
Implementation-First Approach of
Developing Formal Semantics of

a Simulation Language in VDM-SL

Tomohiro Oda, Software Research Associates, Inc.
Gael Dur, Shizuoka University
Stephane Ducasse, University of Lille
Hugo Daniel Macedo, Aarhus University

re:mobidyc
the overview

2

reːmobidyc

A multi-agent simulation platform for population dynamics in biology and ecology.

Major competitors = variants of LOGO

reːmobidyc

● supports domain-specific language features
● demands less "programming" skills
● serves as a tool for science

3

The execution of simulation model is not the goal,
but the math model is.

4

The real world
phenomina simulation model math model

The simulation model reproduces and
explains the real world phenomina.

The simulation model implements
the math model.

Implementation First
the semantics and its interpreter

5

development process of reːmobidyc

6

implementation
GUI-based modeller
GUI-based visualization
interpreter
type checker
memory models

design rationale
no imperative programming
no infinite loops
GUI-based modeling environment
type checking with measuring units
record everything on the heap memory
reproducible including pseudo-random numbers

formal specification
interpretation
memory model

Why Formal Semantics?

● grounding to mathematics
○ The goal of the user is to develop and validate a MATH MODEL in biology.

● portability
○ The formal semantics makes it easy to implement a fully compatible interpreters/transpilers.
○ The reːmobidyc modeling language should not depend on our implementation.

● uncommon memory model
○ The memory model with synchronous updates for time-series data is not common among

existing programming languages and therefore needs concise and unambiguous definition.

with expectations to improve code quality

7

Why not semantics first?

● GUI-based modeling environment and execution/analysis tools

● while true do
(Computer_scientists`implement_a_language_feature();
Biologists`try_it())

8

Specification

9

VDM-SL modules

● AST.vdmsl (ASTTest.vdmsl)
○ 50 records, 20 unions and 19 constants
○ 7 functions to manipulate AST

● Evaluation.vdmsl (EvaluationTest.vdmsl)
○ 9 eval operations, 3 variable access operations and 10 primitive operations

● Interpreter.vdmsl (InterpreterTest.vdmsl)
○ 27 operations to manage simulation models, evaluation contexts and random seeds

● Memory.vdmsl (MemoryTest.vdmsl)
○ read/write operations, synchronous updates and snapshotting

● Random.vdmsl (RamdomTest.vdmsl)
○ Fishman-Moore random number generator

● Unit.vdmsl (UnitTest.vdmsl)
○ Measurement units

● MATH.vdmsl
● UnitTesting.vdmsl

10

state definition of the memory model

state Memory of
vals : map Address to real
next : map Address to real
delta : map Address to real
nextAvailableSlot : [Address]
world : Address
patchBase : [Address]
xDivisions : [nat1]
yDivisions : [nat1]
animats : map Address to (AST`Identifier * nat1)
newBorns : map Address to (AST`Identifier * nat1)
deads : set of Address
valuesStorage : seq of (map Address to real)
animatsStorage : seq of (map Address to (AST`Identifier * nat1))
ticks : nat

init s == s = mk_Memory({|->}, {|->}, {|->}, nil, 1, nil, nil, nil, {|->}, {|->}, {}, [], [], 0)
end

11

Heap memory
with synchronous update

Agent allocations

Time-series storage

Conventional memory model

agent 1 4

attribute x y heading x y heading

address 1 2 3 4 5 6 7

vals 12.5 -5.2 1.23 -4.5 34.1 3.0

self.x = -2.4 self.heading += -0.2

 a = self.x + cos(self.heading)

12
The resulting value of a depends on the order of execution of the scripts.

three cells per address

agent 1 4

attribute x y heading x y heading

address 1 2 3 4 5 6 7

vals read 12.5 -5.2 1.23 -4.5 34.1 3.0

delta write 12.5 -5.2 -0.2 -4.5 34.1 -0.2

next add -2.4 0.0 0.0 -2.4 0.0 0.0

my x' = -2.4[m] my Δheading' = -0.2[rad]

 a = my x + cos(my heading)

13

read : Address ==> real
read(address) ==
 if address in set dom vals
 then return vals(address)
 else exit ADDRESS_ERROR

write : Address * real ==> ()
write(address, data) ==
 next(address) := data

writeDelta : Address * real ==> ()
writeDelta(address, data) ==
 if address in set dom delta
 then delta(address) := delta(address) + data
 else exit ADDRESS_ERROR;

synchronous update
time 354

address 1 2 3 4 5 6 7

vals read 12.5 -5.2 -0.2 -4.5 34.1 3.0

next write 12.5 -5.2 -0.2 -4.5 34.1 -0.2

delta write -2.4 0.0 0.0 -2.4 0.0 0.0

time 355

address 1 2 3 4 5 6 7

vals read 10.1 -5.2 -0.2 -6.9 34.1 -0.2

next write 10.1 -5.2 -0.2 -6.9 34.1 -0.2

delta write 0.0 0.0 0.0 0.0 0.0 0.0

14

{addr |-> next(addr) + (if addr in set dom delta then delta(addr) else 0) | addr in set dom next \ deads}

time-series memory

time 355

　
address
＼
time 1 2 3 4 5 6 ...

...

350 22.1 -5.2 -4.2 5.1 34.1 -1.5 ...

351 19.7 -5.2 -4.2 2.7 34.1 2.3 ...

352 17.3 -5.2 3.2 0.3 34.1 5.1 ...

353 14.9 -5.2 -5.2 -2.1 34.1 -5.2 ...

354 12.5 -5.2 1.23 -4.5 34.1 3.0 ...

355 10.1 -5.2 -0.2 -6.9 34.1 -0.2 ...

356

...

address 1 2 3 4 5 6 7

vals read 10.1 -5.2 -0.2 -6.9 34.1 -0.2

next write 10.1 -5.2 -0.2 -6.9 34.1 -0.2

delta write 0.0 0.0 0.0 0.0 0.0 0.0

backend storage (on-memory, file system, null, ...)

15

store : () ==> ()
store() ==
 (valuesStorage := valuesStorage
 ^ [{a |-> next(a) + (if a in set dom delta then delta(a) else 0)
 | a in set dom next \ deads}];
 animatsStorage
 := animatsStorage ^ [deads <-: animats munion newBorns])
pre ticks = len valuesStorage and ticks = len animatsStorage;

Memory model for reːmobidyc

16

S[1] = initial state

S[2]

S[last]

S[t]

The objective of re:mobidyc is to enable the user to analyze
● what happens
● why it happens
● how it happens

We need a memory model with
● lightweight snapshot

○ dump heap space at every timestep
○ to trace cause and effect

● synchronous update
○ delay write to memory to the interval of timestep
○ to isolate effects of each action and
○ to eliminate intermediate state

Implementation First Revisited
the development process

17

development of reːmobidyc in numbers
event date Pharo LOC

(all)
Pharo LOC
(interp)

Pharo
tests

VDM
LOC

VDM
tests

Implementation
started

Oct 2019 - - - - -

Jan 2020 1,499 1,150 21 - -

Jan 2021 12,936 7,268 214 - -

Jan 2022 19,474 9,526 276 - -

Specification
started

Aug 2022 26,330 11,990 320 0 0

Dec 2022 30,114 13,205 338 1,364 113

Exploration

Specificaiton

18

2nd Exploration

Thoughts on implementation-first Lightweight Formal Method

● The first exploration in Pharo took long time.
● Just writing a formal specification did not cost much.

○ The specification took only 4 months in 3 years development so far.
● The specification in VDM was compressed into 10% of the implementation

○ 13,205 LOC in Pharo → 1,364 LOC in VDM

What if we started with the specification phase first?
... In the development of ViennaVM,

● The first exploration in VDM took long time and just writing C did not cost
much.

19

Explorative Development Process

Front loading effect:

Developing a formal specification reduces the cost of implementation
because semantic errors of functionalities are eliminated at the specification phase and
the implementers can get focused on implementation issues.

reːmobidyc project:

Developing a prototypical implementation reduced the cost of specification
because mis-assumptions on the problem domain were eliminated at the prototyping
phase and the specifiers could get focused on semantic issues.

20

Conclusion

Just writing a formal specification is not costly, but the exploration process is.

● Learning the problem domain
● Finding affordable solution
● Planning for realisation

Implementation-first approach:
Models in VDM as a summary of the exploratoration by implementation languages, and also as a
pivot to the next iteration of the development cycle.

● Some of software developers are afraid of cost and risk of adopting formal specification.
● The apparent cost of formal specification can be compressed. (10% in re:mobidyc)
● Even if VDM modeling does not go well, the development can go without a formal

specification.

21

Thank you!

22

