
Language and semantics (1) Language and semantics (2)
1. executable, 2. strong but flexible type checking, 3. measure
function to guard recursions

1. syntax is relatively old fashioned (especially, SL), 2. union types
without data constructors, 3. no parametric types

Abstract, Precise, Simple Verbosity, Lack of Modern constructs (map, reduce,...), Lack of type
inference

Simulation and abstraction capabilities, well suited for new DSL
design

"Possible"-semantics can cause traps to users, language
inconsistencies/mistakes are a real put off. The strong coupling
between ++ and RT is a killer given that one might not want ++ and
want RT features. Finally, there is no explicit support for
refinement/reification, which is a crucial aspect of VDM! It would also
be nice to have polymorphic parameters in types and/or modules (akin
to what is possible say in PVS)

1) VDM-SL has a formal semantics 2) Changes can be requested via
the Language Board 3) Easy to get started with (compared to other
formal methods)

1) VDM++/VDM-RT semantics are poorly defined, which complicates
verification 2) VDM++ and VDM-RT are feature-wise too complicated
for formal languages (inheritance, overloading, union types)

Relatively easy to learn - the are no unusual concepts.
Easy to read simple models (in ASCII), even for non-experts.
It does have a track record (not new and unknown)

Specification of threading and read-time always feels awkward to me.
The detail of OO semantics is still poorly defined.
It is probably perceived as an old language/method = irrelevant?

1) The language board makes sensible analysis of potential
adjustments of the VDM notations
2) The semantics of the VDM languages is explained and
exemplified in the language manual
3) Test cases are present in the Overture tool analysing different
semantic constructs

1) The formal semantics of the VDM languages has only really been
described for (an older version of) VDM-SL
2) The semantics of the VDM languages is not present in a form that
can be used as a basis for theorem proving support
3) Test cases are not as exhaustive as they could be for different
semantics aspects

1) Unambiguous definitions of types
2) Easier to express operations that are otherwise difficult to express
in anything other than natural language

1) There is no way to easily handle structured data that is represented
in the real world by bit fields.
2) One-based indexing of sets and sequences is annoying when the
rest of the world (mostly) uses zero-based indexes.

* Data representation and abstraction
* Readability
* We care about semantics

* Three dialects is confusing; lack of e.g. real-time SL
* No proof in ++ / RT
* RT CPU/BUS/scheduling doesn't always match real-world usage

1. A low entry level for the basic language.
2. A clearly defined executable subject.
3. Breadth of applicability to systems as well as software.

1. It is so comprehensive it appears complex: the o-o, concurrency and
RT extensions make it seem baroque.
2. The relationship to commonly used languages either for
programming or model-based engineering is not well defined as "part
of the package"

Programmer-friendly syntax, Functional flavour, Undefinedness Object-Oriented Semantics are very poor, language is too big, type
system is too loose in some ways and too restrictive in others (ex: high-
order function polymorphism)

(1) Programmer-friendly syntax including object-orientation, e.g.,
Map rather than Relation (rather than all very mathematical
notation), (2) simple but therefore clear control of abstraction by the
two levels of implicit/explicit specification, and (3) still evolving
language

(1) obsolete if we admire the "programmer-friendly syntax and OO",
such as lack of generics in Java (polymorphic functions, but not for
operations) and no "atomic" for state change by calling operations
("atomic" only for assignment statements), (2) unclear or imperfect
consideration on semantics regarding consistency (e.g., the recent
addition of "pure" operations, definition, the atomic issue mentioned
above), (3) and instability due to #2 point (syntax change and tool-
warning/error change) .

(1) extensive language reference guide and many working examples
(2) covers all dialects supported by the tools
(3) no significant deviations between Overture and the ISO standard

(1) language is very big with many constructs that are considered
obscure and typically are poorly understood by novices; the
consequences of a type system with looseness is hard to grasp and
needs to be addressed with care, in particular in applications that
require high levels of rigour
(2) the object oriented aspects are weakly defined and not in line with
other OO languages, causing difficulties and misunderstandigs; we
should consider if OO is actually needed at all
(3) the appeal factor of modern functional languages is missing from
VDM which seems a turn-off for some new user; it would be good to
benchmark the language against some alternate approaches to see if
we need to prune and modernise? do we really need all these
language variants?
(4) the fact that we lost the ability to bootstrap our tools from a formal
specification of the tools itself I think is still one of our main
weaknesses - a capability we basically lost about a decade ago. IMHO
it would add to our credibility and challenge our tool development if this
was reinstated!

Language and Semantics

Strengths:

1. Community support (and language board)
2. Low barrier to entry (language change request)
3. Precision / formality
4. Abstraction with executability
5. Broad applicability

Weaknesses:

1. Dialects are not orthogonal (they have evolved from the needs of specific projects rather
than being a product of rational design), take inspiration from other languages (e.g. alloy)

2. Poor semantics (especially the object orientation)
3. No proper support for refinement
4. We lost the link to formal methods, in that

a. We don’t support proof
b. We’ve lost the idea of having a spec of the tools (eat our own dogfood)

5. Need is for RT but you’re forced to have O-O features as well
6. RT is still to restricted and with limited and in some places wrong semantics
7. No notion of asynchronicity in VDM-SL / no concurrency

Actions

1. Work out proof theory for a substantial part of VDM-SL (consider limiting ++ and RT to
constructs that can be used in theorem proving?)

2. Package low hanging fruit as student project(s)
3. Implement support for reflection and type parameters
4. Enable end-users to add libraries easily
5. Figure out how difficult it is to map VDM onto WhyML such that we can exploit Why3 as

shown in the Filliatre talk
6. Is it feasible to create a VDM language with “plug-and-play” features, just like ALLOY and

SCALA (=> allow more specific use cases, => allow easier academic research)
7. Extend SL with RT features as a new dialect
8. Consider simplification of VDM dialects
9. Support libraries in the tool e.g. like maven central (+ signing)
10. More functionality to libraries e.g. map / fold (don’t add keywords)

Tool support (1) Tool support (2)
1. Eclipse is a common platform that can be chained with the
implementation phase, 2. syntax checking as you type, 3. cross
platform among different OS's.

1. no pretty printer (auto format), 2. occupies a large area on screen,
3. resource demanding

Standalone IDE, Good Debug Env, Test features Frustrating bugs, Low performance, Lack of advanced IDE features
(eg: refactoring,...)

The community is fantastic: open minded, responsive, collaborative.
Problems raised are answered/dealt with as best as possible.

Overture doesn't seem to scale well for larger models; profiling
capabilities within the tools would be nice. The POG is flaky/weakly
defined.

1) Easy to use 2) Supported by a lively community 3) Good
documentation (user manual, language reference manual)

1) Lack of verification support 2) Auto-completion/refactoring support
should be enhanced 3) Prototype features are rarely
finished/matured for releases

The Eclipse UI is relatively familiar and easy to use.
Bugs and problems are generally looked at quickly (and hopefully
fixed!)
It is stable: it is rare for Overture to crash.

There are few other users, so it may feel risky to adopt.
There may be scalability problems (eg. with the large EMV model)
No tool help for refinement or formally linking a model to an
implementation.

1) The division between a core part and a GUI part is important for its
future development
2) The animation/debugging feature and its ability to incorporate
legacy code is absolutely essential
3) The ability to produce FMUs from Overture so it can be used in a
co-simulation context

1) The lack of theorem proving support for in particular VDM-SL (the
others are not feasible in a reasonable amount of time)
2) The Eclipse GUI is getting old and here IntelliJ GUI would be a
better future alternative
3) It would be great to have additional support in a cloud context

1) Navigating around large models is fairly easy to do.
2) Being able to execute models and debug them as you would a
program is great
3) Picking up errors is easy

1) Calling external DLLs isn't straightforward, but is essential in large
projects.

* Robust, doesn't crash too often
* Easy to install for single users
* Plenty of examples

* Lack of auto-completion
* Error messages can be esoteric
* Hard to deploy on network clusters

1. It's comparatively well documented
2. It's comparatively robust
3. The community behind it is quite welcoming

1. Its continuity depends on a small number of people who will not be
there forever
2. It doesn't take account of advances in formal techniques such as
model checking and proof support
3. It is not regarded as a vehicle for research in formal methods (if
you care about that!)

Extensibility of tools, good debugging support, code generation no theorem proving, very few reusable libraries, eclipse platform is a
bit old

(1) active updates, (2) good support for interpreter-related functions,
and (3) good modernization via integration with the Eclipse platform

(1) naive implementation and frequent updates on consistency
checking (such as issues written in the "Language and semantics
(2)"), (2) weak implementations of non-core but notable functions,
such as UML generation (no work with the latest Modelica) and proof
obligation generation (in a recent version it said "--after
execution\n$postcond", now it says $precond => $postcond without
using the weakest precond, which is a wrong formula), (3) weak
support of concurrency (no model checking) though VDM++ has
concurrency

(1) we have two strong and high quality toolchains available to the
community free of charge
(2) tools are available on Windows, Mac and Linux
(3) tools are well maintained and regularly updated and performance
is overall OK

(1) the tight coupling with Eclipse is both a blessing as well as risk;
Eclipse is here to stay but it seems to loose momentum and interest
(2) the GPL license model is considered restrictive to enable
commercial initiatives; perhaps BSD two-clause should be
considered for the next generation of tools?
(3) we do not exploit the power of cloud computing
(4) the implementation of VDM-RT with fixed time step is inherently
flawed and should be addressed
(5) the performance of the interpreter and quality of the code
generators is not good enough to deal with the next generation of
problems

Tool support

Actions and ideas

1. Experiment with Nick-like annotations as additional capabilities for tool automation (without
polluting the actual models

2. Masterclass in tool development @overture workshop (for continuity sake?)
3. Webinars / hackathons
4. Paid courses
5. Tool support enabling library management for end-users
6. Autocompletion, auto formatting and style checking should be considered (requires AST

inclusion)
7. Theorem proving for a subset of VDM-SL
8. Technical investigation for a “Jeremy Dick”-style approach to testing
9. Tool integration investigation (why3? Boogie?)
10. Quickcheck style testing
11. Demonstrate cloud deployment + simulation
12. More use of polls for (a) what to develop and (b) what pull requests to accept
13. Overture as-a-service in the cloud (scalability, performance, no installation required) like

draw.io (partly as a paid service?)
14. Short term: intelliJ feasibility study
15. Short term: scalability investigation
16. Medium / long term: support for theorem proving
17. Medium / long term: support for model checking
18. Short term: sharing libraries
19. Idea: tool tips or Cmd-Click navigation

Applications (1) Applications (2)
1. virtual machine, 2. embedded (felica), 3. education 1. virtual machines, 2. IoT, 3. Automotive systems (car management,

navigation and entertainment)
Precision agriculture, Education Education
Security protocols (AnB language semantics), Payment systems
(EMV, PSD), Computational games (TicTacToe, DotsAndBoxes,
Suduku, Ultimate TicTacToe), Flash memory management, Garbage
collection algorithms

Not sure. Perhaps examples to explore POG and Refinement
chains? Or integration with provers/model checking tools?

Harvest planning (the AGCO project) Online courses
EMVCo model (card payment systems).
The MULTOS model (smartcard OS, work suspended now?)
Several models of UK Post Office systems, used internally in Fujitsu.
Models of air traffic reporting protocols (Airservices Australia)
AGCO harvesting models
Some models inside ESA?

Other standards bodies (after Airservices example)?

1) It has been used by Nick for commercial applications with critical
aspects of administrative systems at Fujitsu (in the past)
2) It is used for agricultural logistics the company AGCO is using it
3) It is used for teaching purposes at a number of universities

1) It would be good to see it used on the Mobile Felica cases
2) In general it would be good to use it in the development of critical
systems
3) Increased use in a co-simulation setting in the development of
CPSs

Attempting to model a secure operating system Modeling of secure applications
. .
1. Controller design (through multi-modelling and cosimulation)
2. Education & Training

1. Comprehensive model-based engineering and analysis of digital
aspects of larger systems (infrastructure, buildings, etc.)
2. Providing semantics for domain-specific languages in areas like
the above, as well as IoT areas.

critical systems, embedded control, distributed systems AI, critical systems even more
Rigorous specification (rather than strong checking, like in Felica) Potentially, as a simulation language as in Crescendo and INTO-

CPS, but with more powerful tool support as a "simulation" tool rather
than a "specification" tool

reactive systems, embedded control systems autonomous and self-* systems

Applications

Today applied in:

• Protocols
• Real-time
• Japan: use as specification for outsourcing
• Medical devices (audits, consistency, certification, documentation, design): infant dialyses,

brain pacemaker, organ preservation
• Supervisory control if CPSs
• Why VDM is good (for applications): lightweight and familiar feel for programmers

Could be used tomorrow in:

• Search for areas where companies have pain points with quality and complexity
• Spin VDM as a kind of data analytics (only half joking – how we market is important, and we

can help the data scientist)
• Any form of data transformation
• Non real-time systems are important
• Applications were compliance needs to be demonstrated (HIPA, FEDRAMP, US GOV)
• Security / authentication / authorisation
• Something non-sensistive with impact e.g. a large open source project
• High-level AI control (decision taking on preprocessed data)
• VDM to reverse engineer “lost” specifications
• Use VDM as an independent test oracle (benchmark and validate existing applications)
• Automotive systems
• Entry point to theorem proving / model checking (export VDM-SL to theorem provers and

model checkers)
• Robotics
•

Community building (1) Community building (2)
slowly growing Create open-source projects that use VDM and put VDM specs with

C/C++/Java/Swift/what-so-ever program source on github. Not spec only, but
spec with program source.

Good Promote efficient tools
The community is active and friendly. Some processes for language discussion, tool improvement, etc can be quite a

drag/overkill.
Doing fairly well: workshop on an anual basis (more or less) and we do
see new people joining the community now and then

We need to advertise the language/tools more. For example through online
courses or by encouraging people to use join discussions on
Github/StackOverflow/other kinds of online groups. I would prefer this over the
existing mailing lists.

It is still largely academic, with just a couple of industry contacts.
The support email lists and StackExchange tags are rarely used.
Downloads are good, but we don't know who they are (may be bots).

Explicitly offer support for new users?
Support the EMV project (Leo/Martin) as much as we can.

1) primarily mouth to mouth for key stakeholders
2) whenever new releases are produced emails are sent around to a
mailing list of users
3) passive via web pages and manuals

1) coursera courses of how to use VDM and Overture
2) Proactive marketing towards potential users
3) improved on-line videos about overture at youtube disseminated via facebook
and twitter

Great tools and output. However I only found out about Overture by
accident...

Is there an Overture Tools users forum somewhere? It would be good to build a
knowledge base out there of how to do things...

Growth is slow but it's happening. * Ask new people (Paul, Simon etc.) how they found us; do more of whatever they
suggest.
* Submit to things like F-IDE or other communities

We are open and welcoming; the workshops are inclusive and stable.
We are not necessarily maximising the assets we have by using it to
support research in systems engineering in a variety of new areas (just
look at the Gartner hype curve!)

The community relies on voluntary work, mainly by academics who are
necessarily motivated by research on the fundamentals of computer science and
systems engineering. However, we have a strong focus on achieving industry use
(a great goal that we must retain). As a result, our focus has been on delivering a
platform that works in industry case study settings (in EC projects) and perhaps
less on offering a platform for research (integrating and adding analytic
capabilities, extending expressiveness of models, etc.). I'd suggest that we have
a small research working group report back to the community on how Overture
might be developed as a platform for research activity, so that there is enough of
a "pay back" for community membership.

The community is good, but has not grown in a long time, which can
make things a little stale

Modernize the tool platform and encourage open source contributions, show that
overture can solve problems other tools cannot

Very strong and active, I like very much Include the state-of-the-art from a much wider-viewpoint: looking at other tools
and other paradigms (trends and techniques in general software engineering),
rather than a bottom-up improvement

very active core team with strong ties in academia, however, we have
never been able to grow very much - but this seems common to all FM
tool communities

IMHO the only option is to join forces with other FM groups and perhaps be more
active on social media (we are quite passive in our communications)

Community building

• (we think we are) seen as an open and welcoming community
• Appeal for diversity of the Overture community
• Very few people left the community
• Action: find new academic / EU funding to keep steady flow of new PhDs
• How to welcome new people; how can we get them to tell us what they use it for and how

they found us? And what else would they like?
• Action: Hitchhike on initiatives like “Google summer of code”
• Action: actively push / participate in other for a like stackoverflow
• Action: think about branding of “Overture” versus “VDM”, does it confuse people?
• Action: take public examples and make them animatable via VDMPad on the Overture web

pages
• Action: run community hackathons?

o Problem solving activities for business and community groups?
o Support innovations

• Actively requesting for others interested in contributing with new GUI front-ends e.g. IntelliJ
could increase both contributers as well as users; other way around: stick to current
platform man filter new adopters

• Short term action: make open slack group (less intimidating for industry than joining mailing
lists)

• Short term action: make to-do list on github
• Short term action: make list of industrial contacts / consultants
• Medium term: create “for dummies” book, like “The B-method” for people with no

background into formal methods and VDMio
• Medium term: videos + on-line courses
• Short term action: actively seek industrial challenge cases
• Be clear about community operating: how to interact, pull requests etc
•

Business offerings and long-term support (1) Business offerings and long-term support (2)
Create open source that use VDM. Such projects would work as reference for
managers who are concerned with quality of specification.

Eclipse will not live forever. We'll anyway need to envision new VDM that
adopt new styles of software development and create a new tool that
supports new VDM and future programming languages on top of future
development substrates.

Provide industrial partners with added value to their dev. processes Find key partners
It must scale, and scale well. Support is good. Examples of different uses would
be good. Also examples of "ways not to do it" that are frequently caveats for
inexperienced users?

Mixture between industrial clients and academic use.

Getting more companies involved through research projects Getting more people interested in the language/tools via courses and
research projects.

Advertise significant industrial success (EMV) - ideally from EMVCo themselves.
Give interviews to industry press about industrial uses?

Short term academic projects and voluntary support (as now).
Medium to long term, consultancy fees paying for tool experts.

1) list potential consultancy suppliers at the overture web pages
2) offer commercial support of the Overture tool for potential users
3) present examples where Overture/VDM has been used in the past

1) additional externally funded research projects where Overture is included
as a part
2) increase the value in contributing to the Overture open source
development
3) get at least one company offering commercial services on top of the
Overture platform

Explain the financial benefits of modeling and provide more examples (well
documented ones at that which explain each step in detail).

The tools need to be free (at least for now) as having to pay would only be
another reason for business not to take that first look. A donation system
could be tried...

* Research and innovation projects (EU, Innovate UK)
* Champions in key industries
* Success stories, articles etc. in industry magazines (not just scientific venues)

* Research and innovation projects (EU, Innovate UK)
* INTO-CPS Association

Integration with established tools and methods - even using VDM/Overture as a
semantic foundation rather than as a first class tool in its own right?
Develop links with tools developers rather than "compete" by trying to make a
robust industry offering ourselves. Otherwise we will only have Overture as the
tools that's used as a basis for consultancy.

Set ourselves a goal (5-year) to establish a sustainable association in the
INTO model?
(Sorry running out of time here)

Successful case studies, commercial support, ability to solve problems engagement with open source enthusiasts
Modern and active tool support, success story by a strong industry (like one by
Felica, which made VDM the most popular formal specification language in Japan)

Active community and relevant state-of-the-art research funding

To provide a solution to industrially sized problems, so reliability, scalability and
performance of the tools are key - closely followed by accessibility and low upfront
investment cost. The threshold to start should be near zero (even tool installation
can be considered a barrier), with low-hanging fruit that addresses some urgent
and recurring business need; these might well be secundary to us (e.g. automatic
documentation generation) but are key to acceptance in industry. It would be good
to spend some time to investigate with are the key success factors from industrial
perspective? Do we know and do we have an answer to that?

Be responsive to queries and help industrial users to overcome these
hurdles. Perhaps some level of additional support can be offered as a
commercial service, i.e. to implement new features, solve modelling issues,
etc. Some modelling market place?

Business offerings

• Add business offerings at the overture pages (e.g. consultants and their contact details)
• Assist with a modelling marketplace where suppliers can come with either free or payable

models and components
• Getting more people interested in our language through courses (in particular video via

Udemy, Coursera, Edx); basic courses free, premium coursed paid?
• Deployment x documentation (non-formal) for users consumption
• Add donation button to Overture
• Add sponsorship opportunities visible on the web site
• Consider if we need better deployment support
• Are the tools geared up for use in agile or continuous integration business models (i.e. CI)?
• Try to separate the underlying tools from the features that facilitate use (you should be able

to update the GUI with minimum hassle)
• Consider potential award scheme a la when you are a volunteer for the red cross
• Add pages with success stories at the overture web pages where the contributor also gets

his fair share of publicity
• Consider introducing a notation of VDM certification
• Paid-for industry workshops with success stories and training
• Scalability and reliability of the tools must be guaranteed
• Integration with other established tools is a must
• Stay in touch / stay in fashion, keep up with modern tools (i.e. IntelliJ versus Eclipse)
• Long term: do research project focusing on VDM-SL with industry partners and theorem

proving

	questionaire_responses_14072018
	questionaire_responses
	sra_feedback_14072018
	Language and Semantics
	Tool support
	Applications
	Community building
	Business offerings

	scan_marcel verhoef_2018-07-16-10-26-29

