
Concurrency, Rely/Guarantee and Separation
Logic

Cliff Jones

Newcastle University

Overture Workshop
2014-06-21

Concurrency, Rely/Guarantee and Separation Logic Cliff Jones [1]

Expressive power must be a “good thing”
I beg to differ!

• (decidable) type systems
• {pre} S {post}
• data abstraction (which is a sort of leitmotiv)

• benefit of making clear what can not be discussed!

• “power” can beget intractability

Concurrency, Rely/Guarantee and Separation Logic Cliff Jones [2]

One message: start with concepts
cf. “to a man with a hammer, every problem is a nail”

• e.g. concept input/output relation of a program
• Hoare logic based on specifications

• {p} S {q}
• pre/post say less than implementation
• but “extend the vocabulary” (using ∧/¬)
• easier to show “satisfaction of specification”
• . . . than equivalence of two programs

• post conditions are relations!

Concurrency, Rely/Guarantee and Separation Logic Cliff Jones [3]

An important concept: separation

• separation = zero interference/visibility(!)
• question: control reads (as well as writes)?

• in the case of normal (stack) variables . . .
• just separating alphabets
• cf. VDM rd/wr frames
• new R/G presentation allows x: c

Concurrency, Rely/Guarantee and Separation Logic Cliff Jones [4]

Separation Logic

• basic idea is simple
• to prove things about S1 ‖ S2
• would like to conjoin their pre/post conditions

• history
• [Hoa75] tackles parallelism with “stack” variables
• [Rey02] covers“Separation Logic” for “heap” variables
• Concurrent Separation Logic — Peter O’Hearn [O’H07]

• “heap” variables harder than normal (stack) variables
• SL designed for this case
• could “bend” R/G with s C heap etc.
• . . . see below on using abstraction

• SL origin = bottom-up code analysis
• heap variables
• probably avoid SL for stack variables!

Concurrency, Rely/Guarantee and Separation Logic Cliff Jones [5]

A key SL proof rule

“Separating conjunction” – P ∗ Q (only if P and Q are separate)

SL

{P1} s1 {Q1}
{P2} s2 {Q2}
{P1 ∗ P2} s1 || s2 {Q1 ∗ Q2}

Example

{x 7→ ∗ y 7→ }
[x]← 3 ‖ [y]← 4

{x 7→ 3 ∗ y 7→ 4}

Concurrency, Rely/Guarantee and Separation Logic Cliff Jones [6]

SL’s “frame rule”

SL-frame
{P} s {Q}
{P ∗ R} s {Q ∗ R}

Concurrency, Rely/Guarantee and Separation Logic Cliff Jones [7]

Reynold’s example [Rey02] reconsidered

The following program (!) performs an in-place reversal of a list:

j : = nil; while i 6= nil do
(k : = [i + 1]; [i + 1] : = j; j : = i; i : = k).

(Here the notation [e] denotes the contents of the storage at
address e.)

The post condition itself only has to require that some variable,
say s, is changed so that

∃α, β · list(α, i) ∗ list(β, j)

Concurrency, Rely/Guarantee and Separation Logic Cliff Jones [8]

Re-do Reynold’s example with
“Separation as an abstraction”!?

r, s: [r′ = rev(s)]

s and r are assumed to be distinct variables
that they are separate is a (useful and) natural abstraction

It is straightforward to “posit & prove”:

r ← [];
while s 6= [] do

r, s: [r′ = [hd s] y r ∧ s′ = tl s]
{rev(s′) y r′ = rev(s) y r}

od

Concurrency, Rely/Guarantee and Separation Logic Cliff Jones [9]

Step 2: reify r, s onto John’s linked list

Heap = N m−→ (X ×
î
N
ó
)

Rep :: h: Heap
i: N
j: N

coll:
î
N
ó
× Heap→ X∗

retr : Rep→ (X∗ × X∗)

retr(mk-Rep(h, i, j)) 4 (coll(i, h), coll(j, h))

Concurrency, Rely/Guarantee and Separation Logic Cliff Jones [10]

Following this line

• separation is a (useful) abstraction
• reification obligation is to preserve the abstraction
• the invariant on Rep can use * (or a simple predicate)

• this differs from standard view of SL
• what form would/will SL take in this view?
• trying more (complicated) concurrent examples

• we are now working on concurrent DOM trees

Concurrency, Rely/Guarantee and Separation Logic Cliff Jones [11]

SL extensions

• basic idea works well for “disjoint concurrency”
• e.g. parallel merge sort

• many extensions — see [Par10]
• “Next 700 Separation Logics”

• magic wand (fits algebraic view)
• fractional permissions Boyland
• (most papers) limit to “partial correctness”
• (concurrent) abstract predicates

Concurrency, Rely/Guarantee and Separation Logic Cliff Jones [12]

An important concept: ownership
CSL

• Interesting examples involve “ownership”
• processes/threads can “exchange” ownership

[10]← x ‖ y← [10]

• . . . given appropriate locking – reason about passing value
• could code ownership swapping in R/G!
• actually comes back to “what is ownership?”
• one attempt to demarcate scopes of SL and R/G

a promising dichotomy – [O’H07]
• use SL if proving (data) race freedom
• use R/G for “racy” programs

Concurrency, Rely/Guarantee and Separation Logic Cliff Jones [13]

Issue: interference

• how to express (constraints on) interference
• R/G background:

• VDM
• post conditions are relations (over Σ)
• (total) correctness
• “posit and prove” style of development
• importance of data abstraction/reification
• compositional development
• didn’t handle concurrency

• Owicki/Gries

Concurrency, Rely/Guarantee and Separation Logic Cliff Jones [14]

Rely/Guarantee “thinking”

• basic idea is simple
• acknowledge “interference”

• rely conditions
• record assumptions the designer can make
• cf. pre conditions

• guarantee conditions
• requirements on running code
• cf. post conditions

• (see below: interplay with data abstraction)

Concurrency, Rely/Guarantee and Separation Logic Cliff Jones [15]

pre︷︸︸︷
σ0 · · ·

rely︷ ︸︸ ︷
σi σi+1 · · · σj σj+1︸ ︷︷ ︸

guar

· · · σf

︸ ︷︷ ︸
post

NB: rely, guar (and post) conditions are relations

Concurrency, Rely/Guarantee and Separation Logic Cliff Jones [16]

One form of R/G rule

|| -I

{P,R ∨ G2} s1 {G1,Q1}
{P,R ∨ G1} s2 {G2,Q2}
{P,R} s1 || s2 {G1 ∨ G2,Q1 ∧ Q2 ∧ (R ∨ G1 ∨ G2)∗}

Concurrency, Rely/Guarantee and Separation Logic Cliff Jones [17]

A more algebraic presentation of R/G
“pulling R/G apart”

• abandon 5-tuple: {p, r} S {g, q}
• present in “refinement calculus” style

• specifications: [p, q] (special case: [q])
• rely r · c
• guar r · c
• x: c rather than VDM rd/wr framing

Concurrency, Rely/Guarantee and Separation Logic Cliff Jones [18]

(Some) Laws

Nested-G: (guar g1 · (guar g2 · c)) = (guar g1 ∧ g2 · c)

Intro-G: c v (guar g · c)

Trading-G-Q: (guar g · [g∗ ∧ q]) = (guar g · [q])

Intro-multi-Par: [∧iqi] v ‖i (guar gr · (rely gr · [qi]))

Concurrency, Rely/Guarantee and Separation Logic Cliff Jones [19]

Example: Prime sieve

1 2 3 4 5 6 7 8 9 10 11 12 ...

REM(2)

REM(3)

Concurrency, Rely/Guarantee and Separation Logic Cliff Jones [20]

Refinement calculus style development
Set s initially contains all natural numbers up to some n, C is the set of all composite numbers

[s′ = s− C] = [s′ ⊆ s ∧ s− s′ ⊆ C ∧ s′ ∩ C = { }]
v by Intro-G

guar s′ ⊆ s ∧ s− s′ ⊆ C · [s′ ⊆ s ∧ s− s′ ⊆ C ∧ s′ ∩ C = { }]
= by Trading-G-Q (s− s′ ⊆ C is transitive)

guar s′ ⊆ s ∧ s− s′ ⊆ C · [s′ ∩ C = { }]
= by set theory

guar s′ ⊆ s ∧ s− s′ ⊆ C · [∧is′ ∩ ci = { }]
v by Intro-multi-Par

guar s′ ⊆ s∧s−s′ ⊆ C ·(‖i guar s′ ⊆ s·rely s′ ⊆ s·[s′∩ci = { }])
= Distribute-G

guar s′ ⊆ s∧s−s′ ⊆ C ·guar s′ ⊆ s·(‖i rely s′ ⊆ s·[s′∩ci = { }])
= Nested-G

guar s− s′ ⊆ C ∧ s′ ⊆ s · (‖i rely s′ ⊆ s · [s′ ∩ ci = { }])

Concurrency, Rely/Guarantee and Separation Logic Cliff Jones [21]

Another look at Peter’s “dichotomy”
Using Simpson’s non-blocking “4-slot” algorithm

• Asynchronous Communication Mechanisms
• one reader/writer
• “lock free”
• never read corrupt data (i.e. whist being written)
• always read “most recently written”

• there are several algorithms, specifically . . .
• there are several proofs of Simpson’s 4-slot algorithm

Concurrency, Rely/Guarantee and Separation Logic Cliff Jones [22]

Hugo Simpson’s 4-slot idea

write(42) x := read()

write(42)

x := read()

write(42)

x := read()

pair-r

pair-w

slot-w

✗

? ✓

Concurrency, Rely/Guarantee and Separation Logic Cliff Jones [23]

Doubts about that neat dichotomy

• essence of 4-slot idea is race freedom on slots
• argue in terms of exchanging ownership (of slots)
• 4 (of many) papers on Simpson’s 4-slot algorithm

• R/G Jones & Pierce
• SL Bornat & Amjad

• Richard Bornat [BA10]
• uses R/G as well . . . and serialisability!
• SL not used for ownership
• Wang & Wang do — but no freshness proof

• Jones & Pierce use R/G for race freedom
• . . . at an abstract level
• introduced “possible values” concept (below)

• have a new specification (using “possible values”)

Concurrency, Rely/Guarantee and Separation Logic Cliff Jones [24]

Strategic messages

• start with the concepts/challenges
• not with your pet notation

• abstraction, abstraction, abstraction
• identify issues/concepts in question

• e.g. interference, separation
• then select an apposite specific notation/approach

• reversing this order frequently . . .
• bends an approach to do things that aren’t natural
• encrypts real step

• “Ghost variables” a way to cheat on expressiveness

Concurrency, Rely/Guarantee and Separation Logic Cliff Jones [25]

A (minor?) concept: possible values

• arose in Jones/Pierce work on 4-slot
• our first attempt (ABZ 2008) had an interesting flaw

• hold-r =
↼−−−−
fresh-w ∨ hold-r = fresh-w

• but Write could actually change fresh-w many times
• actually need to say:

• READ can set hold-r (only) to any value set in fresh-w
• I prefer to avoid “ghost variables” (longer story)
• hold-r ∈ ḟresh-w

• found a variety of other uses
• + link to Hayes’ work on

“non-deterministic expression evaluation” (TCJ paper)

Concurrency, Rely/Guarantee and Separation Logic Cliff Jones [26]

New project: “Taming Concurrency”
EPSRC (UK) funded

• “pull R/G and SL apart” — two papers submitted
• CS-TR-1394 (short)
• CS-TR-1395 (long)

• figure out what they express well
• try for a semantic combination
• . . . which might look like neither!

• (UK) project twinned with Australian (ARC) project
• “Understanding concurrent programmes using

rely-guarantee thinking”
• led by Ian Hayes

Concurrency, Rely/Guarantee and Separation Logic Cliff Jones [27]

References

Richard Bornat and Hasan Amjad.
Inter-process buffers in separation logic with rely-guarantee.
Formal Aspects of Computing, 22(6):735–772, 2010.

C.A.R. Hoare.
Parallel programming: An axiomatic approach.
Computer Languages, 1(2):151–160, June 1975.

P. W. O’Hearn.
Resources, concurrency and local reasoning.
Theoretical Computer Science, 375(1-3):271–307, May 2007.

Matthew Parkinson.
The next 700 separation logics.
volume 6217 of LNCS, pages 169–182. Springer, 2010.

John Reynolds.
A logic for shared mutable data structures.
In Gordon Plotkin, editor, LICS 2002. IEEE Computer Society Press, July 2002.

Concurrency, Rely/Guarantee and Separation Logic Cliff Jones [28]

