
STATE MACHINES … VDM

Marcel Verhoef

CHESS

STATE MACHINES … VDM
(heaven) … (hell)

Marcel Verhoef

CHESS

STATE MACHINES … VDM
(hell) … (heaven)

Marcel Verhoef

CHESS

STATE MACHINES *OR* VDM

Marcel Verhoef

CHESS

STATE MACHINES *AND* VDM

Marcel Verhoef

CHESS

STATE MACHINES *IN* VDM

Marcel Verhoef

CHESS

State machines in VDM

• Provide as standard library (much akin to VDMUNIT)

• Avoid “build-your-own-framework” pitfall

• Implemented in VDM++ (use OO structuring)

• Extendable for timing analysis (using VDMRT)

• Support multiple CPU deployment (using VDMRT)

• Focus on model writing productivity

• Initial analysis by interactive simulation

Existing state machine frameworks

• Quantum Framework

• http://www.state-machine.com

• Dual license strategy (open- and closed source)

• Tool support available and well-documented (book)

• Compliant to UML state machine semantics and patterns

• Extremely efficient implementations (C-, C, C++)

• Available on many (real-time) operating systems

• Supports both hierarchical and finite state machines

• Message based communication (signals and events,
including inheritance and priorities)

http://www.state-machine.com/
http://www.state-machine.com/
http://www.state-machine.com/

Quantum Framework in VDM (1)

• Modeling QF in VDM was “Not Quite Trivial”

• QF uses pointers to (C-)functions extensively
– Efficiency

– Inheritance

• Introduced StateHandler class and use VDM++ inheritance to
solve this
– Efficiency is not our primary concern

• Introduced EventHandler class that allows run-time
reconfigurable state machine behavior

Quantum Framework in VDM (2)

• Parts of QF currently available in VDM are
– FiniteStateMachine (with message queue and (static and

dynamic) event dispatching)
– StateHandler (containing the FSM local state)
– EventHandler (dynamically extend FSM behaviour)
– ActiveObject (the thread executing the FSM with RTC semantics)
– Signal, Event and Timer
– Kernel (manage AOs, timers, publish/subscribe mechanism)

• Still missing is
– Hierarchical state machine
– Event inheritance and priorities
– Distributed kernel (deployed on multiple CPUs)

Quantum Framework in VDM (3)

• Completed application
– Commercial product (sensor data fusion application)

• On the drawing board
– Dining philosophers (illustrative example and testcase)
– ChessWay DESTECS case study

• Possible extensions / future work
– animation during simulation (state and sequence diagrams)
– Automatic UML mapping
– Test automation and automated learning
– Verification of the state machines (timed and untimed)

Read

Idle

 /

ACCEL_SENSOR_TAKESAMPLE /

ACCEL_SENSOR_DEACTIVATE

[accelDriver.open()] /

[else] /
ACCEL_SENSOR_ACTIVATE

ACCEL_SENSOR_DEACTIVATE /

Example VDM execution log

QF: initialized
time = 0
QF: starting all AOs
QF: starting AccelDataAO
QF: starting GpsDataAO
QF: starting MovementAO
QF: starting TachoDataAO
QF: initializing AccelDataAO
QF: initializing GpsDataAO
QF: initializing TachoDataAO
QF: initializing MovementAO
QF: entering AccelDataAO.Idle
QF: entering GpsData.Idle
QF: entering TachoData.Idle
QF: entering Movement.Top
MovemementAOStrategy.init()
QF: onActivate in TachoData.Idle
QF: onActivate in AccelDataAO.Idle
QF: leaving TachoData.Idle
QF: leaving AccelDataAO.Idle

QF: entering TachoData.Read
TachoDataAO state is reset
QF: onActivate in GpsData.Idle
QF: entering AccelDataAO.Read
AccelDataAO state is reset
QF: leaving GpsData.Idle
QF: entering GpsData.Read
GpsDataAO state is reset
MovementAOStrategy.handleTachoSensorActivated()
MovementAOStrategy.handleAccelSensorActivated()
MovementAOStrategy.handleGPSSensorActivated()
time = 1
MovementAOStrategy.handleTachoSensorData received tcr = 0 at

1.00000648
distance covered = [0, 0, 0] NOT_DRIVING
MovementAOStrategy.handleAccelSensorData received [0, false] at

1.00001081
MovementAOStrategy.handleGpsSensorData received at 1.00001526 :
mk_rmc_data(false, [], "162645", 0.0, 0.0, 0.0, -1.0)
mk_gga_data("162645", 0, 0, 99.99, 0.0, 0.0)

