@ Overture Workshop 15 : New Capabilities and Applications for Model-based Systems Engineering

Debugging Auto-Generated Code
with Source Specification
in Exploratory Modeling

Tomohiro Oda

Keijiro Araki Yi ennn
Tolk

Peter Gorm Larsen

Agenda

e Exploratory Modeling and ViennaTalk

e Automated Code Generator as Animation Engine

e Challenges in Debugging VDM Specification on
Auto-Generated Code

e Design : Traceability

e Demo

e Summary

Exploratory Modeling

Exploratory modeling is to produce a specification, which is

e valid,
e feasible and
e full-featured,

followed by rigorous specification, which is

totally defined,
sound,
verifiable and
maintainable.

Workflow of Exploratory Modeling

Domain Experts

The specifier
understands the Feedback g
feedback

I
!

knowledge Feedback

‘.

S The specifier

Feedback
analyzes the spec

The specifier

The specifier The specifier
writes the spec explains the spec to
domain experts

Specification

The Cycle of Specifying : Indivisual's task

knowledge

The specifier
analyzes the spec

The specifier

The specifier Specification

writes the spec

The Cycle of Learning : Collaborative task
Domain Experts

The specifier
understands the Feedback g
feedback

I
!

Feedback

knowledge

‘.

Feedback

The specifier

The specifier The specifier
writes the spec explains the spec to
domain experts

Specification

Requirement of Code Generator
as Animation Engine for Exploratory Modeling

e Performance
o Tweak free : No need for "tuning" the spec
o Feasibility : Closer to the production code
e Interactivity
o Liveness : Fixing spec in action
o Ul : non-formalist friendy
o Connectivity : networking, legacy libraries
e Debuggability
o Finding : To be aware of unexpected behaviour
o Locating : To spot the cause of the behaviour
o Modifying : To fix the spec if necessary
o Testing : To ensure the spec means as intended

Challenges of Code Generator
as Animation Engine for Exploratory Modeling

e Debuggability

o Locating : To spot the cause of the behaviour
o Modifying : To fix the spec if necessary

challenges of debugging auto-generated code

Artifacts to observe

generated code

} glue code \

-

Artifacts to fix

VDM spec

Substrate

(GUI, networking, DB, existing components)

1. Finding an issue
2. Locating the cause

4. Testing the new code

-

2. Locating the cause
3. Modifying the spec

VDMDebugger

[Smalltalk steps } [VD'V' steps }
x = [—= —/'GT =
Stack call stack b Proceed (5 Restart ¥ Into ¢ Over # VDMOver 3 VDMInto »* Through -=
Counter inc: s
Counter inc [self inc: nil]
\Counter _add_: v|
Source Smalltalk code reis? & Browse VDM [VDM SpecC }
RESULT :>=+€1f _inc. Al . :
. . inct()==nat
(ViennaType nat includes: RESULT) :
. incl) ==
ifFalse: | (= t+1)
= +1);
ViennaRuntimeTypeError signal]. r:?:;l cc;;m ’
count - (_oldState at: 'count') = 1 (mutn #)=1)
{¥eaines | post ((count - count~) =1
ViennaPostconditionViolation signal].
A RESULT -
Variables [variables }
Type Variable Value =
implicit [N a Counter
Tl TS PR ——— T T T T Speapy qpp—" Sua—" pp—_—— | v

10

demo

traceability

from each bytecode

to substring of the spec

VDM source

V generates

VDM AST

tracing string

V generates

method source

Mt

' generates

Smalltalk AST

4

V generates

formatted method source

‘ generates

Smalltalk AST

tracing string

Smalltalk
traceability

parallel
structure

g
[~
—

V generates

generated bytecode

Smalltalk
traceability

composed
traceability

12

Summary

Done:

e Bytecode to VDM source traceability
e Step execution in granularity of VDM and Smalltalk

Todo:

e Live modification to VDM source on VDMDebugger
e \VDMPad-like diagram presentation of VDM values

13

