Transitioning from Crescendo to INTO-CPS

Kenneth Lausdahl¹ Kim Bjerge¹ Tom Bokhove² Frank Groen² Peter Gorm Larsen¹

Aarhus University, Denmark

Controllab Products. Netherlands

15th Overture workshop Newcastle, UK – September 15

Technologies

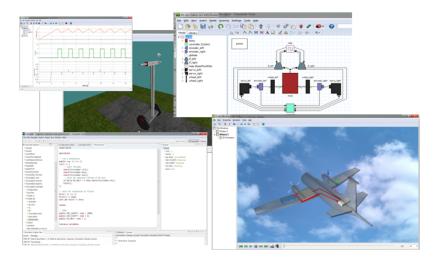
Tool Extensions

Case-Study

Animation

Conclusion and future plans

Technologies


Tool Extensions

Case-Study

Animation

Conclusion and future plans

DESTECS - Crescendo

Technologies

INTO-CPS

- FMI 2.0 based co-simulation
- Simulation of N models
- Multi platform
- Uses SysML for high level design
- Both Fixed and Variable Step algorithms

Functional Mock-Up Interface

- A collection of C functions
 - instantiate
 - setInteger | Boolen | Real | String
 - doStep
 - qetInteger|Boolen|Real|String
- Zip container with standard layout for: Linux, Mac and Windows
 - binaries/
 - resources/
 - modelDescription.xml

Variable Simulation Algorithm

Zero Crossing

Technologies

- Reduce step size near zero crossing
- Bounded Difference
- Sampling Rate
- FMU Max Step Size

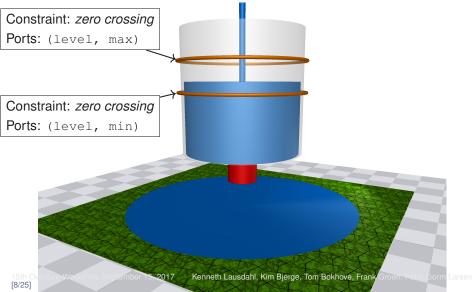
Variable Simulation Algorithm

- Zero Crossing
 - Reduce step size near zero crossing
- Bounded Difference
- Sampling Rate
- FMU Max Step Size

```
class A
thread
periodic (20E6, 0, 0, 20E6) (step); //0.02 seconds
operations
step : () ==> ()
step() == duration(0) skip;
end A
```

Variable Simulation Algorithm

- Zero Crossing
 - Reduce step size near zero crossing
- Bounded Difference
- Sampling Rate
- FMU Max Step Size


```
class A
thread
periodic (20E6, 0, 0, 20E6) (step); //0.02 seconds
operations
step : () ==> ()
step() == duration(0) skip;
end A
```

Variable Simulation Algorithm

- Zero Crossing
 - Reduce step size near zero crossing
- Bounded Difference
- Sampling Rate
- FMU Max Step Size

```
class A
thread
periodic (20E6, 0, 0, 20E6) (step); //0.02 seconds
operations
step : () ==> ()
step() == duration(0) skip;
end A
```

Simulation Algorithm: Zero Crossing Example

Agenda

Tool Extensions

Added new FMI library

- BoolPort • IntPort
- RealPort
- StringPort

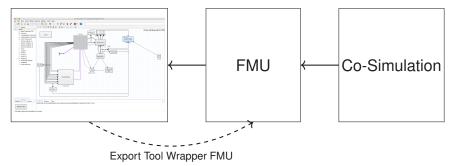
Animation

Added new FMI library

- BoolPort
- IntPort
- RealPort
- StringPort

```
class HardwareInterface
values
    -- @ interface: type = parameter;
    public v : RealPort = new RealPort(1.0);

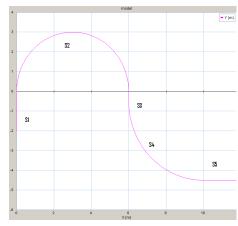
instance variables
    -- @ interface: type = input;
    public distanceTravelled : RealPort := new RealPort(0.0);
    -- @ interface: type = output;
    public setAngle : RealPort := new RealPort(0.0);
end HardwareInterface
```


Overture FMI

Added new FMI library

- BoolPort
- IntPort
- RealPort
- StringPort

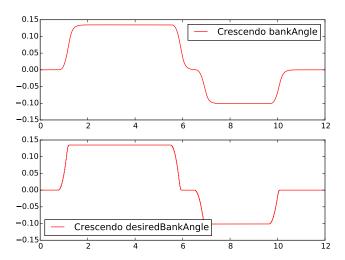
20-sim


- Generate an FMU for a model
- Direct calls from the FMU into 20-sim

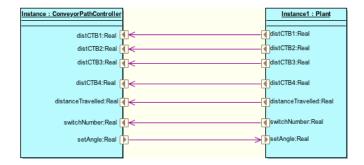
Case-Study

Technologies

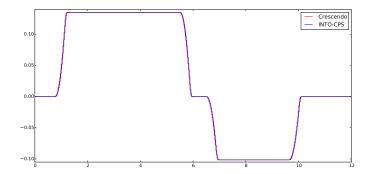
```
sdp real v;
sdp real r2;
sdp real r4;
sdp real 11;
sdp real 13;
sdp real travPitch:
sdp real p;
controlled real setAngle := 0.0;
monitored real distanceTravelled := 0.0;
monitored real distCTB1 := 0.0:
monitored real distCTB2 := 0.0;
monitored real distCTB3 := 0.0;
monitored real distCTB4 := 0.0;
event eventCTB1;
event eventCTB2;
event eventCTB3:
event eventCTB4;
```


```
sdp real v;
sdp real r2;
sdp real r4;
sdp real 11;
sdp real 13;
sdp real trayPitch;
sdp real p;
controlled real setAngle := 0.0;
monitored real distanceTravelled := 0.0;
monitored real distCTB1 := 0.0:
monitored real distCTB2 := 0.0;
monitored real distCTB3 := 0.0;
monitored real distCTB4 := 0.0;
event eventCTB1;
event eventCTB2;
event eventCTB3:
event eventCTB4;
```

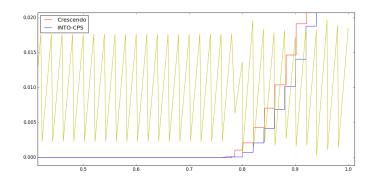
```
sdp real v;
sdp real r2;
sdp real r4;
sdp real 11;
sdp real 13;
sdp real travPitch:
sdp real p;
controlled real setAngle := 0.0;
monitored real distanceTravelled := 0.0;
monitored real distCTB1 := 0.0:
monitored real distCTB2 := 0.0;
monitored real distCTB3 := 0.0;
monitored real distCTB4 := 0.0;
event eventCTB1;
event eventCTB2;
event eventCTB3:
event eventCTB4;
```


```
sdp real v;
sdp real r2;
sdp real r4;
sdp real 11;
sdp real 13;
sdp real travPitch:
sdp real p;
controlled real setAngle := 0.0;
monitored real distanceTravelled := 0.0;
monitored real distCTB1 := 0.0:
monitored real distCTB2 := 0.0;
monitored real distCTB3 := 0.0;
monitored real distCTB4 := 0.0;
event eventCTB1;
event eventCTB2;
event eventCTB3:
event eventCTB4;
```

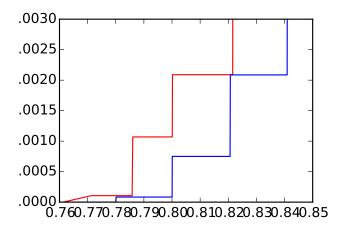
```
sdp real v;
sdp real r2;
sdp real r4;
sdp real 11;
sdp real 13;
sdp real travPitch:
sdp real p;
controlled real setAngle := 0.0;
monitored real distanceTravelled := 0.0;
monitored real distCTB1 := 0.0:
monitored real distCTB2 := 0.0;
monitored real distCTB3 := 0.0;
monitored real distCTB4 := 0.0;
event eventCTB1;
event eventCTB2;
event eventCTB3:
event eventCTB4;
```


Case-Study DESTECS Simulation - result

Case-Study INTO-CPS



Case-Study INTO-CPS Simulation - result

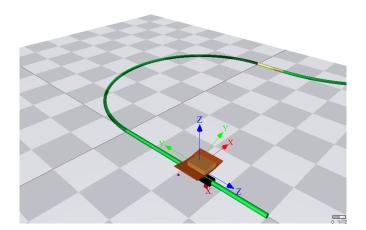

Technologies

Case-Study INTO-CPS Simulation - result

Technologies

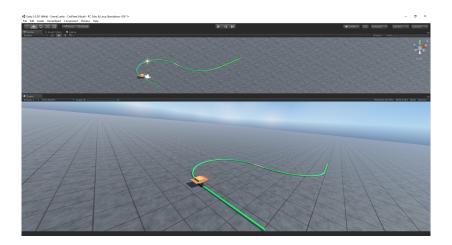
Case-Study INTO-CPS Simulation - result

Technologies

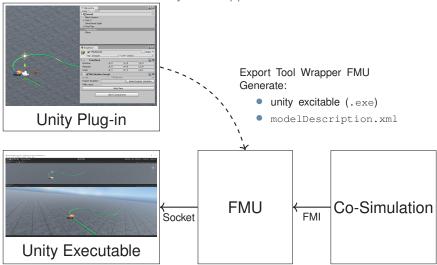

Tool Extensions

Case-Study

Animation


Conclusion and future plans

Animation 20sim 3D Animation


Animation

Automated conversion to Unity

Animation

Unity FMI Support

Technologies

Demo

Case-Study

https://youtu.be/zHIcLxf-RVI

Technologies

Tool Extensions

Case-Study

Animation

Conclusion and future plans

Conclusion and future plans

- Successful transition of the trolley conveyor case study
- Events can be supported through constraints
- Automatic translation from 20sim 3D to Unity
- Enabled FMI for Unity

Thank you

