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Agenda

e Exploratory Modeling and ViennaTalk

e Automated Code Generator as Animation Engine

e Challenges in Debugging VDM Specification on
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e Design : Traceability

e Demo

e Summary



Exploratory Modeling

Exploratory modeling is to produce a specification, which is

e valid,
e feasible and
e full-featured,

followed by rigorous specification, which is

totally defined,
sound,
verifiable and
maintainable.



Workflow of Exploratory Modeling
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The Cycle of Specifying : Indivisual's task
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The Cycle of Learning : Collaborative task
Domain Experts

The specifier
understands the Feedback g
feedback

I
!

Feedback

knowledge

‘.

Feedback

The specifier

The specifier The specifier
writes the spec explains the spec to
domain experts

Specification




Requirement of Code Generator
as Animation Engine for Exploratory Modeling

e Performance
o Tweak free : No need for "tuning" the spec
o Feasibility : Closer to the production code
e Interactivity
o Liveness : Fixing spec in action
o Ul : non-formalist friendy
o Connectivity : networking, legacy libraries
e Debuggability
o Finding : To be aware of unexpected behaviour
o Locating : To spot the cause of the behaviour
o Modifying : To fix the spec if necessary
o Testing : To ensure the spec means as intended



Challenges of Code Generator
as Animation Engine for Exploratory Modeling

e Debuggability

o Locating : To spot the cause of the behaviour
o Modifying : To fix the spec if necessary



challenges of debugging auto-generated code

Artifacts to observe

generated code

} glue code \

-

Artifacts to fix

VDM spec

Substrate

(GUI, networking, DB, existing components)

1. Finding an issue
2. Locating the cause

4. Testing the new code

-

2. Locating the cause
3. Modifying the spec




VDMDebugger
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demo
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Summary

Done:

e Bytecode to VDM source traceability
e Step execution in granularity of VDM and Smalltalk

Todo:

e Live modification to VDM source on VDMDebugger
e \VDMPad-like diagram presentation of VDM values
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