VDM recursion in Isabelle/HOL

Leo Freitas and Peter Gorm Larsen
21st Overture Workshop, Lubeck March 2023

Model based design with VDM

e Modelling aspects
o Abstract data types with invariant and ordering,
o Function definitions with specification (pre/post/measures),
o State rich definitions with statements, variable frames and operations.

e Symbolic execution
o Interpretation of mathematical properties of systems (e.g. possibly with OO and RT features)
o Limited type scope (e.g. mostly without explicit type bindings; no “x : nat”)

e Testing:
o Combinatorial traces
o Code coverage

e \Verification:
o PO generation
o Quick check (PO disproof) within given domains
o Various proof support attempts since Jones’ Mural theorem prover halted
o No symbolic counter example (no model-based / unbounded counter examples)

VDM proof support history since Mural (1991)

1. Maharaj & Bicarregui (shallow) embedding of VDM in PVS (1998)
o https://www.researchgate.net/publication/2510095 On the Verification of VDM Specification and Refinement with PVS

2. Karabotsos (deep) embedding of VDM (LPF) in Isabelle/HOL (2005)
o https://spectrum.library.concordia.ca/id/eprint/8505/1/MR10289.pdf

3. Freitas & Woodcock soundness argument/result for VDM proofs in other logics (2008)

o Unifying Theories of Undefinedness [https:/doi.org/10.3233/978-1-58603-976-9-311]
o Linking Z and VDM: (Z semi-classical) logic prover for VDM (LPF) theorems [https:/fiecexplore.ieee ora/document/4492887

4. Vermolen, Hooman & Larsen (shallow) embedding of VDM in HOL (2010)
o Hand-crafted proof tactics [https://dl.acm.org/doi/10.1145/1774088.1774608]

5. Freitas & Whiteside (shallow) embedding of VDM in Isabelle/HOL (2014)
o VDM theorems proved in Z and Isabelle/HOL [https:/link.springer.com/chapter/10.1007/978-3-319-06410-9_20]

6. Freitas automated (shallow) embedding of VDM in Isabelle/HOL with proof crafting support (2021)
o VDM toolkit project [https:/github.com/leouk/VDM_Toolkit]

https://www.researchgate.net/publication/2510095_On_the_Verification_of_VDM_Specification_and_Refinement_with_PVS
https://spectrum.library.concordia.ca/id/eprint/8505/1/MR10289.pdf
https://doi.org/10.3233/978-1-58603-976-9-311
https://ieeexplore.ieee.org/document/4492887
https://dl.acm.org/doi/10.1145/1774088.1774608
https://link.springer.com/chapter/10.1007/978-3-319-06410-9_20
https://github.com/leouk/VDM_Toolkit

VDM to Isabelle translation strategy 101

e Translation strategy started (2010) as part of the AI4FM project (2010-2014)
o Attempt to identify proof strategy reuse across provers (Isabelle, ZEves) and models (VDM and Z)
o Technical report on a translation strategy for most of VDM as shallow embedding
o Undergraduate course on translating VDM to Isabelle (manually) (2012-2022)

e VDMLPF

o Pragmatic approach similar to VDMJ's: a L-R logic (e.g. subset of LPF) with “possible” typing rules
e VDMdatatypes

o Sets, sequences, maps and records map almost directly to Isabelle libraries
o Numeric types cannot be directly translated given VDM widening-type rules (e.g. “@ - x” becomes int for x:nat)
o Set and sequence comprehensions are easy; map comprehension is fiendish

° VDM functions
o Direct translation as Isabelle definitions for non-recursive functions
o Recursive functions support quite limited at first (e.g. only for VDM sequences)

VDM Toolkit Pr0jeCt https://github.com/leouk/VDM_Toolkit

e Initiative to coalesce various VDM-related developments (e.g. libraries, experiments, etc.) since 2010

e VDM to Isabelle translator (vdm2isa plugin)

o VDMToolkit : Isabelle proof engineering and support for VDM translation and proof automation
o exu : VDM style checker and specification reordering (see next talk)

o vdmZ2isa : Syntax-driven VDM to Isabelle translator

o isapog : VDM PO translator and proof script / strategy predictor

o vdm2isa-Isp :VSCode LSP (editor) + DAP (debugger) integration of plugins

e VDMANTLR

o VDM syntax formal definition for parsing, printing, translations, etc.

e VDM Libraries
o CSV, I1SQ, Order, Z-Relations, Dense ranges, Logging, Binary and Matrix arithmetic, General support, etc.

e VDM Annotations

o Specification profiling; user defined theorems; user defined proof attributes, hints and witnesses.

https://github.com/leouk/VDM_Toolkit

Isabelle recursion principles

e Primitive recursion
o Reductionrules per type constructors; not possible to have pattern matching

e Total function with automatic proof
o Implemented on top of primitive recursion with extended pattern matching and non-constructive types
o Proof obligations:
m Pattern compatibility (i.e. is the pattern given matchable to input type?);
] Pattern completeness (i.e. are patterns given exhaustive?);
] Recursion termination (i.e. are recursive calls well-founded?);

e Total (partial) function with user defined proof
o Copeswith any type and extended pattern as well as partial (non-terminating) functions
Partial functions require abstract domain predicates assumptions (psimps-rules) everywhere!
Pattern compatibility and completeness proofs are mandatory and with reasonable automation support
Termination proofs rely on knowledge of the “Size Change Termination” (SCT) principle(s)!

O O O

Extending translation of VDM recursion to Isabelle

e Translation of recursive functions
restricted over VDM sequence
parameters only

e Recursive functions over nat
parameters are (surprisingly)
non-trivial!

e Users requested support for sets,
maps, and of course, nat!

AKA: PGLs Napkin @ ISoLA22 :-)

VDM-recursion Isabelle-translation caveats

e Isabelle (I, Z, @, R) types are defined constructively through different embeddings
o 1: defined inductively over two constructors (e.g. zero and suc n)
o Z: defined algebraically as a quotient type between two [(e.g. positive and negative parts)
o ©: defined algebraically as a quotient type between two Z (e.g. numerator and denominator parts)
o [R: defined algebraically as a “vanishing” Cauchy sequence quotient type
e VDM type widening rules forces the use of maximal type for translation
o In VDM, for a x:nat, “@-x" becomes “x” of type int. In Isabelle this is “@:N”!
o Translation encode VDM nat as VDMNat (Z) and @ as R
o Isabelle recursion must be constructive (i.e. will require various transformations for non i)
e VDMrecursion over sets and maps are finite; Isabelle sets are infinite and axiomatic
o Isabelle requires a constructive well-formed recursive relation; some of which are inferrable
o Isabelle will impose well-formed proof obligations for sets and map domain’s finiteness
e VDM measures are not expressive enough for certain recursion patterns (e.g. ack, recursive types, etc.)

o Some (complex) recursive measures *must* be relational

VDM N -factorial example caveats

Recursive VDM factorial
° Trivial recursive measure

Isabelle N factorial
e Automatically discovered measure

Isabelle VDMNat (Z) factorial

° Requires user to prove termination

factorial: nat -> nat

factorial(n) == if n = @ then 1 else n x factorial(n - 1) measure n;

fun fact' i <N= N> where <fact' n = (if n = 0 then 1 else n * (fact' (n - 1)))>

Found termination order: "size <*mlex*>= {}

\ﬁm fact 11 <VOMNat = VDMNat> where "fact n = (if n =0 then 1 else n * (fact\ (n-1)))"

Unfinished subgoals:
(a, 1, <):

1= An: n % 68 — 'm - 1! = (p!
(al 11 <=):
1. An. n # 6 — nat !n - 1! = nat !n!

Translation recipe for basic types

e Translate (pre/post) specifications
o Follows usual VDM translation strategy yet creating definition sets
e Translate recursive definition itself
o Flagcontrols whether to try Isabelle discovered proofs (e.g. “fun”) or user defined (e.g. “functions”)
e Infersrecursive relation from VDM AST
o Flagcontrols whether to generate lemma about well-formedness of inferred recursive relation
o Presumes inferred relation is within largest well-formed relation from lower bound (e.g. for M bound is O)
definition largest wf int rel :: "Z = (Z x Z) set" where
"largest wf int rel d = {(z', z). d < z' A 2' < z}"
e Setsup pattern consistency, completeness and termination proofs

o Pattern proofs are almost always found by sledgehammer (unless wicked patterns or mutually recursive calls)
o Termination proof presumes inferred relation is within largest well-formed relation; up to the user otherwise
o Harder recursive patterns will require users to define recursive relation as VDM annotations (@lsaMeasure, @Witness)

Isabelle Demo (or see paper theory sources)

https://github.com/leocuk/VDM_ Toolkit/blob/development/plugins/vdmZ2isa/pub/recursion/Recursive VDM.thy
https://github.com/leocuk/VDM_ Toolkit/blob/development/plugins/vdmZ2isa/pub/recursion/Recursive VDM.vdmsl|

1. Recursion for constructively defined basic types (V)

2. Recursion for non-constructively defined basic types (2)

3. Recursion for constructively defined structured types (seq) [paper/offline?]
4. Recursion for non-constructively defined structured types (set and maps) [paper/offline]
5. Complex recursion patterns (e.g. Ackerman, Permutation, Takeuchi, etc.) [paper/offline]
6. Simple mutual recursion (e.g. odd and even) [paper]

7.

Complex mutual recursion (e.g. N-Queens, Sudoku solvers) [offline]

https://github.com/leouk/VDM_Toolkit/blob/development/plugins/vdm2isa/pub/recursion/RecursiveVDM.thy
https://github.com/leouk/VDM_Toolkit/blob/development/plugins/vdm2isa/pub/recursion/RecursiveVDM.vdmsl

Discussion

e Results
o Semi-automated (with proof support) translation recipes/strategies for:
m VDM some numeric types (nat, nat1, int)
m VDM structured types (sets, sequences, maps)
o Automation caters for most common VDM recursive situations
] Decreasing nat/int, set (or map domain), sequence

e Limitations
o Recursive VDM types (e.g. VDM records for say linked lists)
o General upper bound for inferred recursive relations works for nat, int and (simple) sets only.

e Complexities (e.g. will require user-defined auxiliary lemmas and their proofs)
o Recursion over user-defined types
o Recursion where recursive relation is outside predefined space
o Mutual recursion will necessitate handling Isabelle union types

Discussion

e Wishlist

o completeness of VDM patterns to enable handling FMI models
including Isabelle/LSP back end IDE run in background to attempt proofs automatically
implement complex (and mutual) recursion templates (i.e. POC for now)

VSCode code lenses integration (e.g. akin to jUnit testing)
27272

o O O O O

707?

