
Automated Generation of C# and
.NET Code Contracts from VDM-SL

Models

Steffen P. Diswal, Peter W. V. Tran-Jørgensen and
Peter Gorm Larsen

14th Overture workshop, FM 2016
Limassol, Cyprus – November 7



Introduction The translation Performance results Conclusion and future plans

Agenda

Introduction

The translation

Performance results

Conclusion and future plans

14th Overture Workshop, November 7, 2016 Steffen P. Diswal, Peter W. V. Tran-Jørgensen and Peter Gorm Larsen [2/17]



Introduction The translation Performance results Conclusion and future plans

Agenda

Introduction

The translation

Performance results

Conclusion and future plans

14th Overture Workshop, November 7, 2016 Steffen P. Diswal, Peter W. V. Tran-Jørgensen and Peter Gorm Larsen [3/17]



Introduction The translation Performance results Conclusion and future plans

Code generating a VDM specification

• Leverage model during implementation
• Contracts describe desired system properties
• Does the implementation satisfy the specification?

• A VDM-SL-to-Java/JML translation already exists
• JML is a Java-based technology
• JML tools are falling behind

• .NET Code Contracts
• A DbC technology for .NET (several languages)
• Library-based (unlike JML)
• Robust, open-source technology

14th Overture Workshop, November 7, 2016 Steffen P. Diswal, Peter W. V. Tran-Jørgensen and Peter Gorm Larsen [4/17]



Introduction The translation Performance results Conclusion and future plans

Code generating a VDM specification

• Leverage model during implementation
• Contracts describe desired system properties
• Does the implementation satisfy the specification?

• A VDM-SL-to-Java/JML translation already exists
• JML is a Java-based technology
• JML tools are falling behind

• .NET Code Contracts
• A DbC technology for .NET (several languages)
• Library-based (unlike JML)
• Robust, open-source technology

14th Overture Workshop, November 7, 2016 Steffen P. Diswal, Peter W. V. Tran-Jørgensen and Peter Gorm Larsen [4/17]



Introduction The translation Performance results Conclusion and future plans

Code generating a VDM specification

• Leverage model during implementation
• Contracts describe desired system properties
• Does the implementation satisfy the specification?

• A VDM-SL-to-Java/JML translation already exists
• JML is a Java-based technology
• JML tools are falling behind

• .NET Code Contracts
• A DbC technology for .NET (several languages)
• Library-based (unlike JML)
• Robust, open-source technology

14th Overture Workshop, November 7, 2016 Steffen P. Diswal, Peter W. V. Tran-Jørgensen and Peter Gorm Larsen [4/17]



Introduction The translation Performance results Conclusion and future plans

Agenda

Introduction

The translation

Performance results

Conclusion and future plans

14th Overture Workshop, November 7, 2016 Steffen P. Diswal, Peter W. V. Tran-Jørgensen and Peter Gorm Larsen [5/17]



Introduction The translation Performance results Conclusion and future plans

VDM-SL-to-C# translation

• Tries to make the generated code look natural
• Uses .NET Code Contracts

• Inspired by Overture’s Java/JML translation
• Addresses issues with the JML translation

• No support for traces yet
• Translation formulated as rules
• Visit the project on Github1

1Github: https://github.com/SPDiswal/VdmSl-to-Cs
14th Overture Workshop, November 7, 2016 Steffen P. Diswal, Peter W. V. Tran-Jørgensen and Peter Gorm Larsen [6/17]

https://github.com/SPDiswal/VdmSl-to-Cs


Introduction The translation Performance results Conclusion and future plans

VDM-SL-to-C# translation

• Tries to make the generated code look natural
• Uses .NET Code Contracts

• Inspired by Overture’s Java/JML translation
• Addresses issues with the JML translation

• No support for traces yet
• Translation formulated as rules
• Visit the project on Github1

1Github: https://github.com/SPDiswal/VdmSl-to-Cs
14th Overture Workshop, November 7, 2016 Steffen P. Diswal, Peter W. V. Tran-Jørgensen and Peter Gorm Larsen [6/17]

https://github.com/SPDiswal/VdmSl-to-Cs


Introduction The translation Performance results Conclusion and future plans

VDM-SL-to-C# translation

• Tries to make the generated code look natural
• Uses .NET Code Contracts

• Inspired by Overture’s Java/JML translation
• Addresses issues with the JML translation

• No support for traces yet
• Translation formulated as rules
• Visit the project on Github1

1Github: https://github.com/SPDiswal/VdmSl-to-Cs
14th Overture Workshop, November 7, 2016 Steffen P. Diswal, Peter W. V. Tran-Jørgensen and Peter Gorm Larsen [6/17]

https://github.com/SPDiswal/VdmSl-to-Cs


Introduction The translation Performance results Conclusion and future plans

VDM-SL-to-C# translation

• Tries to make the generated code look natural
• Uses .NET Code Contracts

• Inspired by Overture’s Java/JML translation
• Addresses issues with the JML translation

• No support for traces yet
• Translation formulated as rules
• Visit the project on Github1

1Github: https://github.com/SPDiswal/VdmSl-to-Cs
14th Overture Workshop, November 7, 2016 Steffen P. Diswal, Peter W. V. Tran-Jørgensen and Peter Gorm Larsen [6/17]

https://github.com/SPDiswal/VdmSl-to-Cs


Introduction The translation Performance results Conclusion and future plans

VDM-SL-to-C# translation

• Tries to make the generated code look natural
• Uses .NET Code Contracts

• Inspired by Overture’s Java/JML translation
• Addresses issues with the JML translation

• No support for traces yet
• Translation formulated as rules
• Visit the project on Github1

1Github: https://github.com/SPDiswal/VdmSl-to-Cs
14th Overture Workshop, November 7, 2016 Steffen P. Diswal, Peter W. V. Tran-Jørgensen and Peter Gorm Larsen [6/17]

https://github.com/SPDiswal/VdmSl-to-Cs


Introduction The translation Performance results Conclusion and future plans

Example: pre- and postconditions
�
operations
AddCard: Card ==> ()
AddCard(c) == validCards := validCards union {c}
pre c not in set validCards
post c in set validCards;
� �
public static void AddCard(Card c) {

Contract.Requires(c != null);
Contract.Requires(PreAddCard(c, State));
Contract.Ensures(

PostAddCard(c, Contract.OldValue(State.
Copy()), State));

State.ValidCards.Add(c);
}

14th Overture Workshop, November 7, 2016 Steffen P. Diswal, Peter W. V. Tran-Jørgensen and Peter Gorm Larsen [7/17]



Introduction The translation Performance results Conclusion and future plans

Pre- and postcondition functions

[Pure]
public static bool PreAddCard(Card c, St st) {

Contract.Requires(c != null);
Contract.Requires(st != null);
return !st.ValidCards.Contains(c);

}

[Pure]
public static bool PostAddCard(Card c, St oldSt,

St st) {
Contract.Requires(c != null);
Contract.Requires(oldSt != null);
Contract.Requires(st != null);
return st.ValidCards.Contains(c);

}

14th Overture Workshop, November 7, 2016 Steffen P. Diswal, Peter W. V. Tran-Jørgensen and Peter Gorm Larsen [8/17]



Introduction The translation Performance results Conclusion and future plans

Example: type aliases

�
types
Pin = nat
inv p == p <= 9999;
� �
• Type used to represent a pin code
• p ∈ {0, 1, . . . , 9999}

14th Overture Workshop, November 7, 2016 Steffen P. Diswal, Peter W. V. Tran-Jørgensen and Peter Gorm Larsen [9/17]



Introduction The translation Performance results Conclusion and future plans

Type aliases

public sealed class Pin : ICopyable<Pin>, IEquatable<Pin> {
public int Value { get; }

public Pin(int @value) { Value = @value; }

[ContractInvariantMethod]
private void ObjectInvariant() {

Contract.Invariant(Value >= 0);
Contract.Invariant(InvPin(Value));

}

[Pure]
public static bool InvPin(int p) {

Contract.Requires(p >= 0);
return p <= 9999;

}
// Equals, GetHashCode etc. have been omitted.

}

14th Overture Workshop, November 7, 2016 Steffen P. Diswal, Peter W. V. Tran-Jørgensen and Peter Gorm Larsen [10/17]



Introduction The translation Performance results Conclusion and future plans

Rule-based translation (Example)

Translating invariants

Let i be an invariant for type T , let ei be the logical predi-
cate of i , and let Tinv: T -> bool be the self-contained
function for i in VDM-SL. Then T becomes an appropri-
ate type T ′ in C# and Tinv becomes a member of T ′ as
the pure method T ′

inv. The special ObjectInvariant
helper method of T ′ calls Contract.
Invariant(T ′

inv(this)). T ′
inv evaluates and returns ei.

14th Overture Workshop, November 7, 2016 Steffen P. Diswal, Peter W. V. Tran-Jørgensen and Peter Gorm Larsen [11/17]



Introduction The translation Performance results Conclusion and future plans

Agenda

Introduction

The translation

Performance results

Conclusion and future plans

14th Overture Workshop, November 7, 2016 Steffen P. Diswal, Peter W. V. Tran-Jørgensen and Peter Gorm Larsen [12/17]



Introduction The translation Performance results Conclusion and future plans

Experiments

• Exhaustive testing of FAD code obfuscation algorithm
• Performance analysis

• Experiment I: No contracts checked
• Experiment II: Contracts specified, but not checked
• Experiment III: Contracts specified and checked

14th Overture Workshop, November 7, 2016 Steffen P. Diswal, Peter W. V. Tran-Jørgensen and Peter Gorm Larsen [13/17]



Introduction The translation Performance results Conclusion and future plans

Results

Size .NET I .NET II .NET III Java I Java II Java III
[ms] [ms] [ms] [ms] [ms] [ms]

1 1 1 1 1 2 2
2 1 1 1 2 20 22
3 1 1 1 4 245 254
4 15 15 23 22 3,103 3,212
5 190 189 295 212 37,626 38,401
6 2,273 2,279 3,610 2,498 440,716 443,523

• .NET III completes in ≈ 3.6 seconds
• Java III completes in ≈ 7.4 minutes
• Huge difference between Java I and II

14th Overture Workshop, November 7, 2016 Steffen P. Diswal, Peter W. V. Tran-Jørgensen and Peter Gorm Larsen [14/17]



Introduction The translation Performance results Conclusion and future plans

Analysing the results

• .NET Code Contracts vs. JML
• Slightly different set of constructs
• Semantics of constructs sometimes different

• .NET contracts add 60% overhead
• Java II/III indicate poor OpenJML performance

14th Overture Workshop, November 7, 2016 Steffen P. Diswal, Peter W. V. Tran-Jørgensen and Peter Gorm Larsen [15/17]



Introduction The translation Performance results Conclusion and future plans

Analysing the results

• .NET Code Contracts vs. JML
• Slightly different set of constructs
• Semantics of constructs sometimes different

• .NET contracts add 60% overhead
• Java II/III indicate poor OpenJML performance

14th Overture Workshop, November 7, 2016 Steffen P. Diswal, Peter W. V. Tran-Jørgensen and Peter Gorm Larsen [15/17]



Introduction The translation Performance results Conclusion and future plans

Analysing the results

• .NET Code Contracts vs. JML
• Slightly different set of constructs
• Semantics of constructs sometimes different

• .NET contracts add 60% overhead
• Java II/III indicate poor OpenJML performance

14th Overture Workshop, November 7, 2016 Steffen P. Diswal, Peter W. V. Tran-Jørgensen and Peter Gorm Larsen [15/17]



Introduction The translation Performance results Conclusion and future plans

Agenda

Introduction

The translation

Performance results

Conclusion and future plans

14th Overture Workshop, November 7, 2016 Steffen P. Diswal, Peter W. V. Tran-Jørgensen and Peter Gorm Larsen [16/17]



Introduction The translation Performance results Conclusion and future plans

Conclusion and future plans

• VDM-SL-to-C# translation
• Uses .NET Code Contracts
• Fully automated
• Command-line support

• Promising performance results
• Future plans

• Integrate with the Overture IDE (GUI)
• Pattern matching (native support in C# 7.0)
• Add regression tests
• Add support for traces

14th Overture Workshop, November 7, 2016 Steffen P. Diswal, Peter W. V. Tran-Jørgensen and Peter Gorm Larsen [17/17]



Introduction The translation Performance results Conclusion and future plans

Conclusion and future plans

• VDM-SL-to-C# translation
• Uses .NET Code Contracts
• Fully automated
• Command-line support

• Promising performance results
• Future plans

• Integrate with the Overture IDE (GUI)
• Pattern matching (native support in C# 7.0)
• Add regression tests
• Add support for traces

14th Overture Workshop, November 7, 2016 Steffen P. Diswal, Peter W. V. Tran-Jørgensen and Peter Gorm Larsen [17/17]



Introduction The translation Performance results Conclusion and future plans

Conclusion and future plans

• VDM-SL-to-C# translation
• Uses .NET Code Contracts
• Fully automated
• Command-line support

• Promising performance results
• Future plans

• Integrate with the Overture IDE (GUI)
• Pattern matching (native support in C# 7.0)
• Add regression tests
• Add support for traces

14th Overture Workshop, November 7, 2016 Steffen P. Diswal, Peter W. V. Tran-Jørgensen and Peter Gorm Larsen [17/17]


	Introduction
	The translation
	Performance results
	Conclusion and future plans

