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Abstract. Language extensions have been suggested in the past to make
VDM++ better suited for specification of real-time applications and tool
support was developed to analyze these extended VDM++ models. Prac-
tical experiences with the language extensions and the supporting tools
are discussed in this paper. Improvements to the language extensions
and tool support are suggested.

1 Is there really a need for language extensions?

One of the important qualities of formal techniques is that abstraction is used
to focus on the core properties of the system design. In particular the topics
concurrency and real-time have a long standing tradition in academic research
providing notations, tools and techniques to do just that. But it seems that the
practical application of these solutions has not propagated sufficiently towards
industry, particularly not to the mainstream of computing. The formal notations
proposed by academia are in general very powerful and expressive but they are
often not compatible with (or rather disruptive to) traditional system design,
and in the past they did not scale up to the size of a typical industrial design
problem which posed a high hurdle for their practical application.

One could, most likely successfully, argue that the traditional industrial de-
sign approach in many cases is fundamentally flawed and that the current way
of working should therefore not hinder introduction of obviously superior tech-
niques, even despite the scalability issue. It is the experience of the author how-
ever, that making small incremental improvement steps from the existing sit-
uation, bringing more and more formality into the design process, has a much
better chance of acceptance in industry than the revolutionary approach.

The pragmatic introduction of formal techniques in combination with ex-
isting informal techniques and development processes is often referred to as
“lightweight” or “invisible” formal methods [1,2]. The Danish company IFAD
has been notably successful in the 1990’s, marketing and selling their product
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VDMTools, in support of the VDM notation, leaving a track record of sev-
eral very successful and large-scale industrial applications of VDM. In 2005, the
Japanese company CSK bought the intellectual property rights to these tools
and furthermore a new book appeared describing both the VDM++ notation
and the tool, see [3].

These industrial VDM++ projects, which are partly discussed in the book,
have shown that formal languages, tools and techniques are actually easy to
adopt in practice, especially if they can be used in combination with informal
techniques. They merely require additional training of the technical experts,
assuming basic knowledge of mathematics and logic. These domain experts are
normally rather open to new ideas, in particular if it directly supports their task
at hand. The challenge in industry however is to become productive fast and
bridging the gap between a concrete design problem and abstract specification
always seems to be the bottleneck, often due to lack of experience.

The Model Driven Architecture, as proposed by the Object Management
Group (see http://www.omg.org/mda), addresses this problem by creating so-
called platform specific models (PSM), platform independent models (PIM) and
a set of mapping rules between those models. PSMs are used to capture and
communicate domain specific information, PIMs are abstractions that focus on
some essential system properties. The mapping rules should facilitate automatic
transformations between these models. Although this approach seems very ap-
pealing, it has not yet been proven to work in practice, in particular if the
“semantic distance” between the PSM and PIM is big.

Another approach is to integrate different languages, such as the Circus lan-
guage [4] which combines the formal notations Z, CSP and refinement calculus
into a single paradigm. Alternatively, one could consider extending an existing
notation such that it is easier to express domain specific problems directly in that
language. Sometimes it suffices to introduce some “syntactic sugar” or modeling
patterns to ease specification of some problem, but leaving the original language
semantics intact. If this doesn’t suffice, both the syntax and the semantics of the
language need to be extended. However, the advantage over the MDA approach
is still that large parts of the syntax and the semantics of the original language
can often be reused.

Already in 2000, as part of the ESPRIT project VICE (VDM++ In a Con-
strained Environment), language extensions where proposed to facilitate specifi-
cation of real-time systems in VDM++. These language extensions were accom-
panied by a special version of VDMTools which enabled the analysis of these
enhanced models. Both the language extensions and the tool have been around
for a while now but only very little experiences are reported on the use of either.

Purpose of this paper. A small case study was performed using the
extended VDM++ notation and the supporting tools in the context of the
BODERC project (Beyond the Ordinary: Design of Embedded Real-time Con-
trol) at the Embedded System Institute (see http://www.esi.nl/boderc). Without
claiming to be complete, some valuable lessons learnt can already be drawn from



this modeling exercise. These observations are intended to revitalize the debate
on extending the VDM++ language for specifying real-time systems.

This paper is organized as follows. First, we explore how real-time systems
can be modeled using the proposed extensions to VDM++. Some observations
are made based on a case study and finally we suggest some improvements to
the language and the supporting tools.

2 What is required for specifying real-time systems?

The unique selling point of formal modeling is that it allows early analysis of
system properties. Problems identified during the requirements analysis and de-
sign phase are easier to fix than problems identified during test and integration,
which saves costs and improves the time-to-market and product quality. How-
ever, in the area of real-time systems this is notoriously difficult to achieve. The
reason for that is two-fold.

First of all, the general tendency is to focus on the functional requirements
of the product first and foremost. The non-functional requirements (such as
timeliness and throughput) are only considered in practice after the functional
design is completed. Ask any software engineer how much time it takes to execute
the code they wrote and in most cases they are not able to provide the answer.
But more importantly, they often do not consider it to be their problem at
all. The general belief is: “Surely, the hardware will be fast enough”. The well-
known Moore’s law [5] has not helped to change this attitude; many projects
were saved by the fact that available hardware at the time of product release
was indeed faster than the state of the art at the time of design, or hardware has
become so cheap that is was economically viable to increase the computing or
communication capacity. This trend seems to be no longer feasible, in particular
in the embedded systems area, see for example the on-line article [6]. Companies
are forced to produce at increasingly lower cost to remain competitive in poor
market conditions.

Secondly, the analysis techniques currently used in industry are not very
effective. For example, worst-case execution time (WCET) analysis is indeed
possible, but only if you have the source code, the compiler and know the target
platform. These are available rather late in the design, in particular when the
hardware is developed in parallel to the software, which is often the case in em-
bedded systems. Modern CPU and System-on-Chip architectures have features
(such as multi-stage instruction pipe-lining and advanced caching algorithms)
where WCET analysis can only provide coarse results. Often benchmarking,
running and measuring pieces of application code on the real target hardware,
is the only practical solution to circumvent this problem. Alternately, one has
to accept a large margin of error which will result in a conservative and over
dimensioned design. Similarly, rate monotonic analysis (RMA, [7]) can be used
to analyze schedulability, but only if all the tasks are periodic. Earliest deadline
first (EDF, [8]) scheduling is known to be optimal for non-periodic tasks but no
efficient implementation exists. The time-triggered architecture (TTA, [9]) does



offer a solution to increase predictability by apriori distributing the capacity of
the resources over all available tasks, but also at the cost of over dimensioning.

With respect to the first problem, the root cause is the notations used to
design software. Performance is often considered a “second-class” citizen because
there is no easy way to specify this type of requirements. For example, Real-time
Object-Oriented Modeling (ROOM, [10]) only supports the notion of timers
for which the semantics (e.g. resolution, accuracy) is depending on the target
platform used. Selic et al claim that this is sufficient for soft real-time systems but
they also admit that it is probably not suited (and was never intended) for hard
real-time systems. Results obtained from simulation might differ significantly
from the code running on the target environment. However, the situation is
improving with the advent of UML 2 (which has borrowed a lot of concepts from
ROOM) and the Profile for Schedulability, Performance and Time (available at
http://www.uml.org). At least it is now possible to annotate software models
with performance data using an industry-wide accepted notation. The mentality
problem however, can only be solved by education and training.

With respect to the second problem, a lot of progress has been made the
last few years. Model checkers such as FDR2 (http://www.fsel.com) and µCRL
(http://homepages.cwi.nl/∼mcrl/ ) can deal with very large state spaces, mak-
ing analysis of concurrency practically usable. Similarly, timed-automata model
checkers, in particular the tools UPPAAL and TIMES (http://www.uppaal.com
and http://www.timestool.com respectively) are improving significantly as well,
allowing analysis of realistic timing and schedulability problems. But all these
techniques use an input language that is tailored for formal analysis rather than
for design, which makes it hard to use by practitioners, even despite the nice
graphical front-ends of the latter two tools. Moreover, the improved power of
the tools itself has not reduced the inherent problem in this class of languages:
even seemingly simple models can lead to large state spaces that are very hard
to analyze. Expert advice, which is often lacking in an industrial environment,
is often the only solution to find alternative modeling strategies that prevent (or
circumvent) such situations.

Solutions are also proposed from the discrete event systems domain, where
simulation based techniques are often used instead of model checking. It is of-
ten impossible to claim completeness during analysis because the state space of
the model is potentially infinite which makes exhaustive simulation impossible.
Nevertheless useful results can be obtained using these techniques. For exam-
ple the Parallel Object Oriented Specification Language (POOSL, [11]) with its
support tools SHESim and Rotalumis come from this domain. The language
has been formally defined using timed probabilistic labeled transition systems
and the simulation algorithm was proven to be correct with respect to the lan-
guage semantics. The simulation algorithm consists of a two phase execution
approach, where either processes execute asynchronously to completion or time
passes synchronously for all processes at once. The language is sufficiently ex-
pressive to model timing requirements but these requirements have to be encoded
explicitly, for example using modeling patterns. Matlab, which is well-known in



industry (http://www.mathworks.com) provides functionality to specify timing
requirements using Simulink and Stateflow. However, the notation is limited to
state transition diagrams only and its semantics are determined by the type of
mathematical solver used.

3 The VDM++ language

The book by Fitzgerald et al, [3], presents VDM++ using several case studies and
deals with concurrency in chapter 12. Note that the real-time language extensions
presented here are not discussed in the book. The official language reference
manual is [12], which is also available at http://www.vdmbook.com/tools.php.
The real-time language extensions are currently only described in [13,14] and
are illustrated by the case study presented in [15]. We will repeat the essentials
from these documents here for the sake of completeness and discussion.

Unfortunately, it is not possible to show the case study we performed in the
BODERC project for reasons of confidentiality. In stead, the famous “Dining
Philosopher” problem of Edsgar Dijkstra [16] will be used as a carrier throughout
this paper. The story goes as follows: a group of philosophers joins for dinner at a
table and each of them brings one fork. But the philosophers are only allowed to
eat if and only if they have two forks, one in each hand. So, they have to borrow
a fork from their colleagues to be able to eat. The aim is to find an algorithm
that allows all the philosophers to eat, but without fighting about the forks,
which are critical resources. A fork can be picked up by only one philosopher
at a time. In contrast to the original “Dining Philosopher” problem, where only
the fork of the adjacent philosopher at the table can be borrowed, here we do
not care which fork is taken. For simplicity, a philosopher may take any fork
from the table, as long as it is free. Furthermore, we have added an explicit limit
to the number of times a philosopher can eat. This feature was introduced for
practical reasons as well. While the original algorithm continues indefinitely, the
algorithm presented in this paper always terminates, which makes it easier to
study with VDMTools. Last but not least, we will also use the example as a
carrier to introduce the notion of time in the specification, which goes beyond
the scope of the original example.

3.1 Dealing with concurrency

VDM++ distinguishes active and passive objects. The latter only react when
their operations are called, the former have their own thread of control and
after start up they do not necessarily need interaction with other objects to
continue. As shown in Figure 1, we will model the table as a passive object and
the philosophers as active objects.

The class Table has an instance variable forks to count the number of avail-
able forks on the table. The operations takeFork and releaseFork are used to
either pick up a fork or put it down again on the table. The operation IamDone is
used to count the number of philosophers that are done eating. The constructor



class Table

instance variables
forks : nat := 0;
guests : set of Philosopher := {};
done : nat := 0

operations
public Table: nat ==> Table
Table (noGuests) ==

while forks < noGuests do
( guests := guests union

{new Philosopher(self)};
forks := forks + 1 )

pre noGuests >= 2;

public takeFork: () ==> ()
takeFork () == forks := forks - 1;

public releaseFork: () ==> ()
releaseFork () == forks := forks + 1;

public IamDone: () ==> ()
IamDone () == done := done + 1;

wait: () ==> ()
wait () == skip;

public LetsEat: () ==> ()
LetsEat () ==
( startlist(guests); wait() )

sync
per takeFork => forks > 0;
per wait => done = card guests;
mutex(takeFork,releaseFork);
mutex(IamDone)

end Table

class Philosopher

instance variables
theTable : Table;
turns : nat := 2

operations
public Philosopher : Table ==> Philosopher
Philosopher (pt) == theTable := pt;

Think: () ==> ()
Think () == skip;

Eat: () ==> ()
Eat () == turns := turns - 1;

thread
( while (turns > 0) do

( Think();
theTable.takeFork();
theTable.takeFork();
Eat();
theTable.releaseFork();
theTable.releaseFork() );

theTable.IamDone() )

end Philosopher

(a) Passive object: Table (b) Active object: Philosopher

Fig. 1. The Dining Philosophers – concurrency

Table puts a fork on the table, by incrementing the instance variable forks, for
each instance of Philosopher that is created. At least two philosophers should
show up for dinner because we need two forks at minimum to allow any philoso-
pher to eat. Note that when the Philosopher is created in the constructor, its
thread of control is not yet started. The threads of the active objects are started
by executing the operation startlist in the operation LetsEat.

The class Philosopher has an instance variable turns to count the number
of times (in our case: two) the philosopher wants to eat from the table. The
philosopher has two basic activities, either he is thinking, represented by the
operation Think or he is eating, represented by Eat. The thread clause specifies
the so-called thread of control of the task. Any instance of class Philosopher will
execute the algorithm specified here without needing extra external stimuli. The



philosopher will first Think, then acquire two forks by calling takeFork, he will
Eat and finally give the forks back by calling releaseFork. If the philosopher
has iterated twice, then the while loop is finished and the philosopher will signal
that he is ready by calling IamDone and the thread will terminate.

Note that the class Table does not have a thread clause which implies that its
public operations are called and executed in the context of the thread of control
of another, active, task. If such a passive task is shared among several active
tasks, as is the case here (all the philosophers access the same table instance),
special care needs to be taken when updating the internal state of the passive
object. In the sync clause, so-called permission predicates (indicated by the per
keyword) are given that specify under which circumstances the operations are
allowed to be called.

For example takeFork is enabled if there are still forks left on the table. If an
active task calls this operation while forks is zero then the thread of control of
the active task is blocked until the value of forks becomes positive, for example
when another philosopher returns a fork to the table by calling releaseFork
from its own thread of control.

Similarly, the operation wait is blocked until all philosophers are finished
eating. This situation is reached when the instance variable done is equal to
the cardinality of the set of philosophers. Note that done is incremented by
the operation IamDone which is called at the end of the thread clause of each
philosopher. The wait operation is needed to suspend the thread of control
of whoever called the operation LetsEat, in our case the user-interface of the
VDMTools interpreter by calling print new Table(3).LetsEat() from the in-
terpreter command-line. This is the appropriate way to start the simulation of
the application for the case of 3 philosophers. Note that the instances of class
Philosopher are created in the constructor of class Table, but their threads of
control are started in the operation LetsEat.

Last but not least we can specify which public functions are mutual exclu-
sive. In our case, we need to protect the instance variable forks to be changed
by two threads at the same time. Therefore we have declared takeFork and
releaseFork to be mutex. This also implies that both operations are not re-
entrant. Once a call to either operation is active, a second call to the same
function will also block the thread.

The mutual exclusion keyword is actually “syntactic sugar” for a set of per-
mission predicates defined over so-called history guards. For each operation a
set of values is maintained that count:

1. how often was operation name requested (#req: operation name → N )
2. how often was operation name activated (#act: operation name → N )
3. how often was operation name finished (#fin: operation name → N )

Based on these numbers, some short-hand functions can be defined:

1. how many instances of operation name are currently running
#active(x) = #act(x) - #fin(x)



2. how many instances of operation name are currently pending
#waiting(x) = #req(x) - #act(x).

Using those definitions, the mutex synchronization clause can now be written as:

sync

per takeFork => #active(takeFork) + #active(releaseFork) = 0;

per releaseFork => #active(takeFork) + #active(releaseFork) = 0

These history counters play an important role in the real-time extensions.

3.2 Dealing with real-time

The specification in Figure 1 is complete with respect to concurrency, but it
does not say anything about time. In the context of the “Dining Philosopher”
example, consider the fact that activities like thinking and eating actually take
time. But how do we specify that? The duration statement was introduced
in [14], which has the following syntax:

statement = duration ( numeral ) statement

| block statement

| ... ;

This notation allows to specify the execution time, indicated by the numeral,
of the right-hand side statement according to a discrete time clock running at
an arbitrary resolution. If we assume a clock resolution of 1 µsec in our model,
then the execution time of the statement duration(15) y := y * 3 is 15 µsec.
Let us now reconsider our case study.

public takeFork: () ==> ()
takeFork () ==

duration (5)
forks := forks - 1;

public releaseFork: () ==> ()
releaseFork () ==

duration (5)
forks := forks + 1;

Think: () ==> ()
Think () ==

duration (200)
skip;

Eat: () ==> ()
Eat () ==

duration (200)
turns := turns - 1;

(a) handling the fork takes time (b) and so does thinking and eating

Fig. 2. The Dining Philosophers – adding time

The specification has been extended with execution times, as shown in Fig-
ure 2, but what can we now do with it? An informal description of the operational
semantics is provided here, a more formal description can be found in [13]. As
explained in the previous paragraph, history counters are maintained for each



operation of each instantiated object. The VDMTools interpreter maintains a
log during symbolic execution (simulation) of the model. Each history counter
that is encountered during execution is added to the execution log. The discrete
time simulation clock is sampled and the inserted log entry is tagged with this
time stamp. The execution log is offered as an ASCII output file to the user
for further analysis, an excerpt is shown in Figure 3, highlighting the execution
trace of a philosopher as specified in Figure 2.

req -> Op: Philosopher‘Think Obj: 4 Class: Philosopher @ 156
act -> Op: Philosopher‘Think Obj: 4 Class: Philosopher @ 156
fin -> Op: Philosopher‘Think Obj: 4 Class: Philosopher @ 356
req -> Op: Table‘takeFork Obj: 3 Class: Table @ 360
act -> Op: Table‘takeFork Obj: 3 Class: Table @ 360
fin -> Op: Table‘takeFork Obj: 3 Class: Table @ 365
req -> Op: Table‘takeFork Obj: 3 Class: Table @ 369
act -> Op: Table‘takeFork Obj: 3 Class: Table @ 369
fin -> Op: Table‘takeFork Obj: 3 Class: Table @ 374
req -> Op: Philosopher‘Eat Obj: 4 Class: Philosopher @ 376
act -> Op: Philosopher‘Eat Obj: 4 Class: Philosopher @ 376
fin -> Op: Philosopher‘Eat Obj: 4 Class: Philosopher @ 576
req -> Op: Table‘releaseFork Obj: 3 Class: Table @ 580
act -> Op: Table‘releaseFork Obj: 3 Class: Table @ 580
fin -> Op: Table‘releaseFork Obj: 3 Class: Table @ 585
req -> Op: Table‘releaseFork Obj: 3 Class: Table @ 589
act -> Op: Table‘releaseFork Obj: 3 Class: Table @ 589
fin -> Op: Table‘releaseFork Obj: 3 Class: Table @ 594

Fig. 3. Excerpt of an execution trace log file from Figure 2

Note that each time an “act” line is followed by a “fin” line in the logging,
the time stamp at the end of the line indeed differs by the specified duration
delay of that particular operation, as specified in Figure 2. It can also be seen
from this trace that operations which are not explicitly tagged with a duration
statement cost time nevertheless. For example, we see that calling an operation
on another object (e.g. Table‘takeFork on the fourth line) costs 4 time units
while calling an operation locally (e.g. Philosopher‘Eat on the tenth line) costs
2 time units. The interpreter uses a table to lookup the default execution time
costs for each standard VDM++ language construct, if it is not overruled by a
duration statement. This default execution time cost table can be modified by
the user.

In the previous paragraph we have seen how active objects can be specified
using the thread construct. However, many real-time systems have one or more
threads that exhibit a typical periodic behavior. It could in fact be specified
using the duration statement, but it would look rather artificial:

thread
while (true)

( duration (10) someAction();
duration (40) skip )

This specification would indeed imply a thread with a periodicity of 50 time
units, but it would need to be “active” permanently and uninterrupted by other



threads. Therefore, a new construct was added to the language where thread
periodicity and task duration are explicitly decoupled. Consider the following
definition:

thread definition = thread periodic ( numeral ) ( name )

where numeral specifies the length of the period in time units and name
specifies the name of the operation that is called with that frequency, for exam-
ple:

thread periodic (50) (someAction)

Note that, compared to the weak previous attempt, we do not have to specify
the duration of someAction explicitly anymore to guarantee the period of the
thread. Every 50 time units the thread will execute someAction. It is possible to
specify the duration of someAction independently by using duration statements
inside the body of the operation. Note that the duration of the operation might
even exceed the period of the thread. This situation is described in more detail
in paragraph 4.7. To put the periodic statement in the context of the “Dining
philosophers” problem, consider the situation where we would only like to specify
the eating part of the algorithm, because only that activity involves manipulating
the forks. This could be specified as shown in Figure 4.

class Philosopher

instance variables
theTable : Table;
turns : nat := 2

operations
public Philosopher : Table ==> Philosopher
Philosopher (pt) == theTable := pt;

Eat: () ==> ()
Eat () ==

if turns > 0
then ( theTable.takeFork();

theTable.takeFork();
duration (200) turns := turns - 1;
if turns = 0 then theTable.IamDone();
theTable.releaseFork();
theTable.releaseFork() )

thread
periodic (800) (Eat);

end Philosopher

Fig. 4. The philosophers eat every 800 time units



4 Case notes: some lessons learnt

The VDM++ language extensions for real-time have been presented in the pre-
vious paragraph and we will move on to discuss the usability of those language
extensions. We will first concentrate on the tool support and then move on to
the language itself. We have been using the VDMTools VICE edition, version
6.7.27, dated 6 November 2003.

4.1 Tool: multi-threading versus multi-processing

The current implementation in the VICE symbolic interpreter supports the no-
tion of a single CPU. It is therefore only possible to simulate multi-threading
(pseudo parallel behavior, interleaving semantics) and not multi-processing (true
parallel behavior). According to [13], the operational semantics is sufficiently
strong to deal with multi-processing but it simply has not been implemented.
The absence of multi-processing in VDMTools causes a lot of problems in prac-
tice. First of all, single processor systems are nowadays an exception. Multiple
computers connected through a network are common place, also in real-time
systems such as for example military command and control systems or air traffic
control systems.

Secondly, you have to specify the real-time system in its environment and
therefore you have to specify the environment too. For that, the multi-processing
approach is mandatory; the timing behavior of the real-time system should not
be affected in any way by the execution of the environment simulation. In [15] this
is partially solved by using duration(0) statements for all environment tasks,
but it clobbers the specification and makes model maintenance unnecessarily
cumbersome and artificial. Moreover, the delivery of external stimuli to the real-
time system, specified in the environment model, is often as time critical as the
system itself and therefore it should not be hindered by the execution of the
real-time system model. It is much more natural to specify the environment as
a separate process instead of a separate task.

4.2 Tool: only post-processing of time information

The VICE version of VDMTools only supports post-processing of time informa-
tion, using the ASCII log file as shown in Figure 3. For any realistically sized
problem it is impossible to analyze these files by hand. Tool support is required
and some ad-hoc perl scripts were purpose built by IFAD [14,15] for a particular
case study. However, if the model changes, then also the tools need modification
and this is certainly not very efficient. We developed a general purpose visual-
ization tool called ShowVice, a part of the user-interface is shown in Figure 5.

The tool is capable to read the execution trace file of any extended VDM++
model that is executed using the VICE version of VDMTools. The user can
select the part of the execution trace that is of interest and produce a time
annotated sequence diagram as is shown in Figure 6. As an example, we see the
initialization phase of the model presented in Figure 4, which includes the first



Fig. 5. The user-interface of the ShowVice tool

period of the philosopher with object id 4. The threads of the active objects are
highlighted using a different color for each active thread of control. It is easy
to see which active object is calling operations on a passive object. Although
the history counters are available, they are not shown in the diagram, only the
operation request is annotated with the letter ‘R’. If an operation is not eligible
for execution, because a permission predicate is false, then this thread is swapped
out and another thread gets control of the system. At time step 150 in Figure 5
(the second column containing the Table instance) we see that an operation is
requested but cannot be executed. It turns out to be the operation wait which
is called from inside the operation LetsEat in Figure 1. The ShowVice tool is
available at http://www.sf.net/projects/overture.

4.3 Tool: the symbolic interpreter is slow

The VICE version of VDMTools is very slow compared to other discrete event
simulation tools that the author is familiar with. Since the current implemen-
tation in VDMTools is closed source, it is not possible to check why there is
such a large difference, but for realistic industrial models it is in any case not
convenient. Performance much be increased by at least an order of magnitude
to guarantee sufficient simulation depth to gain confidence in the model.

4.4 Language: timed consistency predicates

We already mentioned that only post-processing of time information is possible
with the current version of the tool. But more surprisingly, it is impossible to
specify timed consistency predicates because you cannot refer to the current



Fig. 6. A partial sequence diagram of Figure 4

value of the discrete time clock, neither implicitly nor explicitly. In the case of
the “Dining philosopher” problem, suppose that we want to specify a fairness
criteria, for example that each philosopher should eat within a certain time
interval because the philosopher would otherwise not survive. How would we
deal with that? We could for example introduce extra history counters:

– #age: operation name → N , which returns the number of time units that
passed since #req (operation name). Its use will be shown in paragraph 4.6.

– #prev: operation name → N , which returns the number of time units that
passed since the previous invocation of operation name or the total elapse
time since the thread was started if it is the first time the operation was
called.

If we would like to specify that the philosophers shall eat within 1000 time units
then the specification of Eat should be changed as follows:

operations
Eat: () ==> ()
Eat () == turns := turns - 1

pre #prev(Eat) <= 1000;

Note that this simple timed consistency predicate, which is added to the pre-
condition of the operation Eat, would immediately detect at run-time that the
default settings for the scheduler in the symbolic interpreter are not fair for our
case study (it is possible to assign thread priorities and the size of the maximum
time slice assigned to a thread). With the default settings, once a philosopher



gets in control, he eats until he is done and only then gives up control. The
third philosopher in our model would have died long before his turn is up. If
the philosophers would eat in a round-robin fashion, which can be achieved
by selecting the right scheduler settings in the VDMTools interpreter, then all
philosophers would stay within the specified fairness criterion.

4.5 Language: modifying the thread properties

VDM++ only allows to start a thread (using the start and startlist opera-
tors); it is not possible to explicitly stop, suspend or resume a thread. Thread
priorities are set once in an off-line configuration file and cannot be queried or
changed at run-time. Consider for example Figure 4. Although the eating task
is completed after two periodic iterations, the periodic thread keeps on calling
Eat nevertheless because there is no possibility to stop the thread! Manipulating
the thread properties is a must for real-time systems specification.

4.6 Language: interrupt the thread of control

A key property of real-time systems is that they can react to spurious events
from the environment. The normal thread of control is suspended to deal with
the event and the thread of control is resumed as soon as the event is handled.
It is not possible to interrupt the thread of control of an active class. The thread
of control is either waiting for some permission predicate to become true or
it is continuously executing some operation. Interrupts can only be specified
by explicitly encoding them using permission predicates in a dedicated active
object. Modeling patterns are presented in [14,15] to deal with this, but this
increases the model complexity unnecessarily. This situation can be improved
substantially by introducing a new interrupt clause in a class definition that
has the following syntax:

interrupt clause = interrupt "[" interrupt definition { "," interrupt definition }+ "]" ;
interrupt definition = quoted literal "->" name ;

The interrupt clause is an ordered list of interrupt definitions. The order
determines the interrupt priority in descending order. An interrupt definition is
simply a mapping between an identifier (a quoted literal) and the name of the
operation to execute when the interrupt occurs. In addition, we need a few extra
statements, in order to raise and mask interrupts.

statement = signal ( quoted literal )
| enable ( quoted literal | all )
| disable ( quoted literal | all )
| ... ;

In our case study, we could use this construct to allow the philosophers to
have a beer or drink some wine during dinner:



operations
drinkBeer: () ==> ()
drinkBeer () == duration(20) skip

pre #age(drinkBeer) < 5 -- maximum allowed interrupt latency
post #age(drinkBeer) < 50; -- interrupt deadline

drinkWine: () ==> ()
drinkWine () == duration(40) skip;

interrupt
[ <BEER> -> drinkBeer, <WINE> -> drinkWine ]

Assuming that the interrupts are enabled, we could then cause the thread of
control of each philosopher to be interrupted by executing the following state-
ment (from within the scope of the passive class table):

for all guest in set guests do
let s in set {<BEER>, <WINE>} in guest.signal(s)

The operational semantics for this construct need to be worked out in detail,
which goes beyond the scope of this paper. For example, decisions must be made
with respect to the interrupt queuing model. Note that interrupt latency and
deadline requirements can be specified in the pre- and postcondition respectively,
using the #age timed consistency predicate defined in paragraph 4.4.

4.7 Language: dealing with execution time uncertainty and
deadlines

The periodic and duration statements where added to the language but they
seem to be incomplete. Periodic behavior in real-time systems is typically de-
scribed by three parameters: (1) the period, (2) activation latency and (3) the
deadline. Activation latency is the amount of uncertainty on the exact scheduling
moment. A task with average period 20 and latency 3 will actually occur between
time units 17 and 23. Note that actual activation moment is a non-deterministic
choice from the time interval 17, . . . , 23.

The deadline is the amount of time between the start of the periodic task
and the finishing of a single periodic cycle, in the case of Figure 4, the elapse
time between #act(Eat) and #fin(Eat). The #age history counter, which was
introduced in paragraph 4.4, can be used to specify the deadline in the postcon-
dition of the periodic thread operation, similar to the drinkBeer example in the
previous paragraph.

Note that it is explicitly assumed in [13] that the execution time of the
task is much smaller than the period, which relaxes the necessity for deadline
specification. Currently, it is not detected automatically whether or not the
previous invocation of the periodic task has completed already. Note that if an
operation is not re-entrant (robust against multiple simultaneous invocations)
that this needs to be encoded explicitly by creating a permission predicate for
that operation, stating #act(x) <= 1. This permission predicate allows at most
one active instance of operation x at any time. If the interpreter attempts to call
x while it is still active, it will detect a deadlock and the simulation will stop.



To improve the usability of the periodic statement, the suggestion is to
expand the syntax, where arguments are used to specify the period and latency
respectively:

thread definition =

-- pure periodic thread with period (1st argument)
thread periodic ( numeral ) ( name )

-- periodic thread with period (1st) and latency (2nd)
| thread periodic ( numeral "," numeral ) ( name )

Surprisingly, the VDM++ language designers never considered a syntactic
construct to define so-called sporadic threads. A sporadic thread is a thread for
which only the minimal period is specified. It could be specified as follows:

thread definition = thread sporadic ( numeral ) ( name )

thread
sporadic (1000) (dropFork)

The operation dropFork is periodically called, where the time between two
execution moments of the task is at least 1000 time units. Note that the actual
activation moment of the operation name is a non-deterministic choice from the
time interval 1000, . . . ,∞.

With the duration statement, a similar situation arises as with the periodic
statement. Duration is normally characterized by two parameters: the best-case
(BCET) and worst-case execution time (WCET). Hence, the proposal is to allow
duration with two parameters. Furthermore, it will be much more comfortable to
allow an expression instead of a numeral as an argument to the duration state-
ment, such that context dependent execution times can be specified naturally
instead of forcing the use of a cases statement.

statement = duration ( expression ) statement
| duration ( expression "," expression ) statement
| ... ;

The type checker should ensure that the type of the expression still yields a
numeral value. And at run-time the interpreter should verify that BCET ≤ WCET.
The duration of the operation is a non-deterministic choice from the interval
BCET,. . .,WCET. The impact of the non-deterministic extensions proposed here on
the operational semantics needs to be analyzed further (for example approxi-
mation by a probabilistic variable), but since it has been done before in other
languages (such as POOSL, which uses timed probabilistic labeled transition
systems for its operational semantics), we do not expect that it will pose big
problems.

5 Conclusions

Despite the criticism mentioned in the previous paragraph, the real-time exten-
sions to VDM++ are very valuable, even despite the current poor tool support.



The extensions make it possible to annotate a VDM++ specification with timing
information in a very natural and pragmatic way. The notation is conceptually
simple, which makes it easy to explain and use. This is already a major step
forward compared to current industrial practice.

The richness of the core VDM++ language in combination with the simplicity
of the real-time language extensions are easier to use than languages such as
for example POOSL and Stateflow. The former is certainly as expressive, but
encoding the notion of time in the specification is not trivial. It also has a
duration statement, which is called delay, but it requires in-depth knowledge
of the operational semantics of the language to use it correctly. The style is
more encoding rather than specifying. In the latter case the notation used is
restricted to state transition diagrams in combination with the Matlab language.
This language is also rich, but it is not very appealing to the software engineer
because the notation is quite a step away from traditional software engineering
techniques.

5.1 Future work and outlook

First of all, effort should be spent to automatically derive abstract concurrency
and time specifications directly from VDM++ models. These abstract models
could then be checked using state of the art model checkers, which are inher-
ently much more potent to find errors than just discrete event simulation. The
capability to generate counter examples to failure cases found in the specifica-
tion is very powerful and certainly helps to increase the confidence in the model.
Furthermore, this approach would also make model checking techniques more
acceptable in industry because the abstract models are automatically derived
from a model that is closer to their world. This philosophy has proven to work
when the Prover tool was integrated with VDMTools in the Prosper project to
discharge proof-obligations from the type checker (semi-)automatically.

Secondly, it makes sense to stop effort in extending the operational seman-
tics of VDM++ for real-time. Instead, existing Discrete Event System simu-
lators should be adopted because the amount of effort needed to implement
the additional features that would make the tool really industrial usable can
never compete with existing solutions that are already well accepted by indus-
try. Two notable cases are SystemC and TrueTime. SystemC is an open-source
platform for hardware/software co-design based on a C++ library and a high-
speed simulation kernel. TrueTime is an extension to Matlab/Simulink that al-
lows simulation of distributed real-time systems. It should be explored whether
the already existing C++ code generator in VDMTools can be used to integrate
with these solutions. Alternatively, the Java code generator could potentially be
used together with the Ptolemy tool, providing an cheap alternative for Mat-
lab/Simulink. The implicit advantage of this strategy is that VDM technology
is opened up to two very large application domains: the hardware engineering
community and the systems control community.
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