
CHESSVDM
OVT-21 workshop

Morten Haahr Kristensen, Peter Gorm Larsen

201807664@post.au.dk, pgl@ece.au.dk

March 10, 2023

AARHUS
UNIVERSITY
DIGIT, Department of Electrical and Computer Engineering

1. Introduction

2. Paper summary

3. Invariants on Compound Types in VDM++

4. Other topics

OUTLINE

SLIDE 2 IN 25

AARHUS
UNIVERSITY
DIGIT, Department of Electrical and Computer Engineering

1. Introduction

2. Paper summary

3. Invariants on Compound Types in VDM++

4. Other topics

OUTLINE

SLIDE 3 IN 25

AARHUS
UNIVERSITY
DIGIT, Department of Electrical and Computer Engineering

I C++ guy

I Low-level details
I References vs. values
I Object lifetimes

I Love discussing software paradigms

I MSc. Computer Engineering

I Looking into PhD related to static analysis and tooling

BACKGROUND (MORTEN)

SLIDE 4 IN 25

AARHUS
UNIVERSITY
DIGIT, Department of Electrical and Computer Engineering

I Different perspective

I Providing an educational example and comparingmodelling styles
I Not a critical system
I Not focusing on “proving Chess”

I Exploring capabilities of VDM++

I Interesting bugs with VDM++

I Everyone knows Chess

I Understandable
I Complex

MOTIVATION

SLIDE 5 IN 25

AARHUS
UNIVERSITY
DIGIT, Department of Electrical and Computer Engineering

1. Introduction

2. Paper summary

3. Invariants on Compound Types in VDM++

4. Other topics

OUTLINE

SLIDE 6 IN 25

AARHUS
UNIVERSITY
DIGIT, Department of Electrical and Computer Engineering

I Chess modelled in VDM++

I Explored different paradigms

I Initially OOP but then FP

I VDM-SL like
I Composite types - immutable data
I Why?

PAPER SUMMARY

SLIDE 7 IN 25

AARHUS
UNIVERSITY
DIGIT, Department of Electrical and Computer Engineering

PM

+ PieceType: <pawn> | <rook> | <knight> | <bishop> | <queen> | <king> «type»
+ Color : <black> | <white> «type»
+ Coordinate : {x : y} «type»
+ Piece : {type : square : color} «type»
+ Obstacle : {square : color} «type»
+ ObstacleSet : set of Obstacle «type»

+ type_based_moves(Piece, ObstacleSet) : set of Coordinate «function»
- rook_move_pattern(Piece, ObstacleSet) : set of Coordinate «function»
- bishop_move_pattern(Piece, ObstacleSet) : set of Coordinate «function»
- queen_move_pattern(Piece, ObstacleSet) : set of Coordinate «function»
- knight_move_pattern(Piece, ObstacleSet) : set of Coordinate «function»
- king_move_pattern(Piece, ObstacleSet) : set of Coordinate «function»
- pawn_move_pattern(Piece, ObstacleSet) : set of Coordinate «function»

BM

+ Move : {from : to_ } «type»
+ BoardState : set1 of Piece «type»
+ History : seq of Move «type»
+ Board : {board_state : history} «type»

+ move(Board, Move) : Board «function»
+ possible_moves(Board, Piece) : set of Move «function»

Use

GM

+ Winner : [Color | <remis>] «type»
+ Game : {board : turn} «type»

+ move(Game, Move) : (Game * Winner) «function»
+ default_game() : Game «function»

Use

PGN

+ move_to_pgn_string(Move) : seq of char «function»
+ string_to_move(Game, seq of char) : Move «function»

Use Use

Figure 1: Overview of the model structure.

MODEL STRUCTURE

1. Introduction

2. Paper summary

3. Invariants on Compound Types in VDM++

4. Other topics

OUTLINE

SLIDE 9 IN 25

AARHUS
UNIVERSITY
DIGIT, Department of Electrical and Computer Engineering

I Writing a Chess model with

OO structure

I Implementing move operation

I Odd behaviour occurred

during tests

Board

+ BoardState : set of Piece «type»
- board_state : BoardState

+ move(Piece, Coordinate) : BoardState
+ possible_moves(Piece) : set of Coordinate
+ get_board_state() : BoardState

«interface»
Piece

Pawn Knight

Bishop

KingQueen

Rook

Figure 2: Initial OOP structure. Operations of Piece and sub-

classes left out.

CONTEXT

1 class Board
2 types
3 public BoardState = set1 of Piece
4 inv s == forall p1, p2 in set s & p1 <> p2 => p1.position <> p2.position;
5

6 instance variables
7 public board_state : BoardState;
8

9 operations
10 public move: Piece * Piece`Coordinate ==> ()
11 move(piece, coord) == (
12 let dead_piece = {p | p in set board_state & p.position = coord} in
13 board_state := board_state \ dead_piece;
14 piece.position := coord
15)
16 pre piece in set board_state and coord in set piece.possible_moves(board_state);

ORIGINALMODEL

1 class Board
2 types
3 public BoardState = set1 of Piece
4 inv s == forall p1, p2 in set s & p1 <> p2 => p1.position <> p2.position;
5

6 instance variables
7 public board_state : BoardState;
8

9 operations
10 public move: Piece * Piece`Coordinate ==> ()
11 move(piece, coord) == (
12 let dead_piece = {p | p in set board_state & p.position = coord} in
13 board_state := board_state \ dead_piece;
14 piece.position := coord
15)
16 pre piece in set board_state and coord in set piece.possible_moves(board_state);

ORIGINALMODEL

1 class Board
2 types
3 public BoardState = set1 of Piece
4 inv s == forall p1, p2 in set s & p1 <> p2 => p1.position <> p2.position;
5

6 instance variables
7 public board_state : BoardState;
8

9 operations
10 public move: Piece * Piece`Coordinate ==> ()
11 move(piece, coord) == (
12 let dead_piece = {p | p in set board_state & p.position = coord} in
13 board_state := board_state \ dead_piece;
14 piece.position := coord
15)
16 pre piece in set board_state and coord in set piece.possible_moves(board_state);

ORIGINALMODEL

Seems fine, right?

SLIDE 12 IN 25

AARHUS
UNIVERSITY
DIGIT, Department of Electrical and Computer Engineering

1 class Board
2 types
3 public BoardState = set1 of Piece
4 inv s == forall p1, p2 in set s & p1 <> p2 => p1.position <> p2.position;
5

6 instance variables
7 public board_state : BoardState;
8

9 operations
10 public move: Piece * Piece`Coordinate ==> ()
11 move(piece, coord) == (
12 let dead_piece = {p | p in set board_state & p.position = coord} in
13 board_state := board_state \ dead_piece;
14 piece.position := coord
15)
16 pre piece in set board_state and coord in set piece.possible_moves(board_state);

EXECUTING MODEL

Debugging move:
1. dead_piece removed from board_state
2. Invariant for board_state checked

3. piece position updated

4. Invariant for board_state checked

I Since piece refers to an object inside board_state

5. BoardState invariant violated

Invariant was checked on board_state with dead_piece in it

OLD BEHAVIOUR

The actions:

I Posted issue on GitHub

I More complex than anticipated

I Lead to discussion related to VDMJ internals

I Fixed within 14 days by Nick Battle

I But then...

Link to discussion:

https://github.com/overturetool/vdm-vscode/issues/197

GITHUB ISSUE

SLIDE 15 IN 25

AARHUS
UNIVERSITY
DIGIT, Department of Electrical and Computer Engineering

https://github.com/overturetool/vdm-vscode/issues/197

Figure 3: New behaviour after fixing the issue.

Direct field access from functions (such as inv_BoardState) now prohibited

NEWBEHAVIOUR

SLIDE 16 IN 25

AARHUS
UNIVERSITY
DIGIT, Department of Electrical and Computer Engineering

VDM++ objects are references:

I Reference types vs. value types

I Mutable vs. immutable

I Aliasing

Some options with invariants1 on compound types of references:

1. Check invariant whenever an object that is referred to changes state

2. Prohibit such invariants

1Similar points with to pre- and postconditions

THE UNDERLYING ISSUE

How can we express the invariant?

SLIDE 18 IN 25

AARHUS
UNIVERSITY
DIGIT, Department of Electrical and Computer Engineering

Board

+ BoardState : set of Piece «type»
- board_state : BoardState

+ move(Piece, Coordinate) : BoardState
+ possible_moves(Piece) : set of Coordinate
+ get_board_state() : BoardState

«interface»
Piece

Pawn Knight

Bishop

KingQueen

Rook

Figure 4: Previous structure of the model.

PM

+ PieceType: <pawn> | <rook> | <knight> | <bishop> | <queen> | <king> «type»
+ Color : <black> | <white> «type»
+ Coordinate : {x : y} «type»
+ Piece : {type : square : color} «type»

+ type_based_moves(Piece, BoardState) : set of Coordinate «function»
- rook_move_pattern(Piece, BoardState) : set of Coordinate «function»
- bishop_move_pattern(Piece, BoardState) : set of Coordinate «function»
- queen_move_pattern(Piece, BoardState) : set of Coordinate «function»
- knight_move_pattern(Piece, BoardState) : set of Coordinate «function»
- king_move_pattern(Piece, BoardState) : set of Coordinate «function»
- pawn_move_pattern(Piece, BoardState) : set of Coordinate «function»

BM

+ Board : set1 of Piece «type»

+ move(Board, Piece, Coordinate) : Board «function»

Use

Figure 5: New structure of the model. Essentially a VDM-SL

specification.

STRUCTURE COMPARISON

SLIDE 19 IN 25

AARHUS
UNIVERSITY
DIGIT, Department of Electrical and Computer Engineering

1 class BM -- BoardModule
2 types
3 public Board = set1 of PM`Piece
4 inv s == forall p1, p2 in set s & p1 <> p2 => p1.position <> p2.position;
5

6 functions
7 public move: Board * PM`Piece * PM`Coordinate -> Board
8 move(board, piece, coord) == (
9 let dead_piece = {p | p in set board & p.position = coord} in

10 (board \ (dead_piece union {piece})) union
11 {mk_PM`Piece(piece.type, coord, piece.color)}
12)
13 pre piece in set board_state and coord in set PM`possible_moves(piece, board_state);

NEWFUNCTION

SLIDE 20 IN 25

AARHUS
UNIVERSITY
DIGIT, Department of Electrical and Computer Engineering

1 class BM -- BoardModule
2 types
3 public Board = set1 of PM`Piece
4 inv s == forall p1, p2 in set s & p1 <> p2 => p1.position <> p2.position;
5

6 functions
7 public move: Board * PM`Piece * PM`Coordinate -> Board
8 move(board, piece, coord) == (
9 let dead_piece = {p | p in set board & p.position = coord} in

10 (board \ (dead_piece union {piece})) union
11 {mk_PM`Piece(piece.type, coord, piece.color)}
12)
13 pre piece in set board_state and coord in set PM`possible_moves(piece, board_state);

NEWFUNCTION

SLIDE 20 IN 25

AARHUS
UNIVERSITY
DIGIT, Department of Electrical and Computer Engineering

1 class BM -- BoardModule
2 types
3 public Board = set1 of PM`Piece
4 inv s == forall p1, p2 in set s & p1 <> p2 => p1.position <> p2.position;
5

6 functions
7 public move: Board * PM`Piece * PM`Coordinate -> Board
8 move(board, piece, coord) == (
9 let dead_piece = {p | p in set board & p.position = coord} in

10 (board \ (dead_piece union {piece})) union
11 {mk_PM`Piece(piece.type, coord, piece.color)}
12)
13 pre piece in set board_state and coord in set PM`possible_moves(piece, board_state);

NEWFUNCTION

SLIDE 20 IN 25

AARHUS
UNIVERSITY
DIGIT, Department of Electrical and Computer Engineering

The principles transfer

Reasoning about a functional model:

I Referential transparency

I No global state

I (Arguably) easier to test

Downsides:

I Difficult to model stateful aspects - e.g. “castling”

I (Arguably) less readable

NOTABOUTTHE GITHUB ISSUE

1. Introduction

2. Paper summary

3. Invariants on Compound Types in VDM++

4. Other topics

OUTLINE

SLIDE 22 IN 25

AARHUS
UNIVERSITY
DIGIT, Department of Electrical and Computer Engineering

Further topics of interest:

I Castling and the importance of real-world data

I Different testing techniques

I Implementing simple moves

I String manipulation for PGN

OTHER TOPICS

Questions?

Morten Haahr Kristensen, Peter Gorm Larsen

201807664@post.au.dk, pgl@ece.au.dk

1 PlantInv: set of Alarm * map Period to set of Expert -> bool
2 PlantInv(as,sch) ==
3 (forall p in set dom sch & sch(p) <> {}) and
4 (forall a in set as &
5 forall p in set dom sch &
6 exists expert in set sch(p) &
7 a.GetReqQuali() in set expert.GetQuali());
8

9 --
10 a.GetReqQuali() in set expert.quali

STILL BROKEN

SLIDE 25 IN 25

AARHUS
UNIVERSITY
DIGIT, Department of Electrical and Computer Engineering

	Introduction
	Paper summary
	Invariants on Compound Types in VDM++
	Other topics

