

Overture Tool Status & Improvements

Peter Gorm Larsen & Marcel Verhoef

Iteration One (2004)

● Pieter van der Spek (MSc, TU Delft)
– Build parser and simple pretty printer
– Experiments on improved error support in parser

generator (published as ACM Sigplan Notices)
– Delivered as Eclipse plug-in

– Limited (no) XML support
– Direct manipulation of concrete syntax tree

Iteration Two (2005)

● Jacob Porsborg Nielsen &
Jens Kielsgaard Hansen (MSc, TU Denmark)
– Re-implemented parser using ANTLR
– abstract syntax with appropriate Java interfaces
– XML support for reading / writing AST instances
– Experimented with Eclipse architecture, many useful

suggestions and prototype plug-ins

– Hand-coded AST implemention – very error prone
– Many errors in parser implemention

Meanwhile in 2006

● Address problem of AST maintenance
● Executive decision: we need a robust solution...
● ... to support language experiments
● Back To Basics: how can we re-use VDMTools parser

and know-how?
● How good are the open source jflex and byaccj tools?
● Automation is key
● “eat our own dogfood”

Automatic AST generation

OVERTURE
AST spec

(VDM-SL subset)
ASTGEN sed script

JAVA
interfaces

VDM++
classes

VDMTools

java
classes

sed

modified java
classes“implements”● specified in VDM++

● code generated

other users can use
these specs to specify
their own OVERTURE
extensions (in VDM++)

AST specification and code examples
%directory "d:\projects\ShowTraceParser";
%package org.overturetool.tracefile.ast;

TraceFile ::
 Trace : seq of TraceEvent;

TraceEvent =
 ThreadSwapIn |
 DeployObj;

--
-- THREADS
--

ThreadSwapIn ::
 -- id of the thread
 id : nat
 -- id of the object
 objref : [nat]
 -- name of the class
 clnm : [seq of char]
 -- id of the CPU
 cpunm : nat
 -- swap-in overhead (time units)
 overhead : nat
 -- observation time
 time : nat;

package org.overturetool.tracefile.ast.itf;

import jp.co.csk.vdm.toolbox.VDM.*;

public abstract interface IThreadSwapIn extends ITraceEvent
{

abstract Integer getId() throws CGException;
abstract Integer getObjref() throws CGException;
abstract Boolean hasObjref() throws CGException;
abstract String getClnm() throws CGException;
abstract Boolean hasClnm() throws CGException;
abstract Integer getCpunm() throws CGException;
abstract Integer getOverhead() throws CGException;
abstract Integer getTime() throws CGException;

}

The Proof of the Pudding ...

● Applied this approach to implement Tracefile viewer
● Implemented parser using JFLEX and BYACCJ
● Some “extra” bonuses

– implemented standard “visitor pattern” support
– implemented AST attribution “NodeProperty”
– default visitors for writing XML and VDM-SL values

● Many changes occurred during development
● Turn-around time new parser: just a few hours
● JFLEX / BYACC seem quite robust and FAST
● IMHO: this is the way to go!

Current and future activities
● Thomas Christensen (Aarhus University, Denmark)

started work on Overture static semantics

● Hugo Macedo (Universiade do Minho, Portugal) will
start in january on Overture dynamic semantics

● Potential new student from TU Delft

● Marcel Verhoef is working (with Peter Gorm Larsen)
on tracefile analysis and visualisation

Tracefile Viewer (1)

Tracefile Viewer (2)

Tracefile Viewer (3)

