
© Copyright 2017 Fujitsu Services Limited

Analysis Separation without Visitors

(Internal changes in VDMJ v4)

Nick Battle, Fujitsu UK

VDMJ version 3

AST

TC

IN

PO

AST

TC

IN

PO

AST

TC

IN

PO

1 + a
PlusExpression

IntegerLiteralExpression VariableExpression

Overture2 with Visitors

1

Plus

“a”

1 + a

1 1

PlusPlus Plus

1

“a” “a” “a”

etc. etc. etc.

etc...

Analysis Visitors

...

...

...

... ...

...
apply apply

apply

TC IN PO
AST

What could possibly go wrong?

● The Visitor pattern has problems with very rich ASTs:

– VDM AST has ~300 types of node

– Some visitor classes can get very large (so split)

– Many small visitors needed too – over 120 of them

– Flat namespace (sensible visitor names, but no structure)
● Common code is in separate assistants with factories

– Many assistants – 66 of them

– Flat namespace again
● There is nowhere obvious to store analysis working/output state

– Type information added to AST – so implicit dependencies

– Internal state information held in maps of node to state
● Analyses are slower (state map lookup, assistants, visitor calls)

VDMJ version 4

1

Plus

“a”

1 + a

1

Plus

“a”

1

Plus

“a”

1

Plus

“a”

ast-tc.mapping

tc-in.mapping

tc-po.mapping

ClassMapper

AST TC

IN

PO

VDMJ version 4
##
The class mapping definition for the Type Checker. See ClassMapper.
##

expressions
package com.fujitsu.vdmj.ast.expressions to com.fujitsu.vdmj.tc.expressions;
map ASTPlusExpression{left, op, right} to TCPlusExpression(left, op, right);
map ASTIntegerLiteralExpression{value} to TCIntegerLiteralExpression(value);
map ASTVariableExpression{location, name} to TCVariableExpression(location, name);

lex
package com.fujitsu.vdmj.ast.lex to com.fujitsu.vdmj.tc.lex;
map LexNameToken{} to TCNameToken(this);
unmapped com.fujitsu.vdmj.ast.lex.LexToken;

public class ASTPlusExpression extends ASTNumericBinaryExpression
{
 public ASTPlusExpression(ASTExpression left, LexToken op, ASTExpression right)
 {
 ...

public class TCPlusExpression extends TCNumericBinaryExpression
{
 public TCPlusExpression(TCExpression left, LexToken op, TCExpression right)
 {
 ...

public class TCNameToken extends TCToken implements Comparable<TCNameToken>
{
 public TCNameToken(LexNameToken name)
 {
 ...

How does this help?

● Analysis classes are very small (even smaller than VDMJ v3)

● Common code is in a natural class hierarchy

● Analysis state lives within its analysis tree

● Analysis dependencies are explicit (via mappings)

● Analyses are faster (same as VDMJ v3, no assistants, state lookup, etc.)

● Parser is 20-30% faster than VDMJ v3 (fewer fields to initialize)

● Code size roughly the same (4x classes, using same code)

● Some old problems solved: LexNameToken and TCNameToken

But…

● It’s an unproven non-standard technique (risks unclear)

● Small recursive processes are not modular (cf. small visitors)

● Slightly more memory is occupied (a few Mb)

● And it critically depends on how fast Java can create new objects...

ClassMapper Performance

● Nodes mapped at 100-800K objects per second

– 500K AST nodes roughly equivalent to 100,000 line spec

– Conversion only happens once per analysis type

– Delay is “between” analyses, not during analyses
● Mappings file loads in < 0.2 secs

– Memory footprint of mappings is a few hundred Kb

– All mappings loaded once (at startup?)
● Extra memory for trees is mostly extra linkage (cf. VDMJ v3)

– Typically a few Mb, even for large specifications

– “Copies” of state are just shared object references

– Single-use trees can be removed (eg. AST or PO)

ClassMapper Performance

0 2000 4000 6000 8000 10000 12000 14000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Type Checker Performance (secs)

overture vdmj3 vdmj4 vdmj4_preloaded

ClassMapper Performance

0 10000 20000 30000 40000 50000 60000 70000 80000 90000
0

1

2

3

4

5

6

7

8

9

10

Type Checker Performance (secs)

overture vdmj3 vdmj4

Where Next?

So performance may not be a big problem, but…

● Visitors can be better for small processes – use both?

● Overture’s problems may not be due to its visitors

● We should check other dialects’ mapping performance

● Mapping file/new analysis creation needs tool support

● How often does a mapping need to change?
● Implement a new analysis from scratch

● What if an analysis is derived from two or more trees?

● A plugin architecture should be investigated.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

