Considering Abstraction Levels on a Case Study

Casper Thule & René Nilsson

2016-11-07

www.into-cps.au.dk

- Introduction
- Model description
- Model abstraction
- Results
- INTO-CPS
- Conclusion
- Future work

Introduction

- Model description
- Model abstraction
- Results
- INTO-CPS
- Conclusion
- Future work

Introduction

- Cyber-physical Systems
 - Interaction between cyber parts and physical entities.
 - E.g. a UAV
 - Complexity is challenging
- Co-simulation
 - Models of constituent components
 - Discrete Event and Continuous Time
- Technologies
 - Crescendo
 - INTO-CPS
- Goal

History

- CT model
 - No prior knowledge of UAV dynamics
 - Abstract modeling
 - Model refinement

History

- DE model
 - APM:Copter
 - Reverse engineering

- Introduction
- Model description
- Model abstraction
- Results
- INTO-CPS
- Conclusion
- Future work

CT Model

• Block diagrams and differential equations in 20-sim

DE Model

- APM:Copter reverse engineering
- Modeled with VDM-RT

- Introduction
- Model description
- Model abstraction
- Results
- INTO-CPS
- Conclusion
- Future work

Basics of a UAV

• Hardware

Abstraction

• Waypoint

• Abstracted control models (P & PID)

- Introduction
- Model description
- Model abstraction
- Results
- INTO-CPS
- Conclusion
- Future work

Results

 Co-simulation results. - Goal: 3, 2 and 4 meters

Drone Altitude

• Total error

Ρ	PID	Original
~6.78 meters	~3.34 meters	~3.89 meters

Reflection

- 6 hours to create abstractions
 - files/Lines of Code

Ρ	PID	Original
12/307	12/333	42/2270

High-level behavior vs low level details

• Breadth approach

- Introduction
- Model description
- Model abstraction
- Results
- INTO-CPS
- Conclusion
- Future work

INTO-CPS

- Tools
- Functionality

• Max diff: 11.8 cm

- Introduction
- Model description
- Model abstraction
- Results
- INTO-CPS
- Conclusion
- Future work

Conclusion

- Abstraction useful for prototyping
 - Gain insight
 - Handle complexity
 - 6 hours
 - Different expertises
- Transition to INTO-CPS technology
 - Only interface variable changes

- Introduction
- Model description
- Model abstraction
- Results
- INTO-CPS
- Conclusion
- Future work

Future Work

- Utilize additional INTO-CPS features
 - Design Space Exploration
 - Hardware-In-the-Loop simulation
 - Software-In-the-Loop simulation
- Generic components for Overture
 - Vector, controllers, drivers etc.
 - Improve tool support, reduce development time
- Future case study
 - Battery management
 - Very low abstraction level

"The purpose of abstraction is not to be vague, but to create a new semantic level in which one can be absolutely precise"

- Edsger W. Dijkstra

Considering Abstraction Levels on a Case Study