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Code generating a VDM specification

• Leverage model during implementation
• Contracts describe desired system properties
• Does the implementation satisfy the specification?

• A VDM-SL-to-Java/JML translation already exists
• JML is a Java-based technology
• JML tools are falling behind

• .NET Code Contracts
• A DbC technology for .NET (several languages)
• Library-based (unlike JML)
• Robust, open-source technology
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VDM-SL-to-C# translation

• Tries to make the generated code look natural
• Uses .NET Code Contracts

• Inspired by Overture’s Java/JML translation
• Addresses issues with the JML translation

• No support for traces yet
• Translation formulated as rules
• Visit the project on Github1

1Github: https://github.com/SPDiswal/VdmSl-to-Cs
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Example: pre- and postconditions
�
operations
AddCard: Card ==> ()
AddCard(c) == validCards := validCards union {c}
pre c not in set validCards
post c in set validCards;
� �
public static void AddCard(Card c) {

Contract.Requires(c != null);
Contract.Requires(PreAddCard(c, State));
Contract.Ensures(

PostAddCard(c, Contract.OldValue(State.
Copy()), State));

State.ValidCards.Add(c);
}
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Pre- and postcondition functions

[Pure]
public static bool PreAddCard(Card c, St st) {

Contract.Requires(c != null);
Contract.Requires(st != null);
return !st.ValidCards.Contains(c);

}

[Pure]
public static bool PostAddCard(Card c, St oldSt,

St st) {
Contract.Requires(c != null);
Contract.Requires(oldSt != null);
Contract.Requires(st != null);
return st.ValidCards.Contains(c);

}
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Example: type aliases

�
types
Pin = nat
inv p == p <= 9999;
� �
• Type used to represent a pin code
• p ∈ {0, 1, . . . , 9999}
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Type aliases

public sealed class Pin : ICopyable<Pin>, IEquatable<Pin> {
public int Value { get; }

public Pin(int @value) { Value = @value; }

[ContractInvariantMethod]
private void ObjectInvariant() {

Contract.Invariant(Value >= 0);
Contract.Invariant(InvPin(Value));

}

[Pure]
public static bool InvPin(int p) {

Contract.Requires(p >= 0);
return p <= 9999;

}
// Equals, GetHashCode etc. have been omitted.

}
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Rule-based translation (Example)

Translating invariants

Let i be an invariant for type T , let ei be the logical predi-
cate of i , and let Tinv: T -> bool be the self-contained
function for i in VDM-SL. Then T becomes an appropri-
ate type T ′ in C# and Tinv becomes a member of T ′ as
the pure method T ′

inv. The special ObjectInvariant
helper method of T ′ calls Contract.
Invariant(T ′

inv(this)). T ′
inv evaluates and returns ei.
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Experiments

• Exhaustive testing of FAD code obfuscation algorithm
• Performance analysis

• Experiment I: No contracts checked
• Experiment II: Contracts specified, but not checked
• Experiment III: Contracts specified and checked
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Results

Size .NET I .NET II .NET III Java I Java II Java III
[ms] [ms] [ms] [ms] [ms] [ms]

1 1 1 1 1 2 2
2 1 1 1 2 20 22
3 1 1 1 4 245 254
4 15 15 23 22 3,103 3,212
5 190 189 295 212 37,626 38,401
6 2,273 2,279 3,610 2,498 440,716 443,523

• .NET III completes in ≈ 3.6 seconds
• Java III completes in ≈ 7.4 minutes
• Huge difference between Java I and II

14th Overture Workshop, November 7, 2016 Steffen P. Diswal, Peter W. V. Tran-Jørgensen and Peter Gorm Larsen [14/17]



Introduction The translation Performance results Conclusion and future plans

Analysing the results

• .NET Code Contracts vs. JML
• Slightly different set of constructs
• Semantics of constructs sometimes different

• .NET contracts add 60% overhead
• Java II/III indicate poor OpenJML performance
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Conclusion and future plans

• VDM-SL-to-C# translation
• Uses .NET Code Contracts
• Fully automated
• Command-line support

• Promising performance results
• Future plans

• Integrate with the Overture IDE (GUI)
• Pattern matching (native support in C# 7.0)
• Add regression tests
• Add support for traces
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