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Abstract. Different dialects in the VDM-family have executable subsets. Sim-
ulated execution of a specification, either by an interpreter or a code generator,
is an effective technique not only to produce production source code but also to
validate the specification. This paper describes requirements on code generators
for earlier stages of formal specification, a phase called exploratory modeling,
and introduces an implementation in ViennaTalk. Performance, readability and
liveness of the generated code are also evaluated.

1 Introduction

Formal methods are mostly used to precisely state the desired properties of a system
to be engineered. In general, such formal specifications are not necessarily executable
[6]. However, in order to communicate the insight of a formal specification it may make
sense to express it in an executable subset in order to be able to animate its conceptual
behaviour to stakeholders with little understanding of the formal notation that has been
used [5, 1]. Interpretation of subsets of the different VDM dialects have been enabled
for many years [12, 13]. Different tools exist for the different VDM dialects and here
the most widely used ones are Overture [11] and VDMTools [10]. However, there is a
balance between the time spent on making the specification executable and the insight
gained so the time used to enable exploratory modelling needs to be properly balanced
[3]. Different means of enabling executability exist so in this paper pros and cons for
alternative solutions are considered. The primary focus in early exploration involves
interpretation of executable subsets of VDM models but this also involves integration
with legacy or graphical user interface code [4, 14]. Another alternative here is using
code generation [7]. Target languages of code generators include those compiled into
native binary code, those compiled into bytecode that runs on virtual machines and
those executed by interpreters.

The rest of this paper is organised as follows: Section 2 provides a brief overview
of exploratory modelling in general and ViennaTalk specifically. Afterwards, Section 3
provides a brief introduction to the code generation functionality from both Overture
and VDMTools, followed by general requirements for code generation functionality
seen from an explorative modelling perspective. Then Section 4 presents the core results
in this paper indicating how the code generation features in the ViennaTalk solution can
support the code generation requirements for exploratory modelling. Section 5 then

48



Automated VDM-SL to Smalltalk Code Generators for Exploratory Modeling 49

    

requirements and
pre-formal specification

driving
tasks

exploration

refinement

domain
knowledge

fragmented

comprehensive

confidence
of the model

tentative

validated

formal specification

exploratory
modeling

rigorous
modeling

design and
implementation

Fig. 1. Exploratory modeling in the different development phases

evaluates and compares the different code generators and their performance. Finally,
Section 6 concludes the paper and points out future work possibilities.

2 Exploratory Modeling and ViennaTalk

There is no complete formal specification at the beginning of any development. Formal
methods engineers often have limited and fragmented domain knowledge at the ear-
lier stages of the specification phase. The formal methods engineers learn the nature of
the target domain by writing tentative models of the system to be developed. The for-
mal methods engineers’ confidence in the model increases as the model is validated by
stakeholders. The model gains in maturity and rigour when it is passed to the design and
implementation phase. We call the earlier stages of the formal modeling “exploratory
modeling”[15, 17, 16] (see Figure 1). The exploratory modeling involves learning ef-
forts and validation by domain experts to find an appropriate abstraction of the problem
domain. The exploratory modeling is followed by the rigorous modeling to make the
model precise, concise and assured.

ViennaTalk [16] is a meta-IDE to develop tools for exploratory modeling in VDM-
SL built on top of Pharo Smalltalk [2]. Figure 2 shows the configuration of ViennaTalk
and external libraries of the Pharo system.

ViennaTalk is equipped with packages for interpreter wrappers called ViennaTalk-
Engine, runtime support packages for VDM-SL such as ViennaTalk-Type and ViennaTalk-
Value, parsers and accompanying source code analysis tools packaged as ViennaTalk-
Parsers and the animation manager called VDMC. Three prototyping tools are built and
bundled in ViennaTalk.
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One of these is VDMBrowser [17], which has syntax highlighting, pretty printer and
a live animation interface named Workspace. VDMBrowser can be used as a develop-
ment tool, and also can be embedded into other development tools. The second is a UI
prototyping environment named Lively Walk-Through [17], which enables VDM-SL
engineers and UI designers to build a prototype with a VDM-SL executable specifica-
tion and a prototypical user interface. VDM-SL engineers can confirm that the VDM-SL
specification provides enough functionality to drive the user interface. UI designers can
confirm that the UI is designed with appropriate assumptions on the system’s functional
model. The VDM-SL engineers and the UI designers can let domain experts, who may
not have an engineering background, “test-drive” the UI prototype in order to validate
the VDM-SL specification and the UI design. The third package is a Web API prototyp-
ing environment called Webly Walk-Through [17]. Operations and functions exported
in a VDM-SL specification can be published as a Web API so that client programs can
be accessed via HTTP. The fourth is VDMPad, a lightweight WebIDE for VDM-SL.

These tools are designed to support exploratory modeling in VDM-SL. A common
feature among those tools is live animation that gives flexibility required by exploratory
modeling. Liveness of a programming language is an ability to modify a running pro-
gram without aborting the program and to continue the execution of the program with
the modified code. Live animation on ViennaTalk enables the user to evaluate expres-
sions as well as to modify the specification while the animation is running, so that the
user can more deeply understand what’s going on in the animation and try more alterna-
tive definitions. Flexibility is the most important aspect of support tools for exploratory
modeling.

3 Requirements on Code Generators for Exploratory Modeling

VDMTools is equipped with C++ and Java source code generators. The code genera-
tors of VDMTools are reliable and widely applied in industry. The Overture tool also
provides a Java generator [8] and also recently, a C generator.

Those generators are developed for the final stage of the formal specification phase:
to generate production code. Java, C and C++ require development tools independent
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of the VDM development environment. Use of those external tools may disturb the user
because the user has to come in and out of the Integrated Development Environment
(IDE) although IDEs are designed to host all activities in an integrated manner. Code
generators for exploratory modeling should address those issues in order to support the
user whose mental focus is not on the production of code, but on the modeling task.

In this section, requirements on code generators for exploratory modeling are listed.
The requirements R1-a through R1-d are requirements specific to code generators. The
requirements R1, R2 and R3 are general requirements on support tools for exploratory
modeling.

R1 Direct interaction with smaller models.

Interaction between the user and the model at hand plays an important role in ex-
ploratory modeling. Direct interaction is required to support tools for exploratory mod-
eling in general. In case of code generators, this general requirement can be broken
down to specific requirements R1-a through R1-d.

R1-a Automatic compilation and execution of the generated source code.

Because the user’s focus is on modeling, requiring the user to modify the generated
source code should be avoided.

R1-b Compilation and execution of the generated source code must take place in the
same IDE as the exploratory modeling.

IDEs are designed to support the user in an integrated manner. Switching between
IDEs may diminish benefits of IDEs.

R1-c Few limitations on the specification language for automated code generation.

Exploratory modeling is carried out at earlier stages of the specification phase. The
model is therefore expected to be abstract. The code generator for exploratory modeling
should be able to generate executable code from as abstract a specification as possible.

R1-d Debug capability must be enabled.

Because the source model is still tentative and not sufficiently rigorous, it may be
error prone. In order to debug the generated code, it is desirable that the generated code
can be debugged in the way that the hand-written source code in the target language
is usually debugged. The generated code should be human readable and can be easily
modified.

R2 Understandable by stakeholders with no formal methods background.

In exploratory modeling, it is useful to ask domain experts and get feedback from the
model. Code generators also should be suitable for communicating with stakeholders
with no programming background. It is therefore desirable that GUI construction tools
or visualisation techniques are available in the target language.
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R3 Permissive checking by choice.

Exploratory modeling handles tentative, immature, often inaccurate models. Reject-
ing all suspicious models is not always productive. It is desirable that a code generator
provides options to turn on or off static type checking, runtime type checking and run-
time assertion testing.

R4 Continuous analysis.

Generated code can be unit tested efficiently. It is desirable that the generated code
can be continuously tested by test frameworks. This requirement mainly affects choices
of target languages.

4 Code Generators in ViennaTalk

ViennaTalk can automatically generate 3 kinds of Smalltalk programs, namely classes,
objects of anonymous classes and scripts. The user of ViennaTalk can use 3 source code
generators in three different ways: in the VDMBrowser, in the Live translator and by
embedding VDM-SL expressions/statements inside Smalltalk code.

4.1 Design Rationale

We listed the design requirements based on the requirements on code generators for
exploratory modeling R1-a through R4. Using the Smalltalk environment automatically
satisfies requirements R1-a and R1-b. Requirement R2 and R4 can not be realised by
code generators alone, but depend on other development tools. However, it should be
noted that the generated code should be modifiable to combine with such development
tools. The resulting design rationales are listed below.

– The code generator should cover as large a subset of VDM-SL as possible. This is
requirement R1-c.

– The code generator should be able to turn on and off the runtime checking of types
and assertions. This is requirement R3.

– The generated code should be as much like hand-written source code as possible.
This is for requirements R1-d, R2 and R4.

– The generated code should be traceable to the original VDM-SL source. This is for
requirements R1-d, R2 and R4.

– The generated code uses the standard Smalltalk library and extends its classes
if necessary. New classes to implement VDM values should be minimised. This
comes from requirement R1-d.

There are essential differences in the type systems between VDM-SL and Smalltalk
and this makes naive mappings from VDM-SL types to Smalltalk classes infeasible. In
VDM-SL, one value may belong to many types, i.e. 1 is a value of nat, nat1, int,
int inv x == x < 10, [nat], nat | char and so on. In Smalltalk, one object must
have only one class. It is therefore not possible to define a one-to-one mapping between
VDM-SL types and Smalltalk classes. A more flexible mapping between type objects
and value objects is needed. Thus we made the following design decision.
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Fig. 3. Parsers and AST visitors to generate Smalltalk artefacts from VDM-SL source

– Types are not classes. A VDM type is an instance independent of classes of its
values.

4.2 Implementation

Figure 3 illustrates the classes associated with parsing and code generation. ViennaTalk
uses PetitParser[9] to implement a parser for VDM-SL. PetitParser is a combinatory
parser library where a parser object can be synthesised from one or more parser ob-
jects. The framework provided by PetitParser allows to separate grammar definitions
and corresponding outputs. ViennaVDMGrammar defines the grammar of VDM-SL
which only accepts valid VDM-SL sources but does not produce any output. Sub-
classes of ViennaVDMGrammar defines outputs corresponding to each grammatical
construct defined by the ViennaVDMGrammar class. ViennaVDMGrammar has a sub-
class named VDMParser which outputs an abstract syntax tree from the given VDM-SL
source. The ViennaVDM2Smalltalk class is an abstract class that traverses over a given
abstract syntax tree and produces Smalltalk code in the form that each of its three con-
crete classes defines.

The ViennaVDM2SmalltalkClass class generates one document class that repre-
sents the whole specification and module classes each of which implements the corre-
sponding VDM-SL module. If the specification is flat, only one class for the specifica-
tion will be generated. The users of ViennaTalk does not have to operate any external
development tools. The generated classes can be browsed using Smalltalk’s conven-
tional class browsers, and are already compiled. The ViennaVDM2SmalltalkClass class
is designed to be used in the transition from a VDM-SL specification to a Smalltalk im-
plementation.

The ViennaVDM2SmalltalkObject class generates the same classes as those gener-
ated by the ViennaVDM2SmalltalkClasses class except that the anonymous classes do



54 Tomohiro Oda, Keijiro Araki, and Peter Gorm Larsen

not have global names. Because these anonymous classes do not appear in the global
name space, the ViennaVDM2SmalltalkObject class leaves less footprints than the Vi-
ennaVDM2SmalltalkClass. The ViennaVDM2SmalltalkObject is designed to test spec-
ifications faster than using interpreters, either in automated test frameworks or in ex-
ploratory testing by domain experts.

The ViennaVDM2SmalltalkScript class generates a piece of Smalltalk script for a
flat specification or one with a single module. Multi-moduled specifications are not sup-
ported. State invariants are not automatically checked in the generated program code.
The ViennaVDM2SmalltalkScript is designed to test specifications by evaluating ex-
pressions on it or to embed a VDM expression in Smalltalk program code.

4.3 Runtime library

To generate Smalltalk code, runtime support for the generated code is required to fill
the difference between VDM-SL and Smalltalk. One difference to fill is the type sys-
tem. Smalltalk is a class-based and dynamically typed OO programming language and
VDM-SL is a statically typed language without the OO features. One language con-
struct in Smalltalk that possibly corresponds to the type in VDM-SL is the class. How-
ever, a naive mapping between types in VDM-SL and classes in Smalltalk is not feasible
because every Smalltalk object belongs to a class while a value in VDM-SL may belong
to multiple types.

ViennaTalk provides type objects that represent VDM-SL’s types independent of
classes of objects for VDM-SL values. As the types are objects in ViennaTalk, it is
possible to send a message to those objects, to compose new type objects from existing
type objects, and query membership of a value object. The summary of mapping of
VDM-SL types to the type object in Smalltalk and the class of its value objects is
shown in Table 1. The composite type and the token type have no corresponding classes
in the Smalltalk standard library, and therefore ViennaComposite and ViennaToken are
defined accordingly.

Some operations and language features of VDM-SL are not present in Smalltalk.
The ViennaComposition class supports function compositions and the ViennaIteration
implements iteration of the function composition. Pattern matching is not supported in
the standard Smalltalk language. ViennaRuntimeUtils provides functionalities to simu-
late the pattern matching mechanisms.

4.4 Pattern matching

Pattern matching is a powerful language construct of VDM-SL which many program-
ming languages do not support. Although pattern matching can be replaced with if
expressions, it is not desirable to sacrifice abstraction in the exploratory phase of the
specification. Supporting pattern matching is strongly required to satisfy the require-
ment R1-c. The Smalltalk language does not employ the pattern matching mechanism
by itself, but ViennaTalk implements, as a library, pattern matching mechanisms for
various types of patterns that appear in VDM-SL.

The ViennaRuntimeUtils class defines methods for all kinds of patterns in VDM-
SL, each of which returns all possible bindings of pattern identifiers as a dictionary
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Table 1. Mappings among types in VDM-SL, type objects and classes of value objects

VDM-SL type type object the class of value objects
nat ViennaType nat Integer
nat1 ViennaType nat1 Integer
int ViennaType int Integer
real ViennaType real Float
bool ViennaType bool Boolean
<quote> ViennaType quote: #quote Symbol
[t] t optional t’s class or UndefinedObject
t1 * t2 t1 * t2 Array
t1 | t2 t1 | t2 t1’s or t2’s class
set of t t set Set
set1 of t t set1 Set
seq of t t seq OrderedCollection
seq1 of t t seq1 OrderedCollection
map t1 to t2 t1 mapTo: t2 Dictionary
inmap t1 to t2 t1 inmapTo: t2 Dictionary
t1 -> t2 t1 -> t2 BlockClosure
t1 +> t2 t1 +> t2 BlockClosure
token ViennaType token ViennaToken
compose t of ViennaType compose: ’t’ of: ViennaComposite

f1 : t1 {f1 . false . t1.
f2 :- t2 {f2 . true . t2}.
t3 end {nil . false . t3}}

t inv pattern ==expr t inv: [:v | expr] t’s class

object. The code generator emits a piece of Smalltalk code that first gets the possible
bindings by the ViennaRuntimeUtils class and then assigns the corresponding value to
each pattern variable.

4.5 Preconditions and postconditions

In VDM-SL, preconditions and/or postconditions can be attached to explicit definitions
of functions and operations. In exploratory modeling, runtime checking of precondi-
tions and postconditions should be possible by the user’s choice because the specifica-
tion at hand may be error prone and needs runtime checking to confirm that the gener-
ated code is running as expected. Quoting preconditions and postconditions is necessary
because evaluating a quoted precondition or postcondition with various kinds of param-
eters is an effective approach to understanding specification.

ViennaTalk’s code generators support both runtime checking of preconditions and
postconditions and quoting them. ViennaTalk automatically produces quoted precondi-
tions with the pre prefix and quoted postconditions with the post prefix. ViennaTalk
generates, from a function or an operation, a method to check the precondition and the
postcondition that is separate from the method that implements the function’s or the
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operation’s body if the runtime assertion checking option is turned on. When a pre-
condition or postcondition is violated, an exception will be signalled accordingly. This
helps the user programmer to remove the precondition and postcondition check easily. It
is also possible for the user programmer to add extra precondition and/or postcondition
as required by implementation details such as Smalltalk’s native libraries.

4.6 Type invariants

Type invariants are also important assertions in VDM-SL. It does not only cause a
runtime error when a value of the type does not satisfy the invariant, but also affects the
return values of the is family of expressions.

In ViennaTalk, type invariants are implemented as testing block closures held by
type objects. A type object responds to the includes: message, which is common
vocabulary among Smalltalk’s collection objects for the membership query. For ex-
ample, ViennaType nat inv: [:x | x < 10] produces the type object for
nat inv x === x < 10, and (ViennaType nat inv: [:x | x < 10])
includes: 100 evaluates to false. ViennaTalk’s code generators emit a includes:
message for the is family of expressions and also for the runtime type checking.

4.7 State invariants

State invariants are another language construct of VDM-SL which is not supported
in many programming languages. Along with preconditions and postconditions, state
invariants must be checked at runtime when animating a specification to validate it.

ViennaTalk uses the Slot [18] mechanism of Pharo to implement state invariants. A
Slot is a user-defined model of variables which defines (1) what bytecode should be gen-
erated for an assignment to a variable, (2) what bytecode should be generated for a read
access to the variable, (3) what should be performed when the variable is assigned to,
and (4) what should be performed when the variable is read. The ViennaStateSlot
class is a slot for instance variables with invariants. When a variable declared as a Vi-
ennaStateSlot is assigned a value, the inv message is sent to the object that holds the
variable. The default definition of the inv method is to do nothing, and ViennaTalk’s
code generator overrides the inv method to check the invariant. If the invariant is not
satisfied, an exception is signalled. The state invariant is also quoted as a function.

4.8 Runtime type checking

Runtime type checking brings a subtle issue to Smalltalk code generators because
Smalltalk is a dynamically typed language and has no static types on variables, ar-
guments and return values. It is not common in Smalltalk programs to test the type of
a value. Generating runtime checking code may be considered against the design ra-
tionale to generate code that is as natural as possible. On the other hand, runtime type
checking is a strong technique in animating VDM-SL specifications for validation.

ViennaTalk addresses this issue by providing an option to enable or disable genera-
tion of runtime type checking. When the runtime type checking is turned on, the code
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isPrime := [ :x |
[ :_forall |

_forall allSatisfy:
[ :y | (y <= 1 or: [ x = y ]) or: [ x \\ y ˜= 0 ] ] ]

value: ViennaType nat1 ]

Fig. 4. Smalltalk code automatically generated from a specification of prime numbers with a type
bind in a set comprehension

isPrime := [ :x |
[ :_forall |

_forall allSatisfy:
[ :y | (y <= 1 or: [ x = y ]) or: [ x \\ y ˜= 0 ] ] ]

value: (ViennaType nat1 runtimeSet: (1 to: 256)) ]

Fig. 5. Smalltalk code modified to use {1,...,256} as approximation of the nat1 type

generator inserts a test using the includes: message to check if the value object be-
longs to the specified type object. If the runtime type checking fails, an exception will
be signalled.

4.9 Type binds

Type binds can be used in set comprehensions, sequence comprehensions or map com-
prehensions, but they are not always executable. To make a comprehension expression
with a type bind executable, one can rewrite the comprehension to use a set bind with
a proper definition of the set. The resulting specification is executable but sacrifices
abstraction. It is desirable to enable executability without modifying the abstract speci-
fication to satisfy the requirement R1-c.

ViennaTalk provides the runtimeSetmechanism that enables the generated Small-
talk code to approximate a type object with infinite members by a finite collection ob-
ject. For example, the code shown in Figure 4 is generated from the VDM-SL expres-
sion
isPrime := lambda x:nat & forall y:nat1 & y <= 1 or x = y or
x mod y <> 0, but is not executable due to the set comprehension with a type
bind. Figure 5 is a modified version that the nat1 type is given a runtime set (1 to:
256) for approximation at the last line. The isPrime in Figure 5 is executable, i.e.
isPrime value: 23 evaluates to true. This approximation on the last line is ap-
parently dangerous in rigorous analysis, but can be useful, with caution, to animate
specifications with set binds in the exploratory modeling.

5 Evaluation

5.1 Benchmark: Prime numbers

The benchmark used to evaluate code generators is to generate a list of prime generators
from natural numbers from 2 up to 10000 shown in Figure 6. The algorithm is similar to
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�
state Eratosthenes of

space : seq of nat1
primes : seq of nat1

init s == s = mk_Eratosthenes([], [])
end
operations

setup : nat1 ==> ()
setup(x) ==

(space := [k | k in set {2, ..., x}];
primes := []);

next : () ==> [nat1]
next() ==

if space = [] then
return nil

else let x = hd space in
(primes := primes ˆ [x];
sieve(x);
return x);

sieve : nat1 ==> ()
sieve(x) ==

space := [space(i)
| i in set inds space
& space(i) mod x <> 0];

prime10000 : () ==> seq of nat1
prime10000() ==

(setup(10000);
while next() <> nil do skip;
return primes);
� �

Fig. 6. Benchmark specification: enumerate prime numbers less than 10000

the sieve of Eratosthenes but slightly different. The original Sieve of Eratosthenes writes
to the same array of numbers. The algorithm used for benchmarking, on the other hand,
generates a new list of the remaining numbers so that the benchmark will reflect the
processing speed of comprehensions which often appears in practical specifications. As
a result, the benchmark results mainly reflect efficiency of sequence comprehension, if
expression, sequence operations and integer arithmetics.

The benchmark was run by interpreters and code generators of VDMTools, the
Overture tool and ViennaTalk. They were run on Ubuntu 16.04 on a virtual machine
with i5-3210M CPU @ 2.50GHz x 2 cores and 4GB main memory. Table 2 summarises
the result.

As expected the code generators run faster than the interpreters. Amongst the code
generators, ViennaTalk’s code generators took the best and the worst positions. The
script generated by ViennaTalk was slow because the script has to capture the program
context (stack frame) to perform the return statements. In many languages, capturing
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Table 2. Benchmarking result

Tool Interpreter or Language Pattern Time (ms) Time
Code generator matching (Overture CG=1)

VDMTools Interpreter C++ Yes 22,044 79.6
VDMJ Interpreter Java Yes 5,281 19.1
ViennaTalk Code generator Smalltalk(Script) Yes 957 3.45
VDMTools Code generator C++ Yes 337 1.22
Overture tool Code generator Java No 277 1.00
ViennaTalk Code generator Smalltalk(Class) Yes 202 0.729
ViennaTalk Code generator Smalltalk(Object) Yes 193 0.700
gcc version 5.4.0, Java HotSpot(TM) 64-Bit Server VM(build 25.101-b13), Pharo 4 with 32-bit Cog VM.

public static void sieve(final Number x) {
VDMSeq seqCompResult_2 = SeqUtil.seq();
VDMSet set_2 = SeqUtil.inds(Eratosthenes.space);
for (Iterator iterator_2 = set_2.iterator(); iterator_2.hasNext();) {

Number i = ((Number) iterator_2.next());

if (!(Utils.equals(Utils.mod(
((Number) Utils.get(Eratosthenes.space, i)).longValue(),
x.longValue()), 0L))) {

seqCompResult_2.add(((Number) Utils.get(Eratosthenes.space, i)));
}

}
Eratosthenes.space = Utils.copy(seqCompResult_2);

}

Fig. 7. Java code for the sieve operation generated by the Overture tool

the current programming context is not allowed to user programmers. The Smalltalk
environment has a mechanism to capture the program context but it is costly. The classes
and objects generated by ViennaTalk do not need to capture the program context, but
can simply return from the method context. The cost to capture the program context
is the only difference between script and classes/objects. The difference between the
generated classes and the generated objects is that the classes of the generated objects
are anonymous. The generated methods and internal structures are the same.

In general, it is known that native binary code compiled from C++ source runs
faster than Java code on Java VM, and Java code on Java VM runs faster than Smalltalk
code on Smalltalk VM. However, in this benchmark, the Smalltalk objects and classes
generated by ViennaTalk ran faster than Java and C++ code generated by the Overture
tool and VDMTools in that order. This simple benchmark is not sufficient to investigate
why Smalltalk code generated by ViennaTalk outperforms Java code and C++ code
generated from the same VDM-SL source. One possible reason is the container objects
for VDM-SL values.

Figure 7 shows the Java source code generated by the Overture tool, and Figure 8 is
the Smalltalk code generated by ViennaTalk. The Java code includes getter calls such as
longValue() inside the iterator for loop. The Smalltalk code uses only functionali-
ties provided by the standard Smalltalk library, and does not use any container objects
for VDM-SL values. Smalltalk is a flexible language in which the programmer can de-
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_sieve_: x
space := ((1 to: space size)

select: [ :i | (space value: i) \\ x ˜= 0 ]
thenCollect: [ :i | space value: i ])

asOrderedCollection

Fig. 8. Smalltalk code for the sieve operation generated by ViennaTalk

_prime10000
self setup: 10000.
[ self next value ˜= nil ] whileTrue: [ ].
ˆ primes

prime10000: _op
| _oldState RESULT |
RESULT := self _prime10000.
(ViennaType nat1 seq includes: RESULT)

ifFalse: [ ViennaRuntimeTypeError singal ].
ˆ RESULT

Fig. 9. Generated Smalltalk code with runtime type checking

fine new methods on the kernel classes such as Object, Collection and Integer.
For example, ViennaTalk extends the Collection class to define a power method
to compute the power set of finite sets instead of providing VDMSequence class and
defining a power method on it. On the other hand, the code generators of VDMTools
and the Overture tool use container classes for VDM values such as the Number class
because the target language, namely C++ and Java, do not allow user programmers
to modify primitive data types and built-in classes. ViennaTalk takes advantage of the
flexibility of the Smalltalk language to avoid overhead of container objects.

5.2 Code Readability

Figure 9 shows the generated Smalltalk code from the prime10000 operation. Two
methods are defined in the code: prime10000 and prime10000:. The operation
body and runtime type checking is separated into different methods.

The generated code is readable and also traceable. The prime10000 method
looks natural as if it is hand-written, and pretty printed according to the Smalltalk stan-
dard coding convention. We can also see a clear correspondence between the prime10000
method and the prime10000 operation in Figure 6. The prime10000: method im-
plements runtime type checking on the return value. The return value from prime10000
is assigned to the temporary variable called RESULT, and it is tested if it is a value of
the sequence of nat1. In Smalltalk, runtime type checking is not usually performed
because Smalltalk employs a dynamic type system. ViennaTalk’s code generator gives
options to turn the runtime type checking and runtime assertion tests. The user can sim-
ply turn off runtime type checking generation of the code generator, or let the code
generator emit runtime type checking code and confirm the generated code runs cor-
rectly. It is also easy to remove the runtime type checking because the type checking
code is clearly separated from the code of the operation body.
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5.3 Liveness

The Overture tool and VDMTools require external compilers and build tools while Vi-
ennaTalk does not. After the Overture tool or VDMTools generates a source code, the
user need to build a native binary file or a Jar archive, and run it. The execution is
performed as a separate process.

This difference does not only affect the burden of the user, but also makes a big
difference in liveness. The generation and compilation of the prime number example
in Figure 6 do not take a second on ViennaTalk. When objects of generated classes are
running, the user can overwrite the specification, and re-generate Smalltalk classes. The
running objects keep running as instance objects of the newly generated classes. With
the liveness of the ViennaTalk’s code generator, the user has more flexibility and lower
barrier against trial and error in exploration.

6 Conclusion and Future Work

The automated code generators from VDM-SL specifications to Smalltalk are imple-
mented based on requirements on exploratory modeling and design rationale. The per-
formance and readability of the generated code are satisfactory. However, we can still
improve usability of the code generator by developing debugging tools on the gen-
erated code. It is desirable that the specification can be edited and debugged during
execution of the generated Smalltalk bytecode. We believe it is possible to implement
such a specification-level bytecode debugger using the Smalltalk’s flexible frameworks
for live programming.
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