraftQueue 

and there are two associated proof obligations, one to show that the postcondition is 
boolean-valued, the other to show that the function is satisfiable: 

I poSl-buildQueue-form I s: Aircraft-set; q: AircraftQueue 
post-buildQueue(s, q): 8 

s: Aircraft-set I bui/dQueue·sat I 3q: AircraftQueue · post-buildQueue(s, q) 

Here, post-buildQueue is defined via: 

post-buildQueue(s,q) def elemsq = s 



lL-,J r1rst rermemenr srep 235 

The first of these proofs is trivial and is left as an exercise for the reader. The second 
provides an example of a satisfiability proof which is perhaps best tackled by induction. 

Here, set induction is used, giving a base case in which it must be shown that 

3q:Aircra.ftQueue · elemsq = {} 

and an induction step with hypothesis 

3qt: AircraftQueue · elems Ql = s1 

and goal 
3qz:AircroftQueue · elemsq, = add(a,s1) 

The base case follows trivially by supplying [ 1 as the witness value for the existential 
quantification, the induction step by similarly supplying cons(a,QJ). The complete proof 
is: 

from s: Aircraft-set 
I [ 1: Aircra.ftQueue [ 1-form-queue 
2 elems[1 = {} elems-defn-[1 
3 3q: AircrqfiQueue · elems q = {} 3-I ( 1, 2) 
4 from a: Aircraft; s1 :Aircraft-set; 3qt:AircraftQueue · e!emsqt = St; a e s 
4.1 from q,:AircraftQueue; elemsqt = s1 
4.l.J a<" elemsq1 =-subs-left(b) (4.h2, 4.!.h2, 4.h4) 
4.1.2 cons( a, q1): Aircra.ftQueue cons-form-queue (4.h 1, 4. !.hi, 4.l.J) 
4.1.3 elemscons(a,q1) = add(a,elemsq1) 

elems-defn-cons-queue ( 4.h I, 4. !.hI) 
4.1.4 elemscons(a,q1) = add(a,s1) =-subs-right(b) (4.h2, 4.I.h2, 4.1.3) 

infer 3q2:AircraftQueue · elemsq2 = add(a,s) 3-I (4.1.2, 4.1.4) 
infer 3q2: Aircra.ftQueue. elemsq2 = add(a,s) 3-E (4.h3, 4.1) 

5 3q: AircroftQueue · elemsq = s set-indn (hi, 3, 4) 
infer 3q: AircroftQueue · post-buildQueue(s, q) folding (5) 

The rules for queues used in this proof are: 

I [ )-fonn-queue I -;c;--;c.--;:-;;-
[]: Azrcra.ftQueue 

a::::c.A:ci:..:rcc.ra:ceifi.ct;'-".q,..:: A.:::i:..rc,_r.:;afic;t.=Qccu-ce u,..:e;c;_ac_.:::e_e.:_l.:_em--'-s "-q I cons-fonn-queue )- cons( a, q): AircraftQueue 

a: Aircraft; q: AircraftQueue I elems-defn-cons-qucue l-e"te"-m::,s='c"-o"=nC:s7-( a", C:q\') .:.:_:::a:=d;.:d;;c( a'!,":0'i:10'::m:':sc:q:;-) 

Working versions of the formation and definition rules 

s: Aircraft-set 
I buildQueue-defn I elems buildQueue(s) - s 



236 12 A Case Study in Air-Traffic Control 

s: Aircraft-set I buildQueue-form I ~~==~2~==--. · buildQueue(s): AircraftQueue 

are then proved in the standard way. 

12.5.5 Operations 

The only operation considered in detail here is the one for adding a new flight to the ATC 
system. The concrete counterpart of the abstract operation AddF/ight (see Section 12.4.9) 
is: 

AddF/ightt (p: Aircraft, s: Space) 
ext rd contro/1 : Space ~ Controller 

rd capacity1 : Space ~ N 
wr assigs1 : AssigMap 

pres E dom controlt 1\P " knownAircraft(assigs,) 1\ len assigs, (s) < capacity, (s) 

post assigs1 =-t {s >-> -(s)- [pl) 

giving rise to definitions of pre-AddF/ight1 and post-AddF/ightt of the fom1: 

pre-AddFlight1 (p, s, con, cap, ass) del s E dom con A p e knownAircraft(ass) A 

lenass(s) < cap(s) 

post-AddFlight1(p,s)iSs, ass) del ass= ass t {s ,_. ass(s)- [pl) 

There are the usual well-formedness obligations for these definitions, as well as the sat
isfiability obligation for the operation as a whole, but none of these are considered here. 
The purpose of this section is to consider the two additional proof obligations, the domain 
and result obligations, which arise by virtue of the fact that AddFlight1 is intended as an 
"implementation" of AddF/ight. These are stated as: 

p: Aircraft; s: Space 
mk-ATC(cs, con, cap, loc): ATC 

mk-ATC1(cs1, con1, cap1,ass):ATC1 

mk-ATC(cs, con, cap, loc) = retr, (mk-ATC1(cs1, con1, cap1, ass)) 
pre-AddFlight(p, s, con, cap, loc) 

I AddF/ight-dom·obll-------'=;7.~'7'7'-====="--c------. . pre-AddFlight,(p,s, con,, cap1,ass) 

p:Aircraft; s: Space 

mk-ATC(cs, con, cap, loc):ATC 

mk-ATCt (cs,, con,, cap,, ass): ATCt 

mk-ATC(cs, con, cap, /;;C)= retrt(mk-ATC,(cs,, con,, cap,, ass)) 
mk-ATC(cs, con, cap, loc): ATC 

mk-ATC1 (cs1, con1, cap1, ass): ATC1 

mk-ATC(cs, con, cap, loc) = retn (mk-ATC1(cs1, con,,cap,,ass)) 

..-=::-:---:-:-, pre-AddFlight(p, s, con, cap, loc); post-AddF/ight, (p, s, ass, ~s) 
~ght-res-obll post-AddFlight(p,s, loc, loc) 



J.L-.-' rust rennemenr seep 237 

In this particular case, as with the adequacy obligation, these rules can be simplified by 
taking account of the componentwise nature of the refinement. This effectively entails 
making use of the rules: 

I mn -E-onduty I 

I rem ·E·controlj 

I retr1-E-capacity I 

! retr1 ~E·location \ 

mk-ATC(cs, con, cap, Joc):ATC 
mk-ATC1 (cs,, con,, cap,, ass): ATC, 

mk-ATC(cs, con, cap, Joe)= retr1 (mk-ATC,(cs,, con1, cap1, ass)) 
CS] - CS 

mk-ATC(cs, con, cap, Joe): ATC 
mk-ATC1 (cs1, con,, cap,, ass): ATC1 

mk-ATC(cs, con, cap, Zoe) retr1 (mk-ATC1 (cs1, con1, cap1, ass)) 
con,- con 

mk-ATC(cs, con, cap, Joe): ATC 
mk-ATC, (cs1, con1, cap,, ass): ATC1 

mk-ATC(cs, con, cap, Joe) = retr1 (mk-ATC1 (cs1, con1, cap1, ass)) 
cap, cap 

mk-ATC(cs, con, cap, Joe): ATC 
mk-ATC, (cs1, con1, cap1, ass): ATC1 

mk-ATC(cs, con, cap, Joe)= retr1(mk-ATC1(cs1, con1, cap1, ass)) 
extrLoc(ass) - Joe 

as a basis for replacing cs1 by cs, con1 by con, cap1 by cap, and loc by extrLoc(ass). 
Using these rules and substituting the equalities in their conclusions as the first steps in 
the proof of 'AddF/ight-dom-obl' leads to the following partial proof: 

from p: Aircraft; s: Space; mk-ATC(cs, con, cap, Joe): ATC 
mk-ATC1 (cs1, con1, cap,, ass): ATC1; 

mk-ATC(cs,con,cap,Joc) = retr,(mk-ATC,(cs,,con,, cap,,ass)) 
pre-AddF/ight(p, s, con, cap, Joe) 

I cs: Controller-set 
2 
3 
4 
5 
6 
7 
8 
9 

con: Space ~ Controller 
cap: Space ~ N 
Zoe: Aircraft ~ Space 
CS! = CS 

con1 =con 
cap,= cap 
extrLoc(ass) =Joe 
pre-AddF/ight(p, s, con, cap, extrLoc(ass)) 

10 pre-AddF/ight1 (p, s, con, cap, ass) 
11 pre-AddFlight1 (p, s, con, cap1, ass) 
infer pre-AddFlight1 (p, s, com, cap1, ass) 

onduty-form-mk (h3) 
controJ-form-mk (h3) 

capacity-form-mk (h3) 
Jocation-form-mk (h3) 

retr1-E-onduty (h3, h4, h5) 
retr1-E-controJ (h3, h4, h5) 

retr1-E-capacity (h3, h4, h5) 
retn-E-Jocation (h3, h4, h5) 

=-subs-left(b) (4, 8, h6) 

(?? justify ??) 
=-subs-left(b) (3, 7, 10) 
=-subs-left(b) (2, 6, II) 



238 lL A t.:ase .:>tuay m Air-lrarnc conrro1 

Note how Line 10 can now be proved using the lemma 

I AddF/ight-dom-obl-simp I 

p: Aircraft; s: Space 
mk-ATC(cs, con, cap, extrLoc(ass)): ATC 

mk-ATC1 (cs, con, cap, ass): ATC1 

pre-AddFlight(p, s, con, cap, extrLoc(ass)) 
pre-AddF/ight1 (p, s, con, cap, ass) 

which can be obtained more easily by making the substitutions for the components of the 
retrieval directly into the basic domain obligation 'AddF/ight-dom-obl'. Nor is the proof 
of this simplified version of the domain obligation difficult, as the lemmas 'dom-extrLoc
defn' and' numO/Aircraft-elm-defn', which were used above to show the well-fonnedness 
of the retrieve function (see Section 12.5.4), together with a certain amount of substitution 
of equalities, are sufficient to complete the proof: 

from p: Aircraft; s: Space; mk-ATC(cs, con, cap, extrLoc(ass)): ATC; 
mk-ATCr(cs, con, cap, ass):ATC,; pre-AddF/ight(p,s, con, cap,extrLoc(ass)) 
s e dom con 1\ p ~ dom extrLoc(ass) A 

numOfAircraft(s, extrLoc(ass)) < cap(s) unfolding (h5) 
2 ass: AssigMap assigs1-form-mk (h4) 
3 domextrLoc(ass) = knownAircraft(ass) dom-extrLoc-defn (3) 
4 s E domcon A-B-right(!) 
5 domass = domcon inv-ATC1-I-mk-clause3 (h4) 
6 domass: Space-set dom-form-AssigMap (2) 
7 s e domass =-subs-left(a) (6, 5, 4) 
8 numOfAircraft(s, extrLoc(ass)) = lenass(s) numOfAircraft-elm-defn (h2, 2, 7) 
9 extrLoc(ass):Aircraft--"'-> Space location-form-mk(h3) 
10 numOfAircraft(s, extrLoc(ass)): N nwnOfAircraft-form (h2, 9) 
11 s E dom con A p e dom extrLoc(ass) A len ass(s) < cap(s) 

12 domextrLoc(ass): Aircraft-set 
=-subs-right(a) (10, 8, 1) 

dom-form (9) 
13 s E domcon Ape knownAircraft(ass) A lenass(s) < cap(s) 

=-subs-right(a) (12, 3, 11) 
infer pre-AddF/ight1(p, s, con, cap, ass) folding (13) 

Turning now to the result obligation, this too can be simplified exactly as described above 
to: 

p: Aircraft; s: Space 
mk-ATC(cs, con, cap, extrLoc(iiSs)):ATC 

mk-ATC1 (cs, con, cap, !iSs): ATC1 

mk-ATC(cs, con, cap, extrLoc(ass)): ATC 
mk-ATC1 (cs, con, cap, ass): ATC1 

pre-AddF/ight(p, s, con, cap, extrLoc(ass)) 
post-AddF/ightt (p, s, !iSs, ass) 

I AddF/ight-res-obl-simp 1-p-o-s-t-A-c--:dd-':F:C/"'ig:,:h.::t(p=,:::.s.::, e
2

xc::tr":Lo""'c('±a=ss:::),"'e=x"'tr'cLo-c-:(-as-s,-;) )-



1 L-.J rrrsr retmement step 239 

Ignoring the first six hypotheses of this rule which essentially only give typing information 
and invariants, the meat of the proof is to show 

extrLoc(ass) = extrLoc(ass) t {p >-+ s} 

under the following assumptions: 

p.,; domextrLoc(ass) As E domcon A numOfAircrcift(s,extrLoc(ass)) < cap(s) 

ass = ass t { s >-+ ass(s) ~ [p]) 

Using the rules 'dom-extrLoc-defn' and 'numOfAircraft-elm-defn' together with the fact 
that domcon = domG.ss (from the invariant on ATC1), the first of these assumptions can 
be rewritten to 

p ~ knownAircraft(ass) As e domass A lenass(s) < cap(s) 

Now the fact that the first two conjuncts of this expression are enough to ensure the 
invariant on ass suggests that a lemma of the form 

p:Aircraft; s: Space; ass:AssigMap 
p ~ knownAircraft(ass); s e domass 

I exl'Loc-t I extrLoc(ass t {s >-+ ass(s) [pl))- extrLoc(ass) t {p >-+ s} 

should be proved. However, the proof of this is rather long if attempted directly. A better 
strategy, therefore, is to develop a series of lemmas leading up to the proof of this one. 
This unfortunately requires more space than is available and does not really introduce any 
new proof techniques, so it is made the subject of the final exercise of this chapter. 

Exercise 7 Prove the following lemmas: 

p: Aircraft; s: Space; ass: AssigMap 

I 
. I p ~ knownAircraft(ass); s E domass 

AsslgMap-fonn-t . ass t {s >-+ ass(s) [pJ):AsstgMap 

I knownAircraft-Hemma j 

p: Aircraft; s: Space; ass: AssigMap 
p ~ knownAircraft( ass); s E dom ass 

knownAircraft(ass t {s >-+ ass(s) ~ [pl})-
add(p, knownAircraft(ass)) 

p: Aircraft; s: Space; ass: AssigMap 
a: Aircraft; p ~ knownAircraft(ass) 

s E domass; a E knownAircraft(ass) I locO/-t -*I 't~oc...,O"'f7-(a-", a..::s:.::_s ti-T{ s:.::_>-+c..::;_ac:.ss7(s'i-) ;.,:-fp";'])i';)'---"to"'cSO~'f7-(a-, a-s"'s) 

p: Aircraft; s: Space; ass: AssigMap 
I I p ~ knownAircraft(ass); s E domass /ocOf-t-- ~ 

locOf(p,ass t {s >-+ ass(s) [pl}) s 

Use them, together with the rule 'map-comp-left-defn-add', to prove 'extrLoc-t'. o 



240 12 A L'ase .Study m Arr-'l'tattzc Control 

12.5.6 Adequacy of initialisation 

As discussed in Section 11.2.2 there is a proof obligation concerned with showing that the 
possible initial states of the concrete specification have counterparts among the possible 
initial states of the abstract specification. This obligation, the adequacy of the initialisation 
condition, is very like the result obligation for an operation, though it is much simplified as 
there are no preconditions or previous states to be considered. This reinforces the notion 
introduced in Exercise 1 of Chapter 11 that the initialisation predicate could be viewed as 
an operation which has write access to all components of the state, no precondition, and 
postcondition which does not refer to the initial values of the state variables. 

For the refinement step under consideration here the proof obligation has the form 

I
. . I a:ATC; a,:ATCI; a= retr1(a1); init-ATC1(a1) 

. tnu-ATC1-adcq. init-ATC( CJ) 

Its proof is straightforward because the only two state variables mentioned in the initial
isation predicates do not change under the refinement. 

12.6 Second refinement step 

12.6.1 A database of controllers 

The second development step introduces a database of information about controllers, 
recording whether or not they are currently on duty and, if so, which space they control: 

Clnfo :: onduty : B 
space : [Space] 

inv mk-C!nfo(d,s) !':. ~d => s =nil 

It is easy to imagine Clnfo being extended to include other relevant information as well, 
such as .login files for customizing monitors to S).lit personal preferences. 

The database is represented as a map from controllers to information in which no two 
controllers can control the same airspace: 

CDatabase =Controller ~ C!nfo 

invdb ~ "dct,C2 E domdb· 
let Si = db(ci).space in 

C! <F- C2 :::::> Si = nil v S2 = nil V S! if:. S2 

12.6.2 The new state definition 

The new state definition replaces the simple set of on-duty controllers with a database of 
information about controllers. The new state invariant says (amongst other things) that 
the database is consistent with the control map: 



1 L-. 1 conc1uamg remarks 

state ATC2 of 
info, : CDatabase 
controh : Space ~ Controller 
capaciry2 : Space ~ N 
assigs, : AssigMap 

inv mk-ATC,(db, con, cap, ass) ~ domcon = activatedSpaces(db) A 

rngcon = assignedCtrls(db) A 

Vc E assignedCtr/s(db) · con(db(c).space) = c A 

activatedSpaces(db) ~ domcap A 

Vs E domass ·lenass(s) 5. cap(s) 

in it 02 ~ oz.capacityz = { ~} A ondutyCtr/s( oz.infoz) = { } 
end 

241 

The auxiliary functions activatedSpaces, assignedCtrls and ondutyCtrls, returning respec¥ 
tively the set of activated airspaces, the set of assigned controllers, and the set of on-duty 
controllers for some given database. are specified as follows: 

activatedSpaces : CDatabase -4 Space-set 
activatedSpaces(db) ~ {db(c).space IcE assignedCtrls(db)) 

assignedCtrls : CDatabase -> Controller-set 
assignedCtrls(db) ~ ondutyCtrls(db) \ avai/ab/eCtrls(db) 

ondutyCtrls : CDatabase -> Controller-set 
ondutyCtrls(db) ~ {c: Comroller I c e domdb A db(c).onduty) 

The second of these is defined in terms of another auxiliary function availab/eCtrls re¥ 
turning the set of controllers not already assigned: 

avai/ab/eCtrls : CDatabase -> Controller-set 
avai/ableCtrls(db) ~ { c: Comroller IcE ondutyCtrls(db) Adb(c).space =nil} 

Note that control2 is no longer explicitly required to be one-one (although it follows from 
the invariant). In fact, comrol2 is redundant - but addition of redundancy is one of the 
most common refinement techniques. 

The specification of the operations on the new state, the definition of the retrieve function, 
and all the associated proofs are left as exercises for the reader. 

12.7 Concluding remarks 

This case study has shown how the general means of interpreting components of spec¥ 
ifications and reifications presented in Chapters 10 and 11 can be combined with the 
techniques for reasoning about the basic elements of the specification language discussed 
in Chapters 2 to 9 to provide a means of reasoning about the design and development of 
a specific system. In particular, it has illustrated how to construct a theory, in the fOim of 
a set of axioms, definitions and derived rules, from a specification and from a refinement 
step, and how the proof obligations can be stated as rules and proved in this theory. It has 



242 lL. A Lase .)CUGJ In Alf-lTaiTIC t.....ODUOl 

also discussed the use of validation conditions as a means of checking both that infor
mal requirements on the system have been captured in the formal specification and that 
the operations specified on the formal model actually exhibit the expected and desired 
functionality. 

Since this book is primarily concerned with proof rather than specification, the actual 
form of the specification given above has to some extent been influenced by the desire 
not only to include an example of how each of the different proof obligations discussed in 
Chapters 10 and 11 arises and is dealt with in practice but also to illustrate a wide range of 
different reasoning techniques. In addition, the specification is perhaps atypical because 
every operation has a postcondition which defines the new state components directly in 
terms of the old via some equality and because the refinement is defined component-wise 
rather than over the whole state. Both of these are the result of a deliberate attempt to 
make the examples complex enough to illustrate the points required whilst at the same 
time simple enough that those points do not get lost in extraneous detail. 

Having said that, it cannot be stressed enough that the exact form of a specification can 
have a profound influence on the ease or otherwise with which reasoning about that spec~ 
ification can be carried out. First, since many proofs involve showing that some invariant 
holds, constructing the invariants out of some subset of the requirements and treating the 
other requirements as validation conditions can save an enormous amount of work. In 
that way the validation conditions are only proved once instead of every time the invariant 
has to be shown to hold. Although this point has not been illustrated explicitly above, 
looking at, for instance, the proof of 'Commission-sat' given in Section 12.4.1, where 
something like two thirds of the proof is concerned with showing that the invariant on 
ATC is preserved, should be sufficient to convince the reader. 

Second, introducing auxiliary data types and functions to represent concepts used in one's 
informal thinking about the specification generally simplifies both reasoning about the 
specification and the formulation of validation conditions. There are essentially two rea
sons for this. First, one is reasoning about objects of which one has some kind of mental 
picture, and second, the specification, and hence the proof obligations, is being divided 
up into smaller and more manageable units. 

In a similar way, the whole reasoning process 1s made simpler if it too is divided into 
a series of small, easy to understand steps. Thus, whilst it would be perfectly possible 
to discharge all the proof obligations on a specification directly from the axioms and 
definitions describing that specification (assuming, of course, that the specification is 
sound), proofs constructed in this way tend to become so long and unmanageable that it 
is easy to lose track of how the proof is progressing. This is avoided by stating and proving 
lemmas embodying one's intuitive understanding of the various constructs involved in the 
reasoning. As an added bonus, this also saves work by reducing repetition in the proofs. 

Finally, mention must be made of the magnitude of the task of formally verifying a "real" 
specification and design process. The case study presented here deals with a relatively 
small system and does not discuss the satisfiability of nine of the top-level operations, 
the internal consistency of the concrete specification, the satisfiability of any of the oper
ations on the concrete state, or the operation modelling obligations for ten of the eleven 
operations. Moreover, some of the details of those proofs which are discussed have been 
omitted, either by leaving proofs incomplete or by leaving lemmas unproved. Despite 
all this, the case study runs to some fifty pages, so the reader is probably somewhat con
cerned (and rightly so) that a full formal development of even this example would be 



J£-.1 L-Ulll-lUUllll> 1CI1lC11A"i 243 

prohibitively long. 

The first point that should be noted here is that most of the proofs presented, although 
long, contain very few steps which are not routine. Indeed, some are entirely mechanical, 
for instance the well-formedness obligations which follow the pattern described in Sec
tion 9.4. Such proofs or parts of proofs could be discharged automatically by a proof tool 
instantiated with the appropriate inference rules. In this way, the task is split between the 
machine, capable of performing routine steps quickly and without error, and the human, 
whose intuition is essential in guiding the non-routine steps (for instance for determining 
an appropriate witness value to justify an existential quantifier). 

The second, and far more important, point is that informal and formal reasoning and proof 
should be considered as something which can help with the development of a specifica
tion or a design step rather than some chore which has to be carried out after a formal 
specification or refinement has been written. Moreover, the reader should not feel that a 
proof of some proof obligations or validation condition is only of value if it has been com
pleted fully formally (the term "proof obligation" is perhaps unfortunate in this respect). 
Indeed, as this case study has attempted to illustrate, planning a proof, sketching the main 
steps of a proof, or failing to formalise an argument can be at least as enlightening and 
informative as the finished proof. 

It is important to remember that the main purpose of proof is to increase confidence in the 
quality of specifications and design decisions. Proof skills should be part of the system 
developer's normal toolkit. Applied judiciously and at an appropriate level of rigour, 
the techniques described above can make a significant contribution to the quality of the 
development process. 





Chapter 13 

Advanced Topics 

13.1 Introduction 

As stated at the outset, the aim of this book is not to provide a complete description of 
the whole of the VDM specification language. Rather, it uses VDM-SL as an example to 
introduce and explain, in as natural and intuitive a way as possible, the techniques nee~ 
essary to enable the reader to confidently tackle not only proofs about specifications but 
also the axiomatisation of theories. The data types and constructs discussed in Chapters 2 
to 9 do not therefore represent all the available features of VDM-SL, although they are 
generally adequate for most applications. 

The features of the language which have not been covered fall broadly into two categories. 
The first of these contains constructs like the familiar arithmetic operators (for example 
-, /, j) which would be treated entirely analogously to constructs already discussed. The 
reader should have no difficulty applying the lessons learned so far to determine a rea
sonable set of axioms and derived rules for such operators. 

Constructs in the second category, on the other hand, have been omitted from the pre
ceding discussion either because they do not fit easily into the simple logical framework 
presented here (for example "loose" let statements; see Section 13.7.1) or because they 
complicate the basic theories presented above in such a way that the axioms and rules for 
familiar data types become hopelessly unintuitive and cumbersome (for example func
tion types; see Section 13.2). This chapter briefly discusses some of these constructs and 
indicates possible ways in which they might be treated. Indications are also given of the 
repercussions these have on the material presented in earlier chapters. 

The chapter also discusses how to generate formal descriptions of constructs with variable 
arity such as quote types and enumerated sets, maps and sequences (see Sections 13.8 
and 13.5 respectively), as well as extensions to some of the topics covered in the main 
body of the book. These include an indication of how the treatment of equality can be 
generalised to allow the comparison of values of different types (Section 13.3) and a 
discussion of how to deal with recursively-defined types in a specification and how to 
formulate induction rules for them (Section 13.4). 



246 13 Advanced ] oplCS 

13.2 Functions as a data type 

As discussed in Chapter 7, when constructing maps using map comprehension, care must 
be taken to ensure amongst other things that the resulting expression only contains a finite 
number of associations. Thus, for example, the expression 

{n >--> n2 1 n:N} 

which associates with each natural number n its square n2 , does not represent a map 
because its domain (all the natural numbers) is infinite. This notion can, however, be 
expressed in VDM using lambda expressions as 

J.n:N·n2 

the type of which is the function type N --7 N. 

More generally, the function type A --t B represents all (total) functions from the type A 
to the type B, that is those functions which, given an object of type A, return an object of 
type B. An element f of the function type A --7 B therefore differs from an element g of 
the map type A ~ B when A is an infinite type because f(a) is defined for all elements 
a belonging to the type A whereas g(a) is only defined if a belongs to the (finite) domain 
of the map g. 

It is not particularly difficult to write down axioms which describe the properties of func
tions as outlined above. These might be: 

x:A f; P(x):B 
~~.-~~~~»A< (A.x: A· P(x)):A --t B 

a: A; f:A --t B 
f. (a):B Ax 

a: A; A.x:A · P(x):A --7 B 
(A.x:A · P(x)) ·(a)- P(a) Ax 

One might also consider defining axioms describing the equality of functions, such as 

x: A 1:; P(x) = Q(x) 

~A.x,-: A,.-·--;P~(x')--'A.x-:-cAc-·'Q"(x--) Ax 

f:A --t B 
~~~~~--~Ax 
A.x:A ·if· (x)) -f

though it is somewhat debatable whether this notion ought be supported.

The main problem with function types is not the axiomatisation, however, but the fact
that VDM does not allow them to be combined with the other basic type constructors
arbitrarily. Instead, it introduces a notion of flatness of a type and considers the function
type and certain types constructed from a combination of function types and the other
type constructors as non-flat. It then imposes restrictions on the use of non-flat types.

One example of these restrictions is that it is illegal to construct a set of functions in VDM
(more generally, it is illegal to construct a set of objects of any non-flat type). This means
that the rules given above in Chapter 6 for building sets are not valid when the sets are of
non-flat type. In particular, rules such as the formation rule for the empty set' {}-form'
require an additional hypothesis in the presence of non-flat types to e~sure that only legal
sets are constructed. This rule would thus have the form

is-flat(A) Ax

{}:A-set

1..41

where the predicate is-fiat (not defined here) represents the notion of a flat type.

Fully supporting a description of function types, therefore, would require not only an
axiomatisation of the concept of flatness but also significant changes, similar to that to
the formation rule for the empty set shown above, to many of the formation rules already
presented. Whilst these changes could certainly be made, it was felt that the corresponding
loss of intuition and clarity in the axiomatisation of sets, maps, etc. presented above which
would thereby result was prohibitive. It is, however, worth keeping in mind that not all
the rules for sets, maps, etc. presented above are valid in the presence of function types.
They are all valid when no function types are present, though, as all types constructed
using only the set, map, sequence and record constructors are automatically flat.

13.3 Comparing elements of disjoint types

Using the axiomatisation of equality given in Section 3.4 above, it is possible to deduce
(using the rule 'I>-=-I') that any two elements of the same type are either equal or unequal,
but at this level there is nothing to determine which of these alternatives is actually true.
This is perfectly adequate when it comes to comparing arbitrary variables of some type,
and the rule '0-=-I' is therefore us~ primarily in proofs to set up a case distinction
on the equality or otherwise of arbitrary elements of a given type, but is not sufficient
for comparing specific elements of a type. This extra information comes from rules for
equality on the specific type in question, so that, for example, the rule '=-set-defn' defining
equality on sets makes it possible to show that the empty set is different from the singleton
set {a} for arbitrary (but denoting) a:

Between them, therefore, the general axioms of equality and the rules defining equality for
the specific types and type constructors give all the information necessary for comparing
any two elements of any given type. But what about comparing elements from two
different types?

Some progress towards this can be made with the help of union types: it has already been
shown in Section 4.2 how they can be used to prove a generalisation of the rule '0-=-I':

a:A: b:B
lo-=-1-genl li(a- b)

stating that two arbitrary elements of two arbitrary (i.e. possibly different) types are either
equal or unequal, and a similar technique can be used to construct generalisations of the
specific equality rules for the data types so as to allow some level of comparison between
constructed objects of different types, for instance between an object of type A-set and
one of type B-set. However, the most that can be deduced using these generalisations is
that expressions like

7 =true {7} = {true}

are either true or false, even though the first of these possibilities appears to be ridiculous.
One can also prove relationships between some expressions of this kind, for instance
that the two expressions given above must have the same value, that is that 7 = true
¢'> {7} = {true}.

1J 1"\UVitll(;t;U lUplCS

The extra information required in order to rule out these unwanted cases would have to be
supplied as additional axioms explicitly stating that elements of distinct types are unequal.
Thus, for example, the case 7 =true might be excluded by an axiom of the form:

a:lll; b:BI
a-::f:.b Ax

The problem with this approach is that it rapidly gets out of hand because axioms of this
form are not only required for other pairs of distinct basic types, they are also required
for each possible combination of a basic type and a type constructor and for different
combinations of type constructors. Furthermore, axioms are also needed which state that
an element of some type introduced in a specification is different from an element of any
basic type, from an element of a basic type constructor, and from an element of any other
type introduced in a specification.

Another possible approach is to formalise the notion of types being disjoint, say through
some predicate are~disjoint, and to introduce one set of axioms describing its general
properties, for example:

a: A; b: B; are-disjoint(A, B)
aif:.b Ax are-disjoint(A-set,B') Ax

and another set defining which specific types are disjoint, for example:

are-disjoint(lll, 01) Ax

This approach has the advantage that fewer axioms are needed because some of the in~
formation has been included by the parameterisation inherent in the first of its sets of
axioms, but it still requires an axiom in the second set for each possible pair of types
taken from the basic types and the types introduced via specification. In particular, the
practical upshot is that every time a new type is specified a new set of axioms is required
to say both that it is disjoint from each of the basic types and that it is disjoint from all
the types so far specified.

Experience shows that these axioms are not widely needed when reasoning about spec
ifications (although there is some indication that they can be important when specifying
abstract syntax), and the high level of unmanageability has led to the omission of a for~
mulation of disjoint types from this book. However, the generation of the axioms for
the second of the two approaches described above is straightforward, and it is easy to
see how mechanical support could be used to take the burden out of this by generating
the appropriate axioms for are·disjoint automatically whenever a new type is added to a
specification.

13.4 Recursive type definitions

This section gives some indicative examples of how one can define and reason about
recursive type definitions.

A simple example of a recursiVe type definition is the following definition of binary trees
with numerical leaves:

249

NTree = N I NTree x NTree

It can be seen that the definition of NTree is well-founded, because the name of the type
being defined does not occur in one of the branches of the union type construction that is
used in the definition. In effect, there is a "terminating clause" (by analogy with recursive
function definitions).

Treating this as a definition in the logical frame:

def
NTree = N I NTree x NTree

the following two formation rules can be proven from the typing rules for Cartesian
products and union types:

n-N I NTree-leaf-fonn I NT,
n: ree

r=::---;--,::--, t~, 12: NTree I NTree-node-.fonn l--.-'7:-"-:-7""=,-mk-(t!, tz): NTree

From the definition and the axiom 'I-E' the following rule is obtained:

t:NT
n:N ~ P(n)

t1:NTree, t2:NTree ~,, P(mk-(t1,t2))
INTree-E I P(t)

Unfortunately, this rule is useless in general! To see why, consider the following function
definition:

sumNTree : NTree ---7 N
sumNTree(t) !;:. cases t :

mk-(t,, tz)---> sumNTree(t,) + sumNTree(tz),
others ---7 t

end

An attempt to prove the formation rule for this function:

t:NTree
I sumNTree-fonn I sumNTree(t): N

using the above rules will fail. At some stage in the proof, it will be necessary to show
that:

sumNTree(t1) + sumNTree(t2): N

for the case where there are some 1" r2 (both of type NTree) such that t = mk-(t" t2).

However, it is not possible to show that sumNTree(t1): N given only that t1: NTree- this
is the same problem that the present proof is trying to solve!

In order to reason about values of a recursive type definition, some form of induction
axiom must be supplied. This can be constructed by analysis of induction rules (or similar
"property-propagating" rules) for the type constructors used in the definition. This leads
to the following induction scheme for NTree:

t:NTree
n:N I;; P(n)

t1:NTree, t2:NTree, P(t1), P(t2) !;-,.., P(mk-(t,,t2))
I NTree-indn 1--------P"'("'t)c----'-'-"'-----Ax

Notice that 'all' this has done is to strengthen the sequent hypothesis of 'NTree-E' by
assuming additionally that P holds for all sequent variables of type NTree.

This induction scheme can be used to derive properties that are true for all trees and also
to give properties of function that are defined recursively by structural induction. Using
this axiom to prove 'sumNTree-form.', when the point is reached where 'sumNTree(t1): N'
is required, it will be present already as a hypothesis of the 'step' case of the induction:

from t: NTree
I from n:N

infer surnNTree(n): N
2 from t,:NTree; tz:NTree; sumNTree(t,):N; surnNTree(tz):N
2.1 surnNTree(r1) + surnNTree(r2): N

(?? justify ??)

+-form (2.hl, 2.h2)

2.2 sumNTree(mk-(r,, t2)) = surnNTree(t1) + surnNTree(tz) (?? justify ??)
infer swnNFree(mk-(t,, lz)): N =-type-inherit-left (2.1, 2.2)

infer surnNTree(t): N NTree-indn (hi, 1, 2)

13.4.1 Mutual recursion

Mutually recursive type definitions are permitted in VDM. For example, a definition of
binary trees with numerical labels at each node is:

NTptr =[NT]

NT= NTptr x N x NTptr

(This definition is somewhat artificial, but does bear similarities to more realistic con
structions.)

Converting this into definitions, the following formation rules can be proven from typing
rules for optional types and Cartesian products:

I NTptr-nill 'I NT m: ptr

nt:NT I NTw-form I NT nt: ptr

ntp: NTptr; ?(nil); nt: NT 1;;, P(nt)

P(ntp)

l.J.<+ 1\er..:ursive type aermwons 251

INT-fonn
1

_n_t.,_1 :_NT--fp-;t-'r;,-n_:_N-';.,-n,t";z:e>NT.,--'p __ t_r
mk-(nt1, n, nt2):NT

As before, these rules are not sufficient to allow proof by induction on NT, and an addi
tional induction scheme axiom must be supplied. One form of induction scheme for NT
is:

ntp,:NTptr, ntpz:NTptr, n: N,
[_ P(mk-(ntp,, n, ntpz)) ntp1 =nil v P(ntp!),

ntpz =nil v P(ntpz) rn/:j,n,niP2
t:NT

INT-indni---------=;Pc,(I'C)-------- Ax

In the above, the "propagation" of the property P through the optional type constructor has
been incorporated into the single sequent hypothesis. This has the visually unfortunate
consequence that the base and step cases of the induction are not separated, but with
some manipulation of the sequent hypothesis, quantifiers and disjunctions, it can be re
expressed as:

n: N f;; P(mk-(nil, n, nil))

nt:NT, n:N, P(nt) f;;,,, P(mk-(nt,n,nil))

nt: NT, n: N, P(nt) f;;,,, P(mk-(nil, n, nt))

nt,:NT, n:N, ntz:NT, f::P(k ()) m - nt1, n, nt2
P(nt1), P(nt2) mp1,n,ntpz

t:NT I NT-indn 1--------'-"PC'(t;-) ------Ax

In the case of any recursive type definition, care must be taken to ensure that the definition
is meaningful. The following are examples of meaningless definitions:

X=XxX

A =A-set

In each case, the definitions are ill-formed because there is no "base case" type expression
upon which the definition can be founded. It is still possible to generate rules for these
definitions as done above, and a similar approach to developing the induction scheme
leads to schemes such as:

x:X, y:X, P(x), P(y) ~.y P(mk-(x,y))

v:X
P(v)

which has no base case. This might appear to be dangerous, as it describes how to prove
properties for a type definition that is not well-formed, but in fact it is not possible to
satisfy the hypothesis v:X. To see this, note that the only way to construct an object of
type X will be via a formation rule of the form:

x:X; y:X
mk-(x,y):X

so that there is no way to construct a "base" X value.

252 lJ Aavancea 10p1cs

13.5 Enumerated sets, maps and sequences

The treatment of sets, maps and sequences in Chapters 6, 7 and 8 concentrated mainly on
reasoning about general elements of these data types, this manifesting in the fact that most
of the axioms and rules given both in the chapters themselves and in the relevant sections
of the directory (Chapter 14) are couched in terms of metavariables. Indeed, the only
specific elements of the data types which were discussed were the empty collections ({ } ,
{ >-+} and []) and the singleton or unit collections ({a), {a >-+ b) and [a]). Sometimes,
however, more complex specific elements of these data types are useful, for instance:

{1,3,4,7} {a >-+ true, b >-+ true)

Intuitively these constructs are very easy to interpret: the first represents the set containing
the four numbers l, 3, 4 and 7; the second, the map which maps both a and b to true;
and the third, the sequence containing the elements e1, ez and e3, in that order. Their
properties are also simple to determine. For example, the number 4 is clearly an element
of the set {1, 3,4, 7} whereas the number 5 is not:

4E {1,3,4,7) 5" {1,3,4,7}

and the union of the set {1, 3,4, 7} with the set {3, 7, 11) is the set {1, 3,4, 7, 11 }:

{1,3,4, 7} v {3, 7, 11} = {1,3,4, 7,11}

Unfortunately, the fact that these enumerated collections do not have a fixed arity (so
that they can contain any number of elements) means that it is impossible to describe the
general form of these expressions within the logical framework used in this book. Any
given enumerated collection can be described, however, and two possible methods are
suggested.

The first method relies on the fact that any enumerated collection having two or more
elements can be expressed in terms of the appropriate singleton collection and standard
operators on the data types. Thus, enumerated sets can be expressed in terms of singleton
sets and set union or add, for example:

{a,b,c) ={a) v {b) v {c)= add(a,add(b, {c)))

enumerated maps in terms of singleton maps and map override or addm, for example:

{a>-+ b,c >-+d)= {a>-+ b) t {c >-+d)= addm(a >-+ b, {c >-+d))

and enumerated sequences in terms of singleton sequences and sequence concatenation
or cons, for example:

[a, b, c] = [a]~ [b] ~[c) =cons(a, cons(b, [c]))

One could thus envisage some sort of automatic "pre-processor" which could be applied
to a specification before any reasoning was carried out and which would "translate" all

13.5 Enumerated sets, maps and sequences 253

enumerated collections having two or more elements into one or other of the appropriate
equivalent forms given above. Reasoning about the specification would then be per
formed at the level of the singleton collections and the appropriate operators chosen as
the basis for the translation, for which general definitions, axioms and rules are available.

The alternative approach is to introduce a new defined symbol for each enumerated col
lection of fixed size in just the same way as the singleton collections are defined in terms
of the empty collections, then to develop a series of derived rules for these. In this way,
an arbitrary set containing two elements { _, _} would be defined via:

{a, b) del add(a, {b))

then sets containing three elements would be defined in terms of this via:

del
{a,b,c} = add(a, {b,c})

and so on. Enumerated maps and sequences would be defined analogously using addm
and cons respectively.

Rules describing these constructs would also be developed in a similar recursive manner,
so that rules such as:

a:A; b:A
bE {a, b)

a: A
{a, a}- {a}

a:A; b:A
{a, b)- {b,a}

would be proved using the definition of {a, b) together with the derived rules for {a},
then rules describing {a,b,c} would be derived from its definition together with the de
rived rules for {a,b), and so on. In this way, definitions and rules describing any given
enumerated collection can be developed.

The main advantage of the first ("translation") approach is that it is generally applicable
and does not require the introduction of a whole slew of new definitions and the devel
opment of rules to describe them (though it is likely that additional rules dealing, for
instance, with expressions involving multiple set union will be required). On the other
hand, it suffers from the big disadvantage that one has to reason about constructs which
bear only a tenuous relationship to what was actually written in the specification, whereas
the second method retains the form of the expression written in the specification in the
theory. Given that it is generally rare for enumerated collections having more than a few
elements to be used in specifications, this faithfulness of the theory to the original spec
ification probably outweighs the disadvantage of genericity, which argues for preferring
the second treatment.

254 13 Advanced Topics

13.6 Patterns

The notion of patterns is pervasive throughout VDM-SL, and though they have been used
earlier (for example in Chapter 10) they merit further consideration here.

A pattern is an expression that contains variables that are to be bound as a result of
matching the pattern against some value. Patterns can be used in many places where
simple variables are used, for example:

in function/operation arguments:

f :TxTree-> U
f(mk-T(x, y), mk-Tree(d, [mk-Tree(d, tl)])) 6 x + y + d + g(tl)

in quantifiers:

'lmk-T(_, w,s):T ·,(wAs)

in set comprehensions:

{x+ y I mk-T(x,y) E aTSet · x > y)

in let expressions:

let mk-T(x, y) = f(z) in x + y

and. of course, in cases expressions:

cases e :
mk-T(x,y) ->x+y,
mk-U(v, -,X)-> V X X

end

Patterns play two roles in VDM-SL: to limit the realm of discourse and to associate
variables with subexpressions. The first role is most obvious in cases expressions, but
can also apply to quantified expressions. For example:

'lmk-T(x,x): T · P(x)

could be considered to be true if P(x) holds for any T whose two components are equal.

Such quantified patterns have not been introduced into the logical framework presented
thus far. Though the quantification above may appear "obvious", there are some subtle
points to be made.

If T is defined as:

T ::a C
b:C

then it is tempting to treat the above quantification as "syntactic sugar" for:

'It: T · P(t.a).

However, this is incorrect. The original formula "ignores" values ofT whose fields are
different, whereas the formula above does not. (Suppose for example that there are some

13.6 Patterns 255

x,y: C with x "'y, such that P(mk-T(x,y)) is false.)

It is also tempting to "remove" T from the quantification, and treat the fommla as:

\:lx:X · P(x).

This is equivalent to the original formula, because mk~T is total on C x C; however, if
Thad an invariant, then the latter formula would be overstrict (consider some y: C such
that both inv-T(y,y) and P{y) are false.)

The subtle point of quantified patterns is that it is necessary to consider what the quan
tification means for values that do not match the pattern (an issue that does not arise for
simple variables). In the case of the universal quantification, only values ofT that match
the pattern should have components that satisfy the predicate. This suggests the use of a
predicate "matches" as a guard in the quantification; then:

\:lmk-T(x,x): T · P(x)

could be treated as a shorthand for:

\:It: T · t matches mk-T(x,x) => P(x)

However, this is not satisfactory as the variable x is now free (and cannot be bound by
the "matches" predicate and subsequently used in a distinct subformula). The solution is
two-fold: firstly, define:

t matches mk-T(x,x)

using the existential quantification:

3x: C · t = mk-T(x,x)

and secondly, replace thex in P(x) with a selector expression in t; in this case either P(t.a)
or P(t.b) will do. Consequently, the original formula can be considered as a shorthand
for:

\:It: T · (3x: C · t = mk-T(x,x)) => P(t.a)

Thus, \:lmk-T(x,x): T · P(x) is not as obvious as it first appears! The shorthand version
can be used, but it should be noted that its translation into the definition is not a simple
syntactic process: it requires knowledge about the composite type definition T (the types
of its components, the names of its selectors, and their relationship to the arguments to
the constructor.)

The corresponding approach for:

3mk-T(x,x): T · P(x)

gives:

3t: T · (3x: C · t = mk-T(x,x)) 1\ P(t.a).

Note the use of conjunction instead of implication. As a simple exercise, derive the
universal quantifier form from the existential form and the definition of "if in terms of 3
given in Chapter 3.

Where patterns are used as function arguments, it is possible to reproduce them in the

256

corresponding axioms and obligations. For example, given:

sum_T :T-> N
sum-Y(mk-T(x,y)) {',_ x+y

then the corresponding definition axiom can be given as:

I I mk-T(x,y):T; x+y:N
0um.T-defn0 sum-T(mk-T(x,y)) x+y Ax

13 Advanced Topics

where the metavariables of the rule are x andy. Note that to replace an application of
sum_T to an arbitrary expression e of type T by the body expression, it is necessary to
rewrite e to the form mk-T(er, ez), so that x andy can be matched to e1, ez respectively.

Patterns can contain wildcards, which represent "don't care" patterns, for example:

dijf_W: W-> N
dijf_W(mk-W(x, _,y)) {',_ x-y

There is no notion of "don't care" value in the logical framework; however, these can
be replaced by "throwaway" metavariables in the corresponding axioms and rules, for
example:

I I mk-W(x,dc,y):W;x-y:N Ax
~iff-W-defno diff-W(mk-W(x,dc,y)) -x-y

Note that when a pattern contains several wildcards, a separate "don't care" meta variable
is required for each.

The above discussion has centred upon composite (record) patterns. Similar techniques
can be used for other forms of patterns (set enumerations, set unions, sequence enumer
ations and concatenations).

Patterns of the forms Au Band s1 ""s2 (where A, B, s1 and s2 can be pattern variables or
compound patterns) can introduce problems with determinacy. For example, the pattern
A uB (with A, Bas pattern variables) can be matched against the set {1,2,3} in several
ways, such as A={!}, B = {2,3}, or A= {1,3}, B = {2}.

13.7 Other expressions

13.7.1 Let expressions

The simplest use of a let expression is to introduce a shorthand notation, in the form of
a new variable, to stand for some complicated expression. Thus, for example, one might
"factor out" the common expression n2 + 7 n + 13 appearing in the formula

(n1 + 7n+ 13)3 + 3(n2 + 7n + 13) + 5

by writing instead
let x = n1 +7n+ 13 inx' + 3x+5

Here, the let expression can be interpreted as the instruction "replace x by the expression
n2 + 7n+ 13 everywhere it occurs in the expression .0 + 3x + 5".

13.7 Otherexpressions 257

The most general form of such an expression is then

let x = y in P(x)

with the implicit instruction being to replace every occurrence of the variable x in the
expression P(x) by the expression y. Clearly, one would expect this general let expression
to be shorthand for P(y), though care is needed to ensure that the substitution actually
produces a sensible expression. For example, one would not expect the expression

letx = n2 + 1 iny e domx

to be meaningful as n2 + 1 is not a map, and therefore does not have a domain. Some
guard is therefore needed to ensure that the expression P(y) represents a valid expression.
This takes the form of a typing hypothesis, and leads to an axiom describing this form of
let statements of the form

P(y):A
(let x- yin P(x))- P(y) Ax

This form of let expression is straightforward to describe axiomatically because, provided
it denotes a value at all, that value is uniquely determined. However, VDM-SL also
admits a form of let expression, sometimes called a "loose" let expression, where a range
of different values are all possible. Here, the variable x is defined implicitly by giving
a predicate P(x) which it satisfies instead of explicitly via some equation (analogous to
defining a function in a specification by means of a postcondition instead of an explicit
definition). The most general form of this kind of let expression is

let x: A be s.t. P(x) in Q(x)

with the looseness arising because there is no guarantee in general that there will be only
one value of x of the correct type A satisfying the predicate P(x).

When the typing information and the predicate do uniquely determine the value of the
variable, this kind of let expression is no more difficult to describe axiomatically than the
simpler equational let expression introduced above. For example, it is clear that the value
of the expression

let x: N be s.t. X'+ 3x = 4 in X'+ 5x + 7

must be 13 because the typing information and the predicate together mean that x must
be 1. More generally, the case with arbitrary predicates can be described axiomatically
via the rule:

3!x:A · P(x); Q(!x:A ·P(x)):B
(let x:A be s.t. P(x) in Q(x)) = Q(tx:A. P(x)) Ax

Here, the unique existential operator 3! and the unique choice operator t (see Sec
tions 3.5.2 and 3.5.3) are used respectively to ensure that there is a unique value of the
variablex and to determine that value. The second hypothesis then ensures that the pred
icate Q(x) is well-formed for that particular value of x.

Consider, however, what happens when the predicate and the typing information do not
uniquely determine the value of the variable x, as in

letx:Z be s.t. i'+3x =4 inx"+5x+7

258 13 Advanced Topics

In this example, there are two possible values of x, namely 1 and -4, and .since these
give rise to two different values of the overall expression it is no longer quite so clear
what that value should be: should it be 3 or 13? In fact, according to the semantics of
VDM-SL, it can be either of these. More generally, when a set of possible values exists,
the value can be any value in that set.

This sort of arbitrariness could be captured using the non-unique choice operator e, anal
ogous to the unique choice operator t but returning simply some element from a possible
set of elements satisfying the appropriate predicate P(x). This operator could be described
by axioms analogous to those given for tin Section 3.5.3, obtained simply by replacing
t bye and3! by 3:

r= 3x:A ·P(x)
~ (ex:A·P(x)):A Ax

~ 3x:A · P(x) Ax
'P"'('="e -:::-x,:-oA'·-iPd(x-c)):-

and it is tempting to try to apply the same transformation to generalise the axiom describ
ing the form of let expression where the variable is uniquely determined to the case where
it is not:

3x:A · P(x); Q(ex:A ·P(x)):B
{let x: A be s.t. P(x) in Q(x))- Q(ex: A . P(x)) Ax

The difficulty here is that the above axioms mean that the choice operator E is under
determined but deterministic, that is that the expression Ex: A · P(x) denotes an arbitrary
element x satisfying P(x) but that every occurrence of this expression denotes the same
element (because the rule '=-self-1' means that any expression that can be assigned a type
is equal to itself). This in tum means that the let expression described in terms of E is
also under-determined but deterministic, that is that it will take any value of the range of
possible values but it will always take the same value. Unfortunately, this contradicts the
semantics of VDM-SL which allows the same let expression to take different values in
different contexts within the same specification. For example, if two auxiliary functions
are specified via:

f:Z-tZ
f(z) ~ z+letx:Zbes.t.r+3x=4inr+5x+7

g:Z-tZ
g(z) ~ z+ let x:Z be s.t. .x2 + 3x = 4 in r+5x+7

thenf(z) and g(z) are not necessarily equal because the let expression does not necessarily
have the same value in both contexts. Thus, the formulation in terms of 3 and E does not
work.

In fact, it is impossible to capture the balance of determinism and under-determinedness
required by the VDM-SL semantics with the machinery available so far. One might
try to solve the problem by introducing some non-deterministic analogue of the choice
operator E, as this automatically ensures that in the example given above the two functions
f and g will not necessarily return the same value when applied to the same value z.
However, this freeness has the unfortunate side-effect thatf(z) then does not necessarily
always represent the same value in different contexts within a specification (i.e. f(z) is
not necessarily equal to f(z)), contrary to the semantics of VDM-SL which constrains

functions to be detenninistic. Thus the problem has simply been inverted - instead of
having to find some way of describing non~determinism with a deterministic operator it
is now necessary to try to incorporate the required determinism into a description based
on a non~deterministic operator.

Another possible solution might be to introduce some form of parameterized let expres
sion, with the parameters recording the details of the context in which the expression
occurred within the specification. This seems a more promising line of approach and its
investigation has been taken up by Larsen ([Lar93]), but preliminary indications are that
a large amount of contextual information is needed, making the manipulation of the pa~
rameterized let expressions exceedingly cumbersome. Loose let expressions are therefore
considered to be outside the scope of this book.

13.7.2 Cases expressions

The cases expression of VDM-SL is a powerful tool; unfortunately it is also difficult to
handle in a proof-theoretic manner. In this section, some possible approaches to reasoning
about cases expressions are presented, though none of these is wholly satisfactory.

The general form of a cases expression is:

cases£ :
Patt,t,Pat~,z, ... ~ Et,
Patz,t,Patz.z, ... ~ Ez,

Patn,l,Patn,2, ... --7 En,
others ~ Eo

end

where E, Ei and Eo are expressions, and PatiJ are patterns. Naturally, the patterns can
contain variables to be matched, and Ei can mention the variables in PaliJ·

The value of such a cases expression is the value of the right hand expression of the first
case containing a pattern that matches E. Thus, evaluating a cases expression involves
checking whether or notE matches each PatiJ in tum; if a match is found, then the result is
the corresponding E, (with variables in the expression replaced by their matched values)'.
If none of the patterns match, then the result is the value of the others clause.

One approach to a proof theory for cases expressions is to give a set of"evaluation rules"
whereby a cases expression can be simplified. Consider a cases expression of the form:

cases s :
[] 0,
[a]~ tis-> I + /ength(tls)

end

then the following rules could be used to simplify occurrences of this cases expression in
proofs:

1 If more than one pattern matches for the same case, then it would seem natural to use the bindings
from the first pattern; however, the semantic interpretation in VDM·SL implies a non·detenninistic choice.

s:x·; s = []
lnil~cMel--r---------~~~--~--,-------

cases s :
[] --7 0,
[a]- tls --7 I+ length(tis) 0

end

s:x•; a: X; tls:x•; s =[a]- tls; I +length(tls):N I conc~case ! --r-=-'---"'-''-'-==-'---'--"'"-T-'-'-''-'-===='--"
cases s :

[] --7 0,
[a]- tis-> I +length(tls) = I + /ength(tls)

end

This relies on being able to treat variables in patterns as metavariables in rules. The
hypothesis 1 + length(tls): N is needed to ensure that the equality in the conclusion is
well-formed.
The above rules are reasonably straightforward, because this is a special form of cases ex
pression, where the patterns are both mutually exclusive and exhaustive (every sequence
will match precisely one of the patterns). If the patterns were not mutually exclusive, then
the second rule would require an additional hypothesis stating that s did not match [].
The rule for the third pattCrn of such a cases statement would need two such hypotheses,
and so on.

An alternative approach would be to give rules that "destruct" the cases expression in a
list-processing manner. An informal statement of such rules might be:

-.:e:;: X;.;'-::e_,:m.:::,at::c:::h.:es:cp~ar:;t.c; _,e"-t ::'A_:_ I evakasc.match I
cases e :

end

and:

I eval-case-others I --,~---'::'::X::;...:e:;a:::: A~---
cases e :
others ~ e0 eo
end

It is important to note that 'eval-case-next' is incorrect as stated above. It is incorrect to
assert the equality in the conclusion without guaranteeing that either .side is well-formed.
Consequently, 'eval-case-next' should have a hypothesis stating that the right-hand cases
expression is well-formed (has a type). There should be a corresponding set of forma
tion rules for cases expressions, which work by a similar process of reducing the cases

261

expression.
In the logical frame presented, it is not possible to state evaluation rules (and correspond
ing formation rules) in a sufficiently generic form to cover all cases expressions, because
there is no way to say "e matches pat" generically. To make this approach more general,
it would be necessary to make matching of patterns against expressions, and the resulting
bindings of pattern variables to expressions, "first-class citizens" in the logical frame, that
can be manipulated in inference rules.

Note that these rules say nothing about a cases expression which has no matching patterns
and no others clause.

A third, less direct, approach would be to translate a cases expression into a conditional,
whose conditions include "match" tests (as introduced in Section 13.6); the body expres
sions would have instances of pattern variables replaced by appropriate access expres~
sions. So, for example, given:

T :: a N
b:N

U :: c: N

cases e :
mk-T(x,y)--> x+y,
mk-U(v) --> 2 X v,

others --> 0

end

would become:

if 3x: N,y: N · e = mk-T(x,y) then e.a + e.b else
if 3v: N · e = mk-U(v) then 2 x e.c
else 0

For the sequence example, the corresponding condition is:

if s =[]then 0 else
if 3a: X, tis: x• · s = [a]- rls then I + length(tls)

though the second conditional is redundant (at least, when s is a sequence expression).

Such translation only makes sense when the original cases expression is well~ formed.
When there is no others clause, for example in:

cases e :
mk-T(x,y)--> X+ y,
mk-U(v) --> 2 x v

end

then the supplied patterns must be exhaustive for (all possible values of) the expression
e:

(3x: N,y: N · e = mk-T(x,y)) v (3v:N · e = mk-U(v))

.Lb.L J.J n.uva .. w ... \.-0 .I.VJ-'·""'"'

13.7.3 f.l expressions

The VDM-SL J1. operator provides a mechanism for describing modifications to the fields
of an element of a composite type by explicitly listing the fields which are to change
together with their new values. For example, taking the data-type ATC from the case
study (see Section 12.3) as a representative composite type, the expression

Jl.(<J, onduty ""' cs')

where a: ATC represents the result of replacing the onduty field of (J with the value cs'.
Another way of putting this is that, if <J is of the form mk-ATC(cs,con,cap,/oc) then
J.L(cr,onduty ~ cs') represents the expression mk-ATC(cs',con,cap,/oc), provided that
this value satisfies the invariant on ATC. This condition can easily be accommodated by
incorporating it into the hypotheses of a rule describing the above replacement axiomat
ically, for example via:

u:ATC; mk-ATC(cs, u.contro/, u.capacity, <J.location):ATC
Jl.(<J,onduty""' cs)- mk-ATC(cs, <J.contro/, <J.capacity, <J./ocation) Ax

but this is far from a general solution -not only does it only describe the J1 operator for
the specific composite type ATC, it also only deals with modification to the onduty field
of that type.

A completely general treatment of J1 would have to be parameterized over an arbitrary
composite type having an arbitrary number of fields, which would mean that the J1. oper
ator would have to have variable arity and that the notion of being the mk-function or a
selector function of a composite type would have to be formalised. Both of these fall out
side the logical framework used here. The best bet, therefore is to treat each J1 expression
used in a specification separately.

Two approaches would seem to be possible here. First, a different J1. symbol could be
introduced into the theory for each different combination of composite type and those
fields which are modified appearing in the specification. In this way, the expression
J.L(<f,onduty ""' cs) considered above might be described in the theory by a symbol
JlArc,t, representing general modification to the first field of the composite type ATC and
described by an axiom, analogous to the one given above, of the form:

<J:ATC; mk-ATC(cs, <J.control, <J.capacity, <J.location):ATC

Jl.Arc.l (u, cs)- mk-ATC(cs, <J.control, u.capacity, u.location) Ax

Expressions involving J.1 applied to different components of an object of type ATC would
then be described by different JL operators. For example, the expression JL(a, contro/t-t
con, capacity ~---t cap) would be described by the expression J!Arc,2,3(a, con, cap) in this
scheme, with the symbol J!ATC,2,3 being defined axiomatically via:

u: ATC; mk-ATC(u.onduty, con, cap, u.location):ATC
Jl.ATC,2,3(<J, con, cap) - mk-ATC(<J.onduty, con, cap.u.location) Ax

The advantage of this approach is that one axiom is sufficient to describe each of the
different J.1 symbols introduced. The corresponding disadvantage is that the number of
axioms proliferates annoyingly if the specification contains a large number of different J1
expressions.

u.~ urner types 263

The other possible approach is to "translate out" all the Jl expressions in the specification
before attempting to reason about them, replacing them with the appropriate mk-function
applied to the appropriate fields constructed exactly as described above for the other
possible treatment. The fact that the invariant has to hold for this replacement to make
sense would then appear as a proof obligation to show that the expression replacing the
J1 expression is of the correct type. The advantage of this approach is that no extension
of the theory is required. The disadvantage is that any proofs involving the «expanded
ouf' J1 expressions no longer explicitly depend on these expansions being well-formed.
The effect of this is that, even though a proof might have been completed successfully,
it is only valid if the well-formedness proof obligations on which it implicitly depends
have all been discharged. Although this is a subtle distinction, it runs counter to the tenet
assumed throughout this book that any result that has been proved from axioms alone
is valid. For this reason the strategy of representing each different J1 expression by a
different symbol in the theory is preferred.

13.8 Other types

13.8.1 Tokens

The distinguished type token in VDM-SL is a source of countably many structureless
values on which the only defined comparator is equality. It is used in the definition of
types for which the specifier does not (yet) want to give a representation. For example,
in giving an abstract specification of a programming language, it may not be of any
importance what the representation of procedure names is, or one may wish to defer this
detail to a later refinement stage:

Proc~Name =token

The type definition above results in a single type constant Proc~Name being added to
the theory of the specification. This allows one to deduce that equality is defined on
Proc-Name by '.5-=-r. The fact that the class of tokens is infinite could be captured by
an axiom of the form:

pns: Proc"Name-set I Proc~Name-infi.nite I -,,"';ii":'::-';.;:::::_:=::-==c:::- Ax
3p: Proc_Name · p ~ pns

A specification may contain definitions of a number of token types, for example:

T1 =token

T2 =token

This does not mean that Tl and T2 are the same type, nor does it mean they are distinct
types: they are each infinite classes of structureless values. In the theory of the specifi
cation, elements of the types are denoting, and therefore equality is defined on them, but
it is not possible to tell whether the types are the same or not.

264 13 Advanced Topics

13.8.2 Quote types

A quote type consists of just one value denoted by the same character string as the type
itself. In a specification, quote types are distinguished by a special character set. Such
types are used to represent constants. An enumerated type is a union of quote types. For
example, a specification of part of an operating system might contain a definition:

Component= KEYBOARD I MOUSE I SCREEN

This introduces three quote types: KEYBOARD, MOUSE and SCREEN. Each of these
has just one element of the same name as the type. Thus:

I MOUSE-fonn I MOUSE: MOUSE Ax

m:MOUSE I MOUSE-singleton I m _ MOUSE Ax

Quote types of different names are distinct, so that it is necessary to give axioms differ
entiating the types, for example

I KEYBOARD-MOUSE-disjoint I KEYBOARD ;C MOUSE Ax

for each possible combination of quote types introduced in a specification.

Quote types are usually introduced in the context of a union type, as shown in the example
above. The intention here is to achieve the effect of an enumerated type. The rules for
type union allow one to prove that

d: Component
d - KEYBOARD v d - MOUSE v d- SCREEN

13.8.3 Characters

The type char consists of the VDM-SL character set. Values of the type are distinguished
by the use of quote marks. The type is completely described by a set of axioms stating
that each element of the character set is of type char. These include:

'a': char Ax 'a': char Ax '+':char Ax

Text strings, shown in specifications between speech marks (" ... "), represent sequences
of characters (elements of the type char•).

Part III

Directory of Theorems

Chapter 14

Directory of Theorems

This final chapter forms a "reference manual", aimed at readers who wish to apply the
proof techniques described in the earlier chapters to their own examples. Sections 14.1
to 14.8 correspond in turn to Chapters 2 to 9. Each consists of separate listings of: the
axioms of the theory, arranged in logical order (that is so that axioms defining a particular
concept appear before those using that concept to define some other concept); the defined
symbols of the theory, arranged in the same order; and a collection of useful derived rules,
arranged in "alphabetical" order.

These listings include all axioms, definitions and rules mentioned or used in the main
body of the text, and in addition include extra "useful" derived rules. However, these
lists cannot be exhaustive, so the reader should always be ready to invent and prove new
rules as the need arises.

Sections 14.9 and 14.10 summarise the templates for the axioms, definitions and proof
obligations for the various components of specifications and reifications which were given
in Chapters 10 and 11 respectively. Generic examples are used as the basis for these
templates.

The final two sections of this chapter contain the specific axioms, definitions and proof
obligations for the ATC system discussed in the case study (Chapter 12). These sections
also include subsections listing the validation conditions which were discussed therein
and a selection of lemmas which are useful in discharging the proof obligations and
the validation conditions. The first of these two sections deals with the abstract ATC
specification discussed in Sections 12.3 and 12.4; the second deals with the concrete
specification and the refinement, discussed in Section 12.5.

14.1 Propositonal LPF

Axioms

!true-r!-- Ax
true

268

Ax

~ --,-,e
=---Ax

e

1~~-11-e-Ax
~~e

I
.. I e1; ~e,

contradtclton Ax e,

~ce, v e,)
1~-v-E-rightj Ax
· · oCt

Definitions

def
CtACz = -.(--,e,v--,ez)

del
false = --,true

def

oe del e v --,e

Derived rules

~t-contract I
(e1 "ez) v (e, "e3)

14 Directory of Theorems

1"+,1 rJU}JUMLUJJCU Lrr

(et "e2) A e3 I A-ass-left I e, 1\ (e
2

A e,)

e, A (e2 A e3)
1 A-ass-rightl (et "e

2
) A e

3

e1 A e2
IA~comm I e2 ACt

e1 A e2
1 A-E-rightl e,

e1 A ez; Ct f- e
IA·Subs·left I e A e2

Ct 1\ e2; e2 f- e
k-subs-rightl e

1
1\ e

Oe1; Oe2 I 0-A-inheritl o(et/\ e,)

Oet; Ct 1- Oe2
lo-A-inherit-sqtl o(etl\ e2)

Oe1; Oe2
1 s-.. -inheritl o(e, ¢'> e,)

1 o-=>-inherit I
oe,; lie,

li(e1 => e,)

lie,; e1 f- lie,
1 o-=>-inherit-sqtl li(e, => e,)

lie
1 o-~-inhcritl lib e)

e,
1 o-v-r-Icrt I o(e, v e,)

e,
I s-v-l-rightl o(e, v e,)

269

LIV

18-v-inheritl

I ¢'>-E-leftl

8e1; liez
8(et v ez)

I "'-E-Icft-~ I _:e:.;I_~:__:_:e'-''"-; _•_:.:t:;t_ .e,
e1 {::} ez; e2 I ¢'>-E-right I tt

e1 ¢:::} e2 I ¢'>-E-right-5 I Set

er {::::} e2; -,e2 I ¢'>-E-right-~ I__:_---"'------"-
•tt

1 "+ v1reccory or 1 neorems

1<+.1 rtvpv::;uumu Lrr

I <=>-1-A- ~ I

oe I <=>-self-! I e ¢<> e

.e:c'c:.; _:e:_<t_:_A_:..::e2'-==>::_:e:o'c_ I =>-A-left-E 1-

I =>-E-left I e, => e,; e,
e,

I =>-1-left-vac I e,

j =>~l~right·vac j e,~ e,
=> e,

oe I =>-self-! I___::::::___
e => e

I~ -A-E-left I e,; ~ (e, A e,)
~e,

271

I ~-false-! I-=:-:
-,false

e1 v (e2 A e3)
I v-A-dist-expand 1-,---=-'-'--C"''-7-'-"-"'-,-
. . (e 1 v e2) A (e 1 v e3)

1 '"1" .L/11 ClvtlJJ. Y lJJ. 1 HClJJ. CJ1l.!l

J.~.~ rlCWl-dLC Lrr WILfl CAJUi:UUY

et v e2
lv-comml

I v-E-righh I

et v e2: e, 1- e
I v-subs-left 1-----

e v e2

et v e2; e2 1- e I v-subs-right 1------. . e1 v e

oe; e 1- false I false-contr 1-_:_--,-__
~e

r;:;::-;:1 false
=.~-e

14.2 Predicate LPF with equality

14.2.1 Predicate LPF

Axioms

3x:A · P(x)
GDl y: A, P(y) ~ e
~ Ax e

a:A; P(a)
[Til 3x: A- P(x) Ax

~ a: A; ~(3x:A · P(x)) Ax
~ ~P(a)

x:A ~ ~P(x)
1~-3-II ~(3y:A. P(y)) Ax

x:A ~ oP(x)
18-3-inheritl o(3x: A. P(x)) Ax

273

Definitions

def
\ix:A · P(x) = ~3x:A · ~P(x)

inhabited(A) det 3x: A ·true

Derived rules

I m] \ix:A·'Ify:B·P(x,y)
ll-ll-comm \fy:B · \fx:A · P(x,y)

r=n1 a:A; b:B; \fx:A·IIy:B·P(x,y) = P(a,b)

x:A, y:B l:;,y P(x,y)
I W-I I-='"'"~+>=:"""' \fx:A · \fy:B · P(x,y)

\fx: A· \fy:B · P(x,y)
=:,...-;--, x:A, y:B, P(x,y) l:;,y Q(x,y)
IW-subsl \ix:A-\fy:B·Q(x,y)

li'·A·dist-contract I (\fx: A · P(x)) A (\ix: A · Q(x))
\fx:A- P(x) A Q(x)

. \ix:A- P(x) A Q(x)
I 11-A·dost-cxpand I (\fx: A . P(x)) A (\fx: A . Q(x))

. . \ix:A -liP(x); \fy:A · liQ(y)
I 11-5-v-mhcntl- 'liz: A. li(P(z) v Q(z))

\fx: A· ~P(x)
1 11·5 ·!-~ I \fx:A -liP(x)

111-¢>-E-Ieft-51 \ix:A ·P(x) <o> Q(x)
· · \fx:A- liQ(x)

r.c--c-cc---,;o \ix: A· P(x) <o> Q(x) I ll-<o>-E-right-5 I Vx: A. 8P(x)

\ix:A · P(x)
=-...,.-, x: A 1:; P(x) <o> Q(x)
li'·"*·Subsl \ix:A. Q(x)

I 11-.,·subs-5 I
\fx: A· 8P(x)

\fx: A· P(x) <o> Q(x)
\fx:A · 8Q(x)

J.'+.£ rnxucau; Lr.r Wiffi equamy

\;lx:A · P(x)
x: A ~ P(x) =; Q(x)

I~ 11~-=>--su...,b""s I 1;/x: A. Q(x)

(1;/x:A. P(x)) v (\;lx:A · Q(x))
"I 11

7
-v--07dis=-t-=co::;;ntr;:;ac;;!tj l;lx: A . P(x) v Q(x)

l;ix:A · Q(x)
111-v-1-Ieftll;lx:A·P(x)vQ(x)

1;/x: A · P(x) I 11-v-J-rightJ 1;/x: A . P(x) v Q(x)

l;ix:A. P(x); inhabited(A)
jii->3J 3x:A·P(x)

\;lx:A. ~P(x)
111->~-3-deMJ ~(3x:A. P(x))

a: A; \;lx:A · P(x)
111-EI P(a)

\;lx:A -l;iy:A · P(x,y)
111-fixl 1;/x:A·P(x,x)

y:A 1y P(y)
III-IJI;Ix:A·P(x)

l;ly:A- P(y)
x: A, P(x) ~ Q(x)

I 11-subs I \;ly:A. Q(y)

x:A, y:B ~.y oP(x,y)
Jo-\1\1-IJ o(l;ix:A -l;iy:B · P(x,y))

y:A iy oP(y)
I li-11-inheritJ o(\;lx: A. P(x))

3x:A -1;/y:B ·P(x,y) I"' 3
7
-ll:-_.-cllc;--:;.,3J l;ly: B. 3x: A· P(x,y)

3x:A. \;ly:B · P(x,y)
x:A, y:B, P(x,y) ~.y Q(x,y)

J311-subsJ 3x:A -1;/y:B · Q(x,y)

3x: A . P(x) "Q(x)
j3-A-dist-expand J (3y: A . P(y))" (3z: A · Q(z))

275

3x: A . P(x) A Q(x)
13-A-E-Icft I 3x: A . Q(x)

3x: A . P(x) A Q(x)
13-A-E-rightl 3x: A . P(x)

3x:A · 3y:B · P(x,y)
13-3-comm I 3y: B . 3x: A . P(x, y)

3x:A. 3y:B · P(x,y)
x: A, y: B, P(x,y) 1_;,, e

133-EI e

a:A; b:B; P(a,b)
@] 3x:A. 3y:B -P(x,y)

3x:A. 3y:B · P(x,y)
x: A, y: B, P(x,y) 1_;_, Q(x,y)

133-subs I 3x: A . 3y: B . Q(x, y)

3x:A · P(x)
x: A I_; P(x) ¢'> Q(x)

13-¢'>-subs I 3x: A . Q(x)

3x:A · P(x)
x: A 1_; (P(x) => Q(x))

f34:subS] 3x: A · Q(x)

(3x:A. P(x)) v (3x:A · Q(x))
13-v-dist-contract I 3x: A . P(x) v Q(x)

3x: A . P(x) v Q(x)
13-v-dist-cxpanctl (3x:A ·P(x)) v (3x:A · Q(x))

3x:A · ~P(x)
l.fi:.':~ ~ (lix: A· P(x))

a:A; P(a)
13-I-Iptl 3x:A-x-aAI'(x)

3x:A · P(x,x)
13-splitl 3x:A-3y:A·P(x,y)

3y:A · P(y)
x: A, P(x) I_; Q(x)

13-subsl 3y:A. Q(y)

14 u 1recrory or 1 neorems

14.2 l'redicate LPF with equality

~ ('ix: A· P(x))
!~·If ->3-deMI 3x:A. ~P(x)

~cvx:A. P(x))
~ y:A, ~P(y) ~ e =.

e

a:A; P(a)
I~-If -II-~-c"'v.,-x:""A-· ~~-;;P7(x"))

a:A; ~P(a)
1~-lf-I-~ I ~('ix:A·P(x))

~ (3x: A· P(x))
1~-3-> 'i-deM! 'ix:A. ~P(x)

14.2.2 Equality

Axioms

a: A ~--Ax
~a=a

b·A- a =b· P(b) I =-subs-left(b) I · ' P(a)' Ax

r---:--:.='71 a: A; a= b; P(a) I =·subs-nght(a) I P(b) Ax

Definitions

Derived rules

~ a:A; b:A = 8(a;tb)

= a:A; b:A
= a-bva;tb

277

278

a:A; b:A; a=b~e; a¢b~e

e

a: A; a= b; E(a):B I =-cxtcnd(a) I E(a) _ E(b)

a: A; a b; E(b): B
I -cxtend(b) I E(a) E(b)

a: A; a= b; P(b)
1--subs-lcft(a) I P(a)

b:A; a= b; P(a) I =-subs-right(b) I P(b)

a:A; a=b
I ;;:symili(a) I --"'-+-''-----''-== b-a

b:A; a=b
1--symm(b) I_::..:_:;::---:::_____::._
· · b -a

a: A; a = b; b = e
1--trans(a) 1---'---::----'----. · a- c

b; b c b:A; a
-trans(b) I

a e

c:A; a=b; b=c I =-trans(c) I -=-:=-=a-=_::_:_c_c__::_

a: A; a = b; a = c I =-trans-Ieft(a) 1-==-::,_::_:._:::.___::._
b-e

b:A; a b; a c I =-trans-lcft(b) I b e

e:A; a=b; a=e I =-trans-left(c) 1---'---.c-'--'----
. . b-e

a: A; a = c; b = c
1--trans-right(a) I a b

b: A; a = e; b = e
1--trans-right(b) I --"-'=":--7-"--=-. . a-b

c:A; a c; b c I =-trans-right(c) I a b

14 Directory of Theorems

14.2 Predicate LPF with equality

a:A' b a
1-·type-inhcrit-tcftl b: A

b:A' b=a I =-type-inhcrit-rightl ~:A

I I a:A; b:A; a¢b
;t-comm b ;:e a

14.2.3 Other quantifiers

Axioms

r.= 3!x:A·P(x)
~ (ty:A·P(y)):A Ax

3!x:A ·P(x)
(ill P(ty:A · P(y)) Ax

Definitions

3! x:A · P(x) del 3x:A · P(x) A \fy:A · P(y) => y = x

Derived rules

I I 3!x:A·Ify:B·P(x,y)
3

! \f-> \f
3 \fy:B · 3x:A · P(x,y)

a: A
13!-=-I I 3! b:A. b =a

. 3!x:A. P(x) v Q(x)
13!-v-dtst-expandl (3!x:A. P(x)) v (3!x:A. Q(x))

~ 3!x:A ·P(x)
t=2J 3x: A · P(x)

3!x:A ·P(x)

[]}]] _:_y_: A_:'_P_(y:_:)_:, _lf_z:_A_·_P_:_(z_:) _=>_z _=_:y--'~'---e
e

279

280

G;"";"J a: A; P(a); \ty: A · P(y) => y = a
L::'2l 3! x: A · P(x)

a: A; b:A; P(a); P(b); 3!x:A ·P(x)
l3! -same 1-===~-=~-?:c..::=:..:._'-""

a-b

3!y:A · P(y)
r;;-:::;:::l x: A, P(x) f- Q(x)

~ 3y:A·Q(y)

~ a: A; P(a); 3!x:A · P(x)
~ (rx: A· P(x))- a

~ a:A; ~(3!x:A·P(x))
· E -~-P"("a") -:cv""3"'z.:-'· A'·'P"(z")-cA-~'-7'(z---a")

,---;;-;-] a: A; b: A; P(a); P(b); a¢ b = ~(3!x:A-P(x))

~ (3x: A · P(x))
1~-3!-I-vacl ~C3!x:A. P(x))

14.2.4 Conditionals

Axioms

I I c:A; -.a condition-false Ax
· (if a then b else c) - c

b:A; a
I condition-true I Ax
· (ifathenbelsec)-b

Derived rules

a:A; b:A ! condition-lruc-identl--;c;---cCi-:-'-i-";C---;---;:
(if a- a then b else c) -b

I ITE-form I /Sa; b: A; c: A
(if a then b else c):A

/Sa
a f- b:A

-,al-c:A
I ITE-form-sqtl (if a then b else c): A

14 Directory of Theorems

14.3 Basic type constructors

14.3.1 Union types

Axioms

u: (A I B)
a: A~ P(a)

b:B ~ P(b)

~ P(u) Ax

b:B
jl-1-left J b: (A I B) Ax

a: A
Il-l-right I a: (A I B) Ax

Derived rules

r.:--::---, a: A; b: B I o-=-1-gen I li(a- b)

~""'"""" a: (A I B) I C
o:_ass:Jeftj a: A I (B I C)

. a:AI(BIC)
jl-ass-nght I a: (A I B) I C

rc= a:(AIB) = a:(BIA)

14.3.2 Cartesian product types

Axioms

= (a,b):AxB
~ lst(a,b)-a Ax

== p:AxB
~ fstp:A Ax

~.....,...,,., p:AxB
j pair~dcfn I Ax

(fstp,sndp) -p

. a:A; b:B
~§] (a,b):A xB Ax

281

I I
(a,b):AxB

snd-dcfn Ax
snd (a, b)- b

,--;-;---, p: A X B
I snd-fonn I snd p: B Ax

Derived rules

I . I p 1:AxB; pz:AxB; fstpi fstpz"sndp,
prur---merge

Pi Pz

I pair---splitl f
Pi:A xB; Pi pz

stpi fst P2 "snd PI snd P2

. p:AxB I parr-1-extcnd-leftl p: (A I C) X B

. . p:AxB I prur-1-extcnd-nghtl p: A X (B I C)

14.3.3 Optional types

Axioms

! nil-form J nil: [A] Ax

a: [A]; ?(nil); b: A I-;; P(b)
I opt-E I P(a) Ax

a: A I opt-rj a: [A] Ax

Derived rules

.------c-----:-:--:o a: [A] I opt-1-extend-leftl a: [B I A]

a: [A]
~-1-extcnd-rightl a: [A I B]

a:[A]; a;tnil I opt-E4-nllj a: A

1<+ .UlJ.Ct-LUl)' Ul J.JJCU1C:Ut3

sndpz

14.3 Basic type constructors

14.3.4 Subtypes

Axioms

a:<x:AIP(x)>
lsubtype·EI P(a) Ax

a: A- P(a)
I subtype. I I a: < x: A I P(x) > Ax

a:<x:A I P(x) > I supertype I a: A Ax

Derived rules

a: A; x: A f; P(x)
I sequent·E-basic I P(a)

a:A; b:B
x:A, y:B 1- P(x,y)

I sequent-E-basic-21 P(a,x~)

a: A; P(a); x: A, P(x) f; Q(x)
I sequent-E-gen I Q(a)

a:A; b:B; P(a); Q(b)
x:A, y:B, P(x), Q(y) f;.yR(x,y)

I sequent-E-gen-21 R(a, b)

a: <x:A I P(x) > I subtype-1-extend-left I a: < x: (B I A) I P(x) >

a: <x:A I P(x) > I subtype-1-cxtend-rightl a:< x: (A I B) I P(x) >

I subtype-subs I

a: <x:A I P(x) >
y: A, P(y) ~ Q(y)

a:<x:AIQ(x)>

283

284 14 Directory of Theorems

14.4 Natural numbers

Axioms

n:l\l
I succ-form I Ax
· succ(n): 1\1

n: N; P(O)

k: 1\1, P(k) r, P(succ(k))
!N-indnj-------n~------Ax

P(n)

n:N
lsucc'i:Oj Ax

succ(n) ;t 0

n1: N; n,: N; succ(n!l = succ(n2)
lsucc-1-tl Ax

n1- n2

n:N
j +-dcfn-0-lcft I 0 + n _ n Ax

n:N I x-defn-0-Jeft I OX n _ O Ax

i:N; j:N; k:N
1<-~-defnl .< "<k .<. "<k Ax 1-}- '-=>1-JAJ-

Definitions

n>m def 3k:NI·m+k=n

n;em def 3k:N·m+k=n

14.4 Narural numbers

n<m m>n

del

Derived rules

i:N; j:N; k:N
lo-,;.,;J /5(i,;J5ok)

n:N ! >-irreflexive)
~en> n)

I >-total-order 1-::--::--::-"'""-1
':c.· N,:,;_n:::'c.':..:Nc._-,--

nt > n2 v nt - n2 v n2 > nt

[ill n:N
2: -O-I n - 0 v n > 0

!o::-succ-1 1--m=: N+; :.;":c' N..:;:...:.:n..:.>...:m:..:._~
n > succ(m) v n = succ(m)

n:N I <-irrcflexive)-...,.:-..:.:c""'
~en< n)

I <-total-orderJ---"'"""1 :..:' N,:,;c..":c'c.':..:Nc._ __
n1 < n2 v n1 = n2 v n2 < n1

\ <-succ-dcfn I

285

286

n: 1\1; P(O)
k: Ill 1-; P(succ(k))

P(n)

n:N,; P(succ(O))
k: 111 1, P(k) 1-; P(succ(k))

P(n)

n:N
1~-<-ol ~Cn<O)

!+= O-E! n,:N; nz: N; nt + nz = 0
n, - 01\ nz- 0

- -"'"''-' lll-";_n_,2~: Ill-:-_ l+-comm I
nt +nz- nz+n1

n:N I +-defn-0-rightl O n+ -n

I l-~~-0n~,:~N~;~n~2~:N~~~-+-defn-suco-left-comm
succ(nt + n,)- succ(nt) + n,

I [n,:N; nz:N
+-dcfn-succ-right nt + succ(nz) - succ(n, + nz)

jx-commj
n,:N; nz:N

I 4 Vrrectory ot -1 heorems

n:N
ln=O<>n~ol n-O<o>nS:O

n:N
In< sue<(n) l-cn-:-<=suc:c-:cc("'n')

14.5 Finite sets

Axioms

IO-forml {):A-set Ax

a· A I {}-is-empty I a e. { } Ax

a:A; s:A-set I add-form I Ax
add(a,s):A-set

a: A; b: A; s: A-set
I e -add-defn I a e add(b, s) <o> a b v a e s Ax

s: A-set; P({ })
a: A, s':A-set, P(s'), a e s' 1;;/ P(add(a,s'))

lseGindni--------------~~~~--------Ax
P(s)

s: A-set; 3x e s · P(x)
y: A, y e s, P(y) ~ e

13-E-set I Ax
e

287

LOO

a: A; s:A-set; a e s; P(a) ! 3-1-set! Ax
3x E s · P(x)

I I
a:A; s:A-set; ae s; ~(3xe s-P(x))

. -. -3-E-sct. Ax
~P(a)

s:A-set; x:A, x e sf; ~P(x)
Ax

~(3y E s · P(y))

s: A-set; 3! x e s · P(x) l L-form-sct I Ax
(lyE s · P(y)): A

I t-l-sct I s: A-set; 3! x E s · P(x) Ax
P(ty E s · P(y))

1--sct-dcfn! __ s:c'c:.' A:.:..:-S:::e,t;-'s'-''c:.' A:.:..:-s::e.:_t -- Ax
S1 = Sz ~ St ~ Sz 1\ Sz ~ St

I card-dcfn-{) I card { } = 0 Ax

I card-dcfn-add I a: A; s: A-set; a <l s Ax
card add(a, s) = succ(cards)

~ s,:A-set; s2 :A-set
~ Ax s, u Sz : A-set

! E -v-defn 1--=a::.::..:A.:_; .::S.:_J :c:.A.:_·.::Se::t.:_; .::S'o:'c:.A:...·::Se::.t __ Ax
a E Si U Sz <=> a E Si V a E Sz

I ll-fonn I s,: A-set; sz: A-set Ax
St n Sz : A-set

I e _,..,·dcfn l-~a::.: A::.:_; _::S;:t :.:_A:_-s~e:;t;'-.:Os';:'::A:..:-s::ec:.t _ Ax
a E St () Sz ¢::> a E St 1\ a E Sz

St:A-set; sz:A-set I diff-fonn I Ax
s, \ Sz : A-set

le-diff-dcfnl a:A; s,:A-set; s,:A-set Ax
a E St \ Sz <::::} Q E St 1\ Q li!: Sz

14 urreccory or 1 neorems

1 <+ • .J rmne sers

~ s:A-set-set
nn Ax

Us: A-set

a: A; s: A-set-set
1•-Udefnl ae Us <=>3te s-ae t Ax

~ ..:s.:.:: A.:..·.::ose""t-..:cse:;.:t;:....s::.,;<:.....>..{ L} Ax
~ ns:A-set

a: A; s: A-set-set; s ;< {}
le-n-dcfnl ae ns<=>\ite s-ae tAx

s:A-set
lpow-fonnl :Fs: A-set-set Ax

St: A-set; s2: A-set
le-pow·defnl s, E :Fsz <=> s, !:Sz Ax

\ix:A · liP(x)
x:A, P(x) fxf(x):B

I set-comp-fonn l--=3:::s...:: BT;·;;.se"Ct,· _:'li"-y:::,A:..·..:P~(yT).,:=>~f_,(y'..!.):::.e:.:s:.. Ax
· · {f(x) I x:A · P(x)):B-set

b:B
\ix: A· liP(x)

x:A, P(x) fxf(x):B

3s: B-set · \iy: A · P(y) => f(y) E s
I e -set-comp-defn I b e {!(x) 1 x: A · P(x)} <=> 3a: A · P(a) 1\ b - f(a) Ax

s:A-set
\ix e s · liP(x)

x: A, X e s, P(x) fx f(x): B

·~~Nk~~-"-~~3~t~:B~-~se~t;·~\i~y~e~s~·jP~(y4)~=>=+f~(y1)~e~t~~~ I set-comp-defn-set I Ax
· · {!(x) I xEs · P(x))- {!(x) I x:A ·xes 1\P(x))

Definitions

a ~ s del ~(a e s)

del
\ixe s·P(x) = ~3xe s-~P(x)

3!x e s· P(x) del 3x e s· P(x)/\ 'lye s P(y) => y =x

{a) del add(a, {})

289

:lYO

def
{x:AIP(x)} = {xI x:A · P(x))

{f(x) I x E s} def {f(x) I x E s · true}

{f(x) I x: A) def {f(x) I x: A · true}

{. .} def { . 1111 . < < .} l, ... ,J - n. l _ n -J

Derived Rules

s:A-set I {}-is-subset I {} ~ s

a: A
l{a}-compl {a)- {x:A lx-a)

a· A
I {a}-forml {a);A-set

I I s:A-set; Vx:A ·xEs=> P(x)
V _, V-sct 'dx E s · P(x)

~ a: A; s:A-set; a E s; T:fx E s · P(x)
t.e:..=J P(a)

~ s: A-set; y: A, y E s ~ P(y)
~ Vxe s·P(x)

I v -set _, v l-'s;::: A,--s,et'-; _V:-x..,.e_sc..·-;;Pci'(xc;)
Vx:A·xE s=>P(x)

. . s: A-set; y: A, y E s ~ i5P(y)
lo-V -mhent-serl i5(Vx E s. P(x))

s: A-set; x: A, x E s f; i5P(x)
lo-3-inherit-sctl i5(3x E s. P(x))

ro::l a: A; s: A-set
~ i5(a E s)

lo I s1: A-set; s2: A-set
-ro-empty 0 ({ })

USJ(]S2-

14 V1reccory or 1 neorems

I I
s:A-set

o-cmpty o(s- {})

s: A-set
CflTl a: A~ a iC s
L..U::J s- {}

.s:.;':..:' A.:.·.::se::t::..; .::s'o.:':..:A:.c-s:.:e2t;_,s:.;,_,.;;;=s'.:.; .:.s=..' _,<;;;:.:sc....' I =-set-1-<;: 1-

1 =-set-1-sq< 1

St = Sz

St :A-set; sz: A-set
a: A, a e s1 ~a e sz
b: A, bE S2 t, bE Sl

St = Sz

!3 _. 3-set l s: A-set; 3x: A · x E s 1\ P(x)
3x E S· P(x)

!3-set _. 3 l s: A-set; 3x e s · P(x)
3x:A- x e s AP(x)

s:A-set; 3!xe s·P(x)
y:A, y E s, P(y), Vx E s · P(x) =>X= y ~ e

~~----------------~~----~~e

~ a: A; s:A-set; a E s; P(a); Vy e s. P(y) => y =a
~ · 3!xes·P(x)

le-{aJ-EI a: A; b~A;! E {a}

a·A· b-a
le-{a}-1·=1 b~ {aJ

a ·::':..:Aoc; .::s.c:' :.:.A:..-s::e:ot;'-s'-''c::' A.:.·.::s::.et"-; .:.a:..E:....::.sc.:1 nc..:.::s=-' I e -n-E-left I-

291

2Y2

a: A; b:A; s:A-set; a e s; be: s
le-•-contrl a¢b

~ a:A; s:A-set
~ aesvaes

~ _a:::::_:A,_,;_:_s~r_:_: A:_:__:-s:;:e,_,t;_:_s~z_:_: A:.:·.::s:::et:::;_::a:_e~s:::r.::U::3Sz:_
QEStVQESz

I e -v-I-left I a: A; St: A-set; Sl: A-set; a e sz
ae s, usz

I I
a: A; s,:A-set; sz:A-set; a eSt

E -v-I-right
. ae StUSz

~ a: A; s:A-set-set; a e Us
~ 3te S·QE t

! e -U-I I a: A; s: A-set-set; 3t e s · a e t
a e Us

I e -add-E I a: A; b: A; s: A-set; a e add(b, s)
a bvaes

I e -add-I I _,a:::_:_A,_,; _,b:_::_,_A,_,; .:.":.:' A:_:_:-s:'ie:'f.t ;ci:a~=.::b:_v_:_.::a:_E:._::_:S_:
ae add(b,s)

a: A; s: A-set I e -add-I-elem I
a E add(a, s)

a: A; s:A-set; a= b I e -add-1-elem-= I ~.::c.~.c;~~:.c:._
a e add(b,s)

I I a: A; b:A; s:A-set; a E s
e -add-1-sct a E add(b, s)

a: A; s:A-set; a e s 1-e; a e s 1--e
I e -cases 1--'-------c---'---e

14 Vlrccwry or 1 neorems

I e -diff-E-leftl ...:a::.::.:..:A"-; .::.s'"-'::.::A-=-sc:et"-; .::-s':;'.:..;A:-'-sc:e::.t; _:a:..:e:c..:cs'c.\:.::s=-.2
a e: s2

I . . I ...:a::::.:..:A"-; ..::S"-t :::A_:-s:::et;:_; .::s:;' :.:..:A:.:-s:.:e;:.t; _:a:..:e:..::cs1'-\'-'s"-2 e -d1ff-E-nght
a e s,

b: B; \fx: A · liP(x)
x: A, P(x) ~ f(x): B

3s:B-set · lfy:A · P(y) => f(y) e s
be {f(x) I x:A · P(x)) I e -set-comp-E l-.....:.=3;;;a:": A<'."ip><c'ca)'"/\;:-b=<ti:(ai) '---

b:B; \fx:A·liP(.x)
x: A, P(x) ~ f(x): B

3s: 8-set · \fy: A · P(y) => f(y) e s
3a: A · P(a) 1\ b = f(a) I e -set-comp-1 1--.:b-':e"'T.{f~(x:'c)-'il"=x::': AT-.-'\pii(x:.';):;-)-

a:A; P(a)
\fx: A· 8P(x)

x:A, P(x) ~f(x):B

r::-:::-:c::::::-;-=-t 3s:B-set · \fy:A · P(y) => f(y) e s I e -set-comp-1-/(a) I f(a) e {f(x) I x: A . P(x)}

i:N; j:N; k:N
I e-interval-defn l-.:-c:c<,---~c-':-:-;-:=:;,

kE {i, ... ,j) <=>ikj

a: A
\fx:A · 8P(x)

I e -those-defn I 3s: A-set · lfy: A . P(y) => y e s

a e {y: A I P(y)} <=> P(a)

a:A; \fx:A·liP(x)
3s: A-set· lfy: A· P(y) => y e s

I e ·those-E 1---a_e_{~x.,.: A,.::-;-1 P_(~x~))~-
P(a)

I e -those-! I
a: A; P(a); \fx:A · 8P(x)

3s: A-set · \fy: A- P(y) => y e s
a e {x:A I P(x))

293

LY4 1 "+ urrectory or 1 neorems

a: A; s:A-set; a e s
ln-{a}-dcfn-el {a}ns- {a}

a:A; s:A-set; {a)ns {}
§aJ-cmpty·EI a~ s

I I s,:A-set; s,:A-set; s,:A-set; (s1 us2)ns3 = {}
n-v-cmpty-E-left { } -

S2 rlS3-

I . I s,:A-set; sz:A-set; s,:A-set; (s1 us2)ns3 = {}
n-v-empty-E-nght { }

SJ flS3-

I I s,:A-set; s,:A-set; s3:A-set; s1 ns3 = { }; s2 ns3 = {}
n-v-lcft-cmpty-1 { }

(s1 us2)ns3 -

I . I s,:A-set; s,:A-set; s,:A-set; s1 ns2 = {); s1 ns3 = {}
n-v-nght-empty-1 { } s, n (sz us,)-

s,: A-set; sz: A-set
ln-compl StC'\Sz-{x:A!XEStAXESz}

s: A-set I n-dcfn-{}-lcftl {} n s _ {}

I I
s: A-set

n-dcfn-{ }-right s n { } _ { }

I n-add-I-E
1

_a::.::-;-A;o.; _::S_,_t :-=.A=c·..:.se:..ct;'-s"'"'' Ac,·,:;s..:.et"-; -'a-:e---"s'c
add(a, St) n Sz - add(a, s, n sz)

I n-add-1-< I a: A; s,: A-set; sz: A-set; a « Sz
· add(a, s,) n Sz = St n Sz

~ s:A-set
f -cs:-n:::-::s---s:-

r= d 1 1
I a: A; s1: A-set; sz: A-set; a e s2, -ad -c- -c em

- ~(add(a,s!).;;;s2)

I I a: A; s,:A-set; s,:A-set; ~(s 1 c s2)
~ -add-,;;-1-set (dd()) ..., a a,s, ~ Sz

~ a:A; b:B; a"'b
~ a~ {b)

l•-n-I-leftl a: A; s,:A-set; s2 :A-set; a~ s2

ae s1 nsz

I 1-
a_:_A.:.; _s~1 :_A_-:_se'-t;:...s:..:2cc: A_-_s.:.et.:..; .:.a:_~:_.:.s,_1 • -n-1-right . . ae s,nsz

~ -'a":"A2; ...:csi.::: A::.:::.:-s:.:e-"t;-'s"2": Ac:..:-s:.:e2t;...:a:....=~...:s:.:'...:u:..:cs2,_ ~- a e s1 A a e sz

.a __ :_A; s1:A-set; s2:A-set; a e s1 us2 I• -v-E-Icft I · ··
a e sz

j J a: A; St: A-set; Sz: A-set; a e s1 u s2 • -v-E-right · . ae s1

I e -u-I
1

a:_A.:.;_s_,_,_: A_-.:.s.:.et.:..;.:.s-",.'-. A.:.·.:.s.:.et.:..; .:.a:..e:...:.s.:..,;cc::.a.::~:..:::s2'
a eSt usz

I I a: A; b:A; s:A-set; a~ add(b,s)
e-add-E a.P.bl\a e s

I• -add-E-left I _,a:.::.::Ac.; .::b.::: A:.:,,_· ::.:S::.:A:.-s::e:.:t;'-a=-=~_:a:.:d:.:d"'(b:.:,2s),_
a~s

I I
a:A; b:A; s:A-set; a~ add(b,s)

• -add-E-right a "' b

a: A; b:A; s:A-set; a=~:b; a e s I• -actct-r 1 ::.:::.:=-=::...::=~',-=-~:..::..:::...:..
a~ add(b,s)

...:a:.:::.:A:c;:.:s:.:':.:' A:.:·.::s.:et"-; ,::s:=-2:.:: A:.:·.::s::et"-; :.:a:.~=-:s_,_1 _:\2s2,_ I• -ctirr-EI- aestvaesz

L'J)

I I a: A; s1:A-set; s2:A-set; a e s2
• -diff-1-lcft a "' s, \ s,

I I
a: A; s1:A-set; Sz:A-set; a e: s1

• -diff-1-right a E St \ Sz

I I a: A; s1:A-set; s2:A-set; s1 cs2; a e: Sz
• -subset-!

a: A; \fx:A · liP(x)
3s:A-set · \fy:A · P(y) => y E s

I• -those-E 1---'-a-'-e_{c..x~:, A~l P_('-'x'-')) __ _
~P(a)

I• -those-! I
a: A; ~P(a); \fx:A ·liP(x)

3s:A-set·\fy:A·P(y) =>YEs
a e {x:A I P(x))

a: A; b: A; s: A-set
I c-add-add-I I add(a, add(b, s)) s;; add(b, add(a, s))

l~-E~ a:A; S1:A-set; s2:A-set; ae s1; s1 ~s2
a e Sz

s1:A-set; s2:A-set
a: A, a e s1 fa a e sz

I <::-II ---,_c __
Si ~S2

r:=-;:;;;1 .s.c.:.: A::..·.:c:se..:..t
~-

s~s

I v-n-dist-lcft! S1: A-set; Sz: A-set; S3: A-set
'-"-'-'-"== s, u (s, 1'1 s,)- (s, u sz) n (s, us,)

I I a: A; s,:A-set; sz:A-set
v-add-left-1

add(a,s1) us2 add(a,s1 us2)

I I a: A; s,: A-set; s,: A-set
u-add-ri ht-1

r;-:-:;::::1 s,: A-set; s,: A-set; s3 : A-set
~ (s, us,) us, - s, u (sz us,)

lu-comml
s1: A~set; s2: A-set

s1:A-set; s2:A-set
lv-compl s, us,- {x:A I x ESt v XE sz)

s:A-set I v-defn-{ }-left I '{,c;}c:_u::__s:.:-::__s_

I s:A-set
v-defn-{ }-left-rev I s _ { } Us

I s: A-sel
v-defn-{ }-right I { } su -s

s: A-set I v-defn-{}-right-rev I {) s-su

\fx:A -15P(x)
\fw: A· /5Q(w)

3s:A-set-\fy:A-P(y) =>yes
3t:A-set · \fz:A · Q(z) => z E t

I v-defn-those I '{-z:'A'I"P"(z~) v.:c;;Q:;:(z"i-,) }__:-c:{;:..x'-c: A~I'.¥P;;.(x.;) }i-:u:c.;.{y_:_: A701 Q"'(y"),-)

's'-'''-'' A,_-.::_s~et,__; .::_Sz"-:.:_:A_.-s~eo,t;_.s'-''-"c"-"-'s''--
1 v-1-left-cl

S1 USz-Sz

s: A-set I v-self I __:::.:..:....:..:.:_
SUS-S

s1: A-set-set; s2: A-set-set
I U-v-distl U(s, u sz) -(Us,) u CUsz)

s: A-set-set
IU-compl Us- {x:A 13xs E s-x E xs)

I U-defn-{} I U{} {)

s: A-set
IU-defn-{a} I { } . . Us -s

I I ~S.c:t :_:,A:,-s::.:e:ct;c:s"72'-': Ac:.-..:s.:.et'-;-s'-;e-'-t _
. U-defn-add. U add(s,, Sz) = s, u U Sz

2Y7

I I
a:A; s1:A-set; s2 :A-set; add(a,s1)csz

add-c-E-left
. St ~S2

I I
a:A; s1:A-set; s2:A-set; add(a,s,)~sz

add-c;-E-right
· · a E S2

~ a: A; St:A-set; s2:A-set; a E S2; St CS2
~ - add(a,s,) ~ Sz

a: A; s: A-set
ladd-->ul add(a,s)={a)us

a: A; s: A-set
ladd-®sl--~~~~~~~~c

add(a,add(a,s)) = add(a,s)

a: A; b: A; s: A-set I add-add-form 1--;;;~:;:;~~.;:.:-:-
add(a, add(b, s)): A-set

a:A; b:A; s:A-set
I add-comm 1--=--~~~~~;;."'~;;--;-:

add(a, add(b, s)) - add(b, add(a, s))

a: A; s: A-set
lactd-compl add(a,s) = {x:A I x =a v xEs}

I I a:A; s,:A-set; sz;A-set
add-diff-,_A

(add(a, s,) \ Sz) ~ add(a, (s, \ s,)

I . I a: A; s:A-set; a E s

s= {} I card=O-I 1-c--'a'-rd~s-'-=LO~

s:A-set; cards¢0
I card~-E I s * {}

1 <+ u1rer..:wry U1 1neurem:,·

I I
St:A-set; s2:A-set

card-defn-u
card (s, u sz)- (cards,+ cardsz)- card (St n sz)

s: A-set I card-fonn I-"=~~
· ·cards:N

I ·rr-{} I s1:A-set; s2:A-set

I I
St:A-set; s2:A-set; s3:A-set

diff-n-deM
s, \ (sz ns,)- (s, \ sz) u (s1 \ s3)

51 :A-set; s2:A-set; s3:A-set
(St \ s,) r> s, (St r> s,) \ s,

SJ:A-set; sz:A-set; S3:A-set
I diff-u-deM I St \ (s, us,) (s1 \ s2) r> (s, \ s,)

a: A; s1: A-set; Sz: A-set; a e sz
r.l ct'"'irr'"'-a::;dd;;--~1-e::ll add(a, s

1
) \ s

2
s, \ s,

a: A; s1:A-set; s2:A-set; a e Sz
I diff-add-1·•1 add(a, s1) \ s2 add(a, St \ s,)

s 1:A-set; s2:A-set
jctiff-compj s,\s, {x:A lxe s1 AX<i! s,)

s:A-set
[diff-defn-{)-left[{ } \ s _ {}

s:A-set
fctiff-defn-{}-rightf s\ {} s

s:A-set
1 ctirr-selr I s, s o

s:A-set; x:A ~f(x):B
jfinite-set-imagef 3 t:B-set. \fx e s -f(x) e t

a: A; s:A-set; a e s
Jinhabited=>non-empty [s '# { }

n:N I initial-interval-1-fonm I { 1, ... , n}: N
1
-set

n:N I initial-interval-fonml {0, ... ,
11

}: N-set

i:N; j:N
I interval-diff-defn I { i + 1, ... ,j) {0, ... ,j) \ {0, ... , i)

i:N; j:N; j < i
I interval-empty [{' '} {}
. . l, ... ,j

i:I\J; j:I\J
) intcrval~finite) :3s: N-set. \:fy: N. is y Sj :::} y E S

i:I\J; j:I\J
I intcrval~form I { '} N t . i, ... ,J : -se

s: A·set; s" {}
Jnon-cmpty~set~inhabitcdj 3a:A. a E s

s:A-set
[.!iow-compJ Fs- {t:A·setlt~s)

s:A-set I sct·[·extcnd-left I s: (B I A)·set

s:A-set
1 set·l·extend-rightl s: (A 1 B)-set

s:A-set
x:A, XEs ~f(x):B

1 sct-comp-form-set-ident I 3t: B·set · Vy e s · f(y) e t
{f(x) 1 x e s }: B·set

s: A-set
x:A ~f(x):B

1 set-comp·form-set·ident·globall-{f=(x')'l ccx~e:-:'s)>::nsC:.s;;;e:;-t

Vx: A· P(x) <=> Q(x)
x:A, P(x) ~f(x):B

3s: B-set · Vy: A- P(y) => f(y) E s I set-comp-rewritc I ~{f7(x') '!;1 "-'x~: A~-:,P;(x~);) -:!-i{f'f,(Sx)i=TI ~x:'jAr=-'. 'nQill(xrf) }l

I set-image-form I
s:A-set; x:A ~f(x):B

{f(x)lxe s}:B·sel

a: A
lthose·=·forml {x:A lx-a):A·set

s: A-set
lthose·e·forml {e:A 1 e e s}:A-set

) those-v-form I

Vx: A· liP(x)
Vw:A ·liQ(w)

3s: A-set · Vy: A · P(y) => Y e s
3t:A-set. Vz:A. Q(z) => z e t

{x:A 1 P(x) v Q(x)}:A·set

\ix:A · .P(x) I those-> {D {y:A I P(y)}- {}

\ix: A· !iP(x)
3s: A-set · \iy: A · P(y) => y E s

I those-form I {x: A 1 P(x)}: A-set

s1: A-set; sz: A-set
lthose-form·E·<l {x:AIXE StAX~ s

2
):A-set

\iy:A · P(y) <o> Q(y)
r.---::==:::::1 3s: A-set· \iy: A· P(y) => y e s
I those-form-rewrite I {x: A 1 Q(x)}: A-set

s:A-set
lthose·Il s-{e:Aiees)

! those-rewrite)

\ix:A · P(x) <o> Q(x)
3s: A-set · \iy: A · P(y) => y E s

{x:A I P(x))- {z:A I Q(z))

\ix: A. iiP(x)
\iw:A · iiQ(w)

3s:A-set. \iy:A · P(y) => y E s
3t:A-set. \iz:A · Q(z) => z E t

x: A, P(x) fx Q(x)
jthose-weakenj {a: A 1 P(a));;; {b:A I Q(b)}

s1:A-set; sz:A-set
I (s, (] sz)!;; 81 j St n Sz ~ St

s1:A-set; sz:A-set
j(s, nsz)c:szj St ns2 ~s2

s1:A-set; sz:A-set
js,n(s,\sz) SJ\sz) Stn(s,\sz) s,\sz

. s1: A-set; s2: A-set
lstn(sz\s,)={)l St n(sz\St) {)

s1: A-set; sz: A-set
is,<;;(s,usz)l St;;;(s,usz)

s1:A-set; sz:A-set
lsz <;;(s, usz)l Sz;;; (St USz)

JU!

St \(st \sz) St rlSz

14.6 Finite maps

Axioms

a· A' b·B· m·A ~ B
laddm-forml dd. '(' 'b ·)·A m B Ax a mal-4 ,m. ----t

l"+ Ll1lCt.:LUIJ UJ I11CUICIW>

I I
a:A; bt:B; bz:B; m:A ~B

addm-overwrite Ax
addm(a >--> b1,addm(a >--> b,,m)) -· addm(a >--> b1,m)

a: A; b:B; c:A; d:B; m:A ~ B; a'¢c I addm-comm] Ax
addm(a ,__, b,addm(c >--> d,m))- addm(c >--> d,addm(a >--> b,m))

mo: A -"'-. B; P({ >-->})

a: A, b:B, m:A-"'-. B, P(m), a e domm !;;,,,. P(addm(a >--> b,m))
Ax

P(mo)

I dom-defn-{ ~ }j dom { ,__,} = {} Ax

a: A; b:B; m:A ~ B
I dom-defn-addm I Ax

domaddm(a >--> b, m)- add(a, domm)

a: A; b:B; m:A ~ B; ali!! domm I mg-defn-addm-<1 Ax
. . rngaddm(a >--> b,m) =add(b,rngm)

a: A; b:B; m:A ~ B; s:A-set; a e s I ~-defn-addm-E I Ax
· · s~addm(a >--> b,m) =s~m

a: A; b:B; m:A ~ B; s:A-set; a e s I ~-defn-addm-<1 s ~ addm(a >--> b, m) - addm(a >--> b, s ~ m) Ax

s: A-set
14-defn-{~ll 54 {>-+}-{>--+} Ax

a:A; b:B; m:A ~B; s:A-set; ae s
14-defn-addm-e I s4addm(a >--+ b,m) =addm(a >--+ b,s4m) Ax

a: A; b:B; m:A ~B; s:A-set; a e: s
14-defn-addm-•1 s 4 addm(a >--+ b, m) - s 4 m Ax

r---:-:---:--71 s: B-set
~~-defn-{~11 {>-+}~s- {>--+} Ax

a:A; b:B; m:A ~B; s:B-set; be s
I ~-defn-addm-e I addm(a >--+ b, m) ~ s - {a H (m ~ s) Ax

a: A; b:B; m:A ~ B; s:B-set; be s
I ~-defn-addm-•1 addm(a >--+ b, m) ~ s- addm(a >--+ b,m ~ s) Ax

s:B-set
~~-defn-{~}1 {>-+} ~s _ {>-+} Ax

a: A; b:B; m:A ~ B; s:B-set; be s
I ~-defn-addm-e I addm(a >-+ b, m) ~ s - addm(a >-+ b, m ~ s) Ax

a:A; b:B; m:A ~B; s:B-set; be: s
1~-defn-addm-•1 addm(a >-+ b,m) ~s- {a H (m ~ s) Ax

a: A; b:B; m:A ~ B I at-defn-addm--1 addm(a ._. b, m)(a) _ b Ax

r:--;-;-----:-,--Cl a: A; b:B; c:A; m:A ~ B; c-:~-a; c e domm I at-defn-addm-~1 addm(a H b,m)(c)- m(c) Ax

m1:A ~ B; mz:A ~ B
r--~--, domm1 = domm2; 'Ia E domm1 • m1(a) = m2(a) I =-map-defn I Ax
. mt-mz

m:A~B
lt-defn-{~)-rightl mt{>-+}-m Ax

a:A; b:B; mt:A ~B; m2:A ~B
lt-defn-addml m1 taddm(a>-+b,m,)-addm(aHb,mt tm2) Ax

303

! \ mt:A~B;mz:A~B
compatible-defn compatible(mJ,mz) ¢:::!> Va e domm1 n dommz · m,(a)- mz(a) Ax

:JU4 1.<f VJfCt.;(UJJ Ul l11ClJJC1ll,:,

m:A~B lli:_J:Bilij Ax
is-1-l(m) <=> Vx,yE domm·m(x) m(y) =*X-Y

m:A~B
lo-dcfn-{~ll mo {,_.) _ {>->} Ax

a: A; b:B; m1:B ~ C; mz:A ~B
rngmz c dommt; a e dommz; be domm1 I o-dcfn-addm 1---"'"Ti"-7=-:.'-7'=,.::-.:=-;:.;.:.c,=-=-=-;:~=-;- Ax m, o addm(a >-> b,m2)- addm(a,... m1(b),m1 omz)

lmerge-defn-{~ll merge {}_{>->TAx

m:A ~B; s:(A ~B)-set
Vm1,m2 E add(m,s) · compatible(m1,m2) I merge-defn-add I ---'=m"'e"'rg-=e-'a"'di.d7'(m"",ccs):--=m.:..;t'-'<"'m-'-er'"'g""e C::s)="'- Ax

m:A~B
I inv-defn I Ax

m"1
- {m(a),... a I a E domm}

Vx:A- oP(x)
x:A, P(x) 1-;f(x):B

x: A, P(x) 1-; g(x): C

3s: B-set · Vy: A · P(y) =* f(y) E s
,.-,-:c-c-c=,-, Va,,az:A · P(a!l AP(az) rJ(a,) ~ f(az) =* g(a,) ~ g(az)
I map-comp-fonn I {f(x) >-> g(x) 1 x: A· P(x)): 8 ...'??.., C Ax

Vx:A- oP(x)
x:A, P(x) l-;f(x):8

x: A, P(x) 1-; g(x): C

3s: 8-set · Vy: A · P(y) =* f(y) E s

- V'-a"-'17-', a~27: A~· Pc-'(c:.a'-',)-'-;A'-'P:-i("'azec) ,"";/;;;(a;.c')c,~~f'-(T;a;;z),=*-.-'8'--'(a"-''";) 07~~g'C'(a"'z'-) Ax I dom-defn-map-compj dom {f(x),... g(x) I x: A. P(x)}- {f(x) I x: A. P(x)}

b:8
Vx:A · oP(x)

x: A, P(x) I-; f(x): 8

x: A, P(x) 1-; g(x): C

3s: 8-set · Vy: A · P(y) =* f(y) E s
Va,, az: A · P(a,)" P(az) A/(a,) ~ f(az) =* g(a,) ~ g(az)

~~~~~~-~/IX~~b~ETGdo~mr{f~<x~J .... fct:g~<x~lilx~:A~·P~<~xl~l ____ ___ 1_~1-defn-map-compl {f(x),... g(x) I x:A. P(x))(b) Ax 

tc:C. Vx:A ·P(x) Ab ~J(x) "'* c ~ g(x) 



.1. '"t.U I.'.I.JlHC lUiljJ~ 305 

s: A-set 
'dx E s · oP(x) 

x:A, x E s, P(x) ~f(x):B 

x:A, X E s, P(x) ~ g(x): C 

3t:B-set ·'dyE S • P(y) => f(y) E I 

.-----~--,_'d~a~~~,a22~E~~s~·Pj(~at~)~A~P~(a~2~)~A~/~(a~t)~=~f~(~a2~)_=>~g~~~~~)_=2g~(a~2)~ I map-comp-defn-set I {f(x) ,__, g(x) I X E s. P(x)} Ax 

{f(x) ,__, g(x) I x:A ·XEs AP(x)) 

Definitions 

m del m . I I( ) A <---->B = <m:A ~sIts-- m :b 

del 
{f(x) ,__, g(x) I xEs} = {f(x) ,__, g(x) I xEs · true} 

{f(x) e-. g(x) 1 x: A) del {f(x) e-. g(x) I x: A · true} 

Derived Rules 

m:A~B 
I{~ }-dom-disjointl dom {""'} 0 domm _ {} 

w=11 m:A ~B 
L::.:.':2J O(m = { H}) 

I 1-'a,ct,.:: Ac.:;_ac;2c.:: A-";'-b-:;-::;-B-'-;; _m_: A,___,~,m----c>B:-3-e -dom-addm-1 -
O(aJ E domaddm(a2 H b, m)) 

a:A; m:A ~8 I o-e -dom-Il-'-'<ic--:-c--,-li(a E domm) 



jUO 

b:B; m:A~B 
lo-e-mg-11 8(bErngm) 

I . I m1:A .!'C.. B; m2:A .!'C.. B 
8-compauble {j( "bl ( )) compau e m1. mz 

m:A~B 
lo-is-1-11 8(is-l-l(m)) 

14 U1reccory or 1 neorems 

a:A; b:A; m:A ~B 
IJ-is-1 · 1-prcd 1-o"'("(a-E-----cd:-om=m'"'r--'bi-E '-d;-"o-'-m-m-c)-A-m'("ac)'""--m"(b") )'"" 

r::tr:::::1 m: A ~ B; s: A-set 
~ s4m:A~B 

m:A~B 
I ~-dcfn-{} I {} ~ m- m 

a:A; m:A ~B; alit domm 
~~-dcfn-{a}·•l {aHm m 

a: A; b:B; m:A ~ B 
~~-defn-addm-{aJ-=1 {a) ~addm(a >--+ b,m) {a) ~m 

1 {} I a1:A; az:A; b:B; m:A ~B; a1 -:F-az 
Hefn-addm- a ·• {a!) ~ addm(a2 >--+ b, m) - addm(a, >--+ b, {a!} ~ m) 

m:A ~ B; s:A-set 
1~-forml s~m:A ~B 

1 E -dom-addm-E 1-'a::ci.:.:' AC:;'-=a'o:.':.:A,_; .::b.:.:: B:c;,_m=: A"--::-->_m:-=Bc:;...:a:oi,cEC.::::do:_:m:::a::d::d::m::C::ca2,_>--+c..:__b:c,:::m.:.:)...: 
a1 - az v Gt e domm 

a1:A; az:A; b:B; m:A ~B 

r::-:;:c ,a.:.oi_:E=-:.do.:.:m=ad::.:d::.:m2 (c::a2,__>--+i-b ''-m"')"-; ...:a:=.' ..:"_:d.:.:o:cm...:m:.:_ 
1 E-<kcm-addm-E-•1- al-az va1 e dommAaz:Pa, 

a:A; b:B; m:A ~B 
IE -dom-addm-1-clem l-..,-;---;,,-,--,--,

a E domaddm(a >--+ b, m) 



14.0 Nmte maps 

a: A; P(a) 
\fx:A · oP(x) 

x:A, P(x) i;f(x):B 

x:A, P(x) I; g(x): C 

I e -dom-map-comp-l{(a) I 

3s:B-set · \fy:A · P(y) => f(y) E s 
\fa1, a2 : A· P(a1) "P(az) Aj(ai) f(az) => g(a1) 

f(a) E dom {f(x) >--> g(x) I x: A · P(x)} 

.-------cc-:---,---, a: A; b: B; m: A _!'_, B 
I e -mg-addm-1-elem I b E rng m t {a ,__, b} 

a: A~ b:B~ m:A ~ B 
je-mg-t-{a~ b}-1-elcml b dd ( b ) e rnga ma~---+ ,m 

I 1
-'a":'-'A"-; _:b_c1 :c::B:.c;_cb:=zi: 8::2;'=-m':":': A:'-:-:--->,-:mec=iB"-; .:::b:_z iE'=-r-'n'Cg m=; _:a:_:<!:__.-:d::om=m:_ e -mg-addm-1-map ----

bz e rng addm(a >--> b1, m) 

b:B; m:A ~ B; be rngm 
le-mg-EI 3ae domm·m(a)-b 

b:B; m:A _!'_,B; 3ae domm·b=m(a) 
je-rng-l-3 1 bE rngm 

,--c-.,-;,-, a:A; m:A ~B; ae domm 
I e -rng-1-aij m(a) E rng m 

a: A; m:A ~ B; a e domm 
j e-rng-1-ai-bimapl m(a) E rngm 

a: A 
1~-e-dom-{~}-Ij •(aE dom{>->}) 

je-dom-~-1-(aJI a~ ~o,;({aHm) 

I I a1:A; az:A; b:B; m:A _!'_, B; a1 e domaddm(a2 >--> b,m) < -dom-addm-E a1 ¢a2 A a, e domm 

g(az) 

I 1-
a_,I-": A"';'--a--'z"-: -'A'-; -'-b_: B--';_m_: A_--->_m-:-:Bic; _,.a.,__I __ e_d_o_m_a_d_d_m-'(a_,z'->->-b--',_m-'---) < -dom-addm-E-left a1 e domm 

I I a1:A; az:A; b:B; m:A _!'_,B; a1 e domaddm(a2 >->b,m) 
< -dom-addm-E-righi . · a, ;ea2 

307 



308 14 Directory of Theorems 

b:B; m:A ~ B; be rngm 
~Jlii'll b e dom (m ) 

a: A; bt:B; b2:B; m:A ~ B 

J• -mg-addm-E-lcft J 
b, 'i rng addm(a >--> b,, m); a 'i domm 

I I a: A; bt: B; b,: B; m: A ---"C, B; bt 'i rng addm(a >--> b2, m) 
• -mg-addm-E-right b, ¢ bt 

I . I .a::.::.:.:A::.; :.:.m:c.:.:.:A:__m_:;.B'-; 3a,::'i:....::.do::.:m::..m:.:.::.. 
. lif-mg-mv-I.- a e rng (m ) 

J t-defn-{ ~ }-leftj 
m:A~B 

{>->}tm-m 

mt:A~B;mz:A~B 

mt tm2:A ~B 

~ m: A ---"C, B 
t m m-m 

I { } I .b.:_::_: B:..;_; :.:em.:::.: A'--__,--.-m __:B:_:_; ..:C.m'-'-~--"{ b'-'}-'-¢_,_{ >-->--'-} 
~- a -not-cmpty-E ~ 

bE rngm 

I {} lb:B;m:A---"C,B;b<!rngm 
~-dcfn- a -• mHb) _ {>-->} 

m:A ~B; s:B-set 
1~-fonnj m~s:A ---"C,B 

m:A ~ B; s:B-set 
m~s:A ~B 



mt:A ~B; mz:A ~B 
I <;;-dom-t-rl domm, (;;dam (mt t mz) 

m:A~B I <>-dcfn-{ ~}-left I { >->} "'m _ m 

J ! a:A; b:B; m1:A ~B; mz:A ~B; ae domm2 
addm-t-dcfn-e addm(a >-> b,m,) t mz- mt t m, 

lad j a:A; b:B; m1:A ~B; m2:A ~B; a~ domm2 
addm-t-defn-< addm(a >-> b,m1) t mz addm(a >-> b,m, t mz) 

a:A; b:B; m1:A ~B; mz:A ~B 
compatible(addm(a >-> b,m,),mz) I addm-t -defn-compatible 1-a:cd;:d;c-m:-;-(a::c->->-7:b,-:m::-,')"t"'m-:-,-_-a"'cd:;cd"m""(c'a->->-"--i:b:-, (f'm':.t"t"mc:z')') 

a: A; b:B; m:A .."'.., B; a E domm; m(a) = b 
I addm-t-identJ addm(a >-> b,m) _ m 

a:A; b:B; m:A ~B 
laddm-. tJ m t {a>-> b)- addm(a >-> b,m) 

a:A; b:B; m:A ~B I addm-defn+{a }-= 1-a---d"dm=(a:->->-"-obc', m-';-') --"-=a-;dd7 m-,("'a->->--;:b-, {"aT)-;~ccm") 

a:A; m:A ~B; ae domm 
I addm-extract J dd ( ( ) { } ~ ) m-a maJ--~.ma, a m 

I . I a: A; b:B; m:A ,.".'..., B; a fl' domm; b !I' rngm 
addm-fonn-btmap dd ( b )·A m B a ma~--~- ,m. +-----!-

r--;-;:--:--c---c-c--c a:A; b:B; m:A -"'.,s 
lat-defn-t-{a ~b)-= I (m t {a>-> b })(a)_ b 

309 



.HV l"t U11CL..lU1y Vl llJC:U1CJ1l;"> 

I I a: A; b:B; m,:A ~ B; mz:A ~ B 
at-dcfn-t-addm- (mt t addm(a .__, b,mz))(a)- b 

I j a:A;m1:A~B;mz:A~B;aedomm2 
at-dcfn-t-right (m, t mz)(a) _ mz(a) 

I at-dcfn-map-compj(a) I 

a:A; P(a) 
\fx:A ·I!P(x) 

x:A, P(x) f-;f(x):B 

x: A, P(x) f; g(x): C 

3s: B-set · \fy: A · P(y) ==> f(y) E s 
\fa,, a2:A · P(at) "P(az) A[(at) = f(az) ==> g(at) = g(az) 

{f(x) >--> g(x) I x:A · P(x))(f(a)) g(a) 

a: A; s:A-set; a e s 
x:A, XES f-;f(x):B 

I at-dcfn-map-comp-lcft-set 1-{r:x:-.__,----c/"'(x")"lc:x:-:E::-'-:cs }"("'a') --'IT( a") 

a:A; m:A ~B; ae domm 
lat-Wrml~~~~--~~~~~ 

m(a):B 

a:A; m:A ~B; ae domm I at-fonn-bimap I m(a):B 

c-c--= m:A ~ B I bimap-E I is-1-1 (m) 

mo:A .."'-. B; P( {>--> }) 

a: A, b:B, m:A .."'-. B, I P(addm(a >--> b,m)) 

I I 
P(m), a~ domm, b ~ rngm G:'b.m 

bimap-indn ----='"-':...c:..c:..:.....;c.c...cc.cc-.P,c(m"-'-,o):-=-=------



r,;=:-c----:,---:-" m: A <-"'-+ B 
] bimap-supertype I m: A ~ B 

. . a:A; m:A ~B; ae domm I btmap-umquc-rng-elem I 31 b: B. b _ m(a) 

I compatible-t-I-Ieft I 
mt:A ~B; mz:A ~B; m3:A ~B 
compatible(m,, m3 ); compatible(m2, m3) 

] compatible-t -!-right\ 

m1:A ~B; mz:A ~B; m3:A ~B 
compatible(m" mz); compatible(m,, m,) 

compatible(m,, mz t m3) 

a: A; b:B; m1:A ~ B; m2:A ~ B 

I compatible-addm-E-left-•1 
a~ domm,; compatible(addm(a H b,m,),m2 ) 

compatible(m 1, m2) 

a:A; b:B; mt:A ~B; mz:A ~B 

I compatible-addm-E-right I a E domm,; compatible(addm(a H b,m1),m2) 

I compatiblc-comm I mt:A ~ B; mz:A ~ B; compatible(m,,mz) 
compatible(m2, m1) 

\ compatible-defn-{~-+ }-left\ 
m:A~B 

compatible({>-> ),m) 

m:A~B 
1 compatible-defn-{~ )-right! 'bl ( { } ) compall e m, 1---). 

mt:A ~ B; mz:A ~ B; compatible(mt,mz) I compatible-E I \;/a E domm, n domm, · mt (a) m,(a) 

I compatible-! I 
mt:A ~B; m2 :A ~B 

\;fa E domm1 n domm2 • m1(a) = m2(a) 
compatible(m1, m2 ) 

m:A ~ B; s:A-set 
I dom-~-defn I dom (s ~ m)- domm \ s 

m:A .."C.,B; domm;C{j 

m;O{>->) 

311 



312 

I dom-addm-n-E-left I 
a:A; b:B; m1:A ~B; mz:A ~B 
domaddm(a >-> b,m1)ndomm1 = {} 

domm, n domm1 - {} 

14 urreccory or 1neorems 

a: A~ b:B; mt:A ~ B; mz:A ~ B 
~--~--~~-=do=m=a=d=d~m~(=a~~~·~b~,m~1 )=n==do=m=m~1_=~{~)~ I dom-addm-n-E-<ightl . . a e dommz 

m1:A ~B; mz:A ~B 
ldom-dcfn-tl dom(m, t m2) domm, udomm2 

I I a:A; b:B; m:A _!"_,B; aE domm 
dom-defn-addm-e domaddm(a ........ b,m) domm 

m:A~B 
I dom-defn-inv I dom(m-1) _ rng m 

s:A-set 
x:A, XE sr,f(x):B 

I dom-dcfn-map-comp-left-sctl-dc-o-m-{'x->->--/"'(x-c)cel'-'x-E--S') ---s 

\fx:A · oP(x) 
x: A, P(x) r, /(x): B 

x: A, P(x) r, g(x): C 

3s:B-set · \fy:A · P(y) => f(y) E s 

! dom-finile=>rng-finite I 
\fa,,a2: A· P(a,) "P(a1) ;..f(at) = f(a1) => g(at) = g(az) 

3t: C-set · \fa: A · P(a) => g(a) E t 

m:A~B 
I dom-fonn I dom m: A -set 

~~c--c-c---. m: A ~ B I dom-fonn-bimap I d A 1 . . omm: -se 

m:A~B 
jinv-forml mi:B~A 

I is-1-1-t·{a ~ b}-E-• -mgl 

a: A; b: B; m: A _!"_, B 
is-1-l(m t {a>-> b)); a e domm 

be rngm 

I is-1-1-addm-E-<-mapl 

a:A; b:B; m:A ~B 
is-1-l(addm(a >-> b,m)); a e domm 

is-1-1 (m) 



l<f.O rmue maps 

a: A; b: B; m: A -"0., B 
is-1-1(addm(a <--> b,m)); a~ domm 

I is-1-1-addm-E-< -rng 1--~----'-;:---:;-~-:c':'-'------
- . b \?: rngm 

m: A -"0., B; is-1-!(m) I is-1-1-E I ...,-,----"='----''-i-c=--:'--T'C"--
='-'-'"-' 'tx,y e domm · m(x)- m(y) => x- y 

m:A~B 
'tx,y e domm · m(x) = m(y) => x = y 

is-1-1(m) 

s:A~B 
I map-1-extend-dom-left I s: (C I A) -"0., B 

s:A~B I map-1-extend-dom-rightl s: (A I C) -"0., B 

s:A~B I map-1-extend-rng-left I s: A -"0., (C I B) 

s:A~B I map-1-extend-rng-right I s: A -"0., (B I C) 

I map-comp-fonn-left I 

'tx:A · oP(x) 
x: A, P(x) l;j(x): B 

3s:A-set· 'ty:A·P(y) =>yes 
{x<-->f(x)lx:A ·P(x)):A -"'.,s 

s: A-set 
x:A, XES "'f(x):B I map-eomp-fonn-left-set 1-{~x-,__,-/""(x-c)-cl-x_e-..:::s )~:'-,A-___,'m;;--B~ 

s:A-set 
x:A "'f(x):B 

x: A, x e s "' g(x): C 

,----:;---cc--, 'ta~oa2 e s -f(a,) = f(a,) => g(a,) = g(a,) 
I map-comp-form-set-ident I m · · {f(x) <--> g(x) I x e s ): B ---> C 

I map-eomp-left-defn-add I 
a: A; s:A-set; f(a):B 
x:A, XEs "'f(x):B 

{x <--> f(x) I x e add(a,s)) 
{x <--> f(x) I x e s} t {a ,__, f(a)} 

s: (A ~ B)-set 

I mO'go-form I V'm,,m2 E s · compatible(mi>m2) 
merges:A ~B 

313 



314 

m:A~B 
lmg-dcfnl rngm- {m(a)lae domm} 

14 V1rectory ot ·1 heorems 

a:A; b:B; m:A ~B 
I mg-dcfn-addll1J rngaddm(a >-> b,m) - add(b, rng ({a H m)) 

a:A; b:B; m:A ~B; ae domm I mg-dcfn-addm-E I { } rng addm(a >-> b, m) - add(b, rng ( a ~ m)) 

,--.,..,.-,-, m: A ~ B 
lmg-dcfn-invl ( •1) d . . rng m - omm 

\ix:A · oP(x) 
x: A, P(x) 1-;/(x): B 

x: A, P(x) I; g(x): C 

3s:B-set · \iy:A · P(y) ==> f(y) E s 

I rng-dcfn-map-comp I 
\ia1,a2: A· P(a1) "P(a2) Aj(ad = f(a,) ==> g(a,) = g(a,) 

rng {f(x) >-> g(x) I x: A · P(x)} {g(x) I x: A · P(x)} 

m:A~B 
I mg-form I rngm: B-set 

m:A~B I mg-fonn-bimap I rng m: B-set 

14.7 Finite sequences 

Axioms 

a:A; s:A* 
Icons-form-seq+! cons(a,s):A+ Ax 

s:A•; P([]) 

~~~-~h~:A~-~~~,A~·~·~P~<,~la~f.,~P~~~o~ns~<h~.~~l~l ~cq-indn I P(s) Ax 

a:A; s:A*
,l.h~d-~de~fu~-~co~ns~l Ax - hdcons(a,s)-a

a:A; s:A* I tl-defn-cons I Ax
tlcons(a,s)- s

14.1 t<zmre sequences 315

s· A*
~~-dcfn-[]-lcftl () -S-S Ax

s:A+ I appl-defn-hd I s(1) _ hd s Ax

s:A+; i:N,; i'# 1; iS lens
l•ppl-dcfn-tll s(i)- (tls)(i I) Ax

Definitions

A• def <t:s:A'Is¢[] ~

[a] def cons(a,[])

lens def if s = [] then 0 else succ(len (II s))

elemss def ifs=[] then{} elseadd(hds,elems(tls))

cones def ifs=[] then[] else(hds)~conc(tls)

indss def {!, ... ,lens}

Derived rules

s:A'
IHHI o(s- [])

I ·scq+-defn I St

1 I a: A; b:A; s:A*; a e elemscons(b,s)
E ·elemS·COflS·E · · a-bvae elemss

r-c--:--= s:A+; n:N1; n e indss
le-inds-EI n:5lens

316

a: A I• -clems-[l-11 a .,; elems []

a: A I• -inds-[l-11 a .,; inds []

s·A• I ~-defn-[]-right I s [] = s

a: A
ll•l-*·lJI [a]#[]

a: A
lla]-forml [a]:A'

s:A+; i:l\h; i <tens I appl-form I s(i): A

I conc-dcfn-[ll cone [] = []

s:A**
~;;;;-] -- concs:A*

a:A; s:A*
I conH·lJI cons(a, s) ;0[]

a:A; s:A* I cons -> ~ 1-.-,.;;.=~~---c
[a] ~ s -cons(a, s)

a:A; s:A* I cons-form I--'=;..::.=~
cons(a,s):A'

s:A+
Jcons-!1----~~~-

cons(hds, tis)= s

eemss {s(i) I i E indss}

14 Urrectory ot "1 heorems

14.1 .Finite sequences

I elems-defn-[J) elems [] _ { }

I elems-defn-... -cons I
elems (cons(a,s1) ~ s2)- add(a, elems (s1 ~ s2))

a:A; s:A*
I elems-defn-cons \---,---o=.:;c--.:.:c~,--,---,-

elems cons(a, s) -add(a, elemss)

a:A; s:A*
I elems-defn-cons-{ a} l-:o==-:c=-,::--:i---,-:;--:-:-==-=

elemscons(a,s)- {a) uelemss

s:A*
I elems-form 1--c=:-:-.-:-c:elemss:A-set

s:A+
I elems-form-seq+ I elems s: A-set

a: A I hd-defn-[a] I hd [a] =a

s:A+
[llfifillj hd s: A

I inds-defn-[J I inds [] {}

. s:A•
\ mds-form \ inds s: N1-set

llen-defn-[]) len [] _ 0

S ·A'· s ·A' I -1 I· , 2· len-defn-
len (s1 s2) - len s1 +len s2

a: A
lien-defn-[a] I len [a] _ 1

a:A; s:A*
[ien:defn-cons)-c----'="-c'=--,-

len cons(a, s) = succ lens

s:A+
lren-defn-scq+ I lens - succ fen tJ s

317

318

s:A*
llcn~form I lens: N

s:A'; S;t[]
jseq+~tl s:A+

s:A+

I scq+-indn I

h:A, t:A' ~.< P(cons(h,t))

P(s)

s:A+
a: A~ P([a])

h:A, t:A•, P(t) ~-' P(cons(h,t))

P(s)

s·A+
I scq+-supcrtypc I s; A.

s:A'; P([])
a: A~ P([a])

I scq---indn I
s1:A', s2 :A', P(st), P(sz) 1:;,,., P(s,- sz)

P(s)

s:A"'
I scq-1-extend-right I s: A I 8 •

s:A"'
I scq-1-extend-lcft I s: B I A •

s:A"'
!scq-sep! s _ [] v 3h:A · 3t:A' · s- cons(h,t)

a· A
lu-dcfn-[aJI tl[al []

14 Directory of Theorems

14, 0 .vumeans

14.8 Booleans

Axioms

a<=>b
l<o>-->=1 a b Ax

Derived rules

y:A ~P(y):~
111-fonnl (\lx:A·P(x)):lll

s:A-set
y:A, yEs~ P(y):UI

111-fonn-se<l (\lx E s. P(x)): Ill

a: ill I a-evatl
a true v a false

a:lll; a=b 1=->">l a<=>b

a:A; b:A
1=-fonnl (a b):~

Y·A r P(y):lll . ' l3-fonn l '<"'f:Jx;::-: A-.t:'i. PDr(xXl))l:': ~01-

s:A-set
y:A, yEs~ P(y):lll

f'l3;-;-!:;::or:;::m:;;-se;;;ltl (3x E s · P(x)): Ill

Y. A 1- P(y): ~ . ' l3!-fonnl (3!x:A·P(x)):lll

319

;lLU

s:A-set

13!-fonn-sctl
y: A, Y E s ~ P(y): 8

(3!XE S·P(x)): 8

I ¢>-fonn I e1: nl; ez: 8
(e1 <=> ez): 8

I ¢>-subs-!crd a <=> b; P(b)
P(a)

J ¢>-subs-righiJ a <=> b; P(a)
P(b)

1=>-formJ e1:UI; e2:8
(ei => e,):8

! e -fonn 1 a: A; s: A-set
(a E s):8

1~-fonnJ a:A; b:A
(a;<b):8

I e-form! a: A; s:A-set
(a e s):8

14 Vlrecrory or l neorems

I fal•e-fonn \ false: Ill

\," ·c::"•::_·"'fo:::_rm::.JI--
111
-- true:

14.9 Specifications

For each construct definitions and rules are given in terms of a typical example.

14.9.1 Simple type definitions

T = Texp
inv e 6 P(e)

Definitions

inv-T(e) de! P(e)

T de! « e: Texp I inv-T(e) >

Derived rules

I T-fonn I e: Texp; inv-T(e)
e:T

e:T I T-s"pertype 1---:e~: T.;;:ex=p:--

e:T I T-E \--,.,.-:-:-;;""" mv-T(e)

Obligation

e:Texp I inv-T-fonn \-c-'-'-"~'-=inv-T(e): Ill

Validation

I T-inhab 1-,---,-,_==o:-inhabited(T)

14.9.2 Composite type definitions

T ::a: A
b:B

inv mk-T(a, b) 6 P(a, b)

321

Definition

inv-T(a, b) det P(a, b)

Axioms

I I
x:A; y:B; inv-T(x,y)

mk-T-form mk-T(x,y): T Ax

t:T
) a-fonn 1--A- Ax t.a:

t:T
!b-fonnl-b·B Ax t. .

I a-dcfnl mk-T(x,y): T Ax
mk-T(x,y).a- x

mk-T(x,y): T
I b-dcfn I mk-T(x,y).b _ y Ax

t:T I mk-T-dcfn I k T(b) Ax m- t.a,t. -t

I inv-T-l I mk-T(x,y): T Ax
inv-T(x,y)

Obligation

x:A; y:B
,l,in~v~-T~-~fu~m~l~~~~. - inv-T(x,y): 01

Validation

I T-inhab I ~.----.--c-=• inhabited(T)

14.9.3 The state

stateS ot
a:A
b:B

inv mk-S(a, b) 6 P(a, b)

init mk-S(a, b) 6 Q(a, b)
end

14 vrrec;wry VI 1 neurerns

The same definitions and rules that appear for composite types apply to the state and the
invariant, together with a definition and obligations for the initialisation condition.

323

Definition

def init-S(s) = Q(s.a,s.b)

(Note that unlike inv-S which is defined on the components of the state, init-S is treated
as a predicate in the whole state typeS.)

Obligations

s:S I init-S-forrn I ""7"-,-::;.;:.,"""
init-S(s): IB

I init-S-sat I
3s: S · init-S(s)

14.9.4 Functions

Explicit function definitions

f:AxB-->C
f(a,b) !f_ E(a,b)

pre P(a,b)

Definition

prej(a,b) def P(a, b)

Obligation

a:A; b:B
1"-p--'-re-:_f-_fo_rm_jl pre-f(a, b): IB

If a parameter off is not mentioned in the precondition expression, the definition takes
fewer parameters.

Axiom

= a:A; b:B; E(a,b):C; pre-f(a,b)
~ f(a,b) =E(a,b) Ax

If a parameter is not mentioned, it is still necessary to keep the typing hypothesis for that
argument.

jl4 1 '+ Vln:::(.;tory u1 IIJt:urc::lm.-

Obligation

r7:::ITl a: A; b: B; pre-f(a, b)
l'.:.:~ E(a, b): C

Working rule (for use once the obligation has been discharged)

~ a: A; b:B; pre-f(a,b) = f(a,b)-E(a,b)

Implicit function definitions

f (a:A,b:B) c:C
pre Pr(a, b)
post Po(a,b,c)

Definitions

pre-f(a,b) def Pr(a,b)

def post-f(a,b,c) = Po(a,b,c)

If a parameter is not mentioned, the definitions take fewer parameters.

Axioms

ru;:;;;;:-J a: A; b:B; pre-f(a,b); 3c:C · post-f(a,b,c)
~?..1 Ax f(a,b): C

~ a:A; b:B; pre-f(a,b); 3c:C.post-f(a,b,c)
o Ax post-f(a, b,f(a, b))

Obligations

a:A; b:B
!"-P_'e::.-·f-_fo_rm_,! pre-f(a, b): 'IJ

I 1-a_: A-';--cb-:c: Bc:-:;"'c"': C:--;;C-'p"'r"'e-f (a, b)
Post-{~form post-f(a, b, c): 'IJ

~ -'a.,: A~; i'-b:-'B-'-; _,p,re7'-f'-'(i'-a,'-'bc'-)
t:.::=.l 3c: C · post-f(a, b, c)

Working rules (for use once the proof obligations have been discharged)

17= a: A; b:B; pre-f(a,b)
~ f(a,b):C

~ a:A; b:B; pre-f(a,b)
n

post-f(a, b,f(a, b))

14.9.5 Value expressions

v:T 6 E

Axiom

E:T
Jv·defnol v = E Ax

Obligation

r=_
~E:T

Working rule (for use once the proof obligation has been discharged)

14.9.6 Operations

The definitions and obligation for operations are given for the following state model and
implicit operation:

state l: of
r : R
w:W
u: u

inv mk-L(r, w, u) !::.

init mk-l:(r, w, u) 6

end

Definitions

Op(.) def p (') pre- L,r,w = rL,r,w

OP (i:/) o:O
extrdr:R

wrw: W
prePr(i,r,w)

post Po(i, o, r, W, w)

~ del (' ~) post-OP(i, o, r, w, w) = Po z, o, r, w, w

Obligation

jOP·sat[i:/; mk-l:(r, w, u):l:; pre-OP(i, r, w)
3o: O,mk-l:(r, w, u): :!:·

post-OP(i, o, r, W, w) A r = 7 A u = U

14.10 Reifications

Rules are given in terms of a typical example:

state Sa of

Ya : Ra
Wa: Wa
Ua : Ua

Abstract state

inv mk-Sa(ra, Wa, Ua) ~ inva(ra, Wa, Ua)

init mk-Sa(ra, Wa, Ua) ~ inita(ra, Wa, Ua)

end

stateS, of
r, : Rc
We : W,
u, : U,

Concrete state

inv mk-S,(r,, w,, uc)!;:.. inv,(r,, w,, u,)

init mk-S,(r,, w,, u,) ~ init,(r,, w,, u,)
end

Although the two states have corresponding components, this does not imply that retrieval
is component-wise.

14.10.1 Retrieve functions

Retrieval is defined between the whole states S, and Sa.

retr-S : S, ~Sa
retr-S(s,: S,) ~ body-expression

Definitions. axioms and obligations for explicit functions apply (Section 14.9.4). Totality
is formalised by the lack of a precondition.

Obligations

I I Sa:Sa
"''·S-adeq 3s,: S, · retr-S(s,)- s,

Sa: Sa; S,: S,
Sa = retr-S(s,)

init-S,(s,)
I init-adeq 1-C:in.:;i:-t_'i-s,'i(C:s,")-

14.10.2 Operation modelling

Abstract operation

OP, (a: A) t: T
ext rd fa : Ra

wrwa : Wa
pre Pa(a, ra, Wa)

post Qa(a, t, fa, }Va, Wa)

Concrete operation

OP, (a: A) t: T
ext rdr, : R,

wrw, : W,
pre P ,(a, r,, w,)

post Q,(a, t, r,, W;;, w,)

Operations have corresponding names and the same argument and result types.

Obligations

a: A; s,: S,; Sa: Sa
Sa = retr-S(s,)

"I o""'Po:--d-.--o-=m---occb""II pre-OP' (a, s, .r, s,. w,)
pre-OP ,(a, s,.r,, s,.w,)

a:A; t:T
Sa: Sa; s,: S,; Sa = retr-S(s,)

Sa: Sa; S,;"": S,; Sa = retr-S(S";)
pre-OPa(a, "S;;.ra. S;;"".wa)

post-OP,(a,t,s,.r,, 's; .we, s,.w,)

A~~-~~A~~-~~ I OP-res-obJI----',:-::=~="+c.:.:__:="-----"-'-=
post-OP a(a, t, Sa.Ta, 'S; .Wa, Sa.Wa)

~ ~

1\ Sa.Ta = Sa .ra 1\ Sa.Ua = Sa .Ua

14.10.3 Implementing functions

Implicit function

f; (a: A) r:R
pre P;(a)
post Q;(a, r)

Explicit function

f, :A -->R
f,(a) !e. h(a)

pre P,(a)

327

The definitions, axioms and obligations for implicit and explicit functions apply (Sec
tion 14.9.4), in addition to the obligations listed below.

Obligations

a: A; pre-f;(a)
IJi1,-dom-obl) , () pre-;t a

I I a:A; pre-f;(a)
Ji1,-satn post-f;(a,J.(a))

14.11 Case study 1: abstract specification

Axioms

cs: Controller-set; con: Space ~ Controller
cap: Space ~ N; lac: Aircraft ~ Space

inv-ATC(cs, con, cap, loc)
I mk-ATC-fonn 1------:mkci'-A";'T;,;C~(c":s,"'c::!o"'n,==c:"ap::-,"ilo'"c~)·::. Af,T"'C"""-- Ax

a:ATC I mk-ATC-defn I Ax
mk-ATC(O'.onduty, O'.control, O'.capacity, a.location)- 0'

mk-ATC(cs, con, cap, Zoe): ATC I inv-ATC-rj Ax
inv-ATC(cs, con, cap, Zoe)

mk-ATC(cs, con, cap, Zoc):ATC
I capacity-dcfn I Ax

. mk-ATC(cs, con, cap, Zoc).capacity- cap

<r:ATC
! capacity-form I (J' .capacity: Space ~ N Ax

mk-ATC(cs, con, cap, Zoe): ATC
[control-defn I Ax

mk-ATC(cs, con, cap, Zoc).controZ con

<r:ATC
I control-form I m Ax · · a .control: Space ~ Controller

r;l

1
,-
0
,-

0
-:
110

-n--d-,-e""rn'l mk-ATC(cs, con, cap, Zoe): ATC Ax
mk-ATC(cs, con, cap, Zoc).Zocation -Zoe

<r:ATC
[location-form I 0' .location: Aircraft ~ Space Ax

r--:-c---:-c,-, mk-ATC(cs, con, cap, Zoc):ATC I onduty-dcfn I Ax
. . mk-ATC(cs, con, cap, Zoc).onduty- cs

<r:ATC
I onduty-fonn I (J .onduty: Controller-set Ax

p: Aircraft; <J: ATC; pre-comrollerOf(p, <J)
(<J.controZ(<J.Zocation(p))): Controller I cowollaOf-dcfno l--,-~===~=-=-:c__,:'=.o-=.,-:-::-c:-:=' Ax . . controllerOf(p, <J)- <J.controZ(<r.location(p))

1· . I s:Space; <r:ATC; (s E dom(<r.comrol)):lll
ls-acttvated-dcfn0 . . Ax

rs-acttvated(s, <J)- (s e dom(<J.comrot))

p:Aircraft; <J:ATC; (p E dom(<J.location)):lll
I is-known-dcfno I Ax
. · is-known(p, <J) - (p E dom (<J.location))

s: Space; Zoe: Aircraft ~ Space
card(dom(loc~ {s})):N

I numOfAircraft-dcfno 1-n-:u,--m""'O"''fi"A""ir"'cr:cac-;ljt,-7(sc., 'to-:cc-) '-_-"c'-arc'.d-f(di'o'-m:-:("Zo-:c"'~-{"s"})") Ax

Definitions

inv-ATC(cs, cOn, cap, toe) def rngcon ~ cs A domcon s domcap A

rng toe c; domcon" V s E rng toe· numOjAircraft(s, toe) :> cap(s)

init-ATC(<r) del <J.onduty = {}" <J.capacity = {>-->}

pre-Activate(s, cs, con, cap) def s E (domcap \ domcon) A rngcon :;i: cs

pre-Commission(s,cop) def s ~ domcap

pre-control/erOf(p, a) def is-known(p, a)

pre-Decommission(s,con,cap) def s e (domcap\domcon)

pre-ResetCapacity(s, n, cap, lac) def s e domcap A numOfAircraft(s, lac) ,; n

, (~ del ~ ~ { } post-Actlvate s, c, con, con) = c e cs A c ~ rng con A con = con t s I-t c

post-Commission(s, n,cap, cap) def cap= capt {s >-> n}

post-Decommission(s, cap, cap) del cap= {s} ~cap

~ del ~t{ } post-ResetCapacity(s, n, cop, cap) = cap= cap s >-> n

Proof obligations

! Commission-sat\

s: Space; n: N; cs: Controller-set
con: Space ~ Controller; Ctip: Space ~ N

lac: Aircraft--"'-> Space; inv-ATC(cs, con, cap ,lac)
pre-Commission(s, cap)

3cap: Space --"'-> N ,
post-Commission(s, n, cap, cap) A inv-ATC(cs,con, cap, lac)

r----c-=::----• p: Aircraft; a: ATC; pre-contro/lerOf(p, a) I controllerOj-fonn I controllerOf(p, a): Controller

a:ATC I init-ATC-fonn l-,--,-::.~::-,=-.,--:,init-ATC(a): 1B

I init-ATC-sat I 30': ATC, init-ATC(a)

cs: Controller-set; con: Space ~ Controller
cap: Space ~ N; /oc: Aircraft ~ Space I inv,ATC-fonn I ----'==::;,:::.-.=7:'::-=.:::.:.C":"'::r-'-=,===--. inv-ATC(cs, con, cap, lac): 'B

s: Space; a: ATC
I is-activated-form \-"'=7=-7;'--'-==~,

is-activated(s, a): 'B

JJV .l-.,. JJHCr...tUl,Y VJ JHC:VJCIU.:.

I is-known-fonn l-'p-c:c-A>ei".,_.crc:-a"ift7; ::-a-:::ocAcoT.-C_
is-known(p, a): Ill

! numOfAircraft-form I s: Space; loc: Aircraft ~ Space
numOJAircraft(s, foe): N

j post-Commissio~

s: Space; n: N; cs: Controller-set
con: Space ~ Controller; Ccip: Space ~ N

cap: Space ~ N; Zoe: Aircraft ~ Space
inv-ATC(cs, con, cap, foe); pre-Commission(s, cap)

post-Commission(s, rz, Ccip, cap): !a

s: Space; n: N; cs: Controller-set
con: Space ~ Controller; Ciip: Space ~ N

cap: Space ~ N; Zoe: Aircraft ~ Space
inv-ATC(cs, con, cap, foe)

pre-ResetCapacity(s, n, cap, foe) I post-ResetCapacity-form j---"--'::---=---"---:---':-'-'--';;':::'--'-'--"--::---
. . post-ResetCapacity(s, n, cap, cap): 3

I pre-Commission-form I

j pre-comrollerOJ -form j

s: Space; n: N; cs: Controller-set
con: Space ~ Controller, cap: Space ~ N

loc: Aircraft ~ Space; inv-ATC(cs, con, cap, loc)
pre-Commission(s, cap): 3

p: Aircraft; a: ATC
pre-control/erOf(p, a): 3

s: Space; n: N; cs: Controller-set

I pre-ResetCapacity-form J
con: Space ~ Controller, cap: Space ~ N

loc:Aircraft ~Space; inv-ATC(cs,con,cap,loc)
pre-ResetCapacity(s, n, cap, foe): 3

s: Space; n: N; cs: Controller-set
con: Space ~ Controller; Clip: Space ~ N

loc:Aircraft ~Space; inv-ATC(cs, con, cap, loc)
pre-ResetCapacity(s, n, cap, foe)

JRese/Capacity-sat I ~3'c"a__,p-: s"p::-a,-c"e-~"mr;N.;:-:· ========="-------
post-ResetCapacity(S, n, cap, cap) A inv-ATC(cs, con, cap, foe)

Validation conditions

\Activate-lemma\

s: Space; c: Controller
mk-ATC(cs, con, cap, /oc):ATC; mk-ATC(cs, con, cap, /oc):ATC

pre-Activate(s, cs, Con, cap); post-Activate(s, C, con, con)

c e (cs\ rngcon)

p: Aircraft; a: ATC; is-known(p, 0")
I aircraft-controller-unique[~i-:::n-:c:::''::T.:::--:--'::===76-1=--'=' . . 3! c: Contro//er · c - contro//erOJ(p, a)

p: Aircraft; a: ATC; is-known(p, 0")
[aircraft-in-unique-space [
. . 3! s: Space· s- a.location(p)

s: Space; a: ATC; is-activated(s, a)
I airspace-controller-unique I
. . 3! c: Contro//er · c a.contro/(s)

I I .nlf j-"p:.:.: A:::'::,'rc:::'::iafic;;t;'::;O"c;: A;:T..:C::,;,::is:.:.-k:::n::'o'-'w'-;n(pE:, 0""-')'-contro lerv -onduty -
contro//erOJ(p, 0") E O".onduty

s:Space; mk-ATC(cs,con,cap,/oc):ATC; s E rng/oc ! Decommission-lemma l-'--'----'--::--r!:-:-'-'-:-:7:--cf-':.,.,--'--::~c---=--,pre-Decommission(s, con, cap)

s1: Space; s2: Space; cr: ATC; is-activated(s!, a)
is-activated(s,, 0"); a.contro/(sz) = a.contro/(s,)

I no-double-assignment 1-----'-'"--'-'--::--::--'--'-'----..:__'--"'-
. Si - Sz

s:Space; a:ATC; ~(is-activated(s, a))
[not activated => empty [. . numOfAircraft(s, 0"./ocation)- 0

Useful lemmas

s: Space; a: ATC; ~ (is-activated(s, a))
[...., -is-activazed-E [

s <" dom (0" .control)

mk-ATC(cs, con, cap, Joe): ATC I capacity-fonn-mk I cap: Space ~ N

mk-ATC(cs,con,cap,/oc):ATC
1 controi-fonn-mk \ con: Space ~ Controller

,---;;-=-,-;c-., p:Aircraft; a;ATC; is-known(p, a)
I controllerOf -defn [-,--::'-;;,.-:=c-:'-=--:~--:::==-,"-:c':-cc'-cc=c-. - contro//erOf(p, 0")- a.contro/(a./ocation(p))

p: Aircraft; a: ATC; pre-contro//erOf(p, a)
I conzmllerOf -wfrj (a .control(a ./ocation(p))): C ontro//er

331

1-<f Vlit:CLUIY VI lllt:UI~llJ.:>

cs: Controller-set; con: Space ~ Controller
cap: Space ~ N; foe: Aircraft.~ Space

inv-ATC(cs, con, cap, foe) I inv-ATC-E-clauseli------'=='-::'":::'::::C=-:?'-="-'----
rngcon ~ cs

["l/i"WfTC-E-clausc2l

I inv-ATC-E-clausc3l

I inv-ATC-E-clause4l

cs: Controller-set; con: Space ~ Controller
cap: Space ~ N; foe: Aircraft ~ Space

inv-ATC(cs, con, cap, foe)
dom con !:;; dom cap

cs: Controller-set; con: Space ~ Controller
cap: Space ~ N; Zoe: Aircraft ~ Space

inv-ATC(cs, con, cap, foe)
rng Zoe !:; dom con

cs: Controller-set; con: Space ~ Controller
cap: Space ~ N; Zoe: Aircraft ~ Space

inv-ATC(cs, con, cap, foe)
Vs E rngfoc · nwnOfAircraft(s, foe)< cap(s)

<J:ATC I inv-ATC-1-clausell-:::-:c::-::-=:'-'-i~-::-==:rng a .control ~ cr .onduty

<J:ATC I inv-A1'C-I-clausc3l-:cc-:::-.-:-:-"7-=-c;-:c:c-:::-c:-c-:::-:-.-
rng a .location ~ dom a .control

I inv-ATC-1-mk-clausell mk-ATC(cs, con, cap, foc):ATC
rngcon ~ cs

.m:.:k.:..·:.:A::.TC=(c:;:_s•:..:c:;:_o:.:n,:..:c=ap"-':.:fo:cc:.<):..:: A::cT:..:C:_ I inv-ATC-I-mk-clause21-
domcon ~ domcap

I inv-ATC-l-mk-clausc3l
mk-ATC(cs, con, cap, foe): ATC

rng loc !;:;;; dom con

I I ~---"-m"-'k,-A:.:.T...:C_,(:.:cs"', ,_co"'nc;., c'-'a-"p-',, fci-o"'c)'-;-:-,A,TC'o--:--:--:cc:-inv-ATC-I-mk-clause4 ,
Vs e rng foe· numO/Aircraft(s, foe) ,; cap(s)

cs: Controller-set; con: Space ~ Controller
cap: Space ~ N; Zoe: Aircraft ~ Space

rngcon ~ cs; domcon!:; domcap; rng Zoe~ domcon = V s e rng foe· nwnOfAircraft(s, foe) ,; cap(s)
~C-I-separate 1--=.::...:=:cin"v"'-A-i'T:i:C:;ii(c'=s:.:, c::oc=n:..:, c"'-a='p"', Tfo::Cc'f) :.::c=='----

s: Space; 0': ATC I is-activated-dcfn 1-~.-~.-,._,:7"-S'-'-',C-"-'.,...:----:,----:c---;;;
's-acttvated(s, 0')- (s e dom O'.controf)

1'-,..u:. c<1.:;c:: ~way 11: rennement

I . . I .s::: S:cp::a:::c::_e;'::-"cr-": A-.;:T:.:C=,;~is_,-a:::c.::ti.::va;;.t::ed,(::s ,_,cr:.!_) . ts-acuvated-E.-
s E dom (CJ .control)

s:Space; cr:ATC; s E dom(cr.control) I is-activated-I 1-'='::X~~~..::_::;...~:;:::::;~:::c:~::.L
is-activated(s, cr)

s: Space; cr: ATC I is-activated-wffl-,-_::=.:::;::!_:..:.:=~-=
(s e dom (cr .control)):~

I ,._ I p: Aircraft; cr: ATC
iS-N~OWn-def~

is-known(p, cr)- (p E dom (cr.location))

I is-known-E l-'p:..::::._A::_ir-'c-'ra,.ift:.:.; -'CJC.::C:.A~T-='C-',; -'is=--:.;knc:o:.;wccn;.,(p:.:,_:CJ_,__)
p E dom (cr.location)

p: Aircraft, cr: ATC I is-known-wffl-,--"-==~;.-=:=.~~
(p E dom(cr.location)):~

~~~--~ .m*~-7AT:..:C::_(~c::~.::CO~n~,~ca~p~,l~oc::).:::A.::T:..:C~ ltocation-form-mk 1-
. Joe: Aircraft ~ Space 

s:Space; Joe: Aircraft~ Space I numOfAircraft-defn 1--;;.;;~::::.:;;~:;.::.:;.:::~7,-.,..:.~~-,--~ 
· · numOfAircraft(s,/oc)- card(dom(loc~ {s})) 

. s: Space; Joe: Aircraft --~--t Space 
I numOJAtmaft-wffj card (dom (loc ~ { s })): N 

mk-ATC(cs, con, cap, loc): ATC I onduty-fonn-mk I cs: Controller-set 

14.12 Case study II: refinement 

Axioms 

cs: Controller-set; con: Space ~ Controller 
cap: Space ...."'.., N; ass: AssigMap 

inv-ATC1(cs, con, cap, ass) 
[lmk~~~r~c~,-~fu~nn§JI---~m~ki-~AjTzc~,(~cr~,~co~n~,~ca~p?,,~as~st):]A~T~C~,---Ax 

cr:ATC, I mk-ATC,-defn I Ax 
. · mk-ATC1(cr.onduty1, cr.contro/1, cr.capaciry,, cr.assigs1) cr 

mk-ATC1 (cs, con, cap, ass): ATC1 I inv-ATC,-11 Ax · · inv-ATC,(cs, con, cap,ass) 

333 



334 14 Vlrecwry or 1 nr;;urem:::; 

mk-ATC1 (cs, con, cap, ass): ATCt 
[ assigs1 ·dcfn f Ax . mk-ATC1(cs,con,cap,ass).assigs1 - ass 

. o-:ATCt 
\ asstgs1·form I cr.assigs1: AssigMap Ax 

. mk-ATC1(cs, con, cap, ass): ATC1 
\ capaetiYJ·dcfn ! . Ax mk-ATCt(cs, con, cap, ass).capacLtyt =cap 

o-:ATCt 
I capacitYI·form I a.capacityl: Space ~ N Ax 

mk-ATC1 (cs, con, cap, ass): ATC1 
\ controlt -defn \ Ax · · mk-ATCt(Cs, con, cap,ass).controlt con 

o-:ATCt 
I contro/ 1-forrn j Ax 
· · cr.controlt:Space ~Controller 

mk-ATC1 (cs, con, cap, ass): ATCt 
\ onduty1-dcfn I Ax · . mk-ATCt(cs,con,cap,ass).ondutyt = cs 

o-:ATCt 
onduty1-form Ax I I o-.onduty1: Controller-set 

s:A'; (s = [] v hds" elemstls A nonRptng(tls)):IB 
) nonRptng-dcfno-) Ax 
. · nonRptng(s)- (s- [] v hds" elems tis 1\ nonRptng(tls)) 

ass:AssigMap 
U{elemsq I q E rngass):Aircraft-set I knownAircraft -dcfn0 [--.---"-\-7-'--ci'T--"-;----'-c'f-i-7-'--'-=--i"-"C...:c:;___, Ax · . knownAircraft(ass)- U{elemsq I q E rngass} 

p: Aircraft; ass: AssigMap; pre-locOf(p, ass) 

r;~~§~h;,d(~t~s~e~d~o~m~as¥s'i·~p~e~e~le~m~s~a~s~s(~s~))~:S~p~a~c~e:i(S)Ax l~ocOf-defno I locOf(p, ass) ts E dom ass· p E elems ass(s) 

ass: AssigMap 
{p >--> locOf(p, ass) I 

r-~~~'-==~~~p,e~k~n~ow~nA~1~·r~cr~afi~t~(a=s=s~))~:~A=i"2c~ra~ifi~t_--._m-2S~p=ac=e~ j extrLoc-dcfno j Ax · · extrLoc(ass) -
{p >--> locOf(p, ass) I p E knownAircraft(ass)} 

o-:ATCt 
(mk-ATC(o-.onduty1, o-.controlt, 

--~~-~~~-,2"~·c=a~p=ac=i~ty~1 ,~e=xt~rLo~c~(=o-~.as=s=~~s~1 ~))~):~A=T~C~ I relr1-defn0 I Ax · retrt(O')- mk-ATC(o-.ondutyt, o-.controlt, 
o- .capacityt, extrLoc( o- .assigs1)) 



I'+.lL- case sway 11; retmement 335 

s: Aircraft-set; 3q: AircraftQueue · elems q = s 
I buildQueue-defno I elems buildQueue(s) - s Ax 

s:Aircraft-set; 3q:AircraftQueue · elemsq = s 
j buildQueue-formo] Ax 
. . bui/dQueue(s): AircraftQueue 

toe: Aircraft ~ Space 
{s..., buildQueue(dom(loc~ {s))) Is e rngloc):AssigMap 

I e.ttrAss-defn0 l---::c:::-=nc--;-=,:-~=-';r;-:-:':c-"-c;'i-':c'-7;-c-:c;:-7-::-;-;{.--::-:-":-,--i'--;- Ax . . extrAss(loc)- {s..., buildQueue(dom(loc~ {s))) Is e rngloc} 

Definitions 

inv-ATC1(cs, con, cap, ass) def rng con~ cs A domcon ~ domcap A 

domass = domcon A 'Is e domass -lenass(s) $ cap(s) 

AssigMap del €. m: Space ----"'-., AircraftQueue I inv-AssigMap(m) > 

.A.M()def~ mv- sszg ap m = vs1,sz E domass·s1 :#Sz => 
elems ass(sr) n elems ass(s2 ) = { } 

AircraftQueue def ~ s: Aircraft I inv-AircraftQueue(s) ~ 

inv-AircraftQueue(s) del nonRptng(s) 

del pre-locOf(p, ass) = p e knownAircraft(ass) 

post-bui/dQueue(s, q) del elemsq = s 

pre-AddF/ightr (p, s, con, cap, ass) del s e domcon "p ~ knownAircraft(ass) 1\ 

lenass(s) < cap(s) 

post-AddF/ight,(p,s)iSS,ass) del ass= ass t {s..., ass(s) ~ [pl) 

Proof obligations 

p: Aircraft; s: Space 
mk-ATC(cs, con, cap, /oc): ATC 

mk-ATC,(cs1,con1, cap1, ass):ATC, 
mk-ATC(cs, con, cap, toe) = retr1 (mk-ATC,(cs,, con,, cap,,ass)) 

pre-AddF/ight(p, s, con, cap, Joe) I AddFlighr-dom-obtl-----p--'-rc.e--'-;A,Cd;';dF-;;I"igc;hr-,t,'(p"',-'-s-'-, c:-o"n-'-, ,--:c-'-ap-'-,-, aces-'-s,-)-----



336 14 um:ctory or 1 neorems 

p: Aircraft; s: Space 

mk-ATC(cs, con, cap, lac): ATC 

mk-ATCt (cs,, con,, cap,, ass): ATCt 

mk-ATC(cs, con, cap, lOc) = retr, (mk-ATC,(cs,, con,,cap,, ass)) 
mk-ATC(cs, con, cap, lac): ATC 

mk-ATC1 (cs1, con,, cap,, ass): ATC1 

mk-ATC(cs, con, cap, lac) = retr1 (mk-ATC1(cs1, con1, cap1,ass)) 

r.-:=---;-:--7.1 pre-AddF/ight(p, s, con, cap, lac); post-AddF/ightt (p, s, ass, ass) 

IAddF/ight-rcs-obii post-AddF/ight(p, s, lac, loc) 

p: Aircraft; s: Space; cs: Controller-set 
con: Space ~ Controller; cap: Space ~ N 

ass: AssigM ap; inv-ATC, ( cs, con, cap, ass) 
pre-AddF/ight1 (p, s, con, cap, ass) 

3ass:AssigMap· 

post-AddFlightt (p, s, ass, ass) "inv-ATC(cs, con, cap, ass) 

s: Aircraft-set 
build ueue-sat . . -I Q I 3q:A~rcraftQueue · post-buzldQueue(s,q) 

! extrAss-fonn! 
loc: Aircraft ~ Space 
extrAss(loc): AssigMap 

ass: AssigMap 
I extrLoc-form 1-..,-,~-;---;--;-c-"---;c'-m--;c-

extrLoc(ass): Aircraft ~ Space 

. . o-:ATC, 
lwu-ATC,-forml init-ATC

1
(o-):OI 

linit-ATCr-satl 3 ATC .. ATC ( ) cr: 1 • mu- 1 cr 

. . m: Space ~ AircraftQueue 
I tnv-AsSlgMap-form I inv-AssigMap(m): 01 

cs: Controller-set; con: Space ~ Controller 
cap: Space ~ N; ass: AssigMap I inv-ATC1-form 1----'-"7------'-c""'"':-=-"'-=--="';;--'-----. · inv-ATC,(cs,con,cap,ass):OI 

..----,-..,.-,,...,-----, s: Aircraft* 
I inv-queue-form I~-,.-;-:=:,::;,=--,--,-~ 
. . inv-AircraftQueue(s): 01 



14.1L L'ase study 11: refinement 

ass: AssigMap knownAircra t~fonn . . I !li I knownA~rcraft(ass): A~rcraft-set 

p: Aircraft; ass: AssigMap; pre-locOf(p, ass) 
pocOj-fonn I locOf(p, ass): Space 

s:A* I nonRptng-fonn I nonRptng(s): 8 

p: Aircraft; s: Space; cs: Controller-set 
con: Space ~ Controller; cap: Space ~ N 

liSs: AssigMap; ass: AssigMap 

337 

inv-ATC1 (cs, con, cap, ass); pre-AddFlight1 (p, s, con, cap, ass) 

post-AddF/ight, (p, s, ass, ass): Ill 

s: Aircr<ift-set; q:AircraftQueue 
lpost-buildQueue-form 1 post-bui/dQueue(s, q): 8 

p:Aircraft; s:Space; cs:Control/er-set 
con: Space ~ Controller; cap: Space ~ N 

ass: AssigMap; inv-ATC, (cs, con, cap, ass) I pre-AddF/ighl!-fonn 1-=:..:p.::re:::-A'!'d::;.d;.;F;t;h'-.g.;:ht"'
1

.;(pc:, s:..:,:.cco"n"',"-ca:..:p:.::,c.:as00s:f'):c;8=c_ 

p: Aircraft; ass: AssigM ap 
lpre-locOj-form I pre-locOf(p,ass): 8 

Useful lemmas 

I []-form-queue 1-(~]~: A~ir-a-afi~t~Q-u-eu_e_ 

p:Aircraft; ass:AssigMap; p E knownAircraft(ass) 
I e~knownAircraft-E J 3q e rngass. p e elemsq 

I e -knownAircraft~E I 
. . \fq e rngass · p ~ elemsq 

p:Aircraft; ass:AssigMap; p e knownAircraft(ass) 



338 14 Directory of Theorems 

I AddF/ighr-dom-obl-simp I 

p: Aircraft; s: Space 
mk-ATC(cs, con, cap, extrLoc(ass)): ATC 

mk-ATC1 (cs, con, cap, ass): ATC1 

pre-AddFlight(p, s, con, cap, extrLoc(ass)) 
pre-AddFlight, (p, s, con, cap, ass) 

p: Aircraft; s: Space 
mk-ATC(cs, con, cap, extrLoc(iiSs)):ATC 

mk-ATC, (cs, con, cap, iiSs): ATC, 
mk-ATC(cs, con, cap, extrLoc(ass)): ATC 

mk-ATC1(cs, con, cap, ass): ATC1 

pre-AddFlight(p, s, con, cap, extrLoc(ass)) 
post-AddF/ightt (p, s, iiSs, ass) 

I AddFiighr-res-obl-simp 1-p-o-s-t-A--:-;ddF-':C/C:ig'-'h_::t(p=, s=, e"x:.::tr:.:Lo=c(=:zas=s=c)"', e=x=-tr'::Lo-c--:(_as_s::) )-

I . . . I p: Aircraft; ass: AssigMap; p E knownAircraft(ass) 
rurcraft-m-umque-space, :"1f d 1 ( ) 

::1. s e om ass· p e e ems ass s 

I AssigMap-fonn-t I 
p:Aircraft; s: Space; ass:AssigMap 
p " knownAircraft(ass); s E dom ass 
ass t {s >-> ass(s) ~ [pl):AssigMap 

ass: AssigMap 
I AssigMap-supcrtype I ass: Space ~ AircraftQueue 

m: Space -!':'... AircraftQueue; inv-AssigMap(m) I AssigMap-form I m: AssigMap 

,-~~--~ ·"~'~k--=A=-T~C~,(~c~s,~c~on~·~c~ap~·-=a~~~)-~·A=T~C~,-
1 assigs1-fonn-mk 1-. . ass: AssigMap 

s: Aircraft-set 
I buildQueue-dcfn I elems bui/dQueue(s) s 

s: Aircraft-set 
I buildQueue-form j bui/dQueue(s): AircraftQueue 

cap: pace~ 

I I a: Aircraft; q:AircraftQueue; a,; elemsq 
cons-fonn-queue . 

cons( a, q): AzrcraftQueue 

mk-ATC, (cs, con, cap, ass): ATC, 
I controll-fonn-mk I con: Space ~Controller 



- .c:l.:.o:::c:c.A::i:.:rc,_r::;aft7,---->,m_:S:cp.::a::;ce::_ I dom~extrAss-defn I 
domextrAss(loc) = rng/oc 

ass:AssigMap 
dom-extrLoc-defn . I I domextrLoc(ass)- knownA~rcraft(ass) 

ass: AssigMap I dom-fonn-AssigMap 1---c-===;==--,. . domass: Space-set 

f a:Aircraft; q:AircraftQueue 
elems-dcfn-cons-queue I 

1 
( ) dd( 

1 
) eemscons a,q -a a,eemsq 

q: AircraftQueue 
elems-form- ueue . I q I elems q: Aircraft-set 

Joe: Aircraft ~ Space I extrAss-extrLoc-inv~ -.:="'::=.2':7-==c:'::~:;,loc- extrLoc(extrAss(loc)) 

p: Aircraft; s: Space; ass: AssigMap 
p e; knownAircraft(ass); s E domass 

extrLoc(ass t {s >-> ass(s) ~ (pJ}) extrLoc(ass) t {p >-> s) 

[extrl..oc-defn! 
ass:AssigMap 

extrLoc(ass) {p >-> locOf(p,ass) I p E knownAircraft(ass)) 

ass:AssigMap I ex1rLoc-wff 1-,--;---:=---;-.,.---7'"-~'?'--"'C;-~,--,,.,--;c-· {p >-> locOf(p, ass) I p E knownAircraft(ass) ):Aircraft ~Space 

. . ass: AssigMap 
lmv-AsszgMap-l I inv-AssigMap(ass) 

I inv-ATC1-I-clausel I a:ATC1 

rng a .control 1 c 0' .onduty, 

a:ATC1 I inv-ATC1-I-clausc2J--,-----;..:..:.:::.c"'--c---o--
. . dam a.contro/1 ~ doma.capacity1 

a:ATC, I inv-ATC1-1-clause3\-::c:-c-::-=c-:---:;-:-':::-:::-:--,--;::::-;-. · dom 0' .assigs, - dom a .controlt 

a:ATC1 I inv-ATC,-I-clause4J V s E dom a.assigs1 • len ( a.assigs,)(s) , ( a.capacity,)(s) 

r-~~~~~~ .m~k~-~A~TC~1 (:::cs~,:::co~n~,:::ca~p~,=as"-s~)::::A~T~Cc_, 
I inv-ATC1-I-mk-clause31-
. . dam ass - dom con 

339 



.J4U 1 q. u.~recwry 01 lllt:urc;:;m::; 

cs: Controller-set; con: Space ~ Controller 
cap: Space --"'-> N; ass: AssigMap 

I inv-ATC,-1-separate I 
rngcon ~ cs; domcon ~ domcap; domass = domcon 

V s e dom ass · len ass(s) < cap(s) 
inv-ATC, (cs, con, cap, ass) 

p: Aircraft; s: Space; ass: AssigMap 
p e knownAircraft(ass); s e domass 

I knownAi,aoft-t -lemma 1--,kC"'no=w-cnA't(C.rc.::r:.:'aftz(i"a-"ss='t:iT{ s"':">->"'as0::::s7'(s") .;.c[p:,]T) )"'-==----
add(p, knownAircraft(ass)) 

,..,.--"'C"'C-:--:-:"'1 ass: AssigMap 
I knownAi,aaft-defn I knownAircraft(ass) - U{ elems q I q E rng ass} 

ass: AssigMap 
knownAircra t-wff . I if; I U{elemsq I q e rngass):Atrcraft-set 

p: Aircraft; s: Space; ass: AssigMap 

I I .Pc-:::""k;;n:.:o,_w,_nA:.=,ir;:,cr.caft=(a:.:s:cs)7; "s~e..,.:.,do;,m,as=s-tocOf-t--. -iocOf(p, ass t {s >-> ass(s) [p]))- s 

p: Aircraft; s: Space; ass: AssigMap 
a: Aircraft; p e knownAircraft(ass) 

s e domass; a e knownAircraft(ass) 
ltocOf · t 4 1-t•o-ccO"'f"'( a-.'-a-'-ss'-;t"'{i-'s"'>->'-'-a:-,-<s7(s-,)~[p"'J"') )'--+io-'cO"'fr'(C"'a.-ca:css") 

I I p: Aircraft; ass: AssigMap; pre-iocOf(p, ass) 
locOf-defn locOf(p, ass) ts e domass · p e elemsass(s) 

I I p:Aircraft; ass:AssigMap; pre-locOf(p,ass) locOJ-wff 
(ts e domass · p e elemsass(s)):Space 

s:A• 
I nonRpmg-defn I nonRptng(s) - (s - [] v hd s e elems tis A nonRptng(tls)) 

s:A* 
I nonRpmg-wrrl (s _ [] v hds e elemstls A nonRptng(tls)): ~ 

r--o::::-:--;-.,--;-;" s: Space; ass:AssigMap; s e domass 
I numOfAircraft-elm-defn I . numOfAtrcraft(s, extrLoc(ass)) -lenass(s) 

mk-ATC1 (cs, con, cap, ass): ATC1 
I ondury,-form-mk I cs: Controller-set 

mk-ATC(cs, con, cap, loc): ATC I re.,,.adeq·assigs l-o;3-as_s_: A-;-ss~ig-M;-;'-ap=· =-'-"='-'-'"-'-""-'-'-"--:.._-___ _ 

inv-ATC1 (cs, con, cap, ass) A ioc = extrLoc(ass) 



1<+.1£ L-i:t.:.-c: swuy 11: rennement 341 

mk-ATC(cs, con, cap, loc):ATC 
I rerr,-adeq-mk I 3o-1: ATC1 - retr1(o-1)- mk-ATC(cs, con, cap, loc) 

o-: ATC1 I retr1-dcfn 1-,-e-tr-,'( o-"');-----------=-==--=-'------------

mk-ATC( o-.onduty1, o-.control,, o-.capaciry,, extrLoc( o-.assigs1 )) 

mk-ATC 1(cs, con, cap, ass):ATC, 
I rerr, -dcfn-mk l-:-c-:::-=;:-;~i7::::C:"-':'-==:C:::':':'-:'2'====~----. · retr1 (mk-ATC1(cs, con, cap, ass)) -

I retrt-B-capacity j 

[ relrt·B-control[ 

\ relrt·B-/ocation \ 

mk-ATC(cs, con, cap, extrLoc(ass)) 

mk-ATC(cs, con, cap, /oc): ATC 
mk-ATC1 (cs1, con1, cap1, ass): ATC1 

mk-ATC(cs, con, cap, loc) = retr1(mk-ATC,(cs1, con,, cap,, ass)) 
capt- cap 

mk-ATC(cs, con, cap, loc): ATC 
mk-ATC1 (cs1, con1, cap1, ass): ATC1 

mk-ATC(cs, con, cap, /oc) = retr1(mk-ATC1(cs1, con,, cap1,ass)) 
con1 con 

mk-ATC(cs, con, cap, loc):ATC 
mk-ATC1 (cs1, con1, cap,, ass): ATC1 

mk-ATC(cs, con, cap, loc) = retr1 (mk-ATC1(cs,, con,, cap,,ass)) 
extrLoc(ass) - foe 

mk-ATC(cs, con, cap, loc): ATC 
mk-ATC, (cs,, con,, cap,, ass): ATC, 

mk-ATC(cs, con, cap, /oc) = retr1(mk-ATC1(cs1,con1,cap1,ass)) 
CSt- CS 

o-:ATC1 

I retr,-wrfi (mk-ATC( o-.onduty1, o-.contro/1, o-.capacity1, extrLoc( o-.assigs, ))): ATC 

ass: AssigMap 
I mg-extrLoc-lemma! 

rng extrLoc(ass) k; domass 

ass: AssigMap 
m -form-Assi Ma . I g g PI rng ass: A~rcraftQueue-set 





Bibliography 

[AI91] Derek Andrews and Darrell !nee. Practical formal methods with VDM. 
McGraw-Hill, 1991. ISBN 0-07-707214-6. 

[BCJ84] H. Barringer, J.H. Cheng, and C.B. Jones. A Logic Covering Undefinedness 
in Program Proofs. Acta Informatica, 21:251-269, 1984. 

[Bic93] J. C. Bicarregui. Algorithm refinement with read and write frames. In 
FME'93: Industrial-Strength Formal Methods, pages 148-161. Springer
Verlag, Berlin, 1993. (LNCS 670). 

[BN92] S. M. Brien and J. E. Nicholls. Z Base Standard version 1.0. Technical Re
portPRG-1 07, Programming Research Group, Oxford University Computing 
Laboratory, Oxford, UK, November 1992. ISBN 0-902928-84-8. 

[BSI92] British Standards Institute, Working Group IST/5/19. VDM Specification 
Language Proto-Standard: Draft, 1992. Document N231 I-9, 8 August. 

[Cha81] D. Char1wood. Take-off to Touchdown: The Story of Air Traffic Control. 
Australian Government Publishing Service, Canberra, 1981. 

[Che86] Jen Huan Cheng. A Logic for Partial Functions. PhD thesis, Dept. of Com
puter Science, University of Manchester, UK, January 1986. Technical Report 
No. UMCS-86-7-1. 

[Cho88] F.K. Chorley. Electronics and communications in air traffic control. J lnstit 
Electronic and Radio Engineers, 58(1):1-11, 1988. 

[Cle93] T. Clement. A tutorial on data reification. Technical Report UMCS-93-8-2, 
Dept. of Computer Science, University of Manchester, August 1993. 

[Daw91] John Dawes. The VDM-SLReference Guide. Pitman Publishing, 1991. ISBN 
0-273-03151-1. 

[DKRS91] Roger Duke, Paul King, Gordon Rose, and Graeme Smith. The Object-Z 
Specification Language Version I. Technical Report 91-1, Software Verifica
tion Research Centre, University of Queensland, May 1991. 

[End72] H. B. Enderton. A Mathematical Introduction to Logic. Academic Press, 1972. 

[GLT89] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge Tracts 
in Theoretical Computer Science. Cambridge University Press, 1989. 



344 li1D1Wgrapny 

[HHP87] R. Harper, F. Hansell, and G. Plotkin. A framework for defining logics. 
In Proceedings of Second Symposiwn on Logic in Computer Science, pages 
194-204, 1987. 

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985. 
ISBN 0-13-153289-8 Pbk. 

[lEE] Special issue devoted to Air Traffic Control in the USA. Proceedings of the 
IEEE Vol. 77 No. 11, November 1989. 

[JJLM91] C.B. Jones, K.D. Jones, P.A. Lindsay, and R. Moore. mural: A Formal De
velopment Support System. Springer-Verlag, London, 1991. 

[Jon90] C. B. Jones. Systematic Software Development Using VDM. Prentice Hall 
International(UK), second edition, 1990. 

[Lar93] Peter Gorrn Larsen. Towards Proof Rules for Looseness in Explicit Def
initions from VDM-SL. In Proceedings of the International Workshop on 
Semantics a/Specification Languages, Utrecht, October 1993, Workshops in 
Computing. Springer-Verlag, 1993. To appear. 

[Mid90] C.A. Middelburg. Syntax and Semantics ofWSL: A Language for Structured 
VDM Specifications. PhD thesis, University of Amsterdam, 1990. 

[Mor90] C. Morgan. Programming from Specifications. Prentice-Hall, 1990. 

[Nip86] T. N. Nipkow. Behavioural Implementation Concepts for Nondeterministic 
Data Types. PhD thesis, Dept. of Computer Science, University of Manch
ester, December 1986. Technical Report UMCS-87-5-3. 

[Ost92] J. Ostroff. Formal Methods for the Specification and Design of Real-Time 
Safety Critical Systems. Journal of Systems and Software, 18, 1992. 

[Pra65] D. Prawitz. Natural Deduction. Almqvist and Wiskell, 1965. 

[Rob89] Robin Milner. Communication and Concurrency. Prentice-Hall, 1989. ISBN 
0-13-115007-3 Pbk. 

[RSL92] RAISE Language Group. The RAISE Specification Language, 1992. Prentice 
Hall, BCS Practitioners Series. 

[Sch86] 0. Schoett. Data Abstraction and the Correctness of Modular Programming. 
PhD thesis, Dept. ofComputerScience, University of Edinburgh, 1986. Tech
nical Report CST-42-87 or ECS-LFCS-87-19. 

[Vyt92] J. Vytopil, editor. Proceedings of the Symposium in Formal Techniques in 
Real-Time and Fault-Tolerant Systems. Springer-Verlag, 1992. Lecture Notes 
in Computer Science Vol. 571. 

[WH93] Mark Woodman and Benedict Heal. Introduction to VDM. McGraw-Hill, 
1993. ISBN 0-07-707434-3. 



.mouograpny 345 

[WL93] J. C. P. Woodcock and P. G. Larsen, editors. FM£'93: Industrial-Strength 
Fonnal Methods. Springer-Verlag, 1993. Lecture Notes in Computer Science 
Vol. 670, ISBN 3-540-56662-7. 





Index 

\t-W-E, 46,48 
3-E/3-1, 44, 48, 58 

adequacy obligation, 183,229,231,232 
of initialisation, 183, 240 

assumption, local, 15 
auxiliary function, 167, 200 
axiom, 9 
axiomatisation 

development of, 41, 72-75, 86, 108, 
133,134,262 

of composite types, 68, 164--166, 262 
of explicit functions, 167-169, 200, 

20!,229 
of implicit functions, 170-171,201 
of initialisation, 166, 200 
of operations, 175-177,212 
of polymorphic functions, 174-175, 

224 
of recursive functions, 171-173,224 
of recursive type definitions, 248-251 
of state, 166-167,199 
of type definitions, 162-166, 223 
of value definitions, 175 

binder, 10, 56, 57 

case distinction, 26, 27, 34, 56 
cases expression, 259-262 
character type, 264 
choice 

non-unique, 258 
unique, 57, 257 

comprehension 
axiomatisation of, 126 
definedness of, see definedness, of com-

prehension expressions, I 00, 126 
finiteness of, 99, 101, 126 
map, 126 
set, 99, 100 

conclusion, 11 
local, 15 

conditional, 57, 59, 60, 142 
constant, 61 
constructor, 64, 68, 136, 164 
contradiction, 27 

data reification, I, 6 
data type, see type 
definedness 

of equality, 51, 63, 66, 247, 248 
of predicates, 40, !53 
of propositions, 33, 37, !51 
of quantified expressions, 50 
of relations, !53 

definition, 18, 28, 81 
folding, see justification, by folding 
potential problems, 83, 92, 138, 169, 

249 
recursive, 83, 137, 171-173 
subsidiary, 120 
unfolding, see justification, by 

unfolding 
deMorgan laws 

predicate, 47 
propositional, 32 

denoting term, 41, 51, 52, 65, 137 
derived rule, see rule, derived 
destructor, 135, 136, 148, 164 
domain obligation, 184, 185, 236, 237 

example, 187 
for functions, 190 

enumerated collection, 252, 253 
enumerated type, see type 
equality 

chains of, 54, 56, 141 
definedness of, see definedness, of 

equality 
of maps, 115 
of sequences, 136 
of sets, 93 
polymorphism of, 51 



348 

rewriting over, 56, 139, 141 
explicit functions, 167-169 

flatness, see type 
function type, see type 

generator, 72, 86, 133, 145 
goals, 29 

hypothesis, 11 
local, 15 

implementation bias, 190 
implicit functions, 170-171 

satisfaction of, 190 
induction 

V-E/=>-E-left "trick", 144 
=>-E-left "trick", 79, 134, 143 
base case, 87 
hypothesis, 135 
rule, 72, 87, 134, 146 
rule for subtype, 84 
step, 87 

induction scheme, 249, 251 
inference rule, 9, 11 
informal argument, 25, 26, 35, 53, 54, 

56, 59, 139 
initialisation condition, 166, 192 

adequacy, 183 
instantiation, 11, 49, 174 
invariant, 162, 165 

as subtype, 69, 163 
role in proofs, 178 

justification, 12 
by triv, 27 
by folding, 29 
by sequent hypothesis, 35 
by unfolding, 29 

knowns, 29 

lemma, see rule 
abstraction of, 118 
extraction of, 54, 56, 60, 89, 103, 

116-118, 125, 142 
let expression, 256-258 

determinism of, 258, 259 
LPF,23,33,37,40,41,51,52 

meta variable, 11, 67 

natural deduction, 14 
non-determinism, 175, 185 

operation decomposition, 1 
operation modelling, 7, 184 

patterns, 254-256 

JNVHX 

polymorphic type definitions, 174 
postcondition, 3, 170 
precondition, 3, 169-170 
predicate, 39 

definedness of, see definedness, of 
predicates 

proof, 10, 12 
of symmetric rules, 27, 121 

proof obligation, 4, satisfaction, satisfi
ability, well-formedness, see ad
equacy obligation, domain obli
gation, result obligation 

well-formedness of invariant, 154 

quantifier 
definedness of, see definedness, of 

quantified expressions 
existential, 41, 42, 56, 59 
multiple, 48-50, 59 
unique existential, 56, 257 
universal, 41, 45 

quote type, 264 

read frame (role of), 177 
reification, see data reification 
result obligation, 184, 186, 236, 238 

example, 188 
retrieve function, 7, 182-183 

adequacy, 183 

rule 
example, 187, 229 

derived, 10, 25 
developing variants of, 93 
formation,57,64, 137,138,164,165, 

170,174,249 
formulation of, 34, 36, !51, 152 
naming conventions, 18 
selection of, 29 

satisfaction obligation (forfunction), 190 
satisfiability 

of implicit function definitions, 171, 
234 



of initial state, 167,200,205 
of operations, 176, 213, 215, 217 
of recursive functions, 172, 224 
one-point version for functions, 171, 

173 
scope, 10 
selector, 64, 65, 68, 164, 262 
sequent, 15,67, 70 
strictness of function definitions, 168 
subproof, 14 

trivially true, 27 
substitution 

of equal values, 51, 65 
of equivalent values, 158 

subtype 
induction rule for, 124 
polymorphic, 123 

theorem, see rule 
theory, 10 
token type, 263 
turnstile, 14 
type, 161 

disjoint, 248 
enumerated, 264 
extension (by type union), 51, 61-

63,66,69,247 
flatness, 246, 247 
function, 246 
inhabited, 50, !63 
membership of, 40 

typing assertion, 40, 41, 51 

under-determinism, 173 
under-specification, 173 

validation condition, 5, 163, 177, 198, 
200,202,206,217,219 

validation conjecture, see validation con
dition 

variable 
bound, 41,48 
free, 40, 48 
sequent, 67, 70 

VDM, I, 2, 23, 40, 245 
VDM-SL, I, 3, 19, 61, 65, 66, 69, 136, 

146-148,202,245,257,258 

well-fom1edness 

349 

of explicit functions, 168, 201, 203 
of functions with preconditions, 169, 

201 
of initialisation, 167,200,205 
ofinvariant,l63, 165,200,204,205, 

223 
ofpostconditions, 170,212,234 
of preconditions, 170,201,206,212 
of recursive functions , 224 
of value definitions, 175 
one-point version for functions, 168 
proof, 154 

witness value, 42 





Index of Symbols 

--set (set type) 85,287 ,;; 83,285 
_ ---"'-> _ (map type) 107,302 !1 262 
_ ~ _ (bijective map type) 123,305 N 72,284 
_• (sequence type) 133,314 N1 82,284 
_ + (non-empty sequence type) 134,315 ~ (negation) 24,268 
[ _] (optional type) 66,282 ,. 56,277 
< - I - > (subtype) 67,283 ~ 86,289 
{} 86,287 v (disjunction) 24,267 
{ ,_.} (empty map) !08, 302 t (map ovenide) 119,303 
{ _} (singleton set) 96,289 + 75,79,284 
{-,_.-}(singleton map) 305 ~ (range restriction) 114,303 
[] 133,314 ~ (range subtraction) 114,303 
[_] (singleton sequence) 137,315 c 93,288 
'I (for all) 45, 91,274,289 <;;; 9z,ns 
A (conjunction) 28,268 X 284 
a 149,319 u 96,288 
o (map composition) 129,304 U (distributed union) 97,289 

....... (sequence concatenation) !39,315 ""(map merge) 120,304 
8 (delta) 33,268 - I - (type union) 61,281 
-\- (set difference) 96,288 _ x _ (product type) 63,281 
4 (domain restriction) 113,303 0 72,284 
~ (domain subtraction) 112,302 _ :- (typing) 40 

51,277 _ -J (map inverse) 130,304 
= (on maps) 115,303 ~ (turnstile) 14 
= (on sets) 93,288 add 86,287 
3 (exists) 41,91,273,287 addm 108,302 
3! (exists unique) 56,91,279,289 card 95,288 
F (power set) 97,289 cone 142,315 
> 82,284 cons 133,314 
;;, 83,284 dom 110,302 

"" (equivalence) 32,268 elems 138,315 

=> (implication) 32,268 false 32,268 
E 86,287 fst 64,281 
() 96,288 hd 136,314 
n (distributed intersection) 97,289 if ~ then _ else _ 57,280 
t (iota) 57,92,279,288 inds 145,315 

< 82,285 len 137,315 



352 INDEX 

merge 130,304 succ 72.284 
nil 66,282 II 136,314 
rng 111,302 token 263 
snd 64,282 true 24,267 



Rule Index 

{ }-fonn, 86, 93, 96, Ill, 205, 206, 246, 
287 

{}-is-empty, 87, 88, 90, 94, 116,287 
{ }-is-subset, 93, 206, 290 
{ >-> }-dom-disjoint, 305 
{>->}-form, 108, 108, 205, 206, 302 
{ >-> }-fonn-bimap, 206, 305 
{ ,_. }-is-1-1, 305 
{a }-comp, 290 
{a}-fonn, 96, 98, 99, 119,203,290 
{a>-> b)-form, 214,305 
[ ]-fonn, 134, 135, 137, 142, 143, 314 
[]-form-queue, 235, 235 
[-1---cons, 146 
[a]4-[ ], 316 
[a)-form, 137, 146, 316 
V-V-comm, 49,274 
VV-E, 59, 274 
VV-I, 59, 274 
VV-subs, 274 
V-A-dist-contract, 274 
V -A-dist-expand, 274 
V -8-v-inherit, 274 
v-o-r- •• 274 
V-¢'>-E-left-8, 274 
V-¢'>-E-right-8, 274 
V-¢'>-subs, 274 
V-¢'>-subs-8, 274 
V-=>-subs, 275 
V-v-dist-contract, 275 
V-v-1-left, 275 
V-v-1-right, 275 
V -> V -set, 104, 290 
v -> 3, 50, 275 
V->, -3-deM, 47, 275 
V-E,46,46,47,48,58,59,68, 144,275 
V-E-set, 91,214, 228,290 
V-fix, 48, 275 
V -form, 153, 319 
V-fonn-set, 153, 154, !55, 204, 319 

V-I, 45, 45, 46, 48, 58, 59, 68, 103, 144, 
275 

V-I-set, 91, 94, 95, 206, 213-216, 227, 
228,290 

V-set-> V, 104,290 
V -subs, 46, 275 
1\-v-dist-contract, 268 
A-v-dist-expand, 268 
A-ass-left, 269 
A-ass-right, 269 
A-comm, 31, 32, 269 
A-E-left, 28, 28, 30--32, 188, 232,269 
A-B-right, 28, 28, 29, 31, 32, 188, 232, 

238,269 
A-form, 153, 155, 204, 205, 319 
A-form-sqt, 153, 156, 157, 204, 319 
A-[, 28, 28, 30, 32, 45, 64, 65, 81, 188, 

206,269 
A-subs-left, 269 
A-subs-right, 269 
9-> o, 149, 150--152, 319 
9-eval, 150, !50, 319 
o-defn-{ ,_.}, 304 
o-defn-addm, 304 
o-form,305 
--ass, 316 
--defn-[J-left, 139, 140, 141, 315 
--defn-[ ]-right, 139, 316 
--defn-cons-left, 139, 141,315 
--form, 139, 141-143, 146, 316 
8-{ ,_. ), 305 
o-[ ]-I, 315 
8-VV-I, 275 
o-V-inherit,51, 275 
8-V-inherit-set, 290 
a-A-inherit, 269 
8-A-inherit-sqt, 269 
0-=-l, 34, 51, 56, 57, 63, 63, 81, 82, 215, 

247,263,277 
o-=-1-gen, 63, 281 



j)4 

o-3-inherit, SO, 82, 92, 273 
o-3-inherit-set, 92, 104, 290 
0·>, 82,285 
o-<o>-inherit, 269 
8-=>-inherit, 269 
o-=>·inherit-sqt, 269 
o-e,34,90,94, 100,153,290 
o-e -dom-addm-1, 117, 305 
o-e -dom-1, 305 
o-e -rng-1, 306 
o-n-empty, 290 
o-<, 285 
o-5 -5, 103,285 
o- ~-inherit, 269 
04-1,277 
o-v-1-left, 152, 269 
o-v-1-right, 152, 270 
o-v-inherit, 37, 270 
o-v-inherit-sqt, 37, 37,270 
o-s;, 291 
0 -> ~. 149, 150, 152, 153,319 
o-compatible, 121, 306 
o-E, 34, 34, 35, 36, 57, 144, 150-152, 

215,270 
8-empty, 291 
8-1, 34, 34, 50, 270 
8-1-~, 34, 34, 50, 152,270 
8-is-1-1, 125, 126,306 
8-is- 1 · 1-pred, 306 
~-defn-{ >-> ), ll3, 303 
~-defn-addm-e, 113, 303 
~-defn-addm-~, 113, 303 
~-form, 113, 306 
~-defn-{ }, 306 
~-defn-{ >-> ), ll2, 302 
~-defn-{a }-~, 118, 306 
~-defn-addm- {a)-=, 306 
~-defn-addm-{a)-;o, 118,306 
~-defn-addm-e, 113, 117, 302 
~-defn-addm-~, 113, 118, 303 
~-form, 113, 119, 306 
=-{ }-1, 94, 291 
=-V-¢, 277 
=-> <o>, 150, 319 
=-cases, 88, 90, 215, 216, 278 
=-extend(a), 65, 65, 278 
=-extend(b), 278 
=-form, 205, 319 

.KVLC.ll'tUCA 

=-map-defn, 115, 303 
=-self-!, 51, 52, 65, 81, 83, 173,258,277 
=-seq-defn-cons, 136, 315 
=-seq+-defn, 136, 315 
=-set-defn, 93, 93, 94, 247, 288 
=-set-E, 291 
=-set-I-s;, 291 
=-set-1-sqt, 95, 98, 99, 291 
=-subs-left(a), 53, 53, 119, 141,232,238, 

278 
=-subs-left(b), 51, 53, 81, 122, 138, 140-

142, 146, 206, 211, 214, 216, 
227,228,235,237,277 

=-subs-right(a), 51, 52, 55, 65, 150, 238, 
277 

=-subs-right(b), 53, 53, 55, 79,225,231, 
235,278 

=-symm(a), 52, 278 
=-symm(b), 52, 278 
=-trans(a), 53, 210, 278 
=-trans(b), 141, 278 
=-trans( c), 122, 278 
=-trans-left(a), 278 
=-trans-left(b), 278 
=-trans-left(c), 278 
=-trans-right( a), 278 
=-trans-right(b), 55, 278 
=-trans-right( c), 122, 278 
=-type-inherit-left, 52, 52, 55, 78, 111, 

137,138,142,143,174,203, 
204,225,231,250,279 

=-type-inherit-right, 52, 53, 66, 279 
3\f-subs, 59,275 
3-V-> V-3, 49, 49,275 
3-A-dist-expand, 59, 276 
3-A·E·left, 59, 276 
3-A·E-right, 59, 276 
3-3-comm, 49, 50, 276 
33-E, 49, 50, 276 
33-1, 49, 50, 276 
33-subs, 49, 276 
3-<o>-subs,S9,276 
3-=>-subs, 44, 276 
3-v-dist-contract, 276 
3-v-dist-expand, 59, 276 
3 -> 3-set, 104, 291 
3 ->~-V-deM,47,47,276 
3-E, 42, 43, 44, 46, 48, 49, 58, 59, 232, 



«ULb lNUbX 

235,273 
3-E-set, 9I, 227, 228, 287 
3-fonn, 3I9 
3-fonn-set, 3I9 
3-I, 42, 43, 44, 46-50, 58, 59, I 72, 205, 

206,232,235,273 
3-I-1pt, 213-216,276 
3-I-set, 91, 288 
3-set ---. 3, I04, 29I 
3-split, 48, 48, 50, 276 
3-subs, 42, 42, 276 
3! \i .... \i 3, 279 
3!-=-1, 208, 209, 279 
3!-v-dist-expand, 279 
3! ---.3,279 
3!-E, 56, 279 
3!-E-set, 91, 291 
3!-form, 320 
3!-form-set, 320 
3!-1, 56,280 
3!-1-set, 9I, 226-228, 291 
3!-same, 57, 280 
3!-subs, 280 
>-irreftexive, 82, 285 
>~total-order, 84, 285 
>-trans, 82, 285 
?: -0-l, 285 
?:-succ-I, 285 
¢'>-~-1, 37,270 
., .... =, 150, 150, 151, 3I9 
<o>-comm, 270 
<o>-E-full, 270 
<o>-E-left, 270 
<o>-E-1eft-8, ISO, 270 
<o>-E-left- ~, 270 
<o>-E-right, 95, 270 
<o>-E-right-8, ISO, 270 
<o>-E-right- ~, 270 
<o>-form, 153, 320 
<o>-1, 151,270 
¢'>-1-A, 270 
<o>-1-A- ~, 271 
¢'>-!-~, 151,271 
.,;-self-!, 150, 271 
.,;-subs-left, I58, 320 
.,;-subs-right, I58, 320 
=>-A-1eft-E, 271 
=>--, -conseq, 271 

=>-conseq, 271 
=>-contrp, 37, 27I 

355 

=>-E-left, 33, 33, 44, 80, 81, 84, 116, 
117, 124, 125, 134, 135, 143, 
144, 148,232,27I 

=>-E-right, 33, 33, 27I 
=>-form, I53, 320 
:o-fom1-sqt, I53, 158, 320 
=>-I, 34, 34, 81, 117, 124, 125, 144,228, 

271 
=>-1-left-vac, 33, 33, 35, 124, 125, 135, 

27I 
=>-1-right-vac, 33, 33, 35, 81, 117, 135, 

271 
=>-self-!, 27I 
=>-trans, 271 
E-{a)-E, 98, 99, 29I 
E -{a )-1, 291 
e-{a)-1-=, 98, 99,291 
E -ro-defn, 96, 96 
E -ro-E, 29I 
e -ro-E-left, 29I 
E -ro-E-right, 292 
e -ro-1, 292 
e -n-ctefn, 97, 289 
e-e-contr,214,292 
E-V-e,87,87,89,292 
E -u-defn, 96, 96, 288 
E-U-E, 98, 99,292 
E-U-1, 292 
E -u-1-left, 98, 99,292 
e -u-1-right, 98, 99, 292 
e -u-ctefn, 97, 289 
e-u-E, 292 
E -u-1, 292 
e -add-defn, 87, 89, 287 
E-add-E,89,99,292 
E -add-I, 292 
e-add-1-elem, 89, 292 
E -add-l-e1em-=, 89, 89, 90, 99, 292 
e -add-1-set, 89, 89, 90, 99, 292 
e ~cases, 292 
E -diff-defn, 96, 96, 288 
E -diff-E, 293 
e -diff-E-left, 293 
E -diff-E-right, 293 
E -diff-1, 293 
e -dom-addm-E, ll7, 306 



356 

e -dom-addm-E-e, 117, 306 
e -dom-addm-1-elem, 306 
e -dom-addm-1-map, 306 
e -dom-map-comp-1-f(a), 131, 307 
e -elems-cons-E, 315 
e-fonn,153, 157,320 
e -inds-E, 315 
e -interval-defn, 103, 293 
e-knownAircraft-E, 227,227 
e -pow-defn, 97, 289 
e -rng-addm-1-elem, 307 
e -rng-t-{a >--> b }-1-elem, 307 
e -rng-addm-1-map, 307 
E-rng-E, 130,227,307 
e -rng-1-3, 307 
e -rng-1-at, 211, 227, 307 
e -rng-1-at-bimap, 307 
e -set-comp-defn, 101, 101, 105, 289 
E -set-comp-E, 293 
e -set-comp-1, 293 
e -set-comp-1-f(a), 293 
e-those-defn, 100,101, 103,105,293 
e -those-E, 293 
e -those-!, 293 
n-{a }-defn-e, 294 
n-{a}-empty-E, 294 
n-u-dist-left, 294 
n-u-dist-right, 294 
n-u-empty-E-left, 294 
n-u-empty-E-right, 294 
n-u-left-empty-1, 294 
n-u-right-empty-1, 294 
n-add-1-e, 294 
n-add-1-e, 294 
n-ass, 294 
n-comm, 294 
n-comp, 294 
n-defn-{ }-left, 294 
n-defn-{ }-right, 294 
n-form, 96, 96, 288 
n-1-righH;;, 294 
n-self, 295 
n-form, 97' 289 
t-defn, 280 
t-fonn, 57,279 
!-form-set, 92, 226, 288 
!-I, 57,279 
t-1-set, 92, 288 

<~ #, 285 
<-form, 320 
<-irreftexive, 285 
<-total-order, 285 
<-trans, 285 
,; - ,;-defn, 83, 284 
,;-form, 204, 320 
,;-succ-defn, 285 
N-cases, 286 
N-indn, 73, 76-81, 284 
N1-supertype, 82, 286 
N1-l, 286 
N1-indn, 84, 286 
N1-E, 82, 286 
~ -V -> 3-deM, 47, 277 
~-V-E, 277 
~-V-1, 277 
~-V-1-~, 47,277 

RULblNVbX 

~ -A-E-deM, 32, 32, 47, 271 
~ -A-E-left, 271 
~ -A-E-right, 272 
~-A-I-deM, 32, 32, 272 
~ -A-1-left, 272 
~-A-l-right, 272 
..., -A-1-sqt, 272 
~-3-> V-deM, 47,277 
~ -3-E, 42, 46, 273 
~ -3-E-set, 91, 288 
~-3-1, 42, 45, 47, 50 
~-3-1-set, 91, 288 
~-3!-E, 280 
~-3!-1, 57,280 
~ -3!-1-vac, 280 
~-=>-E, 272 
~ -=>-E-left, 272 
~-=>-E-right, 272 
~-=>-1, 272 
~-e-dom-{>--> }-I, 116, 117,307 
~ -e -rng-{ >--> }-1, 206, 307 
~-<-0, 286 
~~-E,24,24,30-32,46,47,268 

~~-1, 24, 24, 30, 31, 45,268 
~ 4-self-1, 135, 279 
~ -v-E-deM, 32, 272 
~-v-E-left, 25, 25, 30, 31,268 
~-v-E-right, 25, 25, 30, 31,268 
~-v-1, 25, 25, 30, 31, 152,268 
~ -v-1-deM, 32, 272 



t<UL.b11VUbA. 

~ -add-!::;-1-elem, 295 
~ -add-!::;-1-set, 295 
~-false-!, !51, 272 
~-form, 151,320 
-.-is-activated-£, 210 
;e-comm, 279 
;<-form, 320 
e-{a}-1,295 
e-n-E, 295 
" -n-I -left, 295 
e -n-1-right, 295 
e-v-E, 295 
"'-v-E-Ieft, 295 
e-v-E-right, 295 
e -v-1, 295 
e -add-E, 295 
e -add-E-left, 89, 295 
e -add-E-right, 89, 295 
e -add-!, 89, 89, 90, 295 
e -diff-E, 295 
"'-diff-1-left, 218, 296 
"'-diff-1-right, 296 
"-dom-4-1-{a }, 118, 119, 307 
e -dom-addm-E, 307 
"-dom-addm-E-Ieft, 307 
e -dom-addm-E-right, 307 
"-dom-inv-1, 308 
e -elems-[]-1, 316 
e-form, 320 
e -inds-[ ]-1, 316 
e -rng-addm-E, 308 
e -rng-addm-E-left, 308 
e -mg-addm-E-right, 308 
"-mg-inv-1, 308 
e -subset-!, 210, 214, 296 
"-those-E, 296 
e -those-!, 296 
v-A-dist-contract, 272 
v-A-dist-expand, 272 
v-ass-left, 37, 63, 272 
v-ass-right, 37, 63, 272 
v-comm, 26, 27, 28, 30, 273 
v-E, 24, 24, 26, 27, 30, 31, 34, 36, 37, 

42,59,62,88,90,99,267 
v-E-left-~, 26, 26, 27, 28, 30, 31, 33, 

273 
v-E-right-~, 27, 27, 27, 28, 30, 31, 33, 

273 

v-form, 152, 152, 320 
v-fonn-sqt, 152, 152, 224, 320 

357 

v-I-left, 24, 24, 26, 30, 33, 34, 88-90, 
151,268 

v-I-right, 24, 24, 26, 30, 33, 34, 89, 90, 
151,268 

v-subs-left, 273 
v-subs-right, 273 
j·-ass, U9, 121, 122, 308 
t -comm, 122, 122, 308 
t-defn-{ >-->}-left, 120, 121,308 
t-defn- {>-->}-right, 119, 121, 303 
t-defn-addm, l19, 303 
t-form, 121, 122, 214, 308 
t-preserves-dom-[;;, 214,308 
t-self, 119, 308 
+ = 0-E, 79, 286 
+-ass, 79, 286 
+-comm, 79, 286 
+-defn-0-left, 77, 78, 79, 81,284 
+-defn-0-Ieft-rev, 141 
+-defn-0-right, 78, 79, 286 
+-defn-succ-left, 77, 78, 79, 79, 81, 284 
+-defn-succ-left-comm, 141, 286 
+-defn-succ-right, 78, 79, 286 
+-form, 76, 76, 77, 81, 172, 174, 250, 

286 
~{a }-not-empty-E, 308 
~-defn-{ >--> }, 114, 303 
~-defn-{a }-e, 210, 308 
~-defn-addm-e, U4, 303 
~defn-addm-e, 114, 303 
Horm, 114, 203,308 
~-defn-{ >-->}, 114, 303 
~-defn-addm-e, 114, 303 
~-defn-addm-e, 114, 303 
Horm, 114, 308 
c -defn, 93, 288 
[;;-add-add-!, 296 
!:;;-defn,92,92,93-95,288 
!::;-dom-t-1, 309 
!:;;-E,204,2!1,214,218,296 
[;;-form, 204, 320 
[;;-!, 94, 94, 95, 296 
[;;-self, 92, 296 
!:;;-trans, 204, 296 
x-ass, 286 
x-comm, 286 



358 

x-defn-0-left, 284 
x-defn-succ-left, 284 
x-form, 287 
v-n-dist-left, 296 
v-n-dist-right, 296 
v-add-left-1, 296 
v-add-right-1, 296 
v-ass, 297 
v-comm, 98, 98, 297 
v-comp, 297 
v-defn-{ }-left, 297 
v-defn-{ }-left-rev, 297 
v-defn-{ }-right, 297 
v-defn- { }-right-rev, 297 
v-defn-those, 297 
v-form, 96, 96, 98, 99, 288 
v-I-left-~:;, 297 
u of subsets is subset, 297 
v-self, 297 
u-v-dist, 297 
U-comp, 297 
U-defn-{ }, 104, 297 
U-defn-{a},297 
U-defn-add, 297 
U-form, 97, 289 
'"Y-ass, 122, 122, 309 
<Y-comm, 122, 309 
<Y-defn, 121, 122, 304 
<Y-defn-{>--> }-left, 121, 121,309 
<Y-defn-{ >-->)-right, 121, 121, 309 
<Y-form, 309 
l-ass-left, 62, 62, 63, 281 
l-ass-right, 62, 63, 281 
1-comm, 281 
1-E, 62, 62, 63, 281 
1-1-left, 61, 63, 281 
l-1-right, 61, 63, 66 
0 < n(Nt). 287 
0-form, 72, 73, 78, 79, 81, 137, 140, 141, 

284 
Activate-lemma, 219 
add-~:;-E-left, 298 
add-~:;-E-right, 298 
add-k;-1, 298 
add ---7 v, 97, 98, 298 
add-abs, 298 
add-add-form, 298 
add-comm, 118, 298 

RULE INDEX 

add-comp, 298 
add-diff-k;-1, 298 
AddFlight-dom-obl, 236, 237, 238 
AddFlight-dom-obl-simp, 238 
AddFlight-res-obl, 236 
AddF/ight-res-obl-simp, 238 
add-form, 86, 96, 98, 99, Ill, 287 
add-reduction, 298 
addm-t-defn-e, 309 
addm-t-defn-e, 309 
addm-t-defn-compatible, 309 
addm-t-ident, 309 
addm ---7 t, 309 
addm-comm, 109, 118, 302 
addm-defn-~-{a )-=, 118, 119, 130,309 
addm-extract, 309 
addm-form, 108, 119, 125, 302 
addm-form-bimap, 309 
addm-overwrite,109, 117,302 
aircraft-controller-unique, 202 
aircraft-in-unique-space, 202 
aircraft-in-unique-spacet, 226, 226 
airspace-controller-unique, 202 
appl-defn-hd, 143, 144, 145, 315 
appl-defn-tl, 143, 144, 145, 315 
appl-form, 143, 143, 316 
AssigMap-forrn-t, 239 
AssigMap-supertype, 227 
assigs1-forrn-mk, 238 
at-defn-t-{a >-->b)-=, 216,309 
at-defn-t-{a >--> b)4, 214,310 
at-defn-t-addm-=, 310 
at-defn-t-left, 310 
at-defn-t-right, 310 
at-defn-addm-=, 115, 303 
at-defn-addm-;<, 115, 303 
at-defn-map-comp,127, 304 
at-defn-map-comp-f(a), 128, 310 
at-defn-map-comp-left-set, 129, 310 
at-forta, 115, 204, 209, 211, 214, 310 
at-form-bimap, 157, 310 
bimap-1-1, 208,310 
bimap-1-1-~. 310 
bimap-E, 123, 124, 125, 310 
bimap-form, 123, 125, 310 
bimap-indn, 124, 148, 310 
bimap-supertype,123, 124, 125,214,311 
bimap-unique-mg-elem, 311 



bui/dQueue-defn0, 234 
buildQueue-defn, 236 
bui/dQueue-formo, 234 
buildQueue-form, 234, 236 
buildQueue-sat, 234 
capacity-form, 205, 206 
capaciry-form-mk, 218,232,237 
card=0-1, 210, 298 
card;<{}-E, 298 
card-defn-{ ), 95, 95,288 
card-defn-v, 298 
card-defn-add, 95, 95, 95, 288 
card-form, 95, 203,298 
Commission-sat, 213, 242 
compatible-t-l-left, 121, 121, 122,311 
compatible-t-1-right, 121, 121, 122,311 
compatible-addm-E-left-~, 311 
compatible-addm-E-right, 311 
compatible-comm, 120, 121, 311 
compatible-defn, 120, 303 
compatible-defn- {~}-left, 120, 121, 311 
compatible-defn-{ ~}-right, 120, 121,311 
compatible-E, 120, 311 
compatible-!, 120, 311 
conc-defn-[ ], 143, 143, 316 
conc-defn-cons, 143, 143, 316 
cone-form, 142, 143, 316 
condition-false, 58, 138, 142,280 
condition-true, 57, 172, 280 
condition-true-ident, 137, 142,280 
cons->'-[], 134, 138, 142, 316 
cons -> ~, 316 
cons-form, 134, 141, 316 
cons-form-queue, 235, 235 
cons-form-seq+, 134, 314 
cons-!, 136, 316 
contradiction, 24, 27, 30, 31, 57, 130, 

206,268 
control-form, 208, 210, 211 
control-fonn-mk, 218, 232, 237 
controllerOf-defno, 201 
controllerOf-defn, 211 
controllerOj-form, 202, 208 
controllerOf-onduty, 202 
controllerOJ-wff, 211 
Decommission-lemma, 217 
diff-=- { }-defn, 298 
diff-n-deM, 298 

diff-n-1, 299 
diff-!;-1, 299 
diff-v-deM, 299 
diff-add-1-E, 299 
diff-add-1-~, 299 
diff-comp, 299 
diff-defn-{ }-left, 299 
diff-defn-{ }-right, 299 
diff-fonn, 96, 97, 288 
diff-1-!;, 299 
diff-self, 299 
dom-{ ~ )-!, 210, 311 
dom-~-defn, 311 
dom->'-{ }-E, 311 

359 

dom-addm-n-E-left, 312 
dom-addm-n-E-right, 312 
dom-defn-{~},110, Ill, 116,206,302 
dom-defn-t, 312 
dom-defn-addm,110, 110,110,111,112, 

302 
dom-defn-addm-E, 112,312 
dom-defn-inv, 131, 312 
dom-defn-map-comp, 127,304 
dom-defn-map-comp-left-set, 129, 312 
dom-extrLnc-defn, 230, 238, 239 
dom-finite=>mg-finite, 131, 312 
dom-fonn, 110, 203, 204, 214, 218, 238, 

312 
dom-fonn-AssigMap, 226, 227, 238 
dom-fonn-bimap, 155, 157, 204,210, 

211, 214, 218, 312 
elems -> those, 316 
elems-defn-[ ], 235, 317 
elems-defn-~, 139, 317 
elems-defn-~-cons, 317 
elems-defn-cons, 317 
elems-defn-cons-{a ), 317 
e1ems-defn-cons-queue, 235, 235 
e1ems-fonn, 138, 317 
elems-form-seq+, 157, 317 
extrAss-extrLoc-inverse, 234, 234 
extrAss-fonn, 233 
extrLoc-t, 239,239 
extrLoc-defno, 229 
extrLoc-fonn, 229, 229 
false-contr, 273 
false-E, 273 
false-form, 151, 321 



ouv 

finite-set-image, 102, 299 
fst-defn, 64, 281 
fst-form, 64, 65, 66, 281 
hd-defn-[a], 137, 317 
hd-defn-cons, 136, 142, 224, 225, 314 
hd-form, 136, 317 
inds-defn-[], 317 
inds-form, 145,317 
inhabited=>non-empty, 299 
init-ATC-form, 200, 205 
init-ATC-sat, 200 
init-ATC,-adeq, 240 
initial-interval-form, 299 
initial-interval-1-form, 145, 299 
interval-diff-defn, 299 
interval-finite, 103, 103, 300 
interval-form, 103, 300 
interval-empty, 299 
inv-AssigMap-form, 224 
inv-AssigMap-l, 227 
inv-ATC-E-clausel, 214 
inv-ATC-E-clause2, 214 
inv-ATC-E-clause3, 214 
inv-ATC-E-c1ause4, 214 
inv-ATC-form, 200 
inv-ATC-l, 200 
inv-ATC-I -clause I, 211 
inv-ATC-l-clause3, 210, 211 
inv-ATC-l-mk-clause3, 218 
inv-ATC-1-separate, 206, 214, 216 
inv-ATC,-I-mk-clause3, 238 
inv-defn, 130, 304 
inv-form, 131, 312 
is-1-1-t-{a >-> b )-E-e -mg, 312 
is-1-1-addm-E-.,;-map, 125,126,312 
is-1-1-addm-E-.,; -rng, 125, 126, 130, 313 
is-1-1-defn, 123, 304 
is-1-1-E, 124,313 
is-1-1-1, 123,313 
is~activated-defn0, 201 
is-activated-£, 207, 208 
is-activated-form, 201 
is-known-defn0 , 201 
is-known-£, 209, 211 
is-known-form, 201 
ITE-form, 60, 280 
ITE-form-sqt, 58, 60, 280 
knownAircraft-t-1emma, 239 

len-defn-[ ], 140, 141, 317 
len-defn-[a], 317 
1en-defn--, 139, 139, 141, 317 
len-defn-cons, 141,317 
len-defn-seq+, 317 
len-form, 137, 138, 141, 145,318 
len-form-seq+, 318 
location-form, 209-211 
location-form-mk, 218, 232, 237, 238 
locOf-t -=, 239 
locOf -t-.,, 239 
/ocOf-form, 226, 226 
/ocOj-wff, 226, 226 
map-1-extend-dom-left, 313 
map-1-extend-dom-right, 313 
map-1-extend-rng-left, 313 
map-1-extend-rng-right, 313 
map-comp-defn-set, 128, 305 
map-comp-form, 127, 304 
map-comp-form-left, 313 
map-comp-form-left-set, 129, 313 
map-comp-form-set-ident, 128, 313 
map-comp-left-defn-add, 239, 313 
map-indn, 109, 111, 116, 117, 124, 125, 

302 
merge-defn-{ >-> }, 304 
merge-defn-add, 304 
merge-form, 314 
mk-ATC-defn, 200, 231 
mk-ATC-form, 199, 206, 230 
mk-ATC,-form, 232 
nil-form, 66, 282 
no-double-assignment, 202 
non-empty-set-inhabited, 104, 300 
nonRptng-defn0, 224, 224, 225 
nonRptng-form, 224, 225 
nonRptng-wff, 224 
not activated => empty, 202 
numOjAircraft-defno, 200, 203 
numOfAircraft-defn, 203, 204, 210 
num0fAircraft-e1m-defn, 230, 238, 239 
numOfAircraft-form, 200,203,204,210, 

238 
numOJAircraft-wff, 203, 203, 204 
ondury-defn, 200 
onduty-form, 200, 205, 206, 211 
ondury-form-mk, 232, 237 
opt-1-extend-left, 282 



opt-1-extend-right, 69, 69, 282 
opt-E, 67, 282 
opt-E-i"-nil, 67, 282 
opt-!, 66, 282 
pair-=-merge, 64, 282 
pair-=-split, 64, 64, 282 
pair-1-extend-left, 66, 282 
pair-1-extend-right, 66, 282 
pair-form, 64, 66, 282 
pair-defn, 64, 66, 281 
post-bui/dQueue-form, 234 
post-Commission-form, 212 
pow-comp, 300 
pow-form, 97, 289 
pre-Commission-form, 212 
pre-control/erOJ-form, 201 
pre-locOf-form, 226 
ResetCapacity-sat, 217 
retr1-adeq, 229, 231 
retr1-adeq-assigs, 231, 232-234 
retr1-adeq-mk, 231,231 
retr1-defno, 229,231 
retr1-defn, 230, 230 
retr1-defn-mk, 230, 231, 232 
retrt-E-capacity, 237, 237 
retr1-E-contro/, 237,237 
retrt-E-/ocation, 237, 237 
retr1-E-onduty, 237, 237 
retr1-form, 229 
retr1-wff, 230, 230, 231 
rng-defn, 314 
rng-defn-{ >-> }, 111, 206, 302 
rng-defn-addm, 119, 314 
rng-defn-addm-e, 114,114, 116, 118,314 
rng-defn-addm-e, Ill, 111,117-119,302 
rng-defn-inv, 130, 314 
rng-defn-map-comp, 129,314 
mg-extrLoc-lemma, 230 
rng-form, 112, 204, 206, 210, 211, 214, 

218, 314 
mg-form-AssigMap, 227 
rng-form-bimap, 155, 157,204, 211,314 
seq-~-indn, 146, 146, 318 
seq-1-extend-left, 318 
seq-1-extend-right, 318 
seq-indn, 134, 134, 135, 137-139, 142-

144,146-148,172,224,225,314 
seq-sep, 148, 148,318 

361 

seq+-E, 135, 318 
seq+-hn~134, 136,147,318 
seq+-I, 318 
seq+-indn, 148, 318 
seq+-supertype, 135,318 
sequent-E-basic, 68, 68, 283 
sequent-E-basic-2, 70, 283 
sequent-E-gen, 67, 68, 283 
sequent-E-gen-2, 70, 146, 283 
set-1-extend-left, 300 
set-1-extend-right, 300 
set-comp-defn-set, 101, 289 
set-comp-form, 101, 101, !05, 289 
set-comp-form-set-ident, 102, 300 
set-comp-form-set-ident-global, 102, 

300 
set-comp-rewrite, 300 
set-image-form, 300 
set-indn, 87, 87, 88, 90, 109, 235, 287 
snd-defn, 64, 282 
snd-form, 64, 65, 66, 282 
subtype-1-extend-left, 283 
subtype-1-extend-right, 69, 283 
subtype-E, 67, 67, 68, 163, 283 
subtype-!, 67, 67, 68, 163, 283 
subtype-subs, 67, 283 
succ- >-inherit, 84, 287 
succ" 0, 73, 80, 81,284 
succ-I-!, 75,284 
succ-I-!->', 287 
succ-form, 72, 73, 78, 81, 138, 141,284 
supertype,67,67,68, 163,283 
those-=-form, 300 
those-e -form, 300 
those-v-form, 300 
those-> { }, 301 
those-form, 100, 101, 103, 105,301 
those-form-e_.,, 301 
those-form-rewrite, 301 
those-!, 301 
those-rewrite, 301 
those-weaken, 301 
tl-defn-[a], 137, 318 
tl-defn-cons, 136, 138, 142, 225, 314 
tl-form, 136, 318 
true-form, 151, 321 
true-!, 24, 24, 30, !51, 267 
n=O <=> n,;(), 287 



362 

n, < n, 1- 0 < nt, 287 
n < succ(n), 287 
s, \ (St \s,) = St ns,, 302 
St (") (St \ S2) = St \ S2, 301 
s, n (s, \ s,) = { }, 301 
(s1 n s2 ) ~ s2 , 301 
(s, n s2 ) ~ St, 301 
s, ~ (s, us,), 301 
s, ~ (s, us,), 301 
S! U (St \ S2) = St. 302 
St u (s, \ s!) = St us,, 302 

.t<.ULblNUjj.A 


