

VDM at Newcastle: applications,
methods and tools

 Jeremy Bryans, Joey Coleman, John Fitzgerald, John Hughes, Cliff Jones

Centre for Software Reliability
School of Computing Science

Introduction

1. Background
2. Applications:

i. Dynamic Coalitions
ii. Access Control

3. Methods:
i. Partial Functions
ii. Proof

4. Tools:
i. Open Proof Support

Background

♦ Large Dependability Research Group
♦ Fault tolerance, dependability, formal

methods.
♦ Unusually interdisciplinary approach
♦ Big recent projects included

♦ DIRC
♦ RODIN
♦ BAESYSTEMS DCSC

Introduction

FT for “Ambient Systems”
♦ Dynamic
♦ No centralised control
♦ Heterogeneous

Applications

Mainly from a Security Perspective
♦ Collaboration with DSTL
♦ And with the GOLD project in Chemical

Engineering.
♦ Dynamic Coalitions
♦ Access Control
♦ (Access Control in Dynamic Coalitions!)

Applications: Dynamic Coalitions

• Virtual Organisations, Strategic Alliances, Virtual
Enterprises, Dynamic Coalitions, …

• Approach: (lightweight formal modelling in VDM-SL)
– identifying “dimensions”. Focus on dimensions relevant to

information flow
• We mapped out a space of possibilities for dynamic

coalitions using these dimensions. It includes an initial
case study from the chemical engineering domain.

• Long-term: helping design-time decision-making, using
the validation techniques of VDMTools. (want API &
scripting for exploring information flow control policies)

Dimensions of Dynamic Coalitions, Bryans, J. W., Fitzgerald, J. S., Jones, C. B.,
Mozolevsky, I. Tech. Report CS-TR: 963 School of Computing Science, University of
Newcastle, Jul 2006

Applications: Access Control

• Aim – make an integrated suite of validation techniques
available to access control system designers

• Design choices
– build on a model with a formal semantics, and
– remain faithful to XACML (eXtended Access Control

Meta-Language) – a de facto standard for access
control system description

• This means we want the structure of the XACML model
replicated in our formal model, as well as providing a
faithful semantic interpretation

Access
Response

(permit/deny)

Applications: Access Control

Policy Decision Point
(PDP)

Policy Enforcement
Point (PDP)

ResourceRequester

Access
Request

XACML
Request

XACML
Response

Policy embedded in the PDP
Full XACML admits context-
dependent decisisons

PDP+PEP serve as a sort of
execution monitor

Applications: Access Control

PDP :: policies : set of Policy
 policyCombAlg : CombAlg;

Policy :: target : Target
 rules : set of Rule
 ruleCombAlg : CombAlg;

Rule :: target : Target | <Null>
 effect : Effect;

Effect = <Permit> | <Deny> |
 <Indeterminate> | <notApplicable>;

CombAlg = <denyOverrides> |
 <permitOverrides>;

Request :: target : Target;

Target :: subjects : set of Subject
 resources : set of Resource
 actions : set of Action;

Action = <Assign>|<View>|<Receive>;
Subject = <Anne> | <Bob> |
 <Charlie> | <Dave> ;
Resource = <Int>|<Ext>;

Role :: set of Subject;

Some key concepts (simplified)

XACML
access
control
policy

• We want a machine implementable translation in both
directions, so the XACML can be automatically updated
when changes are made in the model.

• What validation techniques?
– testing

• against set of individual access requests, or more detailed scenarios
– internal consistency

• do rules contradict each other?
– comparison with earlier versions of policies

• to check for unwanted effects of updates to policies

VDM
model VDMTools

(validation)

Applications: Access Control

Where are we?
• VDM model of (simplified) XACML language (context-free rules

only)
• translation

– XACML to VDM (in part)
– VDM to XACML

• validation techniques – through VDMTools
• context-dependent rules
• automatic derivation of economical test suites
• workflow descriptions to derive test suites
• least privilege
• translation of full XACML to VDM and
• model checking?

done
to do

Applications: Access Control

Model Based Analysis and Validation of Access Control Policies, Bryans, J. W.,
Fitzgerald, J. S., Periorellis, P.
 Tech. Report CS-TR: 976 School of Computing Science, University of Newcastle, Jul 2006

Methods

• We take the view that validation through execution is great but not
as far as we can go in exploiting the formal semantics of a modelling
language.

• Methods work is mainly geared around advanced formal analysis via
proof.

• Actually we are doing little on testing & model checking and need
Overture colleagues to collaborate on these.

Methods: handling partial functions

Partial functions arise routinely in models and in code.

Modelling languages intending to support proof need to address this issue in
the logic.

Which of the following do you expect to be true:

5/0 = 1 or 5/0 <> 1
forall i:int & fact(i) >=0 or fact(-i) >= 0
hd [] = 5

The Logic of Partial Functions is one way of handling undefined terms.

Different decisions in different formalisms (e.g. Z)

Also different decisions in VDMTools (McCarthy conditional interpretation)

Methods: handling partial functions

∗∗∗

FF∗

∗T∗

F∗F

FFF

FTF

∗∗T

FFT

TTT

e1 and e2e2e1

∗∗∗

∗F∗

∗T∗

F∗F

FFF

FTF

∗∗T

FFT

TTT

e1 cand e2e2e1

If e1 then e2 else false

Weaker than
Classical logic,
but, e.g.

cand is not
commutative

Methods: handling partial functions

Typed LPF has been implemented in a (over-restrictive?) logical
framework.

Next Steps:

• How do differing approaches “trade off” in specification, refinement,
interpreter-based validation and coding?

• What are the consequences for program design where specification
annotations are built in to code (c.f. ESC/Java, Spec#)?

• Can we completely implement typed LPF in the frames of major
provers such as PVS and HOL?

The Typed Logic of Partial Functions and the Vienna Development Method, Fitzgerald, J. S.
Tech. Report CS-TR: ??? School of Computing Science, University of Newcastle, Aug 2006

Methods: proof

We have been exploring correctness proofs based on using structural
operational semantics.

Rules are based on
transition relations
describing (here) stmt and
expr evaluation/execution.

These rules *are* the PL
semantics.

Methods: proof

A proof using the SOS rules allows us to prove properties of programs using the
semantics directly.

• Satisfaction proofs in terms of the language semantics are
possible.

• … but complexity becomes intractable

• Rely/Guarantee rules trade off completeness for ease of use (do
not expose internals)

• But must be proven sound wrt Language Semantics

• Actual use of R/G rules is similar to Hoare Rules

• Nice side-effect; semantic gap between prog & spec reduced

• So how do we take advantage of this?

Methods: proof

Tools

• Our tools experience in VDM is limited to the mural tools.

• User guided proof and limited specification management

• The mural core routines have been respecified in modern VDM (in
VDMTools) and a implemented in Java. Aim is to develop a modern
implementation of mural for fun.

• Recently done quite a bit on tools interoperability & Eclipse plug-ins in
Rodin. Includes fine extensions to B toolset handling automated proof
obligations.

• So, Tools for Proof remains a major interest. What could we do in
Overture to promote this?

Tools

Model level (view, edit, manage)

Automated Prover

P.O.
Generation

P.O. Status
Viewer

Envision automated
discharging of POs via a
generation and
management system.

(c.f. Prosper Toolkit)

Need automated
provers populated with
theories consistent
with model’s semantics.

High Automation Scenario (working for Proof Obligations)

Need management tools
for maintaining project
status?

Tools

Model level (view, edit, manage)

Prover Tool Bus?

P.O.
Generation

P.O. Status
Viewer

High Automation Scenario (working for Proof Obligations)

P1 P2 P3

The tool bus concept is
applicable (subject to
semantic compatibility).

Implementing over a
WS- architecture
might mean stateless
interaction with
verification tools?

Tools

Proof Construction

The Prover is a human in
charge of the process,
choosing to “accept”
lemmas or send them to
automated tools. Mural-
like top level construction
tool.

Low Automation Scenario (Validation Conjectures and Exploratory Proof)

Prover Tool Bus?

P1 P2 P3

Managed Theory Stores

(model-specific
theorems; reuseable
results)

Tools

• We have mentioned the need for animation and interface development
support tools in the style of VDMTools.

• For proof, I want:

• Theories of Typed LPF implemented in automated support systems

• Tools managing the validation process (tracking discharged Pos
etc.)

• Lower-automation proof management, guidance tools using
modern human interfaces and semantically well-defined interfaces
with underlying proof tools.

