
ESA UNCLASSIFIED - For Official Use

Towards the integration of
Overture and TASTE

T. Fabbri 1, M. Verhoef 2, V. Bandur 3, M. Perrotin 2, T. Tsiodras 2, P.G. Larsen 3

with many thanks to K.G. Lausdahl and P.W.V. Tran-Jørgensen

work performed as a ESA Summer Of Code in Space project by T. Fabbri

1 University of Pisa, department of Information Engineering (I)

2 European Space Agency, ESTEC (NL)

3 Aarhus University, department of engineering (DK)

ESA | 01/01/2016 | Slide 2 ESA UNCLASSIFIED - For Official Use

Agenda of this talk

• Recap from Overture-13

• Introduction to TASTE

• Why do we want to integrate Overture into TASTE?

• Experiment #1 : Model-level integration of Overture and TASTE

• Experiment #2 : Code-level integration of Overture and TASTE

• Conclusions and future work

ESA | 01/01/2016 | Slide 3 ESA UNCLASSIFIED - For Official Use

The TASTE toolset (1)

Consolidated result from (and continued development of) the ESA-led
EU-FP6 ASSERT project: The ASSERT Set of Tools for Engineering:

• open-source tool suite for rigorous software engineering

• aimed at development of heterogeneous embedded systems

• focus on (but not limited to) space on-board software (reliability, qualification)

• based on mature (formal) notations with long term support

• model-centric development with high levels of automation (suited for agile)

• seamless interoperability offers DSL-like approach

• model synthesis towards wide range of target platforms

• robust tools maintained by active (but small) community

Increase developer productivity by providing for automated system synthesis and
continuous integration by exploiting well-founded rigorous modeling techniques

For more information see http://taste.tools/

ESA | 01/01/2016 | Slide 4 ESA UNCLASSIFIED - For Official Use

The TASTE toolset (2)

The main elements of TASTE are:

1. Abstract Syntax Notation One (ASN.1, ITU X.680-X.693)

• used to describe (abstract) data types (i.e. TC and TM)

• orthogonal encoding rules for physical representation

• (qualified) code generation and run-time support for C and Ada

• generation of interface documentation and test sets

2. Architecture Analysis and Design Language (AADL, SAE AS 5506B)

• extensible formal textual and graphical notation

• used to describe the system logical and physical architecture

• used to capture avionics hardware components,
their communication interfaces and deployment of software artifacts

• generation of high-integrity (SPARK) Ada code

ESA | 01/01/2016 | Slide 5 ESA UNCLASSIFIED - For Official Use

The TASTE toolset (3)

The main elements of TASTE are (continued):

3. Specification and Description Language (SDL, ITU-T Rec. Z.100)

• formal language to describe state machines

• graphical and textual notation, native support for ASN.1 types

• model evolution visualized as message sequence chart (Z.150)

• record and playback useful for analysis and testing

• code generation to (SPARK) Ada

4. Build automation and automatic target deployment

• Light-weight, portable and qualifiable run-time: PolyORB Hi-C / Hi-Ada

• Linux and SMP2 simulation environments

• RTEMS and Xenomai on (virtualized) QEMU or TSIM

• RTEMS or Ada-Ravenscar run-time on target hardware

(caveat: also support for Simulink, SCADE, VHDL, Ada, C)

ESA | 01/01/2016 | Slide 6 ESA UNCLASSIFIED - For Official Use

The TASTE toolset (4)

The TASTE development process consist of the following steps:

1. describe the system logical architecture (AADL) and interfaces (ASN.1)

2. describe the system behavior (SDL, VHDL, C, Ada, Scade, Simulink)

3. describe the deployment of functionality on the avionics (AADL)

4. generate code, build the system and download on simulator or target

5. monitor and interact with the system at run-time (test execution)

6. iterate

TASTE allows complementary analysis (re-)using the constituent models

• Enhanced verification and validation (testing, model checking)

• Schedulability analysis using MAST and CHEDDAR tools on AADL models

• Use AADL extension capability to specify explicit fault behavior using
System-Level Integrated Modelling language (SLIM) which can be
verified using the (TASTE compatible) COMPASS tools (nuSMV)

(caveat: complementary analysis is possible before system behavior is complete)

ESA | 01/01/2016 | Slide 7 ESA UNCLASSIFIED - For Official Use

Comparing TASTE to Overture

TASTE OVERTURE

open-source

robust tool set (quality control)

research platform (explore new ideas)

(co-)simulation to support validation

focus on rigorous analysis and testing

small but active community

early design validation

goal is to extend scope towards synthesis

state machines require framework

strong support for data transformations

restricted built-in architecture model

Eclipse based (multi platform)

open-source

robust tool set (quality control)

research platform (explore new ideas)

(co-)simulation to support validation

focus on rigorous analysis and testing

small but active community

improving quality of code artifacts

goal is to extend scope towards modeling

built-in support for state machines

weak support for data transformations

extensible architecture model

implemented in python / QT on Linux

COMMONALITIES (STRENGTHS)

COMPLEMENTARY (OPPORTUNITIES)

DIFFERENCES (WEAKNESS)

Integrate Overture as a first-class citizen into TASTE
1. couple the Overture interpreter to OpenGEODE (simulation, exploration)
2. Integrate Overture vdm2c generated c-code into TASTE workflow (production)

ESA | 01/01/2016 | Slide 8 ESA UNCLASSIFIED - For Official Use

Model-level integration of Overture into TASTE

General idea: execute a VDM operation as an external call in a SDL model

1. Asn1scc: all TASTE ASN.1 datatypes are converted into VDM data types

2. OpenGEODE simulator connects to Overture “remote call” API over a socket

3. OpenGEODE converts TASTE data values to and from VDM data values

1

3

2

ESA | 01/01/2016 | Slide 9 ESA UNCLASSIFIED - For Official Use

From ASN.1 to VDM data types (1)

ASN.1 data type in TASTE

VDM data type in Overture

ESA | 01/01/2016 | Slide 10 ESA UNCLASSIFIED - For Official Use

From ASN.1 to VDM data types (2)

ASN.1 data type in TASTE

VDM data type in Overture

ESA | 01/01/2016 | Slide 11 ESA UNCLASSIFIED - For Official Use

Code-level integration of Overture into TASTE

1. asn1scc : all TASTE ASN.1 datatypes are converted into VDM data types

2. vdm2c generates c-code from VDM++ models in a proprietary native format

3. integrate generated c-code into TASTE (automatic mapping to and from ASN.1)

1

 2

 3

ESA | 01/01/2016 | Slide 12 ESA UNCLASSIFIED - For Official Use

vdm2c: representing VDM datatypes in C

ESA | 01/01/2016 | Slide 13 ESA UNCLASSIFIED - For Official Use

Marshalling vdm2c datatypes to and from ASN.1

Tool support is available to automatically generate these marshalling functions

ESA | 01/01/2016 | Slide 14 ESA UNCLASSIFIED - For Official Use

An example

ESA | 01/01/2016 | Slide 15 ESA UNCLASSIFIED - For Official Use

An example

ESA | 01/01/2016 | Slide 16 ESA UNCLASSIFIED - For Official Use

An example

ESA | 01/01/2016 | Slide 17 ESA UNCLASSIFIED - For Official Use

An example

ESA | 01/01/2016 | Slide 18 ESA UNCLASSIFIED - For Official Use

An example

ESA | 01/01/2016 | Slide 19 ESA UNCLASSIFIED - For Official Use

SDL model of the supervisor

ESA | 01/01/2016 | Slide 20 ESA UNCLASSIFIED - For Official Use

SDL model of the supervisor

ESA | 01/01/2016 | Slide 21 ESA UNCLASSIFIED - For Official Use

VDM model of the controller (1)

Tool support is available to automatically generate these interface definitions

ESA | 01/01/2016 | Slide 22 ESA UNCLASSIFIED - For Official Use

VDM model of the controller (2)

User specifies the required behavior in VDM then uses vdm2c to generate c-code

ESA | 01/01/2016 | Slide 23 ESA UNCLASSIFIED - For Official Use

Bringing it all together (1) – TASTE, ASN.1, VDM

Tool support is available to automatically generate this glue code

ESA | 01/01/2016 | Slide 24 ESA UNCLASSIFIED - For Official Use

Bringing it all together (1) – build and execute

In summary, we have fully automated:
• TASTE ASN.1 datatypes are converted into their VDM counterparts
• VDM interface skeletons are generated from AADL models
• ASN.1 marshalling functions are generated compatible with vdm2c target code
• Glue code is generated to integrate vdm2c target code easily into TASTE
• TASTE builds the (heterogeneous) binary application

The only manual steps the user has to perform are
(1) write VDM spec, (2) execute vdm2c and (3) run build-script.sh

ESA | 01/01/2016 | Slide 25 ESA UNCLASSIFIED - For Official Use

Conclusions and future work

Main findings

• We have shown that the integration of Overture into TASTE is feasible

• All TASTE ASN.1 datatypes can be translated into their VDM counterparts

• Glue code and ASN.1 marshalling functions can be generated for a subset of
VDM data types (integer, real, bool, seq of) → vdm2c v0.0.2

• Complexity of the integration can be hidden entirely by automation

Next steps (short term)

• Extend the glue code and marshalling generator (follow vdm2c evolution)

• Allow headless build (vdm2c executed as part of TASTE build process)

Next steps (long term)

• Make vdm2c aware of ASN.1 / static memory allocation (qualified code)

• Embed ASN.1 capability directly into Overture interpreter (remote api)

	Towards the integration of�Overture and TASTE
	Agenda of this talk
	The TASTE toolset (1)
	The TASTE toolset (2)
	The TASTE toolset (3)
	The TASTE toolset (4)
	Comparing TASTE to Overture
	Model-level integration of Overture into TASTE
	From ASN.1 to VDM data types (1)
	From ASN.1 to VDM data types (2)
	Code-level integration of Overture into TASTE
	vdm2c: representing VDM datatypes in C
	Marshalling vdm2c datatypes to and from ASN.1
	An example
	An example
	An example
	An example
	An example
	SDL model of the supervisor
	SDL model of the supervisor
	VDM model of the controller (1)
	VDM model of the controller (2)
	Bringing it all together (1) – TASTE, ASN.1, VDM
	Bringing it all together (1) – build and execute
	Conclusions and future work

