Improving Time Estimates in VDM-
RT Models

13™ Overture Workshop 2015

Presentation by Morten Larsen

Authors: Morten Larsen, Peter W. V. Tran-Jargensen, and Peter Gorm Larsen

Agenda

Motivation

Overture extensions
Case Study

Results

Discussion
Summary

Future work

Special slide

Motivation

* Design of agricultural robotic systems

- Computational intensive processing of sensor data
(LiDaR, GNSS, Camera, etc.)

— Multiple control loops which may have deadline
requirements

- Distributed nature of robotic system design
* Reuse of components in different applications

Motivation

 Autonomous mink farm robot
- Automatic feeding of mink

Source:http.//www.minkpapir.dk/

Motivation

* Design row detection algorithm based on LiDaR

Design guestions

» Can we switch to a cheaper, lower power
platform

* What Is the performance of the selected
algorithm

 What happens to the performance if we lower
the quality of the detected rows

Answering the questions

* \WWe can guesstimate using prior knowledge

* |n Overture we can model execution time using
duration and cycles

* No explicit support for switching between
multiple platforms

Extensions overview

e Extend overture

- Obtain timing measurements from real platforms
- Incorporating these measurements into the model

Extensions overview

VDM-RT spec

Overture Platform

Timing dified AST
AST Backporting IMO he

SEAR
1

RT traces files

VDM Interpreter

Code Generation T_|m|r_19 VDM-RT Real
Platform Injggtlon Time Log Viewer
Visitor
ART. Ti]
Code generator
C++

Timing report
rt501

Timing report
rt101

C++ Code
with timing
measurement

Robotech 101

Robotech 501

Extensions summary

 Many different ways to obtain execution time
iInformation from code

- Static analysis
- Measurement
— Simulation

* The incorporation of timing information into the
model does not depend on a specific method
used for obtaining the information.

Case Study

 Row detection algorithm experiments on two
different hardware platforms

Conpleks Robotech 101
l.mMx6 Quad Arm @
1GHz

Conpleks Robotech 501
Intel 15 Dual core @
2.8GHz

Row detection algorithm

 RANSAC based row dectection

- Random Sample Consensus
- Pick a sample from the data and construct model

* For a line model we pick two points at random (pl != p2)

— Construct a set of inliers and outliers based on
distance to the line

- RiInse and repeat storing the score for each
sampled line

Row detection algorithm

* Final detection algorithm detecting multiple
lines

- Run RANSAC on the data, then remove the inliers
of the result and repeat on the reduced data set.

test1: tol: 0.01 iter: 100
ints — Nfits: 138 — Nfits: 47

Results

» Corrections for the numbers presented in paper

- Difference between 2.8GHz and 1GHz is 2.64 on
average not 2.8

- Table 3 is wrong, should have been

Operation Mean Median Min Max stddev
getRows 9.5ms 83ms 6.9ms 14.9ms 2.3ms
extractLines 24ms 2.1ms 253.5us 4.5ms 1.4dms
getlnliers 23.6pus 20.8us 2.3us 44.8us 14.4us
getRandomLine|187.2ns 184.0ns 184.0ns 910.0ns 19.1ns
addNewBestFit [30.0ns 30.0ns 30.0ns 30.0ns 0

Results

Device Mean Std dev
CPU 2.8 GHz 3.6 ms 866 us
CPU 1 GHz 9.5 ms 2.3 ms
RT501 45.9 ms 3.9ms
RT101 422.2 ms 34.2 ms
RT501-backport 41.4 ms 59.1 us

RT101-backport 376.3 ms 88.1 us

Results

 How well can we predict the execution time
when a parameter is changed

Device Mean Stddev
RT501 24.2 ms 2.5 ms
RT501-backport 20.8 ms 8.5 us

Discussion

* Timing on the operation/function level makes it
difficult to capture variability

 |f a parameter Is changed the measurements
has to be redone in most cases

 The 16.5% accuracy Is only for the very specific
test done, and Is not in any way general.

Summary

* We could make some predictions on the
execution time of the row detection algorithm

- The difference between the two hardware platforms
was intially thought to be 2.64 but the
measurements showed approx 10 times in
difference

 However limited use due to only using mean
operation/function execution time

Future work

* \We propose to create a benchmark model

— Can be used to bench mark a given hardware
platform

- The benchmark results can be used by the VDM-RT
interpreter for any model

Last Slide

* 1 year
- Code generation for embedded platforms (C/C++)

 Bare bone OS
« RTOS (FreeRTOS)
* Linux + xenomai/RTAI/RTLINUX

e Syear
- Industrial strength libraries with code-generation support
- Models of Ethernet CAN, Skynet with code-generation support
- Faster interpreter (JIT?)
- Model management integrated
e 10 year
- 100.000 downloads (eclipse IDE for C++ has 600.000+ downloads)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

