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Abstract. Having a well-founded connection between different mod-
elling tools such that they form a chain from requirements over formal
descriptions for the constituent elements towards final realisations of
Cyber-Physical Systems (CPSs) is essential. In this tool paper we ex-
plain how this can be achieved with a collection of baseline tools that
are adapted to fit into such an open tool chain. The semantic foundations
for the different notations used for CPSs are based on different parts of
mathematics and the heterogeneous nature of these gives challenges that
are solved in the suggested tool chain.
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1 Introduction

The development of Cyber-Physical Systems (CPSs) is challenging. The close
interaction between a computer-controlled cyber part and a physical part makes
it hard to make the kinds of abstractions normally made from a computer science
perspective. The INTO-CPS project targets the production of a well-founded
chain of tools for the model-based development of CPSs [8]. In this paper we
present an overview of the tool chain, its semantic foundations, baseline tools
that are adapted to fit this setting and its envisaged work flow.

In the INTO-CPS project this new technology is being tested with industrial
case studies in four different application domains (automotive, railways, agricul-
ture and building automation). In addition smaller academic sized pilot studies
are carried out in order to easier introduce the different features of the technol-
ogy. In this paper we make use of a small line-following robot pilot study that
originally was introduced in one of the predecessor projects called DESTECS5

[4].
Throughout the paper, images are used to illustrate the features being de-

scribed. Where these images show model features they are taken from the models

5 http://destecs.org/.
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Fig. 1: The Line Follower Robot rendered from within 20-sim

of a Line Follower Robot that is being used as a pilot study in the INTO-CPS
project. The robot, shown in fig. 1, comprises two infrared reflectivity sensors
to detect a line, a body housing two servo motors connected to wheels for loco-
motion and a micro controller that reads the sensor values and produces signals
that set the speed and direction of the servo motors.

The rest of the paper starts off with a short introduction to the Functional
Mockup Interface (FMI) since this is essentially the glue that enables coupling
between mathematical models produced in different notations and tools in Sec-
tion 2. This is followed by a brief description of the semantic foundation of FMI
which is using Unifying Theories of Programming (UTP) behind the scene in
Section 3. Afterwards, an overview of the baseline tools that are adapted to fit
an FMI context are presented in Section 4. Then Section 5 introduces a new
application that serves as a front-end for end-users (typically domain experts)
who need not be experts in any of the models used in the description of a CPS.
The intended use of the tool chain is then presented in Section 6, followed by an
outline of its design space exploration support in Section 7. Finally, Sections 9
and 10 complete the paper with information about related work, concluding
remarks and future work respectively.

2 The Functional Mock-up Interface

When developing a CPS it can be useful to create models of the constituent
components, that make up the system. These models can represent both cyber
and physical parts and be described in different forms based on their nature
such as Discrete Event (DE) and Continuous-Time (CT). These constituent
models can then be used in a collaborative simulation (co-simulation), which
couples the models created in different formalisms. Thereby the entire system
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can be simulated by simulating the constituent models and exchange data as
the common simulated time is progressing. In principle many systems can be
approximated with a DE or a CT approach alone. However, in order to accurately
describe CPSs where the physical dynamics are non-linear such approximations
would get far away from reality.

The Functional Mock-up Interface (FMI) defines a standardised interface to
be used in computer simulations to develop complex CPSs. Such co-simulations
are typically organised with a master-slave architecture, where a Master Algo-
rithm (MA) is used to orchestrate a simulation. The simulation often consists of
three phases: Initialisation, simulation, and tear down. In the initialisation phase
the master retrieves the properties of the slaves and establishes communication
links. Next, in the simulation phase the MA resolves the dependencies between
slaves and invokes each slave to progress for a given time step. The slaves might
reject the step and a rollback of one or more slaves can be necessary, and the
simulation can be attempted again with a different step size. Lastly the outputs
of the slaves are retrieved and the process repeats until a predetermined end
time is reached. The final phase is freeing the slaves, releasing resources, and
similar.

As mentioned above the models are often created in different formalisms and
therefore require different specialised simulation tools [2]. This leads to develop-
ing solutions for specific systems instead of a general applicable approach, which
is expensive. FMI was created to solve these challenges, as it is a tool-independent
standard for co-simulation [3]. The standard describes C interfaces, that a slave
must partly or fully implement in order to participate in a co-simulation using
FMI. Such a slave is then referred to as a Functional Mock-up Unit (FMU). This
makes it possible for the FMUs to contain their own solvers while still adhering
to FMI, and provides an opportunity for developing generalised solutions6.

3 Semantic Foundation

The complete semantic foundation of the INTO-CPS tool chain consists of indi-
vidual semantics for the fundamental underlying activities: modelling of CT and
DE systems, and co-simulation in accordance with the FMI standard. Semantics
for models of CT systems is provided by a UTP formalisation of a new hybrid re-
lational calculus with differential algebraic equations [11]. Semantics for models
of DE systems is provided by a novel UTP semantics of object orientation [10],
the newest semantic foundation for the Vienna Development Method’s real-time
dialect (VDM-RT), which also forms the semantic basis for a C code generator.
The semantics of FMI co-simulation is captured in a new formalisation [6] of the
FMI standard in Circus, a re-casting of earlier work [6] expressed in the process
algebra of Communicating Sequential Processes (CSP) [14].

The Circus semantics of FMI captures formally the description of co-simulation
given in the standard. A generic MA is modelled which determines how FMUs

6 See [5] for more information regarding MAs for co-simulation using FMI.
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are orchestrated in terms of passage of time, requests to take a simulation step
and exchange of simulation results. A model of a valid FMU is also defined. These
elements combine into a full semantics of co-simulation according to the FMI
standard used inside the Co-simulation Orchestration Engine (COE). The key
advantage of this formalisation is that it can be checked for desirable properties,
such as freedom from livelock and deadlock, using the CSP refinement checker
called FDR3 [13]. Indeed this has already revealed that the example master algo-
rithm given in the standard makes an implicit assumption that FMUs do not fail
in a way that is fatal to the overall co-simulation. When models of specific puta-
tive master algorithms and FMUs are also constructed as Circus processes, FDR3
can be used to check that the resulting specific co-simulation model is a refine-
ment of the FMI co-simulation semantics. Expressing a particular co-simulation
using the semantics can also be used to formally verify the result of executing
the same co-simulation using the COE. An ongoing study is investigating how
to perform this verification process [23].

4 Baseline Tools

The INTO-CPS tool chain has been defined on top of five existing baseline
tools. Each tool, described in the following paragraphs, is extended to fit the
FMI context defined into the INTO-CPS project.

Modelio7 is an open-source modelling environment supporting industry stan-
dards like UML and SysML. This is used for high-level system architecture
modelling, Modelio extends the SysML language [21] and proposes extensions for
CPS modelling. The extended system modelling language allows, in particular,
requirement, FMI interface, and FMU connections definition which can be used
for generation of FMI model descriptions and configurations of co-simulations.

Overture8 supports modelling and analysis in the design of discrete, typically,
computer-based systems using VDM-RT dialect including both time and distri-
bution of functionality on different computational nodes [24]. VDM-RT is based
upon the object-oriented paradigm where a model is comprised of one or more
objects. An object is an instance of a class whereas a class gives a definition of
zero or more instance variables and operations an object will contain. Instance
variables define the identifiers and types of the data stored within an object,
while operations define the behaviours of the object.

The 20-sim9 tool can represent continuous time models using connected
blocks [16]. Bond graphs may implement such blocks [12]. Bond graphs offer
a domain-independent description of a physical system’s dynamics, realised as a
directed graph. The vertices of these graphs are idealised descriptions of phys-
ical phenomena, with their edges (bonds) describing energy exchange between
vertices. Blocks may have input and output ports that allow data to be passed
between them. The energy exchanged in 20-sim is the product of effort and flow,

7 http://www.modelio.org/
8 http://overturetool.org/
9 http://www.20sim.com/



Integrated Tool Chain for Model-Based Design of Cyber-Physical Systems 67

Fig. 2: The current INTO-CPS Tool Chain

which map to different concepts in different domains, for example voltage and
current in the electrical domain.

OpenModelica10 is an open-source Modelica-based modelling and simulation
environment. Modelica is an object-oriented language for modelling of large,
complex, and heterogeneous physical systems [16]. Modelica models are de-
scribed by schematics, also called object diagrams, which consist of connected
components. Components are connected by ports and are defined by sub compo-
nents or a textual description in the Modelica language. Overture, 20-sim, and
OpenModelica are used for specifying FMI behaviour in their own formalism.
These three tools are extended in order to consume the FMI interface defini-
tion defined previously, and, after modelled the FMI implementation, provide a
FMU, conform to given FMI, for co-simulation.

RT-Tester11 is a test automation tool for automatic test generation, test exe-
cution, and real-time test evaluation [18]. The RT-Tester Model Based Test Case
and Test Data Generator supports model-based testing: automated generation
of test cases, test data, and test procedures from SysML models. In our context,
tests are generated as FMUs which are executed against the system under test.

The different baseline tools are combined together forming a chain of tools as
illustrated in fig. 2. The core of the integration here is ensured by the INTO-CPS
Application introduced below.

5 The INTO-CPS Application

In the INTO-CPS Project, the INTO-CPS application12 has two primary re-
sponsibilities: defining an INTO-CPS project structure, and providing a UI for
tool chain features that are not exposed via baseline tools such as co-simulation.

10 https://www.openmodelica.org/
11 http://www.verified.de/products/rt-tester/
12 Available from https://github.com/into-cps/intocps-ui.
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Fig. 3: The project browser.

The INTO-CPS application has two regions – the project browser on the
left side, and the main view in the center. The project browser shows the main
artefacts in an INTO-CPS project. The browser is shown, with an example
project open, in fig. 3. The main view changes dynamically, based on the activity
currently being carried out by the user.

An INTO-CPS project is based on two kinds of entities: models that are pro-
duced by the baseline tools, and artefacts that are derived from models such as
the results from co-simulations. The INTO-CPS application primarily interacts
with model-derived artefacts. A particularly relevant model-derived artefact is
the Multi-Model, that is produced from a combination of a connection mapping
and loaded FMUs and submitted to the Co-simulation Orchestration Engine
(COE) for co-simulation. The INTO-CPS application is capable of creating and
editing Multi-Models, as shown in fig. 4.

From a Multi-Model, the application is capable of generating and then editing
a Co-Simulation configuration which originally can be generated from SysML,
as shown in fig. 5. This enables application users to set various relevant co-
simulation parameters such as start and end time, the desired co-simulation
algorithm, and which variables to livestream.

It is possible for the user to download the COE (and other INTO-CPS tools)
and execute it from within the INTO-CPS application, as shown in fig. 6. In
this way the newest released version of all the tools in the overall tool chain can
always be obtained with minimum effort.

If variables have been selected for live-streaming in the co-simulation configu-
ration, the application will plot these variables dynamically as they are streamed
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Fig. 4: Multi-Model editor.

by the COE – see fig. 7. Afterwards, the plot can be explored visually and ex-
ported as an image. The full results of the co-simulation are also exported as a
Comma-Separated Values (CSV) file, for further analysis after a co-simulation.

In terms of end users, the primary intent behind the application is to enable
stakeholders that are not experts in any of the INTO-CPS modelling notations
to still be able to execute and evaluate co-simulations. This is possible in the
current version of the application via the co-simulation configuration view and
plotting and export of results. Additional views are in development for tool chain
features such as traceability analysis and model checking. These views are kept
isolated from each other in order to allow different kinds of experts to focus on
their own tasks without being distracted by UI elements that are not relevant
to them. The only view that is always visible is the project browser, since it
provides navigation between views by selecting the relevant files.

6 Work flow

The INTO-CPS tool chain includes many tools and spans from requirements
through to simulation results and generated source code and as such it may not
be immediately apparent how to begin using it. Figure 8 shows and outline of
the suggested workflow along with two entry points into the tool chain. The first
entry point is to use SysML to model and decompose the system into tractable
blocks for later analysis and development. Here the modelling is guided by an
INTO-CPS SysML profile that defines suitable diagrams and model elements.
This entry point requires knowledge about SysML. The second entry point is
used when an organisation has pre-existing FMU models, here a subset of the
SysML profile diagrams may be used to compose the FMUs into a model of the
whole system. These approaches are not mutually exclusive and it is possible to
compose system models from a mix of new and pre-existing models.
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Fig. 5: Co-Simulation configuration editor.

Using either the first or the second entry point both lead to the definition of
a set of FMU and their connections. A specific diagram has been defined inside
the INTO-CPS-SysML profile for this purpose. This is called a Connections
Diagram (CD) and it represents the instantiation (possibly multiple) of FMUs
and the connection existing between FMU inputs and outputs. Here fig. 9 has
been extracted from the line following robot case study of the INTO-CPS project.
Four instances (named controller, body, sensor1, and sensor2) of three FMUs
(named Controller, Body, and Sensor) are connected.

From this diagram, a simulation configuration can be generated and then
enhanced using the INTO-CPS Application.

The resulting multi-models may be analysed using a range of techniques.
Simulation is the primary technique, where single designs or sets of designs,
automatically generated by Design Space Exploration (DSE) scripts (see Sec-
tion 7), are measured according to objectives and the values of these objectives
are used to rank designs in partial order of preference. Formal analysis tech-
niques are also supported in the form of Linear Temporal Logic (LTL) formulas
acting as witnesses that temporal constraints on simulations are respected and
the model checking of state machine representations of suitably abstracted CT
and DE models [19].

As development proceeds further confidence may be gained by performing
software in the loop (SiL) and hardware in the loop (HiL) simulation. Here
the open nature of FMI and the COE allows selected model components to
be replaced by their realised counterparts that then take part in simulations.
Cyber components may be based upon source code automatically generated
from DE models while CT models are replaced by physical components, such
that simulation results may be validated.

To help manage the complexity of CPS development including many mod-
elling artefacts, the tool chain includes support for tracking model provenance
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(a) Download Manager. (b) COE Execution.

Fig. 6: Downloading and launching the COE.

Fig. 7: Plotting of livestream variables.

and requirements traceability using a complimentary set of PROV [17] and
OSLC [1] relations. Using the tools to capture these relations results in a graph
that records the provenance of the modelling artefacts along with links to the
related requirements. The resulting graph,of modelling and simulation activities
and artefacts may then be queried to support, for example, an impact analysis
exercise. A fragment of such a graph can be seen in FIgure 10.

7 Design Space Exploration

As an engineer proceeds with the design of a CPS they will likely be faced with
many options and design parameters that must be decided upon for the final CPS
to be produced. Here DSE support within INTO-CPS can be of assistance. This
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Fig. 8: Outline work flows for using the INTO-CPS tool chain

can be divided into three parts, support for analysing each simulation; support
for ranking of competing designs; and algorithms that automatically sweep over
ranges of parameter values.

The DSE scripts support both open and closed loop exploration of a design
space. The open loop, exhaustive algorithm, is simplest of all and it will result
in every combination of the design parameters being simulated. This results in
a complete coverage of the design space but it suffers from the space explosion
problem and so it only generally practical for small design spaces. The closed loop
algorithms, such as a genetic algorithm, use past simulation results to generate
new designs to be simulated with the goal of finding a set of optimal designs
without having to explore the entire design space.

In order to compare individual simulations we must have measures that char-
acterise their behaviour in some way, these we term the objective values. The
DSE scripts include built-in support to calculate a range of simple objectives
from the raw simulation data, for example finding the maximum value of some
variable of the simulation. It also allows the user to define their own objective
scripts to calculate measures that are specific to a model or its configuration.
Taking the line follow robot as an example, it uses two user defined objective
scripts, one to calculate the lap time round a track and another to calculate the
mean cross track error, which is a measure of how accurately the robot followed
the line.

Using these objective scripts to reduce the raw simulation results to a few
measures of performance allows the engineer to define a method ranking a set
of designs. The engineer may define which objective values are important for
the ranking of designs and whether higher or lower values are preferred for
each. Using this information the scripts are able to rank the results of all the
simulations that have been run using Pareto efficiency 13 to produce a non-
dominated set of results representing a range of trade-offs between the selected

13 A description of Pareto Efficiency may be found at https://en.wikipedia.org/

wiki/Pareto_efficiency
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Fig. 9: The connections diagram for the line-following robot

objectives. Here fig. 11 shows the result of varying controller parameters for the
line follower robot, using the lap time and mean cross track error as the means
to compare designs. Here the non-dominated set, which is the green bottom-
left most line, plots the results of the non-dominated set and therefore the best
designs according to these measures. The DSE functionality can also be invoked
from the INTO-CPS application where the graph is accompanied by a table
allowing the engineer to determine the design parameters that produced each of
these results.

8 Model Refinement and Implementation

The various optimization and verification mechanisms of the INTO-CPS tool
chain enable the development of CPS multi-models to high levels of maturity.
Once it is confirmed that the constituent models behave as expected in their en-
vironment, it is desirable to refine some of these to executable implementations.
This mostly applies to models of control software, but there are situations in
which executable implementations of models of continuous systems are desired
(for instance, real-time co-simulation against cost-prohibitive environments such
as large engines.) Modelica and 20-sim can generate such implementations.

With INTO-CPS, control software is discrete in nature, and is modelled in
VDM-RT using Overture. There exist two approaches to refinement of models
to executable implementations: formal stepwise refinement, and code generation.
Since there is currently no formally defined refinement strategy for VDM-RT,
Overture adopts the code generation approach. Overture’s C code generator
embodies a refinement strategy for VDM-RT that builds on the semantic foun-
dation due to Foster et al. described in Section 3. The code generator essentially
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Fig. 10: Traceability links around architecture modelling of the line follower robot

Fig. 11: Pareto plot of DSE results.

achieves an automated, one-step refinement directly to C. This refinement pro-
cess is therefore not formal, but the strategy implemented is thoroughly tested to
ensure that the resulting implementations conform to the aforementioned seman-
tics. Because the refinement step is fully automated, only an executable subset
of VDM-RT can be used for model construction. Naturally some underspecifi-
cation (or looseness), for example an arbitrary choice of value from a set, can
be accommodated. In contrast, “manufacturing behaviour” in accordance with
contract-based specifications is considered outside the remit of code generation
in the INTO-CPS context, and such constructs are not allowed in the executable
subset of the language.

As a proof of concept, Overture’s C code generator was used to generate an
implementation of a model of a simple on/off controller that maintains the level
of water in a tank between some specified limits. The core of the model is ex-
cerpted in Fig. 12. The implementation was compiled and executed on an Atmel
ATmega 1284P development board14. A potentiometer was used to manually
emulate the water level in the tank and an LED was used as feedback of the
status of the tank drain valve. This is likewise shown in Fig. 12. This example

14 A demonstration video can be found at https://youtu.be/Qgw5NAgv3pw.
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loop()==
cycles(2)
let level : real = levelSensor.getLevel()
in
(if( level >=

HardwareInterface‘maxlevel.getValue())
then valveActuator.setValve(open);
if( level <=

HardwareInterface‘minlevel.getValue())
then valveActuator.setValve(close);

); );

Fig. 12: Excerpt of water tank valve controller and hardware simulation.

deployment is typical of the final stages of the INTO-CPS workflow, and config-
uration of the hardware interface and periodic call to the control task was the
only necessary manual intervention.

This exercise revealed that the value semantics of VDM-RT is one of the
most problematic aspects of the language, as a näıve strategy results in imple-
mentations with very large memory footprints. For very resource-constrained
embedded platforms, very aggressive measures for reducing memory usage are
necessary. We have observed that, of all the language features, value semantics
must receive priority when designing these measures.

9 Related work

The INTO-CPS tool is related to the DESTECS and SPEEDS projects, which
both supports co-simulation with their own protocols and tools but they do not
make use of the FMI standard as in the INTO-CPS tools. The Ptolemy II [20]
is a single-tool simulation and modelling platform which can perform simulation
of heterogeneous models. The tool has the ability to import standalone FMUs,
leading to a high degree of model heterogeneity through a combination of native
domains and external FMUs. However, it is unclear at this time whether tool-
wrapper FMUs can be co-simulated. The iCyPhy project [9] focuses on the
semantics of component interoperation, but a simulation tool based on Ptolemy
II, FIDE [7], achieves co-simulation of FMUs.

The DANSE project models System of System (SoS) using block diagrams
and is able to export this as FMUs which can be simulated in their DESYRE
environment. The project developed its own specification language, the DANSE
language. In addition to simulation, the project also supports statistical model
checking and optimised simulation based on metrics of interest. Both are car-
ried out by reading information directly from DANSE specifications, since the
FMI standard does not include the required structural information. Of note is
the fact that the technology allows multiple levels of abstraction of any given
model component in a simulation. The connection between the two levels is made
stochastically. It is believed that allowing such multi-level abstraction makes sim-
ulations requiring high numbers of components more tractable while still yielding
accurate results. In terms of simulation support, the project supports both local
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simulation (termed “hosted simulation”), as well as distributed co-simulation, in
the sense of INTO-CPS. However, the project makes use of FMI only for hosted
simulation, where essentially only standalone FMUs are co-simulated on a single
host, whereas distributed co-simulation is achieved through the use of the US
Department Modeling and Simulation’s High-Level Architecture (HLA). Further
information is available from the project website, as all project deliverables are
publicly available [15].

The CosiMate project develops a co-simulation approach for heterogeneous
systems which is very similar to INTO-CPS. However, it allows the connection
of external simulation tools not only through FMI, but also through their native
control interfaces. Addition of a new simulation tool to a co-simulation scenario
is facilitated by an Eclipse-based interface construction environment. The co-
simulation platform supports variable time steps in the same way at the COE
from INTO-CPS.

The ADVANCE project15 [22] allows co-simulation of Event-B machines with
external continuous-time FMUs through FMI version 1. The resulting technolo-
gies support model-based testing and model-checking of CPS using ProB. The
co-simulation capabilities of the ADVANCE MultiSim simulation framework are
similar to those projected for the INTO-CPS tool chain, and are implemented
as a plugin for the Rodin platform for Event-B. However, owing to the capabil-
ities of Rodin, proof in that domain is better integrated with the relevant tool
than current proof support for VDM-RT, but INTO-CPS has the main advan-
tage that it seeks to make a co-simulation platform. The aim in INTO-CPS is
to co-simulate both discrete-event and continuous-time FMUs together without
knowing the details about the implementation of the FMUs, as long as they are
compatible with the FMI version 2 standard. Further information is available
from the project website, as all project deliverables are publicly available. This
work will like the above mentioned projects support FMI for all base line tools
and therefore enable fixed/variable-stepsize co-simulation. In addition, it will
provide traceability support, and test automation at the FMU level as well as
model checking, and design space exploration for optimised simulation based on
metrics of interest.

10 Concluding Remarks and Future Work

In this paper we have provided an overview of the INTO-CPS tool chain and
briefly touched upon its foundations. We believe that in order to ensure interop-
erability between different models of different constituent elements of a CPS, a
semantic foundation such as suggested above is paramount. This is an area where
we hope that others in the formal methods community will take inspiration from
this work.

The INTO-CPS tool chain described in this paper is not yet complete, but the
connectivity between the different parts has already been demonstrated: the tool

15 http://www.advance-ict.eu/
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chain is being used for industrial case studies in railways, agriculture, automotive
and building automation. Most notably, support for traceability, essential for
providing well-founded arguments for the analysis conducted for the different
models to be presented to external stakeholders, is not yet implemented.
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