(o8
FUJITSU

shaping tomorrow with you

Analysis Separation without Visitors

(Internal changes in VDMJ v4)

Nick Battle, Fujitsu UK

VDMJ version 3

PlusExpression

AST

AST

IntegerLiteralExpression

A AST

VariableExpression

P
FUJITSU

AST

Plus

apply

Overture2 with Visitors

Analysis Visitors

TC

IN

PO

etc.

apply

apply

etc.

Plus

etc.

P
FUJITSU

etc...

What could possibly go wrong? FUJITSU

The Visitor pattern has problems with very rich ASTs:

- VDM AST has ~300 types of node

— Some visitor classes can get very large (so split)

- Many small visitors needed too — over 120 of them

- Flat namespace (sensible visitor names, but no structure)
Common code is in separate assistants with factories

- Many assistants — 66 of them

- Flat namespace again

There is nowhere obvious to store analysis working/output state
- Type information added to AST — so implicit dependencies
- Internal state information held in maps of node to state
Analyses are slower (state map lookup, assistants, visitor calls)

VDMJ version 4

ClassMapper

AST

Plus

TC

ast-tc.mapping

Y

3

tc-in.mapping

IN

P
FUJITSU

| 4

»

tc-po.mapping

VDMJ version 4 FUjiTSU

FHAH AR AR A
The class mapping definition for the Type Checker. See ClassMapper.
FH A A A A A

expressions

package com.fujitsu.vdmj.ast.expressions to com.fujitsu.vdmj.tc.expressions;

map ASTPlusExpression{left, op, right} to TCPlusExpression (left, op, right);

map ASTIntegerlLiteralExpression{value} to TCIntegerLiteralExpression (value);

map ASTVariableExpression{location, name} to TCVariableExpression(location, name);

lex

package com.fujitsu.vdmj.ast.lex to com.fujitsu.vdmj.tc.lex;
map LexNameToken{} to TCNameToken (this) ;

unmapped com.fujitsu.vdmj.ast.lex.LexToken;

public class ASTPlusExpression extends ASTNumericBinaryExpression

{
public ASTPlusExpression (ASTExpression left, LexToken op, ASTExpression right)

{

public class TCPlusExpression extends TCNumericBinaryExpression

{
public TCPlusExpression (TCExpression left, LexToken op, TCExpression right)

{

public class TCNameToken extends TCToken implements Comparable<TCNameToken>

{

public TCNameToken (LexNameToken name)

{

How does this help? FUjiTSU

Analysis classes are very small (even smaller than VDMJ v3)

Common code is in a natural class hierarchy

Analysis state lives within its analysis tree

Analysis dependencies are explicit (via mappings)

Analyses are faster (same as VDMJ v3, no assistants, state lookup, etc.)
Parser is 20-30% faster than VDMJ v3 (fewer fields to initialize)

Code size roughly the same (4x classes, using same code)

Some old problems solved: LexNameToken and TCNameToken

But...

It’s an unproven non-standard technique (risks unclear)
Small recursive processes are not modular (cf. small visitors)

Slightly more memory is occupied (a few Mb)

* And it critically depends on how fast Java can create new objects...

ClassMapper Performance FUJITSU

* Nodes mapped at 100-800K objects per second

- 500K AST nodes roughly equivalent to 100,000 line spec
— Conversion only happens once per analysis type
- Delay is “between” analyses, not during analyses

* Mappings file loads in < 0.2 secs

- Memory footprint of mappings is a few hundred Kb
- All mappings loaded once (at startup?)
* Extra memory for trees is mostly extra linkage (cf. VDMJ v3)

- Typically a few Mb, even for large specifications
- “Copies” of state are just shared object references
- Single-use trees can be removed (eg. AST or PO)

0.7

0.6

0.5

0.4

0.3

0.2

0.1

ClassMapper Performance

2000

Type Checker Performance (secs)

4000

overture

10000 12000

vdmij4_preloaded

14000

P
FUJITSU

10

ClassMapper Performance

Type Checker Performance (secs)

10000 20000 30000 40000 50000 60000 70000

overture vdmj3 vdmij4

80000

90000

o8
FUJITSU

Where Next? FUjiTSU

So performance may not be a big problem, but...

e Visitors can be better for small processes — use both?
* Overture’s problems may not be due to its visitors
* We should check other dialects’ mapping performance

* Mapping file/new analysis creation needs tool support

* How often does a mapping need to change?
* Implement a new analysis from scratch

* What if an analysis is derived from two or more trees?

* A plugin architecture should be investigated.

e,
FUJITSU

shaping tomorrow with you

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

