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The 12th in the “Overture” series of workshops on the Vienna Development Method (VDM), 
its associated tools and applications, was held in association with the COMPASS1 project at 
Newcastle in June 2014. The workshop aimed to identify and encourage new collaborative 
research, and to foster current strands of work towards new projects and publications.  

VDM is one of the longest established formal methods, having its origins in compiler 
development work in IBM in the 1970s. In the 1990s, the basic VDM modelling language was 
standardized by ISO and the first commercial tools emerged. Since 2000, the method has been 
extended to support object-orientation, concurrency, real-time and distribution. Advances in 
these areas led to the development of new technology for the design of embedded systems 
based on collaborative modelling and co-simulation2. A notable recent development has been 
the very successful combination of VDM with Circus as a basis for the COMPASS Modelling 
Language (CML) – the first formal modelling language developed specifically for systems of 
systems (SoSs).  

Research in VDM and Overture is driven by the need to develop industry practice as well as 
fundamental theory. Consequently, the provision of tool support has been a priority for many 
years. The community-based Overture3 initiative is developing industry-strength tools on an 
open platform that has been successfully adapted to form platforms for co-modelling and co-
simulation in embedded systems design (Crescendo4), and latterly SoS modelling, verification 
and testing (Symphony5).  

The 12th workshop reflected the breadth and depth of work in VDM. Contributions covered 
topics as diverse as fundamental approaches to reasoning about concurrency, design space 
exploration, the use of Crescendo in teaching, and of course tools (interpreter design, code 
generation and the maturing architecture of Overture itself). In this report we include papers 
extended abstracts for four of the talks given, and include the abstracts of the remaining. 
Contributed presentations are to be found in the Overture Wiki6.   

We are grateful to the School of Computing Science at Newcastle University for its kind 
hospitality in hosting the workshop for the fourth time in the fifteen year history of the series.   

Nick Battle 

John Fitzgerald 

 

                                                           
1 Comprehensive Modelling for Advanced Systems of Systems (www.compass-research.eu)  
2 Fitzgerald JS, Larsen PG, Verhoef MHG, eds. Collaborative design for embedded systems: co-modelling and co-

simulation. Berlin: Springer, 2014. 
3 Overture: www.overturetool.org.  
4 Crescendo: www.crescendotool.org.  
5 Symphony: www.symphonytool.org.  
6 12th Overture Workshop Wiki: http://wiki.overturetool.org/index.php/12th_Overture_Workshop.  
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Interpreting Implicit VDM Specifications using ProB

Kenneth Lausdahl1, Hiroshi Ishikawa2
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2 Department of Information and Culture,
Niigata University of International and Information Studies

3-1-1 Mizukino, Nishi-ku, Niigata, 920-2292, Japan

Abstract. Modelling of software can with advantage start by the creation of an
initial software design at a high-level of abstraction expressed as implicit specifi-
cations. The Vienna Development Method is a formal method that support differ-
ent levels of abstraction including such implicit specification mechanisms. How-
ever, most of the existing tool-support for VDM does not support this style of
modelling adequately from an analysis perspective. In this paper we demonstrate
how such implicit specifications can be made interpretable through the use of the
ProB constraint solver allowing them to be validated like explicit specifications.
We shown how an internal translation to ProB is made and how this integrates
with the existing VDM interpreter from Overture.

1 Introduction

A traditional approach to model software is to start with creating an initial software
specification at a high level of abstraction expressed in an implicit style. The Vienna
Development Method (VDM) [3,8] can model at various levels of abstraction by using
implicit and/or explicit descriptions to define functionalities.

Operations and functions written in explicit style include descriptions about how a
calculation from input to output can be carried out. Therefore such specifications can
be executed and validated by using Overture tool (and using VDMTools). Because of
the pragmatic tool support (strong on simulation of executable models) this means that
the majority of VDM models in the last decade have used the executable subset of
the language [11,14]. Excitability has been an academic discussion for a number of
years [7,6]. However, operations and functions written in implicit descriptions include
descriptions does not show how they work but what constraints they shall satisfy. The
work presented in this paper targets a change in this trend towards more implicit-style
models.

The structure of this paper is as follows: Section 2 describes the overview of VDM
and its tools. Section 3 describes the ProB constraint solver that is cooperated with
VDM to execute implicit style specifications. Then Section 4 provides the translation
rules used for the interpreter integration. Section 5, demonstrates how to translate ex-
pressions using a few concrete examples. Based on this work, a small case study, soccer
referee’s book, is shown in Section 6. The specification is described both implicit and



explicit style. We then deal with the description in implicit style. This is ongoing work
so there are implicit style descriptions where our proposed framework does not yet
work as presented in Section 7. In Section 8, some related works are provided. Finally,
in Section 9, we will conclude this work and show future work.

2 The Vienna Development Method

The Vienna Development Method (VDM) is one of the longest established model-
oriented formal methods, and was originally developed at the IBM laboratories in Vi-
enna in the 1970’s. The VDM specification Language (VDM-SL) is a higher-order
language which is standardized by the International Organization for Standardization
(ISO), and has a formally defined syntax, and both static and dynamic semantics [12,19].

Models in VDM are based on data type definitions built from simple abstract data
types using booleans, natural numbers, characters, tokens and type constructors for
record, product, union, map, set and sequences. Type membership may be restricted
by predicate invariants. Persistent state is defined by means of typed variables, again re-
stricted by invariants (and potentially initialized). Operations that may modify the state
can be defined not only explicitly by using imperative statements but also implicitly by
using standard pre- and post-condition predicates.

Other dialects of VDM has also been produced and here VDM++ [4] and VDM
Real-Time (VDM-RT) [20]. The work presented here is reusable for these other di-
alects as well, but in the case study we present here we limit ourselves to the VDM-SL
notation. All of these dialects are supported by the open source Overture tool [10] and
VDM-SL and VDM++ are supported by VDMTools [9].

3 The ProB as a Constraint Solver

ProB [16,17] is an animator and model checker for the B-Method [1]. The constraint-
solving capabilities of ProB supports: model finding, deadlock checking and test-case
generation. The core of ProB is implemented in Prolog, and supports multiple plat-
forms including a Java API used in this work. The ProB Logic Calculator is able to
evaluate arbitrary expressions and predicates using the B syntax. This includes support
for predicate logic, set theory, and simple arithmetic constraints.

ProB can deal with basic data types: Booleans, Sets, Numbers, Relations, Sequences,
Records and Strings. Booleans are defined in terms of TRUE and FALSE but these
can only be used in predicated if specified as:

x = TRUE ∧ y = TRUE

a predicate such as z > 0 can be converted into a boolean using bool(z > 0). Sets are
described using { } and includes operators such as set-comprehensions and POW (S )
etc. Numbers includes integers (Z) and naturals (N). Relations includes the standard
operators for dealing with relations and specified as {a → b}. Sequences are denoted
by [ ] and includes basic operators to get the first, last, tail etc. Records are structs
with named and typed fields and are specified as struct(ID ∈ S , · · · ID ∈ S ) and



constructed using rec(ID ∈ E , · · · ID ∈ E ). Finally, strings are specified as STRING
containing all possible strings.

The animator operates on a machine which can define sets, definitions, constants,
properties, variables, invariants, initialization and operations. However, in the context
of this works only the sets matter. These define enumerated elements that may be used
to represent quotes etc. An example to define a set will be shown in Section 5.1.

4 Extending the VDM Interpreter

Validation of VDM specifications can be done using the VDM interpreter [14] if the
specification is specified in an explicit style. However, if the more abstract style is used
there is only limited support for any analysis. Therefore, it is beneficial to extend the
interpreter such that it is able to interpret an implicitly defined specification.

The person registry specification shown below is an implicit specification with a
type definition of a person and a state holding the registry. The Add operation adds
a new person based on his name, and checks that the new person gets a new social
security number. It can be observed that the Add operation only has a post-condition
and no explicit body and therefore it cannot be interpreted by the interpreter.

String = Char∗

Person :: ssn : Z
name : String

Registry :: persons : Person-set
init persons = {mk -Person(1,"Jane Doe")}

Add (name:String)

ext wr persons : Person-set
post mk -Person(ssn,name) ∈ persons ∧ ∀p· ∈↼−−−−persons ∧ p.ssn 6= ssn ∧

persons = ↼−−−−persons ∪ {mk -Person(ssn,name)}

The interpreter evaluates a call to Add("John Doe") as shown on the left in Fig-
ure 1. Since the Add operation in this case does not have a body then the evaluation of
the body cause the interpretation to be aborted. The approach in this paper hooks in an
additional step just before the body is evaluated as illustrated on the right in Figure 1.

Here the VDM specification is examined and the pre-state and post-state (denoted
with ) are typed in ProB as shown in List. 1 at line 1 and 2. Then the current state of the
model is constrained (line 3), and the translation of the post-condition itself which de-
scribes the behaviour of the operation (line 4-6). Finally, the arguments to the operation
must constrain the argument (line 7).

1 per:POW(struct(ssn:INT, name:STRING)) &
2 per_:POW(struct(ssn:INT, name:STRING)) &
3 per={rec(ssn:1, name:"Jane Doe")} &
4 rec(ssn:k, name:g):per_ &



Type check arguments

Check pre-condition

Evaluate body

Type check result

Check post-condition

Translate to ProB
1. State
2. Post-expression
3. Argument: type or value

Solve Formula

Translate state and result to VDM

Generate new explicit VDM body

Fig. 1: Interpreter execution of implicit functions and operations.

5 !(p).(p:per => p.ssn /=k) &
6 per_ = per \/ {rec(ssn:k, name:g)} &
7 g="John Doe"

List. 1: ProB input formula for the Add operation in the person register specification.

This forms a formula that ProB may be able to solve if a solution exists within the
limitations from the solver. If a solution is found like shown in List. 2, then this must
be converted back to VDM. This is then done with a type lookahead based on the state
type definition or the declared return type from the operation itself.

1 Solution:
2 ( per = {} &
3 per_ = {rec(ssn:1,name:"Jane Doe"),
4 rec(ssn:-128, name:"John Doe")} &
5 per = {rec(ssn:1,name:"Jane Doe")} &
6 k = -128 &
7 g = "John Doe" &
8 per_ = {rec(ssn:-128,name:"John Doe")} &
9 [p,ssn] = 0 )

List. 2: ProB solution for the Add operation with the argument "John Doe".

Note that in this case the Add operation allowed read/write access to the persons
field of the state but it did not state that any existing persons should be preserved.

Finally these new VDM values are combined into an explicitly defined expression
that the interpreter can evaluate. The interpreter then continues its normal execution
with this custom body. The body is then evaluated and the resulting changes are type
checked and finally assigned to the state and return value from the initial call. If an
error occurs in this extension then the interpreter will catch it, because it checks typing,
invariants and the post-condition before the new values are accepted into the normal
execution of the interpreter.



5 Translation between VDM and ProB

This section describes how types, definitions and expressions are translated between
VDM and ProB.

5.1 Translating Types

This section will describe how a subset of the types from the VDM language can be
expressed in ProB. The translation does not cover the product, optional, object and
function types which are left for future work.

Basic Types The basic types in VDM consists of: boolean (B), numeric (R, Q, Z, N,
and N1), character, quotes, and tokens. Some of these have a one-to-one translation:
BOOL, INT, NAT, NAT1, but others like R are not possible to present, and characters
are not directly representable, both of these are not covered here.

The token type in VDM is a type that wraps around any type hiding the inner value
and only allows comparison. This means that a token value is represented by its inner
value-type which is the type of the argument to the token constructor mk -token(1), in
this case typeof (1) ∈ N1. However, if an expression like a ∈ token is given with no
token constructor then it is impossible to calculate the type of the value the token may
have, and therefore the smallest type it can have is a union type of all possible types
in VDM. However, a translation that scans the specification for mk -token expressions
and constructs a union type of only these types will be sufficient to represent the token
type. If a specification does not include any mk -token expressions then the token type
can be considered as undefined and there for any type could be chosen e.g. INT:

∃mkt ∈ specification ·mkt ∈ mk -token ⇒
typeof (token) ≡ union-type({mkt | mkt ∈ specification ·mkt ∈ mk -token})

¬∃mkt ∈ specification ·mkt ∈ mk -token ⇒
typeof (token) ≡ INT

(1)
The proposed translation with union types may only be used if all arguments to

mk -token has a type different from tuple and map since these will be represented in the
same way in ProB making the translation of the result to VDM impossible. Consider
the following two expressions shown the representation in VDM and ProB:

VDM: mk -token({1 7→ 2}) 6= mk -token((1, 2))
ProB: 1|->2 = (1,2)

(2)

The quote type can be represented in ProB as an enumerated set of all quotes in the
specification. We can make use of a basic machine that defines a single enumerated set
S has the form:

MACHINE <Machine Name> SETS S = {A,B} END



Consider the following example:

q ∈ DENMARK | GERMANY (3)

This can then be converted into ProB with a enumerated QUOTES set added to the
machine defined as

MACHINE CountryName SETS QUOTES = {Denmark ,Germany} END

and with the expression:

q ∈ {Denmark ,Germany} (4)

and a single fixed value of q can be specified as q = Denmark . Note that quote types in
VDM almost always are used as union types similar to enumerations in other languages.

Named Invariant Types and Records A named invariant type and records are named
types that can have invariants. Since types cannot be declared by name in ProB the types
must be represented by their definition alone. This, for named invariant types means that
the type they rename will be used directly, and annotated with the invariant. This means
that a type B = N with the invariant mk -B(x )4 x > 100 can be defined in ProB as
x :N ∧ x > 100.

The record type is a composite type that also requires the addition of the predicate
from the invariant whenever it is constructed. A record type is also used to represent
module state as explained in Section 5.2. A translation to ProB is possible since it also
contains the notion of records named struct for typing and rec for value creation.
Below is shown a VDM record on the left an the corresponding ProB representation on
the right with a variable a declared of the record type:

R :: a : N
b : N

where

inv -R(mk -R(a, b)) 4 a > b

r : struct(a:NAT , b:NAT )∧
r ′a > r ′b

(5)

The translation becomes less trivial when multiple records are combined if they all
include invariants:

R :: a : N
b : B

where

inv -S (mk -S (a, b)) 4 a > b.x

B :: x : N
where

inv -B(mk -B(x )) 4 x > 100



The ProB representation of the records above is shown below. Note that these ad-
ditional invariant predicates will have to be included in all places where the record is
used:

r : struct(a:NAT , b: struct(x :NAT ))∧
r ′a > r ′b′x∧
r ′b′x > 100

(6)

Strings The VDM language does not have a special representation of strings as such,
but represents it as a [Char ], whereas ProB has a special STRING type denoting all
possible strings. This makes it possible to translate the VDM type [Char] into the ProB
type STRING.

Product Type Product types are semantically the same in both VDM and ProB, only
the syntax differs where VDM uses a product constructor mk -(...) and ProB just uses
(...) to define the pairs.

5.2 Translating Definitions

Definitions are used to define functions, operations and a notion of a state. A translation
of all definitions in a specification is not needed but operations always require the state
definition to be translated.

State State in VDM specifications are defined as the definitions that operations can
access. This for VDM-SL is a record as described in Section 2 and for VDM++ is
a number of named definitions with a type. The record in VDM-SL may also have
an optional initializer, which must not be included in the translation if used with an
operation since this has the same effect as specifying the arguments of the operation
itself making it unsolvable. Since operations may refer to both pre- and post-state both
must be made available in ProB. This is done by translating all state definitions twice
with a new and old name.

For classes in VDM++ a specification with an instance variable a may be translated
like: a ∈ T inv a > 1 to (a ∈ T ∧ a > 1) ∧ (↼−a ∈ T ∧↼−a > 1) . Note that the class
invariant of the type must be added and that both the current and old state must be typed
and constrained by the invariant.

For modules in VDM-SL the same essentially applies but a state is a single record.
Thus a state S defined as:

S :: a : N
b : N

where

inv -S (mk -S (a, b)) 4 a > b



can be translated to ProB as:

↼−r : struct(a:NAT , b:NAT )∧ (1)
r : struct(a:NAT , b:NAT )∧ (2)
↼−r = rec(a: 2, b: 1)∧ (3)

(r ′a > r ′b ∧↼−r ′a > ↼−r ′b) (4)

(7)

The equation above shows how S can be translated. Line 1 is the old state, line 2 is the
current/new state, and line 3 is the state initializer3. Line 4 is the invariant, note that this
has to be added both for the old and new state.

Function and Operation Definitions A function or an operation definition is not trans-
lated into ProB but used when the VDM interpreter wish to execute these definitions
when declared in an implicit style where the body is left unspecified. The translation
will then use the argument and their types in the ProB formula together with the ex-
pression from the post-condition as shown in Section 4. The result from ProB must be
converted back to an explicit VDM body for the definition.

The Add operation from Section 4 will then result in a body of the form:

(atomic(persons: = {mk -Person(-128,"John Doe")}); ) (8)

if the operation has a return value declared then if the solved value if 0 then this is
represented by return 0 at the end of the body. The translation for functions are similar
except that it does not specify the atomic block used for assigning state, and the return
statement but only includes the resulting expression itself.

The limitation with this approach is that post-conditions that includes operation or
function calls cannot be translated. However, if these calls are not recursive there is the
possibility for adding a mechanism for in-lining these definitions as well.

5.3 Expressions

This section shown how the expressions used in post-conditions of functions or opera-
tions can be translated to ProB. The translation rules uses [[]] to denote the application of
the translation rules and ≡ to show the equivalence between VDM and ProB notation.
Many of the basic expressions from the VDM language has the same definition in ProB
while others like:

abs x ≡ max{-[[x ]], [[x ]]}
inds [1, 2, 3] ≡ 1..size([[[1, 2, 3]]])

(9)

3 This must only be added if it is not going to be used for evaluation since the initializer must be
replaced with a constraint of the current value.



Quantifiers The universal and existential quantifiers maps directly to ProB as shown
in Eq.10 and Eq.11:

∀x1 ∈ S1, · · · , xn ∈ Sn∧pred ≡ !(x1, · · · , xn).(x1 ∈ [[S1]]∧...∧xn ∈ [[Sn ]] ⇒ [[pred ]])
(10)

∃x1 ∈ S1, ..., xn ∈ Sn · pred ≡ #(x1, ..., xn).(x1 ∈ [[S1]] ∧ · · · ∧ xn ∈ [[Sn ]] ∧ [[pred ]])
(11)

However, the unique existential quantifier (∃!) from VDM does not have a corre-
sponding definition in ProB but can easily be defined universal and existential quan-
tifiers in VDM itself. An example of the unique existential quantification in VDM is
shown in Eq.12 and Eq.13 shows the rewritten form using both universal and existen-
tial quantifiers:

∃! x · ∈ {1, 2, 3} · x < 2 (12)

∃x ∈ {1, 2, 3} · x < 2 ∧ ∀y ∈ {1, 2, 3} · y < 2 ⇒ x = y (13)

The unique existential quantification can also be expressed using set operators as
shown in Eq.14:

card ({x | x ∈ [[S ]] · [[pred ]]}) = 1 (14)

Sets and Set Operators The ProB notation for sets is the same as in VDM and there-
fore a VDM set can be translated as shown in Eq.15 where each of the set elements are
translated:

S ≡
{
{ } if S = { } (empty set).
{[[e1]], [[e2]], ..., [[en ]]} if S = {e1, e2, ..., en}.

(15)

The simplest for a VDM set-comprehension is defined using an expression for the
result, a binding and a predicate to restrict the binding:{exp | bind · pred}. This differs
from the ProB definition that has a number of identifiers and a predicate, where each
identifier must be present in the predicate: {ids | pred}. The translation shown in
Eq. 16 introduces a new identifier for the element that represents the value created by
the expression (x+1). This identifier is then set equal to the translation of the expression
([[x +1]]) where the identifier (x ) is obtained from the binding. The binding is translated
into existential quantification over the set and restricted according to the predicate ([[x >
2]]):

{x + 1 | x ∈ S ∧ x > 2} ≡ {x ′ | #(x ).(x ∈ S ∧ x > 2 ∧ x ′ = x + 1)} (16)



Maps and Map Operators ProB does not have maps but relations that supports all
map operations from VDM. A map can be translated to ProB using the same approach
as used for sets where each maplet is translated individually. The map-comprehensions
({maplet | bind ·predicate}) is defined like the set-comprehension (Eq.16) in ProB and
therefore the same solution can be used. While the set-comprehension only have a single
identifier specified map-comprehensions have multiple like: a, b which corresponds to
a 7→ b.

A map value can be thought of as an unordered collection of pairs. The first element
in the pair is called a key. All key elements in a map must be unique. If a relation
generated from a set-comprehension expression holds this property, the relation can
be regarded as a map. Therefore it is necessary to add the following condition at the
predicate part of the set-comprehension expression.

∀(k1, v1) ∈ S , (k2, v2) ∈ S · k1 = k2 ⇒ v1 = v2
where S is a relation (a set of pairs). (17)

Eq.18 shows how a VDM map comprehension can be translated using this approach.
The comprehension creates a map with the following elements: {9 7→ 2, 16 7→ 2}:

{b ∗ b 7→ a | a ∈ {1, 2} ∧ b ∈ {3, 4} · a > 1} ≡
{pair |!(a, b, c, d).((a, b) ∈ r ∧ (c, d) ∈ r ∧ a = c ⇒ b = d) ∧ pair ∈ r}
where
r = {bb, aa | #(a, b).(a ∈ {1, 2} ∧ b ∈ {3, 4} ∧ a > 1 ∧ bb = b ∗ b ∧ aa = a)}

(18)

Sequence and Sequence Operators A VDM sequence can be translated to ProB in a
similar faction as sets using the ProB [ ] operator as shown in Eq. 15. While ProB has
similar sequence operators none or these have been taken into account yet in this work.
Sequence-comprehensions are not supported in ProB and are therefore not included
here.

S ≡
{
[] if S = [] (empty sequence).
[[[e1]], ..., [[en ]]] if S = [e1, ..., en].

Conditions The translation of the VDM if-expression has only been partly specified as
for the cases where typeof (exp1) ∈ B ∧ typeof (exp2) ∈ B:

if test then exp1 else exp2 ≡ (¬[[test ]] ∨ [[exp1]]) ∧ ([[test ]] ∨ [[exp2]]) (19)

6 Case Study – A Soccer Specification

This section illustrates the new ability to interpret implicit VDM definitions can be used
for a soccer specification [15] that originally was created by Yves Ledru.



The specification models the rules for the substitution of players during a soccer
game. The purpose of the example is to model rules and to check whether the actions
quoted below follow the rules. The reason for developing this specification was to il-
lustrate that a violation to the rules was made during the 1994 World Cup in a match
between Italy and Norway. To model this particular problem, a further rule is needed,
that is, that the referee may exclude one of the players (including the substitutes).

The type player is introduced as a renaming for natural numbers and to denote
the number of players.

player = N1

The state of the referee’s book is defined as a Record named R Book .

R Book :: on field players : player -set
potential substitutes : player -set

goalkeeper : player
nb gk subs : N
nb fp subs : N

inv (mk -R Book(ofp, ps, gk ,ngk ,nfp))4(card opf ) ≤ 11 ∧
(ngk ≤ gk subs max ) ∧
(nfp ≤ fp subs max ) ∧
gk 6∈ ps ∧ ofp ∩ ps = { }

init ofp = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} ∧
ps = {12, 13, 14, 15, 16} ∧
gk = 1 ∧ ngk = 0 ∧ nfp = 0)

where player is a type defined as the type nat1. The R_Book has numbers of on
field players, numbers of potential substitutes, the number of goalkeeper, the number
of goalkeeper substitutions already performed, and the number of field players substi-
tutions already performed respectively. These data have to modify by operations.

The initial state has values as the number of on_field_player is eleven, the
initial number of potential_substitutes is five, the goalkeeper has number
1, the number of goalkeeper substitutions is 0, and the initial number of field player
substitutions is also 0.

The implicit definition of the interesting operations are presented below. The op-
eration RED CARD takes a number of player who has to exclude. If a player gets a
red card, the player may be any of the team players, that is, he/she is in one of both
on_field_players and potential_substitutes (the pre-condition). The
post-condition states that the player is no longer in both sets.

The operation CHANGE_GOALKEEPER takes a player number as an argument and
switch the player to a new goalkeeper. In this case, the set of on_field_players is
referred whether the player is on the field, and the variable goalkeeper is updated.

The operation SUBSTITUTION takes two arguments, that is, the substitution of
a player by another. The pre-condition states that the outgoing player is on the field,
the substitute is in the set potential_substitutes, and the constraints on the
maximum numbers of players. The post-condition states that on_field_players,
potential_substitutes, and nb_gk_subs or nb_fp_subs are updated.



SUBSTITUTION (pl : player , subs: player)

ext wr on field players : player -set
wr potential substitutes : player -set
wr goalkeeper : player
wr nb gk subs : N
wr nb fp subs : N

pre · · ·

post on field players =
↼−−−−−−−−−−−
on field players ∪ {subs}/{pl}

∧ potential substitutes

=
↼−−−−−−−−−−−−−−
potential substitutes/{subs}

∧ if pl =
↼−−−−−−−
goalkeeper

then ((goalkeeper = subs) ∧ (nb gk subs =
↼−−−−−−−
nb gk subs + 1)

∧ (nb fp subs =
↼−−−−−−−
nb fp subs))

else ((goalkeeper =
↼−−−−−−−
goalkeeper) ∧ (nb gk subs =

↼−−−−−−−
nb gk subs)

∧ (nb fp subs =
↼−−−−−−−
nb fp subs + 1))

6.1 The execution results

In this case study, two constrains are introduced as FIFA rule as follows: the maximum
number of substitution for goalkeeper is one (gk subs max :N1 = 1) and the maximum
number of substitution for field players is two (fp subs max :N1 = 2). With these limi-
tations it is possible to use the new interpreter described in this paper. Here it is possible
to demonstrate that the rules were violated in a match between Italy and Norway and
also how alternatively the substitutions could have been made to obey the rules.

In [15], specifications in both explicit and implicit style are provided. The explicit
VDM specification is executable and the implicit one is not by the traditional VDM
interpreter. The extended VDM interpreter makes it possible to execute the implicit
VDM specification. We can obtain the same execution results from two different style
of the specifications and interpreters.

7 Limitations with this Approach

The approach presented in this paper clearly shows that integrating a solver with the
interpreter enables execution of implicit specifications, but it is also clear that not all
VDM constructs can be supported due to the difference ProB and VDM. The following
limitations has been observed and violable possible solution have been found fit:

Recursive function calls The solution presented in this paper shows that function calls
can be in-lined. However, this will not be possible for recursive calls since it will
not be possible to detect how many recursions that should be included. Mutual
recursion will further complicate both such a translation but also make it more
difficult to detect.



Sequence-comprehension The ProB notation does not allow sequence-comprehensions
to be expressed in the available notation. However, it is at the time of writing not
clear if this is a limitation it the underlying solver in ProB or in the notation.

Union type The union type is essential to VDM, and to fully support translation of
token types these union types must be able to express in ProB. Unfortunately, the
union type is currently not expressible in ProB.

8 Related Work

The desire for interpretation of implicit specifications is not new and have been done be-
fore using abstract interpretation for the Z language[2], and later for VDM by Fröhlich
in her PhD work [5] which enabled interpretation of implicit functions and operations
similar to the work presented here. However, this only supported post-conditions that
was defined using a pattern with conjuncts of equality expressions and membership ex-
pressions. Another approach was taken in [13] which also aimed to improve checks and
animation of implicit specification. The approach presented here is less limited because
only a subset of the specification needs to be translated for each implicit definition and
because the translation is interlinked with the interpreter the scope is generally much
smaller since most variables will have a specific value from a type.

9 Conclusion and Future Work

In this paper we have presented the initial work enabling an interpretation of implicitly
defined VDM functions and operations using the ProB constraint solver behind the
scenes. It is more general than anything which has been done in the past. However, this
is still work in progress since we are aware of a number of further improvements in the
kinds of constructs that we are able to cover from the language. Using the constraint
solver and the transformation between the different representations is naturally less
efficient than interpreting a traditional explicit definition but this new works clearly
gives values to users who would prefer to express models using an implicit style.

While the work presented here enables interpretation of a subset of the VDM lan-
guage there is a one important type have not been possible to translate due to API limita-
tions in ProB. The union type is one of the most used types in VDM and is essential and
without it the quote type is nearly unusable. It is believed that the union type is possible
to present in ProB using a free-type implementation previously made for Z [18]. This
essentially allows the construction of a set of different types e.g. a: {B,Q}. The char-
acter type is another type that needs investigation to determine if it can be represented
in ProB. In addition type invariants are not yet incorporated in the translation. These
give a special challenge in the sense that they need to be added as additional conjuncts
wherever something is supposed to be of the type that has an invariant, including places
where no logic expression is present. Thus, most likely the first version taking this into
account will ignore the usage of such invariants in non-logic contexts.



The translation of conditions presented in Section 5.3 also needs further investi-
gation since this rule only translated logical conditions. This is too limited since it is
common to use conditions on other types. A solution is to introduce a variable (r ) that
will be assigned based on the truth-value of the test list:

(test ⇒ r = exp1) ∧ (¬ test ⇒ r = exp2) (20)

The translation presented in this paper supports a number of expressions used for
the case-study and example not explicitly mentioned in the paper but there are still
many expressions where the translation rules have not been specified. This includes the
lambda expression, which may be able to provide a better solution for function calls
than the current in-lining solution where a function call from a post-condition may have
the called function represented as a lambda expression containing the function body
and argument constraints. Record expressions and manipulations of these are also only
partially supported so far. General patterns has also not yet been covered although we
expect these to be relatively easy to handle when they appear in a logical context.

In our future work we expect to attack the limitations presented in Section 7 in order
to determine the final limitations that cannot be resolved with the approach presented
here. Naturally there will always be implicit definitions that we will not be able to
handle from an interpretation perspective but we wish to examine how to get closer to
the limit of what can be interpreted.
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Abstract. In this paper we describe ongoing work on a code generation platform
that simplifies the construction of code generators for VDM in the Overture tool.
The platform represents the code generated model as an Intermediate Represen-
tation (IR) and assists a code generator in transforming the IR into a structure that
is easier to code generate. Since the IR is independent of any target language, a
code generator can choose the transformations it needs to obtain the IR it desires.
Based on the code generation platform a VDM++ to Java code generator has been
developed1, while early work is currently being made on a C++ code generator.
Implementing the Java and C++ code generators has provided useful feedback
for the architecture of the code generation platform. This has helped us to gen-
eralise the platform structure in order to make it a stronger foundation to use for
constructing code generators.

Keywords: VDM, code generation, language paradigms, intermediate represen-
tations, tree transformations, extensibility, Java, C++

1 Introduction

When resources have been invested into modelling a system it is desirable to code gen-
erate the software implementation or parts of it from the system model to reduce the
efforts needed to realise the system. Code generation therefore supports efficient transi-
tioning to the realisation phase. However, most importantly it minimises the chances of
introducing inconsistencies in the software implementation that makes it deviate from
the system specification due to manual translation of the model into code.

With the existence of many popular target languages it is common for code genera-
tors to provide support for multiple target languages in order to target a larger group of
users. This can, however, easily lead to duplication of efforts when implementing code
generators — especially if the target languages follow the same paradigms such that the
rules used to code generate a source language are the same.

Ideally it should be possible to reuse the transformations used to code generate con-
structs of a source language. As an example, consider the VDM set comprehension
{x|x in set S & pred(x)}, which constructs a new set from the elements of
S for which pred(x) is true. In imperative languages such as Java and C++ this lan-
guage construct is non-trivial to code generate since Java and C++ do not have similar
constructs included. The same functionality can be obtained in those languages, but it

1 The Java code generator is available in Overture releases 2.1.0 onwards
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requires use of multiple language constructs for iterating over a set, evaluating a predi-
cate on each set member, adding elements to a resulting set and so on.

The potential for different backends (a code generator that extends the code gen-
eration platform) to use the same transformations is particularly good when the target
languages belong to the same paradigm (e.g. they are object-oriented or functional in
style). In that case they will have many language constructs in common and thus face
many of the same challenges with respect to code generation. When the same transfor-
mation can be used by different backends to code generate a source language construct
it is beneficial to apply the transformation to the code generator input before it reaches
the backend in order to obtain a transformed structure that is easier for a backend to
code generate. The idea is therefore to structure a code generator such that it is possible
to pick the transformations that will lead to a structure that requires the least effort for a
backend to code generate. In this paper we explore this approach to code generation in
order to reduce the efforts needed to implement code generation for multiple backends.

The paper is structured as follows. Section 2 describes how IRs support the imple-
mentation of code generators or backends. Section 3 explains how tree transformations
simplifies the implementation of backends. Section 4 provides an overview of the code
generation platform used for implementing the Java and C++ backends. Section 5 and
Section 6 describes challenges encountered for the implementation of the Java and C++
backends, respectively. Section 7 describes future plans for the code generation plat-
form. Section 8 describes related work and finally section 9 concludes our work.

2 Intermediate Representations

One approach adopted by compiler developers is to transform the Abstract Syntax Tree
(AST) specified in the source language into an IR that preserves the semantics of the
input and from which the backend generates code in the target language. The IR helps
managing the complexity of the compilation process by being independent of details
specific to the source language and the target language. An IR obtained from the VDM
AST serves a similar purpose by mitigating the complexity of generating code from a
VDM model. This would, for example, enable the code generator to unify VDM func-
tions and operations into the concept of a method as seen in a programming language
such as Java. Then the backend only needs to treat a single (language) construct without
having to distinguish between functions and operations.

Code generating a VDM construct is easier if equivalent or similar constructs ap-
pear in the target language. For example, a set comprehension in VDM is more likely to
have an equivalent construct in a functional programming language, which would sim-
plify the task of code generating it. However, for a target language that does not support
set comprehensions, code generating this construct is non-trivial. This is not surprising
since Java is an imperative language and a set comprehension is a functional concept.
Similarly, code generating the object-oriented concepts of VDM to a functional lan-
guage will require constructs to be code generated that are not naturally expressed in
terms of the target language. In general it is difficult to code generate across paradigms
since a construct with a strong relation to one paradigm will not be present in other
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paradigms thus requiring a strategy to translate that construct, which potentially needs
to make widespread changes to the IR.

In this work we address the challenges of code generating constructs where no ob-
vious mapping exist. We do this by translating the VDM AST into an IR to which a
series of transformations are applied. By transforming language constructs that are dif-
ficult to code generate into new (possibly larger) tree structures, based on concepts that
are easier to code generate, the implementation of a backend can be simplified. If the
backend provides support for code generating the replacement constructs used by the
transformations then it follows that the backend already supports code generation for
the complex construct. In that case the complexity of the code generation process is
comprehended entirely using tree transformations. The advantage of this approach is
that the transformations can be made such that they are independent of the target lan-
guage. This enables other backends to benefit from the same transformations when code
generation is implemented for other languages.

3 Tree transformations

In order to show the usefulness of applying transformations to the IR, before handing
it to the backend, we will consider a set comprehension as an example of a construct
to code generate. Since the set comprehension is a functional concept many target lan-
guages, such as those that are imperative in style, need to use several different constructs
to obtain the equivalent functionality.

3.1 Code generating the set comprehension

The VDM snippet in Listing 1 shows an example where a set comprehension is used
to construct a new set obtained by iterating over the set S and selecting the elements
for which pred(x) is true. Therefore collection comprehensions provide a convenient
notation to construct collections from other collections which would otherwise require
use of several different constructs in an imperative language such as Java.

1 public f : () -> set of nat
2 f () ==
3 let a = {x | x in set S & pred(x)}
4 in g(a,a);

Listing 1. Example of a set comprehension in VDM

Without using the set comprehension the equivalent functionality can be obtained
by rewriting the function in Listing 1 into a VDM operations that explicitly specifies
the semantics of the set comprehension using an imperative style of writing as shown
in Listing 2. Due to the expressiveness of the set comprehension Listing 1 obtains the
same functionality as that of Listing 2 using fewer lines of VDM. Although the func-
tion in Listing 1 and the operation in Listing 2 are semantically equivalent, the listings
represent different challenges for a code generator. The reason for this is that the two
VDM snippets use different constructs to obtain the same result.



4 Peter W. V. Jørgensen, Morten Larsen, Luis D. Couto

1 public op : () ==> set of nat
2 op () == (
3 dcl setCompResult : set of nat := {};
4 for all x in set S do
5 if pred(x) then
6 setCompResult := setCompResult union {x};
7 (dcl a : set of nat := setCompResult;
8 return g(a,a)));

Listing 2. Imperative specification of the VDM set comprehension in Listing 1

Therefore, the difficulty of code generating a VDM model depends on the style of
modelling and the target language. VDM is a multi-paradigm modelling language, us-
ing constructs of both the object-oriented and the functional paradigm, and therefore
backends will experience situations where a construct does not have a one-to-one map-
ping into the target language.

3.2 Transforming language constructs

One approach to simplifying code generation of a VDM model is to have the modeller
refine the model such that it uses constructs that are easier to code generate. However,
eliminating constructs that are problematic to a code generator using model rewriting,
limits the modeller to use only a subset of the source language. This also clutters the
model with details used to assist the backend in generating code from the model, thus
going against the point to have a model that abstracts away details that do not contribute
to obtaining the insight needed.

A better approach is to have this kind of model refinement done at a later stage to
make it transparent to the modeller and avoid restricting modelling to only a subset of
the source language. This could be done by applying transformations to the IR such that
constructs that are problematic to code generate get replaced with other IR constructs
in order to obtain a simplified IR that is easier to code generate.

The use of transformations is part of a larger platform architecture that is used to
construct backends. In section 4 the architecture of this code generation platform is
detailed to make it clear how it facilitates the construction of code generators.

4 Architecture of the code generation platform

The code generation platform, shown in Figure 1, takes a VDM++ model as input and
use it to construct an IR that represents the generated code. After the IR has undergone
a transformation process it is input to a backend that translates it into source code in a
target language. To further detail the approach taken to construct code generators this
section describes the architecture of the code generation platform and how it interacts
with the backend of a target language.
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Source code
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Fig. 1. An overview of the code generator platform architecture

4.1 The intermediate representation life cycle

The IR as first constructed from the VDM AST represents a slightly simplified and
extended version of the VDM model. For example, records in the IR are allowed to
have methods (unlike records in VDM). The purpose of this will become more clear
in subsection 5.1 where it is discussed how VDM records are code generated to Java.

The IR simplifies the tree structure by eliminating or rewriting use of certain op-
erators by replacing them with use of other operators. For example, writing a logical
implication on the form A ⇒ B where A and B are propositions, is convenient in
a mathematical language such as VDM, but since it is a derived and, not elementary
operation of boolean logic, this operator is rarely seen in a programming language.
Therefore the expression A⇒ B is represented as ¬A ∨B in the IR.

Next, code generation enters the transformation process where constructs that are
difficult to code generate (or even unsupported by the backend) are translated into new
tree structures that can be code generated. The IR before and after it has undergone the
transformation process is denoted IR and IR’ in Figure 1, respectively. Finally, the
simplified IR is input to the backend that translates it into a target language.

4.2 The design of the intermediate representation

The IR nodes are generated using the ASTCreator tool [1], which is a SableCC [9] in-
spired tool. As shown in Figure 2 the ASTCreator takes a description of the AST as
input and outputs nodes from which concrete ASTs can be constructed. The generated
AST structure uses bidirectional node relations which makes it easier to search the tree
both upwards (e.g. finding the enclosing class of a node) and downwards (e.g. look-
ing up type information of child nodes). The nodes also have functionality for making
changes to the tree structure, which is needed when nodes must be replaced with new
tree structures during the transformation process.
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IR nodes IR Visitors

AST 
Generator+

IR description IR extension

Fig. 2. The ASTCreator produces the IR nodes and visitors based on the IR description

The ASTCreator also produces functionality to traverse the AST. Tree walkers or
visitors are implemented using the visitor pattern and play an important role in the
current AST architecture used in the Overture tool where they, for example, are used to
implement the type checker and the interpreter [6]. Similarly, the IR Constructor
is a visitor that traverses the VDM AST and constructs the IR from it.

The ASTCreator is designed such that it allows optional AST extensions to comple-
ment an existing AST description and therefore it is possible to add new nodes to the IR.
This design benefits the extensibility of the code generation platform since extensions
to the IR can be made to support the implementation of additional transformations.

4.3 The backend

The final step of the code generation process translates IR constructs into source code
of the target language. When transformations have simplified the IR then ideally these
mappings should be trivial. The process of mapping IR constructs into source code of
the target language for the Java backend is done using the template based technology,
Apache Velocity [11]. Optionally, the generated code can make use of a runtime. As an
example, the Java backend includes a runtime to represent VDM types and implemen-
tation for some of the VDM operators such as the sequence modification.

5 Code generating Java from VDM++

Java has fewer language constructs than other object-oriented languages such as C# and
C++, which makes it simpler, but also less expressive as a language. Such languages are
difficult to code generate since fewer constructs in a target language implies less ways
to code generate a source language. This has led to some instructive experiences when
implementing the Java backend, some of which we will discuss in this section.

5.1 Code generating value semantics

In VDM records, tuples and collections have copy-by-value semantics (referred to as
“value semantics” throughout the remainder of the paper), which is the behaviour where
a variable is copied when it is passed as a parameter or appear on the right-hand-side
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of an assignment. This is also the semantics used for structs in programming languages
such as C++ and C#. In Java where there is no direct support for structs (or something
similar) the equivalent can be obtained by representing a value type using a class and
then have the instances explicitly copied as needed – normally by invoking a method
on the instance that does the copying. Therefore, code generating value types to Java
require careful attention. To demonstrate this, consider the VDM snippet in Listing 3,
where the record type Vector2D is used to represent two-dimensional vectors. In this
listing two vectors v1 and v2 are created with v2 being a copy of v1. Since records
have value semantics subsequent modifications to v1 have no effect on v2 and therefore
the operation would return 1.

1 public op : () ==> nat
2 op () == (
3 dcl v1 : Vector2D := mk_Vector2D(1,2);
4 dcl v2 : Vector2D := v1; -- Copy using value semantics
5 v1.x := 2;
6 return v2.x;)

Listing 3. Value semantics in VDM demonstrated using records

Had the vectors in Listing 3 been modelled using a class rather than a struct then
v2 and v1 would have been object references pointing to the same object. Therefore,
subsequent modifications to the underlying object using any of the two object references
would effect the same object and in that case the operation in Listing 3 would return 2.

5.2 Obtaining the effect of value semantics in Java

To obtain the effects of value semantics using a Java class one can provide a clone
method and invoke it on the instances when they need to be copied. Therefore, code
generating the VDM operation in Listing 3 yields the Java code shown in Listing 4.
Note, how the backend invokes the generated clone method in order to ensure that the
copy of v1 respects the rules of value semantics. Since the responsibility of the clone
method is to copy the fields of the associated class it must be generated specifically for
each record in the IR.

1 public Number op() {
2 Vector2D v1 = new Vector2D(1L, 2L);
3 Vector2D v2 = v1.clone();
4 v1.x = 2L;
5 return v2.x;}

Listing 4. Java code generated from Listing 3 demonstrating how the Java backend obtains the
effects of value semantics

A record in the IR can have methods (unlike records in VDM, which only have
fields) and therefore the clone method can be added as a child to the record node. Simi-
larly, the Java backend adds a method for record comparison based on structural equiva-
lence (field-wise comparison), a method for calculating the hash code of a record (such
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that it is suited for use in collections) and a method that computes the string represen-
tation of the record. Since these methods are added as extensions to records in the IR
they are specified solely using IR nodes.

5.3 Code generating functional concepts in Java

The approach of applying transformations to the IR has enabled the Java backend to
code generate complex constructs without being aware of their presence in the VDM
model. The reason for this is that these constructs are transformed into tree structures
composed of IR nodes that are simpler to code generate. In that sense code generating
the functional concepts required no extra effort for the implementation of the Java back-
end since code generation for the simpler constructs was already supported. The result
of code generating the set comprehension in Listing 1 is shown in Listing 5.

1 public static VDMSet f() {
2 VDMSet setCompResult_1 = SetUtil.set();
3 VDMSet set_1 = S.clone();
4 for (Iterator iterator_1 = set_1.iterator();
5 iterator_1.hasNext();) {
6 Number x = ((Number) iterator_1.next());
7 if (pred(x)) {
8 setCompResult_1 = SetUtil.union(
9 setCompResult_1, SetUtil.set(x));

10 }
11 }
12 VDMSet a = setCompResult_1;
13 return g(a, a);}

Listing 5. Java code generated from the VDM function in Listing 1

5.4 Iterating over collections

Iterating over collections in a target language is often done using library classes spe-
cific to that language. The Java backend does this using the java.util.Iterator
class, as shown in Listing 5, whereas the C++ backend uses the C++ standard library
iterators (std::iterator). Since transformations may produce new tree structures
that iterate over collections the code generation platform enables transformations to be
configured with language specific ways to iterate over collections. Iteration strategies,
as they are termed, have been added to the code generation platform as a result of the
feedback from implementing the C++ backend, and the Java backend has been updated
accordingly such that it also uses the iterator strategies.

Language iterators must implement a language iterator interface that requires im-
plementation of methods to

1. Initialize the iterator (or counter) used to perform the iteration
– e.g. Iterator iterator 1 = set 1.iterator();
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2. Build the expression used to determine whether there are more elements to process

– e.g. iterator 1.hasNext();

3. Increment the iterator (or counter) and read the next element

– e.g. Number x = ((Number) iterator 1.next());

The language iteration strategies allows incrementation of the iterator and reading
the next element (the third item) to be done in separate steps (increment the iterator and
then read the next element), but in Java and C++ it is common to do this in a single
step – at least when using the built-in iterator classes. Each method constructs a tree
to express the generated code related to that method using IR nodes. Since the trees
generated by these methods may want to represent types that are external to the code
generation platform the IR offers nodes to represent external constructs of the target
language. For example, in order to allow easier integration with a target language the
IR offers a construct to represent external types (e.g. the Iterator class in Java).

6 Code generating C++ from VDM++

The point of using a code generation platform is that backends of similar target lan-
guages can use the same functionality in order to reduce the efforts needed to implement
code generation. The implementation of a C++ backend has provided useful feedback
for the architecture of the code generation platform and given rise to some future plans
that will be covered in section 7. In this section we describe some of the interesting
challenges encountered for the implementation of the C++ backend and relates it to the
work on the Java backend described in section 5.

6.1 Code generating reference semantics

In VDM classes use reference semantics, and therefore two object references are con-
sidered equal if they point to the same object. The same applies for object references in
Java, but in C++ the objects must be referred to using pointers in order to obtain refer-
ence semantics. A C++ object allocated on the stack, on the other hand, uses structural
equivalence (field-wise comparison) to determine equality.

When an object must be shared among multiple methods it is common to put it
on the heap and access the object via a pointer or reference. In C++ memory that
is allocated on the heap must also be deallocated explicitly by the programmer since
C++ does not support garbage collection. In order to address this issue, the C++ back-
end implements an object reference using a shared pointer from the standard library
(i.e. std::shared ptr), which provides reference counting and automatic deletion
when no more references for the underlying object exist. In Java, garbage collection is
a language feature, and therefore the Java backend does not take memory deallocation
into account.
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6.2 Code generating functional concepts in C++

The C++ backend uses the same transformations as the Java backend to transform func-
tional VDM language constructs (collection comprehensions, quantified expressions
etc.) before they are code generated. Configuring the visitor that performs the transfor-
mations of the functional concepts with an iterator strategy and applying it to the set
comprehension in Listing 1 yields the generated C++ code shown in Listing 6. Since
the transformation takes care of expressing the algorithmic part of evaluating a set com-
prehension, and this can be reused directly by the C++ backend, the efforts needed for
code generating the set comprehension in Listing 1, is only a matter of providing the
iterator strategy – given that the simpler constructs can already be code generated by
the backend (e.g. the if-statement).

1 vdm::set<int> f() {
2 vdm::set<int> setCompResult_1 = vdm::set<int>::

from_list();
3 vdm::set<int> set_1 = S;
4 for (vdm::set<int>::iter iterator_1 = set_1->begin();

iterator_1 != set_1->end(); ){
5 int x = *iterator_1++;
6 if( pred(x) ){
7 setCompResult_1 = vdm::set<int>::set_union(

setCompResult_1, vdm::set<int>::from_list( x));
8 }
9 }

10 vdm::set<int> a = setCompResult_1;
11 return g(a,a);};

Listing 6. C++ code generated from the VDM set comprehension in Listing 1

6.3 Representing VDM records in C++

Record values in VDM are copied when assigned from, passed as argument (to a func-
tion or an operation), or returned as a value. This is also the behaviour for a class in
C++, and therefore this construct is used to represent a VDM record. However, for a
C++ class to create values from another class, the declaration of that class must be
visible to the compiler (such that the size of the value can be computed), otherwise
the class can only be pointed to (using a fixed size pointer). For example, consider a
class R1 that has a field of the class type R2. The declaration of R2 must appear before
the declaration of R1 otherwise the C++ compiler raises an error. A partial solution to
this, is to sort the dependencies using a topological sort. This does, however, require a
graph with no directed cycles. Another solution is to treat records as classes and use the
std::shared ptr type and generate additional code to obtain the effects of value
semantics as it was done by the Java backend described in subsection 5.2. Currently the
C++ backend uses the first approach where topologically sorted C++ classes are used
to represent VDM records.
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6.4 Representing VDM collections in C++

The C++ standard library include lists, sets and maps but it lacks some of the function-
ality needed to fully represent the VDM collections. Therefore, the C++ backend uses
a runtime that includes classes to represent the VDM collections (e.g. vdm::set) and
operations on them. For example, the set union operator is implemented as a method,
set union, and used, for example, in the transformation of a set comprehension as
shown in Listing 6. To code generate the includes needed in the generated code to access
the runtime, the C++ backend uses the external type construct of the IR.

To ensure that the value semantics for VDM collections are preserved, the runtime
collections overload the assignment operator and the copy constructor such that a col-
lection gets copied correctly when assigned from, passed to a method or returned as a
value. The advantage of this approach is that the C++ compiler becomes responsible for
generating the code that copies the collection object the places where it is needed. This
is different from the approach used by the Java backend, which needs to analyse the
IR in order to find out where the clone method needs to be invoked. However, since
Java classes use different semantics than C++ classes and Java does not allow operator
overloading nor does it use copy constructors, the approach used by the C++ backend
cannot be used.

7 Future plans

Looking forward, there are several immediate improvements that can be made to the
code generation platform, in terms of expanding the coverage of VDM and adding
support for additional target languages. There are also possibilities of looking into how
the extensibility and the reuse of transformations can be improved.

7.1 Adding support for new target languages

We may wish to generate code for different languages of different paradigms to further
validate the code generation platform architecture by implementing backends based on
target languages that are different from Java and C++. Since Java and C++ are both im-
perative languages that use object-oriented principles, the work presented in this paper
focuses on reusing the existing transformations. Adding support for a new language of
a different paradigm would provide feedback for the code generation platform, which
would lead to further improvements in terms of its extensibility.

7.2 Atomic transformations

One way to add support for new target languages is to continue expanding the code
generation platform, by adding transformations and altering the existing ones to facili-
tate the support for new target languages. However, there are issues with this approach:
the constant maintaining of existing functionality to support new target languages indi-
cates a poor platform extensibility. Instead it should be possible to extend the existing
functionality that the code generation platforms offers without affecting it.
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In order to address this issue, the code generation platform must be re-designed
with respect to the way transformations are applied. At the moment each transforma-
tion is large and extensive. For example, when transforming the functional elements in
preparation for Java code generation, all elements are removed in the same visitor. This
occurs at code level where all these transformations are implemented in one visitor.

To understand the consequences of this, consider the case where we wish to code
generate for a language JavaEQ that is like Java in every regards, except that it con-
tains support for existential quantifiers. In the current architecture this requires either
subclassing and overriding the methods in the Java visitor (which immediately locks
the new transformations in the Java hierarchy) or duplicating and changing code.

Therefore, we propose use of fine-grained atomic transformations that allow con-
structs in the IR to be transformed one at a time. These transformations would then
be grouped in libraries in terms of which types of constructs they replace rather than
which programming language they target. From here, we can define composite trans-
formations that support specific programming language as combinations of the atomic
transformations. For example, if we consider a transformation to be a relation from IR
to IR then we would say that JavaTrans = ExistsTrans ◦ SetCompTrans · · ·.

7.3 Extensibility of the code generation platform

Use of atomic transformations would also make it easier to maintain existing backends.
For example, Java supports lambda expressions as of the recent Java 8 release[5]. In
terms of atomic transformation, updating the Java backend to support Java 8 is as sim-
ple as removing the lambda expression transformation from the sequence of transfor-
mations. This would be significantly simpler (and shorter) than editing the visitor code
to remove the transformation. In addition, if this visitor is being used to code generate
for another language without lambda expressions, then the code must be split.

In order for this approach to be viable, the atomic transformations would have to re-
spect various properties. Namely any two atomic transformations should be compatible
with each other. This means that they alter independent parts of the tree while preserving
anything else. An initial approach to this might be to ensure that no two transformation
operate on the same node.

As certain transformations push the tree in a particular direction, other transfor-
mations no longer become available. This is acceptable since one is not interested in
combining transformations arbitrarily but rather do so always with the goal of getting
closer to a particular target language. There may also be issues with the order of the
transformations. Again, it is not essential that all transformation can be combined in
arbitrary ways. Only that there is one way to combine all the desired transformations.

There are some implementation challenges to the atomic transformation approach.
Particularly since multiple inheritance is not available in Java (the language in which
the transformations are implemented) and therefore the combination of multiple trans-
formations in a single visitor is non-trivial. Finally, there may also be performance
considerations when performing multiple small transformations versus a single larger
one.
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7.4 Code generating trace definitions

Overture supports automated test generation and execution of large collections of test
cases that are derived from a trace definition [7]. The trace definition uses a short-hand
notation and can be thought of as a regular expression that expands to test cases or
sequences of operation calls that match the pattern of the trace definition. When the
expansion process is complete the VDM interpreter executes the tests one by one and
optimises the process by filtering out tests based on the outcome of other tests (e.g. a
test will fail if it starts with a sequence of operation calls that it known to cause a test to
fail). In addition, Overture offers different techniques to make reduced sets of tests as
representative as possible – a technique known as shape reduction.

This future plan item aims to produce and execute code generated from a trace in
order to make test execution more efficient. This can be done by expanding the trace into
tests that are code generated and executed, instead of having them executed in the VDM
interpreter. However, for this to be of any value it should make up for the time spent
producing and executing the code generated tests. This approach would also allow use
of existing techniques available for test filtering and shape reduction. Another approach
is to code generate the trace directly such that when the generated code is executed it
will expand and execute all the tests matching the pattern of the trace. However, this
approach needs new ways to do test filtering and shape reduction, since it must be done
during execution of the code generated trace.

8 Related work

This section describes existing work on code generation for VDM and approaches to
constructing code generators for cases where expressing the source language in terms
of the target language is non-trivial.

8.1 VDM code generation

VDM code generation was developed for VDMTools [10] in the nineties with sup-
port for both Java and C++, and has primarily been used to code generate prototype
implementations rather than final production code. In the late nineties the Java code
generator was extended to support code generation for the concurrency mechanisms of
VDM++ [8]. Unfortunately, there is no scientific literature available to document the
approach used to construct the VDMTools code generation feature.

VDMTools supports code generation for a larger subset of VDM compared to the
current code generation platform described in this paper. However, VDMTools does,
for example, not support code generation for a functional concept such as a lambda ex-
pression, which is non-trivial to express in earlier versions of Java where this is not sup-
ported. Code generation of lambda expressions (for earlier versions of Java) is achieved
by the Java backend described in this paper by applying transformations to the IR.
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8.2 The DMS Software Reengineering Toolkit
The DMS Software Reengineering Toolkit is a commercial set of tools for program
analysis and transformations [3]. It contains tools for lexer and parser generation, func-
tionality to pretty print an AST and specify program transformations, termed “trans-
forms”, using source rewrite rules. Rules are written in the DMS’s Rule Specification
Language and typically have the form LHS→ RHS if condition. A rule is interpreted
such that when a part of the program matches LHS it gets replaced by RHS if the con-
dition is true. For example, a rule can be specified such that it replaces an assignment
statement on the form v = v+1 with the incrementation v++. To support the specifi-
cation of rules, patterns use language syntax categories (e.g. both LHS and RHS must
be of the statement syntax category) and it also allows use of metavariables to match
with variables and expressions in the source language.

Transforms and source rewrite rules work at the concrete syntax level and therefore
this approach differs from that used by the code generation platform described in sec-
tion 4. Here transformations are applied to the IR at the abstract syntax level using visi-
tors generated using the ASTCreator tool, where a case must be implemented to match
a constructs in the IR. For example, a case can be implemented to match a set compre-
hension but there are also cases that allows categories of IR nodes such as statements,
expressions and numeric binary expressions to be matched. Visitors have the potential
to make changes all over the IR including adding new types and definitions as done by
the Java backend during code generation of records as explained in subsection 5.2.

8.3 Code generating a logic language
Research has been done on translating logic languages such as Prolog [4] into impera-
tive languages. In logic languages programs are expressed as logical formulas or horn
clauses. Queries can be made about a program from which the interpreter will try to
construct a proof. An example of a Prolog to Java translator is found in Prolog Café [2].

In order to be able to execute a code generated Prolog program, there must exist a
runtime to support the generated code, and take over the role of the Prolog interpreter.
This runtime is therefore responsible for trying to construct a proof that meets a given
query. Since the Prolog interpreter is based on a highly efficient implementation and
makes use of sophisticated algorithms to implement the traversal of the search tree, the
implementation of such a runtime (or at least one that is efficient) is a complicated task.

The approach to use transformations to mitigate the complexity of code generating
a logic language to a language such as Java can be expected to be of limited value
compared to the case where code generation is more naturally done by expressing a
source language using an IR. The reasons for this is that most of the challenges of code
generating a logic language such as Prolog to Java involves the implementation of the
runtime that constructs the proof.

9 Conclusion

The code generation platform presented in this paper supports construction of different
backends and reduces the efforts needed to code generate a source language to multi-
ple target languages. It achieves this by representing the generated code as an IR and
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subjects it to a series of semantic preserving transformations in order to obtain a tree
structure that is easier for a backend to code generate. Since the IR is independent of
any source and target language backends facing similar challenges during the code gen-
eration process, can use the same transformations to simplify their implementation.

To validate the architecture of the code generation platform a VDM++ to Java back-
end has been developed for the Overture tool, and work is currently being made on a
VDM++ to C++ backend. Java and C++ are imperative languages and therefore both
backends can use the same transformations in order to obtain an IR that is easier to code
generate. To demonstrate this, it was shown how a set comprehension was transformed
into a larger tree structure based on IR constructs of an imperative nature.

Applying transformations to an IR has proven useful for implementing the Java
and C++ backends, but the the approach also supports code generation for other source
languages. Therefore we hope that the work presented in this paper will be useful for
others working with code generation.
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Abstract. Overture is an open source IDE for VDM with an exten-
sible, plug-in based architecture. However, it currently faces significant
challenges to its developer resources. The number of active developers is
small and it is difficult to attract new developers, in part because the
Overture code base is large and complex, and therefore challenging to
learn. This is further complicated by a lack of documentation through-
out. This paper presents an initial effort to address these challenges in
the form of a guide to the architecture of Overture. The guide itself is
a living document, being maintained in the developer wiki. This paper
presents key sections of the guide as well as issues encountered during
its production and possible solutions.

1 Introduction

Overture is an open source IDE for VDM where extensibility is a main focus
and goal [3]. This allows interested Overture users to contribute to the tool both
by maintaining and improving the existing code base but also by adding brand
new functionality. In order to attract these contributions it is essential that new
developers are able to orient themselves in the code base.

However, the Overture code base is rather large (nearly 400k lines of code),
spread across multiple components and implementing many different functional-
ities. It is challenging for new developers (and even experienced ones) to orient
themselves in the code base. This issue is further compounded by a general lack
of documentation across the project, both in terms of code comments and anno-
tations and external documents such as design specifications or API descriptions.

An initial effort into improving the technical documentation of Overture has
been the production of an Overture architecture guide. The guide itself is meant
to be a living document, evolving along with the tool. As such, it is maintained
in the developer wiki and is available at https://github.com/overturetool/

overture/wiki/Architecture-Guide.
The guide is primarily aimed at new developers who need to familiarize them-

selves with Overture. But it should be of use to anyone that needs information
regarding the architecture of Overture. It is meant to be an authoritative source
on the architecture and should be kept up-to-date as the architecture changes.
The focus is on the interactions between the various components of Overture so
their descriptions are written in terms of what they require and provide. Less
attention is paid to the internal architecture of the components.

https://github.com/overturetool/overture/wiki/Architecture-Guide
https://github.com/overturetool/overture/wiki/Architecture-Guide


This paper introduces the current, work-in-progress version of the Overture
architecture guide. It aims to attract the attention of the broader Overture com-
munity in order to both assess the quality of the guide and discuss ways to
improve the architecture of Overture and address the developer resource chal-
lenges.

This paper presents significant excerpts of the architecture guide, with min-
imal alterations to reflect the change of format. Also, throughout the paper,
including the guide excerpts, suggestions are made to address various architec-
tural issues uncovered during the production of the guide. These suggestions are
highlighted in boxes as follows:

Suggestion 0: Improve the architecture of Overture.

The remainder of this paper is structured as follows:

– section 2 presents excerpts of the guide that give a brief high-level overview
of Overture and describes the two perspectives that can be taken on the
architecture.

– section 3 presents excerpts of the guide describing the architecture of the
core components of Overture.

– section 4 discusses various architectural issues uncovered while producing
the guide.

– section 5 concludes the paper.

2 Overview

This section presents an overview of the Overture architecture. Two different
perspectives can be taken on the architecture and the components (also called
modules) of Overture:

Source Code Perspective where each architecture module corresponds to a
Maven [1] module. Maven is the build system used for Overture and it pro-
vides a series of conventions for organising source code and related files that
Overture follows.

Functionality Perspective is a more conceptual perspective that blurs the
lines between modules and simply considers distinct, high-level functionali-
ties.

The following excerpts show the guide’s descriptions of both perspectives. It
is worth noting however, that most of the architecture guide follows the source
code perpective.



2.1 Source Code Perspective

The Overture code base is grouped in two main sets of (Maven) modules:
– Core Modules implement and provide the various functionalities of

the tool
– IDE Modules are responsible for the User Interface and are heavily

based on Eclipse1 plug-ins.
In theory this should enforce strong separation of concerns — the Core
modules implement functionality and the IDE Modules implement the
user interface. However, there are a few quirks worth mentioning. The
IDE modules are all based on Eclipse and built with Tycho2 so the set of
IDE modules does not implement all user interfaces. It only implements
the IDE version. On the other hand, some of the IDE Modules implement
functionalities that are not available in the Core set (examples include
uml2 and latex). More details can be found in the module overviews.
There are some advantages to separating the code into functionality mod-
ules and IDE modules. Namely the fact that most of the actual function-
alities of Overture are detached from Eclipse. Therefore, should we ever
decide to change the IDE support, migration will be easier.
In general, the development of new functionalities for Overture should
follow this pattern: implement the actual functionality in a core module
and implement its user interface in the form of an Eclipse Plug-in that
provides access to the core module. Any external dependencies of a plug-
in should be manged through Maven. If that is not possible due to, for
example, Eclipse dependencies that are not built with Maven then the
module cannot go in the core set.

2.2 Functionality Perspective

In terms of functionality, Overture can be split into core functionality
and plug-ins (keep in mind that this is not the same as the core and IDE
module sets). The core functionality is implemented by the parser, type
checker and AST. The parser and type checker construct and validate an
AST that represents the VDM model being worked on. These 3 modules
are considered the core because they do not make sense on their own.
Every functionality in Overture requires a valid AST to work and these
3 modules are responsible for providing it. In essence, the core provides
a way for the plug-ins to interact with a VDM model.
Every other functionality in Overture is conceptually viewed as a plug-
in or extension on top of the core. This generally means that almost all
functionality depend on the AST. Most of them need not depend on the
parser directly. You need the parser present to construct an AST but in
general you should not need to declare the parser as a dependency. The
type checker is a bit more subtle. In addition to validating the AST, it
offers various utilities so it may be necessary.

1 http://eclipse.org/
2 For more information about Tycho see http://eclipse.org/tycho/

http://eclipse.org/
http://eclipse.org/tycho/


3 Core Modules

This section presents the architecture guide’s descriptions of the core modules.
The guide provides an overview of the architecture of the set of core modules as
well as brief individual descriptions of each module. We begin by presenting the
overview of the architecture.

3.1 Core Architecture Overview:

The core modules are written in pure Java and all their dependencies are
managed exclusively through Maven. This makes building and working
on them a fairly straightforward process.
Fundamentally, all modules are built around the Abstract Syntax Tree
(AST). The AST is an in-memory representation of the VDM model being
worked on. The Parser is responsible for reading a VDM source and
constructing its tree. The Type Checker is responsible for validating a
tree. Practically all use cases for Overture involve a type checked AST.
However, most modules should not need to interact with the Parser nor
the Type Checker (but see further below) and instead should have a
type checked AST provided to them. The task of constructing this AST
should fall to an overall core module and only comes into play when
interacting with the user. For example, the interpreter should only
concern itself with executing an AST. How that AST came to be is of
no importance to the interpreter.
Figure 1 presents an idealized view of the modules and their interdepen-
dencies. It does not match the Maven modules on a 1 to 1 basis since it
groups a few of them (for example Combinatorial Testing represents
2 Maven modules). It should give a good idea of the overall architecture
of the Overture core.

There are some points worth noting with regards to the overall architec-
ture, as shown in Figure 1:

– Most modules should interact only with the AST (either to build or
analyze it) and with the Test Framework

– The Test Framework consists of some utility methods to use VDM
sources as inputs and XML files as results. Most modules use it for
testing, as expected.

– Command Line and GUI Builder are isolated because they are not
modules in the same sense as the rest. The Command Line is just a
bash script that calls the main Overture jar and the GUI Builder is
an externally developed VDM tool that we bundle with Overture

– A few functionality modules need to interact with each other:

• The POG uses the Pretty Printer to format its output



Fig. 1: Architecture of Core Modules



• Combinatorial Testing uses the Interpreter to execute the
generated tests.

While the current architecture is a significant step up from previous ef-
forts, there are still some problems. The biggest issue is a lack of an
overall module to coordinate the work between the various functional-
ities. This is the reason why several module dependencies exist. This
issue occurs primarily when exposing functionality to the user. It is sig-
nificantly less relevant on the IDE side where this kind of coordination
code exists. But on the core side the lack of a coordinator introduces
several additional dependencies that are not really needed.

3.2 Module Descriptions

For each module, the guide provides a very brief summary of its functionality
and purpose along with a description (and rationale) of its most important de-
pendency connections to other modules. Each module description also contains a
table listing all of its outgoing and incoming dependencies to other modules. The
main purpose of these descriptions is to explain to the reader where each partic-
ular module fits in the overall Overture architecture. We present the descriptions
of a few core select modules below.

Command Line

Consists of 2 very simple scripts (bash and bat) to run the command line
version of Overture. These scripts essentially wrap the call to the main
Overture jar. They are not actually connected to any of the modules so
their influence on the architecture is none. Still, they are mentioned for
completeness’ sake.

AST

This is the central module of Overture. The AST module provides a se-
ries of classes that implement an AST for VDM. It consists mainly of
node classes (the INode hierarchy) that represent the nodes of the tree
and a series of abstract visitors that can be subclassed in order to im-
plement new functionalities. Both the nodes and visitors are generated
automatically with the ASTCreator tool from a specification file.
In addition to the auto-generated classes, there are several utility and
support classes. The most notable are:

– AstFactory, as the name implies, provides a factory for constructing
most nodes in the tree. If you need to construct nodes for some
reason, you are strongly encouraged to use this.

– Assistants providing a series of generic functionalities.

– Lex classes providing an implementation of the various kinds of to-
kens present in a VDM grammar.



As for the tree itself, it is very large and complex (around 300 nodes).
This is because VDM itself is a rather large language (3 dialects) with
a lot of syntax and the Overture tree follows the grammar very closely,
practically on a 1-to-1 basis. As such the best way to familiarize yourself
with the tree is to study the VDM grammar, available in the VDM
language manual that ships with Overture (it can also be found in the
documentation folder of the repository).

Relation Modules

Depends on: None
Dependency of: Parser, Type Checker, Pretty Printer ,POG,

Combinatorial Testing, Code Generator, Inter-
preter, Pro B Solver

Table 1: Dependency connections for the AST module

Parser

This module is responsible for constructing an AST from VDM source
files. The Overture parser is handwritten and while quite efficient, is
challenging to maintain. The parser provides utility classes and methods
to turn an input (String, File. . . ) into an AST. These are used by
various modules and are, in general, problematic since the parser should
not be depended upon by modules that have no concept of VDM sources.
Many of these usages are strictly for testing purposes since the only way
to construct any but the most trivial AST is to write a VDM source and
parse it. As such we have omitted these connections from the idealized
diagram shown in Figure 1.
The parser dependency issue should be alleviated by introducing a frame-
work to directly manipulate the AST for testing purposes. In addition,
the dependencies on the parser themselves should be made looser since
at the moment they exist as static calls to parser methods which makes
it harder to replace/change the parser. It also makes extending the
modules problematic since the static calls cannot easily be hooked into.
In general, there should be an intermediate facade module to provide
parsing (and type checking) functionalities to all other plug-ins.

Suggestion 1: Create a test framework that allows for direct cre-
ation and manipulation of ASTs.

Suggestion 2: Remove public static methods from the parser mod-
ules.



Relation Modules

Depends on: AST, Test Framework

Dependency of: Type CheckerPOG, Code Generator

Table 2: Dependency connections for the Parser module

Type Checker

This module is used following the parser in almost all use cases for
Overture. It is responsible for type checking an AST which consists of
validating the types and setting them on all nodes across the tree. Much
like the parser, there are utility methods for type checking an AST
but also for producing a type checked tree from a VDM source. These
methods are used in similar contexts as the ones from the parser and
suffer from the same issues. There is also the fact that it is possible to
build a type checked tree directly through the type checker or in two
steps by using first the parser and then the type checker. In general,
this kind of duplication only serves to muddle things. There should be a
single way to perform such a basic and standard task.

Suggestion 3: Introduce a canonical way for modules to obtain
type checked ASTs.

Unlike with the parser, the type checker has additional utility meth-
ods that are used by the other modules for non-testing purposes. These
methods perform various kinds of functionalities such as, for example,
testing if a given union type contains a boolean type. Most of these util-
ities are exported through the assistant system so they do not pose as
much of an extensibility issue. However, from a conceptual point of view,
while many of these features are crucial, they are not features of the type
checker itself but rather of the VDM type system.

The type checker should be separated into two modules: a type checker

module that is only responsible for validating a tree and that would con-
tain most of the visitors and code for traversing a tree; and a type

system module with the various utilities that would allow a developer
to more easily interact with the VDM type system. It’s possible that
these modules would be tightly coupled and the type checker would
surely make extensive use of the type system. But this would allow
other modules to disconnect from the type checker which would be
important since the other modules have no notion of type checking a
tree. For them, all trees are type correct.



Suggestion 4: Separate type checker into two modules: one for
providing type validation of ASTs and another providing utilities to
interact with the VDM type system.

Relation Modules

Depends on: AST, Test Framework, Parser
Dependency of: Pro B Solver, POG, Interpreter, Code Generator

Table 3: Dependency connections for the Type Checker module

Pretty Printer

This module is used for printing an AST, i.e., converting it to a String.
The module depends only on the AST and can be used by any module
that wishes to display a tree to the user. At the moment, that includes
only the POG. The module is implemented mostly as a series of visitors
that walk the tree and produce a String for any given node.
Please note however, that this module is very outdated and incomplete
and has mostly been discontinued. Its functionality can be (badly) ap-
proximated by toString() methods in the AST nodes and that is what
most modules end up using.

Relation Modules

Depends on: AST

Dependency of: POG

Table 4: Dependency connections for the Pretty Printer module

4 Discussion

This section discusses architectural issues that were uncovered throughout the
writing of the architectural guide. Most issues fall in one of two categories: design
issues that indicate an unsound architecture and accessibility issues that limit a
new developer’s ability to navigate the code.

4.1 Design Issues

There are various issues with the architecture of the core modules, in terms
of how they depend on each other. Figure 1 shows an idealized design but in
fact that design has problems. And it omits several other dependencies that are
planned to be removed. The full dependency graph can be seen in Figure 2 and
it is more complex and disorganized, particularly the connections between the
various plug-in modules.



Fig. 2: Dependency Graph for Core Modules



There are two kinds of dependency issues, though they are related and have
a common cause: first, multiple modules depend on the same set of modules:
parser, type checker and ast. This effectively introduces tight coupling be-
tween all three modules. There is some reasoning for this. As we stated before,
none of the three functionalities makes much sense on its own and, in general
any changes introduced in one of the modules will necessitate changes in the
others. Imagine introducing a new type of node in the ast. Such a node would
require changes to the parser (in order to construct the new node) and type

checker (in order to validate the new node).

This tight coupling between the 3 modules might suggest that they should
be merged but that would instead lead to a very large module that would be
harder to maintain. But the current design introduces too many dependencies
between the modules and even though the parser, type checker and ast all
implement a single core functionality, there are multiple points to access it.

One possible solution to this issue is the introduction of a new module that
acts as an interface between the 3 core modules and all the remaining ones. Such
a module exists in the IDE modules, but not in the core set. The existence of
such a core module and subsequent detachment of the parser and type checker

from the rest would also force the removal of hard coded dependencies which,
at the moment, greatly hinder the extensibility of the tool and make it much
harder to replace the existing parser and type checker with new versions.

Suggestion 5: Introduce a core module that provides a unified interface
to the parser, type checker and ast modules.

The second kind of design issue encountered lies in the interdependency
of the functionality modules (i.e., the ones other than ast, parser and type

checker). For example, the combinatorial testing module depends on the
interpreter. Most of these dependencies can be justified on a case-by-case ba-
sis. In the aforementioned example, the combinatorial testing module needs
the interpreter to execute the texts it generates.

However, these kinds of interdependencies cause problems. Once again, they
make it harder to change, extend or replace a given modules. And further, they
lack justification from a conceptual point of view. A module should not depend
on another module if their functionalities do not intersect. Returning to our
example, the responsibility of combinatorial testing is to generate tests, not
execute them.

All of these extra dependencies have the same common cause: there is no
overall module that controls and coordinates the others to present functionality
to the user. Each module is more or less responsible for providing a base user
interface (in some cases – such as the POG – this is done through the inter-

preter). There is a clear lack of a user interface module. This issue does not



occur in the IDE modules but if one of the goals for the core modules is to have
a basic command-line interface, then there should be a module dedicated to it.

Suggestion 6: Introduce a core module solely dedicated to providing a
basic command-line interface.

4.2 New Developer Issues

The main architectural issue that new developers will face has to do with the
necessity to use assistants. Assistants are classes that provide centralized ac-
cess to common functionalities and they are implemented in an extensible way.
However, the documentation surrounding them is quite poor. For starters, it
is not immediately obvious how a developer hooks into the assistant hierarchy.
Furthermore, when constructing a new extension, the need to hook into the as-
sistants is not explicit. Even further, if one hooks into the assistants, it is not
immediately clear which methods of which assistants need to be overridden. To
answer such questions would require deeper analysis of the code (including the
new extension), perhaps with code slicing techniques.

In general, while the current assistant architecture supports extensibility, its
usage is not particularly simple. There are two possibilities to address this issue:
one is to overhaul the architecture entirely and look to remove the assistants.
Another is to greatly increase the assistant documentation to raise further aware-
ness of these issues. On the subject of further documentation, the functionalities
of the assistants themselves are also poorly documented. The construction of
an assistant API document is underway and looks to remedy that. Finally, it is
worth noting that many of these assistant issues only affect language extensions,
in the vein of the COMPASS project [2].

Suggestion 7: Revise usage of assistants either through detailed docu-
mentation or a new design and implementation.

A final issue worth mentioning is one of terminology. There are two fun-
damental terms in the Overture developer documentation that are overloaded:
core are plug-in. Both are used to refer to different concepts in different circum-
stances. In a source code perspective plug-in is used in the sense of an Eclipse
plug-in: a series of classes and configuration files that implement some kind of
user interface in the Eclipse framework. These plug-ins usually correspond to a
Maven module. On the other hand, from a functionality perspective, plug-in is
used to refer to a non-basic functionality of Overture, however many modules it
may comprise.

As for the term core, from a source code perspective it refers to modules
that implement a functionality (as opposed to an IDE interface ). Relatedly,
when talking about Eclipse plug-is, core is used to refer to the imported jar



file that provides the functionality exposed to the user by the plug-in. From the
perspective of functionality, core refers to the group of fundamental Overture
functionalities: parsing, type checking and AST.

The fact that these two overloaded terms are both central to any discussion
of the Overture code base and that they are often used together can lead to
confusion when discussing them. For experienced developers, distinguishing be-
tween the various meanings is quite intuitive but for a new developer – the kind
for whom documentation is primarily intended – it may not be so clear. It might
be worthwhile to consider disambiguating the two terms by introducing a few
new terms to refer to each specific meaning.

Suggestion 8: Disambiguate terminology for core and plug-in.

5 Conclusion

In this paper, we have introduced the guide to the Overture architecture, a new
effort to improve the existing documentation of Overture. As it stands, the guide
is a work in progress and we hope to continue expanding it until it covers the
totality of Overture. Even at that point, the major goal for the guide is for it to
be continuously updated as the architecture of Overture evolves.

Several issues were encountered during production of the guide. Many of
them stem from a lack of existing documentation so there is an expectation that
this guide (and others like it) will alleviate various issues as it improves. On
the other hand, the guide has uncovered various architectural design issues that
may require significant changes to Overture. This paper provides some initial
discussion and suggestions on how to address those issues.

Finally, while the intended target audience of the architecture guide are new
developers of Overture, we hope it draws the interest of the Overture commu-
nity at large. The current lack of new developers is a real issue, and part of the
reason for it is that the code base is quite challenging. This leads to something
of a vicious cycle where the absence of new developers lowers the need for doc-
umentation and the absence of documentation makes it harder to attract new
developers. We hope that this guide is a first step towards breaking the cycle
and that it may help attract new members to the Overture community.
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Abstract. This is a summary of a talk given at the 2014-06-21 Overture
Workshop.

Extended abstract

The talk was largely based on [5] (which originated from an invited talk at
SEFM [4] but was almost completely rewritten) — as hinted by the title, that
paper argues that “expressive weakness” might not be a fault in specification
languages for concurrency. The point being that more expressive notations might
be less tractable.

Furthermore, it is argued that it is a mistake to focus too early on specific
notations; it is far better to first study the “issues” in concurrency and then try
to see how various approaches can help describe and support reasoning about
the issues. As the title of the talk suggests, both Rely/Guarantee approaches
and Separation Logic were a particular focus.

“Separation” is certainly an issue in concurrency and the extension of John
Reynolds’ Separation Logic [8] to Concurrent Separation Logic (CSL) [7] pro-
vides a compact way of reasoning about separation. In fact, the related issue of
“ownership” between concurrent processes is also well served by CSL. In order to
make the point about starting from the issues, it was pointed out that VDM de-
scriptions use rd/wr clauses in operation descriptions to delineate the “frames”
of operations. It is also interesting to compare some of the many papers that
provide formal justifications of Simpson’s implementation [9] of Asynchronous
Communication Mechanisms. Race freedom on the four slots is of paramount im-
portance and exchange of ownership of the slots between the reader and writer
processes is delicate. In [1] and [2] an approach is used that actually uses both
rely/guarantee argumentation and linearisability; in contrast [6] shows that it is
possible to reason about the exchange of ownership at an abstract level. (In pass-
ing, that same paper introduces a notation for the “possible values” of a variable
to which concurrent processes have write access — this idea is still being worked
out.)

The talk also made the point that the form of separation exhibited in the in-
place list reversal algorithm in [8] might be conveniently handled by abstraction.
With the motto “separation is an abstraction”, it is interesting to consider what
form of notation might best handle reifications whose task is to preserve the



abstraction of separation (this example is touched on in [5] and is still the subject
of on-going work).

Lest the impression is created that the talk was just about changing Separa-
tion Logic, the majority of the time was spent on recent changes to the way that
Rely/Guarantee specifications and reasoning can be recorded. Here, of course,
the issue is interference which is central to many concurrent designs. The origi-
nal five-tuple presentation of Rely/Guarantee specifications is replaced in [3] by
rely and guar statements that can be wrapped around any command — and
here, as in the refinement calculus, commands can include specifications.

The material covered is from the (UK) EPSRC project “Taming Concur-
rency” and the (Australian) ARC project “Understanding concurrent programs
using rely-guarantee thinking”. I am grateful to all of my colleagues on these
projects: Andrius Velykis, Nisansala Yatapanage, Ian Hayes, Rob Colvin, Larissa
Meinike and Kim Solin.

References

1. Richard Bornat and Hasan Amjad. Inter-process buffers in separation logic with
rely-guarantee. Formal Aspects of Computing, 22(6):735–772, 2010.

2. Richard Bornat and Hasan Amjad. Explanation of two non-blocking shared-variable
communication algorithms. Formal Aspects of Computing, pages 1–39, 2011.

3. Ian J. Hayes, Cliff B. Jones, and Robert J. Colvin. Laws and semantics for rely-
guarantee refinement. Technical Report CS-TR-1425, Newcastle University, July
2014.

4. Cliff B. Jones. Abstraction as a unifying link for formal approaches to concurrency.
In G. Eleftherakis, M. Hinchey, and M. Holcombe, editors, Software Engineering
and Formal Methods, volume 7504 of Lecture Notes in Computer Science, pages
1–15, October 2012.

5. Cliff B. Jones, Ian J. Hayes, and Robert J. Colvin. Balancing expressiveness in
formal approaches to concurrency. Formal Aspects of Computing, (in press), 2014.

6. Cliff B. Jones and Ken G. Pierce. Elucidating concurrent algorithms via layers of
abstraction and reification. Formal Aspects of Computing, 23(3):289–306, 2011.

7. P. W. O’Hearn. Resources, concurrency and local reasoning. Theoretical Computer
Science, 375(1-3):271–307, May 2007.

8. John C. Reynolds. Separation logic: A logic for shared mutable data structures. In
Proceedings of 17th LICS, pages 55–74. IEEE, 2002.

9. H. R. Simpson. New algorithms for asynchronous communication. IEE, Proceedings
of Computer Digital Technology, 144(4):227–231, 1997.



Abstracts of Other Workshop Contributions 

Tools Development Update 

Author Joey Coleman 
Abstract We will give an overview of the nut and bolts state of how development, and what we're 
currently working to improve upon. 

Design Space Exploration through Co-modelling and Co-Simulation - the Pacemaker Challenge 

Authors John S Fitzgerald, Carl Gamble, Peter Gorm Larsen and Martin Mansfield 
Abstract We present a study aiming to demonstrate that co-modelling and co-simulation can be used 
to explore design alternatives in the context of the pacemaker challenge problem. Specifically, we 
show the use of VDM as a discrete-event formalism modelling the controller, coupled to a continuous 
time model of the leads and heart environment represented in 20-sim. Possibilities for the exploration 
of design alternatives through co-simulation are illustrated by examining the change from 
synchronous to asynchronous pacing modes in the presence of noise. 

Teaching with Crescendo 

Authors Ken Pierce 
Abstract We describe the use of Crescendo, Overture and 20-sim in the design and delivery of an 
undergraduate course on Real-Time and Cyber-Physical Systems. The underlying goal is to be able to 
teach Computing Science students the basic elements of real-time control using co-simulation of VDM-
RT with 20-sim, instead of direct control of real laboratory robots. Based on the experience in 
delivering the course, we have developed fresh tutorial material for Crescendo, and piloted it at FM 
2014 this year. 
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