
1 / 13

Modelling a Smart Grid System-of-Systems using
VDM

Stefan Hallerstede and Peter Gorm Larsen

Aarhus University

Aarhus University
Aarhus

28 August 2013



2 / 13

Context

I Modelling of a System of Systems (SoS)

I Carried out within the COMPASS project

(http://www.compass-research.eu)

I Purpose: evaluation of baseline technolgy (here: VDM++)

I Question: how well is VDM++ suited for this kind of

problem?

I Question in the next phase:

I how does the COMPASS modelling language (CML) improve

the situation?

I CML combines VDM++ and CSP (similar to Circus)

I Simple SoS case study from COMPASS Interest Group:

Smart Grid



3 / 13

Problem Statement



3 / 13

Problem Statement



3 / 13

Problem Statement

Electricity



3 / 13

Problem Statement

Electricity



3 / 13

Problem Statement

ElectricityFarms



4 / 13

The Smart Grid Architecture (Sketch)

Farm A
Farm B

Smart Meter 1
Smart Meter 2
Smart Meter 3

Smart Client B

Smart Meter 1
Smart Meter 2
Smart Meter 3

Smart Client A

CloudServer

Challenges:
I Heterogeneity of the farms
I Frequent changes of constituent systems and control rules
I Many changing stakeholders
I Evolution and scale



5 / 13

Generic Architecture of the SoS in VDM++

GridManagerSoSGridManagerSoS

Smart Grid SoS

Smart Grid SoS Threads

1

1

11 1* 1*

1

1

1

*

1

1

11 1* 1*

1

1

1

*

1

1

11 1* 1*

1

1

1

*

Meter Agent Gateway Server

Device Cloud

Engine

Meter Agent Gateway Server

Device Cloud

Engine

Meter Agent Gateway Server

Device Cloud

Engine

The final system model is highly
non-deterministic because constituent
sytems are autonomously active.

The final system model is highly
non-deterministic because constituent
sytems are autonomously active.



5 / 13

Generic Architecture of the SoS in VDM++

GridManagerSoSGridManagerSoS

Smart Grid SoS

Smart Grid SoS Threads

1

1

11 1* 1*

1

1

1

*

1

1

11 1* 1*

1

1

1

*

1

1

11 1* 1*

1

1

1

*

Meter Agent Gateway Server

Device Cloud

Engine

Meter Agent Gateway Server

Device Cloud

Engine

Meter Agent Gateway Server

Device Cloud

Engine

The final system model is highly
non-deterministic because constituent
sytems are autonomously active.

The final system model is highly
non-deterministic because constituent
sytems are autonomously active.



5 / 13

Generic Architecture of the SoS in VDM++

GridManagerSoSGridManagerSoS

Smart Grid SoS

Smart Grid SoS Threads

1

1

11 1* 1*

1

1

1

*

1

1

11 1* 1*

1

1

1

*

1

1

11 1* 1*

1

1

1

*

Meter Agent Gateway Server

Device Cloud

Engine

Meter Agent Gateway Server

Device Cloud

Engine

Meter Agent Gateway Server

Device Cloud

Engine

The final system model is highly
non-deterministic because constituent
sytems are autonomously active.

The final system model is highly
non-deterministic because constituent
sytems are autonomously active.



6 / 13

Concrete Architecture by Inheritance

Smart Grid SoS

Farm A

11 11 1* 1*Device Meter Agent Gateway Server

Freezer Thermometer FAA FAG SGS



7 / 13

VDM Example: Generic Device
class Device is subclass of Types

instance variables

public relay : map RelayID to Relay := {|->};

operations

public switch_relay : RelayID * bool ==> ()

switch_relay(id,s) ==

relay(id).switch(s)

pre id in set dom(relay);

end Device



8 / 13

VDM Example: Farm A Freezer Device
class Farm_A_Freezer_Device is subclass of Device

instance variables

public Relay_Cool : RelayID;

public Relay_Hold : RelayID;

inv Relay_Hold in set dom relay and Relay_Cool in set dom relay

=> (not relay(Relay_Cool).state) or (not relay(Relay_Hold).state);

public static device : Farm_A_Freezer_Device

:= new Farm_A_Freezer_Device();

operations

private Farm_A_Freezer_Device : () ==> Farm_A_Freezer_Device

Farm_A_Freezer_Device() == (

Relay_Cool := mk_RelayID(0);

relay := {Relay_Cool |-> new Relay()};

Relay_Hold := mk_RelayID(1);

relay := relay munion {Relay_Hold |-> new Relay()};

)

end Farm_A_Freezer_Device



9 / 13

VDM Example: Farm A Freezer Meter (aka Thermometer)
class Farm_A_Freezer_Meter is subclass of Meter

values

private min_temp : real = -25.0;

private max_temp : real = 37.0;

instance variables

private initial_temp : real := -20;

private hold_curve : seq of real := [0,-0.5,-1,-0.5,0,0.5,1.0,0.5];

private temp : real := initial_temp;

public static meter : Meter := new Farm_A_Freezer_Meter();

inv min_temp < temp and temp < max_temp;

operations

...

protected imp : nat ==> ()

imp (now) == (

if (device.relay(Farm_A_Freezer_Device‘device.Relay_Cool).state) then (

temp := temp - ((now-last_time)*rate);

) elseif (device.relay(Farm_A_Freezer_Device‘device.Relay_Hold).state) then (

temp := temp + (hd hold_curve);

hold_curve := (tl hold_curve) ^ [hd hold_curve];

) else (

temp := temp + ((now-last_time)*rate);

);

);

...

end Farm_A_Freezer_Meter



10 / 13

VDM Example: Smart Grid Configuration
{

-- switch freezer to hold

"Farm_A_Gateway" |->

{

mk_Types‘TriggerRule(

{},

mk_Types‘Interval(4,4),

mk_Types‘Activity(

[mk_Types‘RelayAction(mk_Types‘RelayID(0),<OFF>),mk_Types‘RelayAction(mk_Types‘RelayID(1),<ON>)],

1,

[]),

mk_Types‘Dates({},{})

)

},

"Farm_B_Gateway" |->

{

mk_Types‘TriggerRule(

{},

mk_Types‘Interval(20,20),

mk_Types‘Activity(

[mk_Types‘RelayAction(mk_Types‘RelayID(2),<ON>)],

40,

[mk_Types‘RelayAction(mk_Types‘RelayID(2),<OFF>)]),

mk_Types‘Dates({},{})

)

}

}

Control rules

{

-- enable the safety switch

"Farm_A_Freezer_Meter" |->

[

mk_ (0.0, 1.0, 0.0),

mk_ (3.0, 1.0, 2.0)

],

-- keep the direction switch neutral

"Farm_B_Battery_Meter" |->

[

mk_ (0.0, 0.0, 0.0),

mk_ (4.0, 0.0, 1.0),

mk_ (7.0, 3.0, -2.0)

]

}

Scenario



11 / 13

Concluding Remarks

I Property Specification:
I SoS-wide properties can be conveniently expressed by

referring to instance variables
I They need to be “property public”:

visible by property specifications but not by operations

I Communication:
I Communication is modelled by operation calls:

Send...()

Receive...()
I This means data is “pushed” or “pulled”
I CSP-like channel communication would avoid this



12 / 13

Concluding Remarks

I Stakeholder Modelling:
I We have tried to take care of stakeholders by arranging the

model in files and folders
I This could be used with a usual configuration control system
I This does not however provide confidentiality
I It does also not allow to restrict shown models to those parts

relevant to specific stakeholders



13 / 13

Concluding Remarks

I Correctness:
I In the current model the SoS fails if any CS fails
I This is unrealistic for an SoS model
I However, it permits observing failures more easily as if the

model was fault-tolerant but more realistic
I More than one model may be needed! How could this be done?

I More Correctness:
I Correctness of the Smart Grid SoS is (partly) based on its

current configuration
I Behaviour can be changed if it is unused in the current

configuration


