Implementation-First Approach of
Developing Formal Semantics of
a Simulation Language in VDM-SL

Tomohiro Oda, Software Research Associates, Inc.
Gael Duir, Shizuoka University
Stephane Ducasse, University of Lille

Hugo Daniel Macedo, Aarhus University

re:mobidyc

the overview

re:mobidyc

A multi-agent simulation platform for population dynamics in biology and ecology.

Major competitors = variants of LOGO

re:mobidyc

e supports domain-specific language features
e demands less "programming” skills
e serves as a tool for science

The execution of simulation model is not the goal,
but the math model is.

The real world
phenomina

<:> simulation model <:> math model

The simulation model reproduces and The simulation model implements
explains the real world phenomina. the math model.

Implementation First

the semantics and its interpreter

development process of re:mobidyc
/¢ design rationale)

no imperative programming

no infinite loops

GUI-based modeling environment

type checking with measuring units

record everything on the heap memory

K reproducible including pseudo-random numbers /

¥

/lmplementatlon
GUI-based modeller
GUI-based visualization
interpreter
type checker

_ memory models

¥

formal specification

interpretation
memory model

Why Formal Semantics?

e grounding to mathematics
o The goal of the user is to develop and validate a MATH MODEL in biology.

e portability
o The formal semantics makes it easy to implement a fully compatible interpreters/transpilers.
o The re:mobidyc modeling language should not depend on our implementation.

e uncommon memory model
o The memory model with synchronous updates for time-series data is not common among
existing programming languages and therefore needs concise and unambiguous definition.

with expectations to improve code quality

Why not semantics first?

e GUI-based modeling environment and execution/analysis tools

x -0 Modeler @ GrasshoppersAndEqgs -o Observatory @ GrasshoppersAndEdas
during

File ¥ e

Run Run & Record

Simulation Conditions =~ World = Patch = Grasshopper * Animat * ar
Adult * ar
eeeeee copy

Population of Eqg

iﬂj vﬁ] _ﬁ
' r‘ﬂ il ,‘.fJ‘ v Jﬂ
.‘"ﬁ'x r\r ‘\|) Jri‘" L .Irer [1(L i L{Vl

J wJ q Y |\‘

e while true do

(Computer_scientists'implement_a language feature();
Biologists try it())

Specification

VDM-SL modules

e AST.vdmsl (ASTTest.vdmsl)

o 50 records, 20 unions and 19 constants
o 7 functions to manipulate AST

e FEvaluation.vdmsl (EvaluationTest.vdmsl)
o 9 eval operations, 3 variable access operations and 10 primitive operations

e Interpreter.vdmsl (InterpreterTest.vdmsl)
o 27 operations to manage simulation models, evaluation contexts and random seeds

e Memory.vdmsl (MemoryTest.vdmsl)
o read/write operations, synchronous updates and snapshotting

e Random.vdmsl (RamdomTest.vdmsl)
o Fishman-Moore random number generator

e Unit.vdmsl (UnitTest.vdmsl)

o Measurement units
e MATH.vdmsl
e UnitTesting.vdmsl

10

state definition of the memory model

state Memory of

vals : map Address to real
next : map Address to real

delta : map Address to real

nextAvailableSlot : [Address]

world : Address

patchBase : [Address]

xDivisions : [nat1]

yDivisions : [nat1]

animats : map Address to (AST Identifier * nat1)
newBorns : map Address to (AST Identifier * nat1)
deads : set of Address

valuesStorage : seq of (map Address to real)

ticks : nat

animatsStorage : seq of (map Address to (AST Identifier * nat1))

Heap memory
with synchronous update

Agent allocations

Time-series storage

init s == s = mk_Memory({|->}, {|->}, {|->}, nil, 1, nil, nil, nil, {|->}, {|->}, {}, [I, [], 0)

end

11

Conventional memory model

self.x

+ cos

self.heading

agent 1 4
attribute x Y heading / v heading
address 1 2 3 \4\ 5
I d \ By
vals 12.5 -5. 1.23 -4.5 34.1 3.0
£ A3 -
self.x |= -2. self.heading|+= -0.2

The resulting value of a depends on the order of execution of the scripts.

12

three cells per address

my

X

+ COS

~

my heading

read Address ==> real

read (address) ==
if address in set dom wvals
then return vals (address)
else exit ADDRESS ERROR

agent 1
attribute x heading
address 1 7
vals read 12.5 -5.2 1.23 -4.5 34.1 3.0
delta write 12.5 -5.2 -0.2 -4.5 34.1 -0.2
next add 0.0 0.0
my x'|= -2.4[m] my Aheading'| = -0.2[rad]
write Address * real ==> () writeDelta Address * real ==> ()
write (address, data) == writeDelta (address, data) ==
next (address) := data if address in set dom delta

then delta(address) := delta(address) + data
else exit ADDRESS ERROR;

13

synchronous update

time 354
address 1 2 3 4 5 6 7
vals read 12.5 -5.2 -0.2 -4.5 34.1 3.0
next write 2.5 -5.2 -0.2 -4.5 34.1 -0.2
i Y \ \ { \
delta write —\2 .4 0 .\O 0 \O —\E .4 0 .\O 0 \O
| | | | | |

w11 1]

vals read 10.# —5.%‘ -0.

\
8 1 A T

A\
next write 10.1 -5.2 -0.

delta write 0.0 0.0 0.0 0.0 0.0 0.0

{addr |-> next(addr) + (if addr in set dom delta then delta(addr) else 0) | addr in set dom next \ deads}

14

time-series memory

time 355

address 1 2 3 4 5 6 7
vals read 10.1 | -5.2 | -0.2 | -6.9 | 34.1 | -0.2
next write 10.1 | -5.2 | -0.2 | -6.9 | 34.1 | -0.2
delta write 0.0 0.0 0.0 0.0 0.0 0.0

store : () ==> ()
store() ==
(valuesStorage := valuesStorage
A [{a |-> next(a) + (if a in set dom delta then delta(a) else 0)
| ain set dom next \ deads}];
animatsStorage
:= animatsStorage " [deads <-: animats munion newBorns])
pre ticks = len valuesStorage and ticks = len animatsStorage;

backend storage (on-memory, file system, null, ...)
address

N

time 1 2 3 4 5 6
350 22. -5. -4.2 5.1 34. -1.
351 19. -5. -4.2 2.7 34. 2.
352 17. -5. 3.2 0.3 34. 5.
353 14. -5. -5.2 -2.1 34. -5.
354 12. -5. 1.23 -4.5 34. 3.
355 10. -5. -0.2 -6.9 34. -0.
356

-
(@)

Memory model for re:mobidyc

[S[1] = initial state]

v

The objective of re:mobidyc is to enable the user to analyze [S[2]

e what happens
e why it happens
e how it happens

'

We need a memory model with
e lightweight snapshot Sit]
o dump heap space at every timestep
o to trace cause and effect \
e synchronous update [Slast]

o delay write to memory to the interval of timestep
o to isolate effects of each action and
o to eliminate intermediate state

16

Implementation First Revisited

the development process

development of re:mobidyc in numbers

event date Pharo LOC Pharo LOC Pharo VDM VDM
(all) (interp) tests LOC tests
Implementation Oct 2019 - - - - -
started
Jan 2020 1,499 1,150 21 - -
Exploration
Jan 2021 12,936 7,268 214 - -
Jan 2022 19,474 9,526 276 - -
Specification Aug 2022 26,330 11,990 320 0 0o \J
started
Specificaiton
Dec 2022 30,114 13,205 338 1,364 113
2nd Exploration

%
18

Thoughts on implementation-first Lightweight Formal Method

e The first exploration in Pharo took long time.

e Just writing a formal specification did not cost much.
o The specification took only 4 months in 3 years development so far.

e The specification in VDM was compressed into 10% of the implementation
o 13,205 LOC in Pharo — 1,364 LOC in VDM

What if we started with the specification phase first?
... In the development of ViennaVM,

e The first exploration in VDM took long time and just writing C did not cost
much.

19

Explorative Development Process

Front loading effect:

Developing a formal specification reduces the cost of implementation
because semantic errors of functionalities are eliminated at the specification phase and
the implementers can get focused on implementation issues.

re:mobidyc project:

Developing a prototypical implementation reduced the cost of specification
because mis-assumptions on the problem domain were eliminated at the prototyping
phase and the specifiers could get focused on semantic issues.

20

Conclusion

Just writing a formal specification is not costly, but the exploration process is.

e Learning the problem domain
e Finding affordable solution
e Planning for realisation

Implementation-first approach:
Models in VDM as a summary of the exploratoration by implementation languages, and also as a
pivot to the next iteration of the development cycle.

e Some of software developers are afraid of cost and risk of adopting formal specification.

e The apparent cost of formal specification can be compressed. (10% in re:mobidyc)

e Even if VDM modeling does not go well, the development can go without a formal
specification.

21

Thank you!

