

Improving Time Estimates in VDM-
RT Models

13th Overture Workshop 2015

Presentation by Morten Larsen

Authors: Morten Larsen, Peter W. V. Tran-Jørgensen, and Peter Gorm Larsen

Agenda

● Motivation
● Overture extensions
● Case Study
● Results
● Discussion
● Summary
● Future work
● Special slide

Motivation

● Design of agricultural robotic systems
– Computational intensive processing of sensor data

(LiDaR, GNSS, Camera, etc.)

– Multiple control loops which may have deadline
requirements

– Distributed nature of robotic system design
● Reuse of components in different applications

Motivation

● Autonomous mink farm robot
– Automatic feeding of mink

Source:http://www.minkpapir.dk/

Motivation

● Design row detection algorithm based on LiDaR

Design questions

● Can we switch to a cheaper, lower power
platform

● What is the performance of the selected
algorithm

● What happens to the performance if we lower
the quality of the detected rows

Answering the questions

● We can guesstimate using prior knowledge
● In Overture we can model execution time using

duration and cycles

● No explicit support for switching between
multiple platforms

Extensions overview

● Extend overture
– Obtain timing measurements from real platforms

– Incorporating these measurements into the model

Extensions overview

Extensions summary

● Many different ways to obtain execution time
information from code
– Static analysis

– Measurement

– Simulation

● The incorporation of timing information into the
model does not depend on a specific method
used for obtaining the information.

Case Study

● Row detection algorithm experiments on two
different hardware platforms

Conpleks Robotech 101
I.mx6 Quad Arm @
1GHz

Conpleks Robotech 501
Intel I5 Dual core @
2.8GHz

Row detection algorithm

● RANSAC based row dectection
– Random Sample Consensus

– Pick a sample from the data and construct model
● For a line model we pick two points at random (p1 != p2)

– Construct a set of inliers and outliers based on
distance to the line

– Rinse and repeat storing the score for each
sampled line

Row detection algorithm

● Final detection algorithm detecting multiple
lines
– Run RANSAC on the data, then remove the inliers

of the result and repeat on the reduced data set.

Results

● Corrections for the numbers presented in paper
– Difference between 2.8GHz and 1GHz is 2.64 on

average not 2.8

– Table 3 is wrong, should have been

Results

Device Mean Std dev

CPU 2.8 GHz 3.6 ms 866 us

CPU 1 GHz 9.5 ms 2.3 ms

RT501 45.9 ms 3.9 ms

RT101 422.2 ms 34.2 ms

RT501-backport 41.4 ms 59.1 us

RT101-backport 376.3 ms 88.1 us

Results

● How well can we predict the execution time
when a parameter is changed

Device Mean Stddev

RT501 24.2 ms 2.5 ms

RT501-backport 20.8 ms 8.5 us

Discussion

● Timing on the operation/function level makes it
difficult to capture variability

● If a parameter is changed the measurements
has to be redone in most cases

● The 16.5% accuracy is only for the very specific
test done, and is not in any way general.

Summary

● We could make some predictions on the
execution time of the row detection algorithm
– The difference between the two hardware platforms

was intially thought to be 2.64 but the
measurements showed approx 10 times in
difference

● However limited use due to only using mean
operation/function execution time

Future work

● We propose to create a benchmark model
– Can be used to bench mark a given hardware

platform

– The benchmark results can be used by the VDM-RT
interpreter for any model

Last Slide

● 1 year
– Code generation for embedded platforms (C/C++)

● Bare bone OS
● RTOS (FreeRTOS)
● Linux + xenomai/RTAI/RTLINUX

● 5 year
– Industrial strength libraries with code-generation support

– Models of Ethernet CAN, Skynet with code-generation support

– Faster interpreter (JIT?)

– Model management integrated

● 10 year
– 100.000 downloads (eclipse IDE for C++ has 600.000+ downloads)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

