
OVT 17: 17TH OVERTURE WORKSHOP -- Ana Paiva 1

Teaching VDM
&

Teaching Formal Methods

Ana Paiva
apaiva@fe.up.pt www.fe.up.pt/~apaiva

mailto:apaiva@fe.up.pt
http://www.fe.up.pt/~a

OVT 17: 17TH OVERTURE WORKSHOP -- Ana Paiva 2

Agenda

Our semester is structured in 13 lecture

So,

This talk has 13 sections

OVT 17: 17TH OVERTURE WORKSHOP -- Ana Paiva 3

1st Lecture

Convince your students

that

Formal Methods

are important

(three different ways you may use for this purpose)

OVT 17: 17TH OVERTURE WORKSHOP -- Ana Paiva 4

Why formal methods? (Facts)

■ The main source of bugs is in the requirements
specification phase - ambiguous and incomplete

■ Formal methods are unambiguous - During the
formal specification phase, the engineer rigorously
defines a system using a modeling language

■ Formal methods differ from other specification
systems by their heavy emphasis on provability and
correctness

■ Once the model has been specified and verified, it is
implemented by converting the specification into
code (some times automatically)

OVT 17: 17TH OVERTURE WORKSHOP -- Ana Paiva 5

1st Lecture

Prove

Formal Methods

are important

OVT 17: 17TH OVERTURE WORKSHOP -- Ana Paiva 6

Use your own dog food!

Software is bad (P1).

Software differs from physical systems in at least two ways (P2):
software is discontinuous (P3),

and software is complex (P4).

Software is complex (P4), and complexity results in design flaws
(P5); therefore, software has design flaws (P6).

Design flaws must be handled (P7). The three ways to handle
design flaws are testing, design diversity, and fault avoidance
(P8).

[Holloway C. Michael. 1997. Why Engineers should Consider Formal Methods. Technical
Report. NASA Langley Technical Report Server.]

OVT 17: 17TH OVERTURE WORKSHOP -- Ana Paiva 7

Use your own dog food!

Because software is discontinuous (P3), testing is inadequate
(P9).

Also, because software is discontinuous (P3), design diversity is
inadequate (P10).

Because there are only three ways to handle design flaws (P8),
and the other two are inadequate (P9, P10), fault avoidance
must be used to handle design flaws (P11).

Because formal methods are the most rigorous fault avoidance
method (P12), and the greater the rigor, the more promising the
method (P13), formal methods are the most promising fault
avoidance method (P14).

OVT 17: 17TH OVERTURE WORKSHOP -- Ana Paiva 8

Use your own dog food!

Because software has design flaws (P6), and design flaws must
be handled (P7), and fault avoidance methods must be used to
handle design flaws (P11), and formal methods are the most
promising of these methods (P14), software engineers should
use appropriate formal methods (P15).

OVT 17: 17TH OVERTURE WORKSHOP -- Ana Paiva 9

Use your own dog food!

OVT 17: 17TH OVERTURE WORKSHOP -- Ana Paiva 10

1st Lecture: Illustrate with examples

■ The teacher placement problem was solved by a new computer solution
designed in six days and executed in 30 minutes. The revelation was made
by one of the five members of the ATX software team, an outside company
hired by the ministry of education to "unlock" the unskilled teacher
placement program created by Compta.

■ From the same ministry database that contains all the faculty to be posted,
ATX software has created a new algorithm, a computer solution, "thought
out in full for six days and based on very solid mathematical principles,"
he said yesterday. computer engineer and author of the solution, Luis
Andrade, during a press conference in Lisbon

(2004)

OVT 17: 17TH OVERTURE WORKSHOP -- Ana Paiva 11

Formal Methods Europe

OVT 17: 17TH OVERTURE WORKSHOP -- Ana Paiva 12

2nd Lecture

Now that you have convinced them…

Start with the

Basics

OVT 17: 17TH OVERTURE WORKSHOP -- Ana Paiva 13

Hoare Logic

■ Hoare Logic forms the basis of all deductive
verification techniques

■ Named after Tony Hoare: inventor of Quick
Sort (in 1960, when he was just 26), father of
formal verification, 1980 Turing award winner

■ Logic is also known as Floyd-Hoare logic: some
ideas introduced by Robert Floyd in 1967
paper “Assigning Meaning to Programs”

OVT 17: 17TH OVERTURE WORKSHOP -- Ana Paiva 14

Charles Antony Richard (Tony) Hoare

■ A quote:
• Computer programming is an exact science in that all the properties of

a program and all the consequences of executing it in any given
environment can, in principle, be found out from the text of the
program itself by means of purely deductive reasoning.

OVT 17: 17TH OVERTURE WORKSHOP -- Ana Paiva 15

Hoare Triple

{P} S {Q}

or

[P] S [Q]

Partial correctness

Total correctness

OVT 17: 17TH OVERTURE WORKSHOP -- Ana Paiva 16

3rd Lecture

Let’s have

some

fun

OVT 17: 17TH OVERTURE WORKSHOP -- Ana Paiva 17

Let’s start the fun!

■ You may know everything and want to prove it

{P} S {Q}

■ You may not know everything and want to find it

{?} S {Q}

{P} S {?}

{P} ? {Q}

OVT 17: 17TH OVERTURE WORKSHOP -- Ana Paiva 18

Let’s start the fun!

Hoare Triple Question Technique

{P} S {Q} S satisfies specification? Inference Rules

{?} S {Q} Which the precondition? Weakest precondition

{P} S {?} Which is the program? Strongest post condition

{P} S {Q} Which is the post condition? Refinement

OVT 17: 17TH OVERTURE WORKSHOP -- Ana Paiva 19

4th Lecture

Hopefully, at this class your students ask:

How can we do that?

OVT 17: 17TH OVERTURE WORKSHOP -- Ana Paiva 20

4th Lecture: How can we do that?
Nº Instruction Inference Rules

R1 skip {P} skip {P}

R2 Assignment {P[E/x]} x := E {P(x)}

R3 Sequence or Composition {P} S {Q} , {Q} T {R}

{P} S; T {R}

R4 If {P Ù C} S {Q} , {P Ù ¬C} T {Q}

{P} if C then S else T {Q}

R5 Cycle I Ù C Þ vÎN, {I Ù C Ù v=V} S {I Ù v<V}

{I} while C do S {I Ù ¬C}

R6 Strengthening the
precondition

P’Þ P, {P} S {Q}

{P’} S {Q}

R7 Weakening the
postcondition

{P} S {Q}, Q Þ Q’

{P} S {Q’}

R8 Intermediate assertions {PÙA} assert A {P}

…or Weakest precondition rules

OVT 17: 17TH OVERTURE WORKSHOP -- Ana Paiva 21

4th Lecture: How can we do that?
Nº Name Refinement Rules

1 Strengthen Post-condition Rule If Q’ Þ Q then Spec(P, S, Q) ⊑ Spec(P, S, Q’)

2 Weaken Pre-condition Rule If P Þ P’, then Spec(P,S,Q) ⊑ Spec(P’,S,Q)

3 Skip Rule If P Þ Q then Spec(P,S,Q) ⊑ Spec(P, skip, Q)

4 Assignment Rule if P Þ Q[E/x]	then	Spec(P,	x:S,	Q)	⊑		Spec(P,	x:=E,	Q]

5 Composition Rule {P} S {Q} ⊑	{P}	S1 {M};	S2 {Q}

6 Following Assignment Rule {P}S{Q} ⊑ {P} S1 {Q[E/x]}; x:= E{Q}

7 Selection Rule If PÞ G1 Ú G2 Ú…	Ú Gn,	then
{P}	S	{Q} ⊑	 {P}	if						G1→ {G1 Ù P} S1 {Q}

[] G2 → {G2 Ù P} S2 {Q}
[] …
[] Gn → {Gn Ù P} Sn {Q}

fi
{Q}

8 Repetition Rule Suppose G = G1 Ú G2 Ú…	Ú Gn,	then
{I}	S	{I Ù ¬G}⊑	{I}	DO	{I Ù ¬G}
where	DO	is

do	G1→ {I Ù G1 Ù V = V0} S1 {I Ù (0≤	V<	V0)}
[]	…
[]			Gn→ {I Ù Gn Ù V = V0} Sn {I Ù (0≤	V<	V0)}
od

OVT 17: 17TH OVERTURE WORKSHOP -- Ana Paiva 22

5th to 7th Lecture

Exercises

Apply different rules

in

small examples

OVT 17: 17TH OVERTURE WORKSHOP -- Ana Paiva 23

At this point… The students think…

■ Oh, Ok….

■ This works just for small toy examples

■ It does not scale...

OVT 17: 17TH OVERTURE WORKSHOP -- Ana Paiva 24

8th Lecture

Exercises

Use the overall approach

in more

real examples

OVT 17: 17TH OVERTURE WORKSHOP -- Ana Paiva 25

Challenges

■ Students have other courses
in parallel

■ Find real complex examples

■ Motivate the students

■ Find good tools

■ Make them conscious of
Formal Methods advantages

■ …

There no way to avoid that,
so,

balance the effort

Real, not too complex and fun

Overture?

Make them gather metrics
to be conscious
of the benefits

OVT 17: 17TH OVERTURE WORKSHOP -- Ana Paiva 26

Real & not too complex

■ I Already tried several different themes:
• Information systems: system to manage the information of an

University; System to manage a football championship, etc.

• Board games: monopoly; chess, go, abalone, etc…
- This worked quite well because they had to specify the rules and at the end

they could play...
- However I didn’t ask for a GUI and an API interface to play a game is not very

attractive…

• So,

• I combined the Formal Methods course with the Computer Graphics
course so the students could have a graphical user interface connected
with a background developed in VDM++

OVT 17: 17TH OVERTURE WORKSHOP -- Ana Paiva 27

Good Tools

■ Alloy Analyzer (for Alloy)

■ Dafny (to prove program’s correctness. Good thing: it is on the
web)

■ VDM tools (to illustrate the end-to-end process)

■ Overture (to illustrate the end-to-end process)
• Main problems

- Code generator – several problems
- Students need to look into the generated code to fix the problems and such

code is not easy to read.

OVT 17: 17TH OVERTURE WORKSHOP -- Ana Paiva 28

Conscious of the advantages

■ Gather metrics
• How much time did you spend with the specification?

• How much time did you spend in testing the specification?

• How much time did you spend generating the code?

• How much time did you spend testing the code?

OVT 17: 17TH OVERTURE WORKSHOP -- Ana Paiva 29

Conscious of the advantages

■ Gather metrics
• How confident are you about the quality of the work you are presenting

to the teacher?
- This is the best software I have developed
- Teacher, please try the software as you want...

■ At the end

■ Make them think…
• What do you think about this process?

• What do you think about specifying contracts (pre and post conditions)?

• Now, do you think you are a better developer?

■ Usually they say YES

OVT 17: 17TH OVERTURE WORKSHOP -- Ana Paiva 30

9th Lecture

How did I implement

this along the years?

OVT 17: 17TH OVERTURE WORKSHOP -- Ana Paiva 31

Along the years…

VDM moved to the end of the semester

2006-2009 Introduction VDM Model
Checking

Alloy Algebraic
specifications

Proofs
(Hoare)

2009-2014 Introduction Alloy Model
Checking

VDM Proofs (Hoare)

2015-2016 Introduction Proofs
(Hoare)

Model
Checking

Alloy VDM

2016-2019 Introduction Proofs
(Hoare)

Proofs
(Refinement)

Alloy VDM

OVT 17: 17TH OVERTURE WORKSHOP -- Ana Paiva 32

10th Lecture

What

I have

learned

OVT 17: 17TH OVERTURE WORKSHOP -- Ana Paiva 33

■ Some students love it

■ Some students hate it

■ But, you should never give up…

OVT 17: 17TH OVERTURE WORKSHOP -- Ana Paiva 34

■ And also, …

■ Yes, you should move the end-to-end process (VDM/Overture)
to the end of the semester.

■ You don't even need to teach them VDM!

■ They have all the necessary knowledge to use it well!

■ And it works very well. They use the method and the tools and
they know why and how to use them.

OVT 17: 17TH OVERTURE WORKSHOP -- Ana Paiva 35

11th – 12th Lectures

Warp up

OVT 17: 17TH OVERTURE WORKSHOP -- Ana Paiva 36

Ten Principles to Teach Formal
Methods
■ Principle 1: The field of Formal Methods is too large to gain

encyclopedic knowledge – choose representatives
• Proofs (Hoare and Refinement Rules), Alloy, VDM

■ Principle 2: Formal Methods are more than pure/poor
Mathematics – focus on Engineering

• Formal Methods can be used with traditional as well as agile models.
Moreover, Formal Methods should not constitute separate phases or
sprints, but should be rather integrated as part of the general validation
activities. Thus, teaching Formal Methods should frequently resort to
other topics in Software Engineering.

[“Teaching Formal Methods for Software Engineering – Ten Principles”, Antonio Cerone,
Markus Roggenbach, Bernd-Holger Schlingloff, Gerardo Schneider, and Siraj Ahmed Shaikh]

OVT 17: 17TH OVERTURE WORKSHOP -- Ana Paiva 37

Ten Principles to Teach Formal
Methods
■ Principle 3: Formal Methods need tools – make them available

• Tools for simulation of behavior and visualization of state space or
traces are essential to allow students to understand the behavior
associated with their models: Dafny; Alloy Analyzer; Overture

■ Principle 4: Modelling versus programming – work out the
differences

• Models of software systems are different from programming code as
programs are executable, while models can be executable. A model is
a purposeful abstraction of either an existing system or a system still to
be built.

OVT 17: 17TH OVERTURE WORKSHOP -- Ana Paiva 38

Ten Principles to Teach Formal
Methods
■ Principle 5: Tools teach the method – use them

• Instead of tediously going through the semantics of each construct in a
formal language, allow the students to experiment with an appropriate
tool to discover the semantics for themselves

■ Principle 6: Formal Methods need lab classes – create a stable
platform

• Labs can offer hands-on experience with Formal Methods tools and
practical examples. Such teaching style appeals to the plug-and-play
mindset of a student generation who loves to play with gadgets of all
kinds

OVT 17: 17TH OVERTURE WORKSHOP -- Ana Paiva 39

Ten Principles to Teach Formal
Methods
■ Principle 7: Formal Methods are best taught by examples –

choose from a domain familiar to the target group
• …a number of “logic puzzles” which have been popular since the middle

of the 19th century. One can formalize and solve such puzzles…

• e.g., Hanoi Tower Problem

■ Principle 8: Each Formal Method consists of syntax,
semantics and algorithms - focus uniformly on these key
ingredients

• A formal language is described by an unambiguous syntax and a
Mathematical semantics. For a Formal Method (as opposed to a formal
language) it is essential that there are some algorithms or procedures
which describe what can be done with the syntactic objects in practice…

OVT 17: 17TH OVERTURE WORKSHOP -- Ana Paiva 40

Ten Principles to Teach Formal
Methods
■ Principle 9: Formal Methods have several dimensions – use a

taxonomy
• In order to give students an orientation, it is important to provide a

taxonomy. Formal Methods can, e.g., be categorized according to the
following dimensions: Application range, Underlying technology,
Properties under concern, Usability

■ Principle 10: Formal Methods are fun – shout it out loud!
• Psychology tells us that the human learning capacity is highest when

we enjoy what we are doing.

• A strong motivator are also competitions. There exist several
competitions in the Formal Methods community, e.g., the VerifyThis
Verification Competition, the Hardware Model Checking Competition, or
the SAT competition.

OVT 17: 17TH OVERTURE WORKSHOP -- Ana Paiva 41

13th Lecture

Students should know

“The sooner you start to code, the longer the program
will take”

Think in advance! Specify! Use formal methods.

Teachers should know

“Learning is remembering what you are interested in”

Motivate the students! Make it fun! Use known and fun
examples.

OVT 17: 17TH OVERTURE WORKSHOP -- Ana Paiva 42

Teaching VDM
&

Teaching Formal Methods

Ana Paiva
apaiva@fe.up.pt www.fe.up.pt/~apaiva

?

mailto:apaiva@fe.up.pt
http://www.fe.up.pt/~a

