
VDM recursion in Isabelle/HOL

Leo Freitas and Peter Gorm Larsen
21st Overture Workshop, Lubeck March 2023

Model based design with VDM

● Modelling aspects
○ Abstract data types with invariant and ordering,
○ Function definitions with specification (pre/post/measures),
○ State rich definitions with statements, variable frames and operations.

● Symbolic execution
○ Interpretation of mathematical properties of systems (e.g. possibly with OO and RT features)
○ Limited type scope (e.g. mostly without explicit type bindings; no “x : nat”)

● Testing:
○ Combinatorial traces
○ Code coverage

● Verification:
○ PO generation
○ Quick check (PO disproof) within given domains
○ Various proof support attempts since Jones’ Mural theorem prover halted
○ No symbolic counter example (no model-based / unbounded counter examples)

VDM proof support history since Mural (1991)

1. Maharaj & Bicarregui (shallow) embedding of VDM in PVS (1998)
○ https://www.researchgate.net/publication/2510095_On_the_Verification_of_VDM_Specification_and_Refinement_with_PVS

2. Karabotsos (deep) embedding of VDM (LPF) in Isabelle/HOL (2005)
○ https://spectrum.library.concordia.ca/id/eprint/8505/1/MR10289.pdf

3. Freitas & Woodcock soundness argument/result for VDM proofs in other logics (2008)
○ Unifying Theories of Undefinedness [https://doi.org/10.3233/978-1-58603-976-9-311]
○ Linking Z and VDM: (Z semi-classical) logic prover for VDM (LPF) theorems [https://ieeexplore.ieee.org/document/4492887]

4. Vermolen, Hooman & Larsen (shallow) embedding of VDM in HOL (2010)
○ Hand-crafted proof tactics [https://dl.acm.org/doi/10.1145/1774088.1774608]

5. Freitas & Whiteside (shallow) embedding of VDM in Isabelle/HOL (2014)
○ VDM theorems proved in Z and Isabelle/HOL [https://link.springer.com/chapter/10.1007/978-3-319-06410-9_20]

6. Freitas automated (shallow) embedding of VDM in Isabelle/HOL with proof crafting support (2021)
○ VDM toolkit project [https://github.com/leouk/VDM_Toolkit]

https://www.researchgate.net/publication/2510095_On_the_Verification_of_VDM_Specification_and_Refinement_with_PVS
https://spectrum.library.concordia.ca/id/eprint/8505/1/MR10289.pdf
https://doi.org/10.3233/978-1-58603-976-9-311
https://ieeexplore.ieee.org/document/4492887
https://dl.acm.org/doi/10.1145/1774088.1774608
https://link.springer.com/chapter/10.1007/978-3-319-06410-9_20
https://github.com/leouk/VDM_Toolkit

VDM to Isabelle translation strategy 101

● Translation strategy started (2010) as part of the AI4FM project (2010-2014)
○ Attempt to identify proof strategy reuse across provers (Isabelle, ZEves) and models (VDM and Z)
○ Technical report on a translation strategy for most of VDM as shallow embedding
○ Undergraduate course on translating VDM to Isabelle (manually) (2012-2022)

● VDM LPF
○ Pragmatic approach similar to VDMJ’s: a L-R logic (e.g. subset of LPF) with “possible” typing rules

● VDM data types
○ Sets, sequences, maps and records map almost directly to Isabelle libraries
○ Numeric types cannot be directly translated given VDM widening-type rules (e.g. “0 - x” becomes int for x:nat)
○ Set and sequence comprehensions are easy; map comprehension is fiendish

● VDM functions
○ Direct translation as Isabelle definitions for non-recursive functions
○ Recursive functions support quite limited at first (e.g. only for VDM sequences)

VDM Toolkit Project https://github.com/leouk/VDM_Toolkit

● Initiative to coalesce various VDM-related developments (e.g. libraries, experiments, etc.) since 2010

● VDM to Isabelle translator (vdm2isa plugin)
○ VDMToolkit : Isabelle proof engineering and support for VDM translation and proof automation
○ exu : VDM style checker and specification reordering (see next talk)
○ vdm2isa : Syntax-driven VDM to Isabelle translator
○ isapog : VDM PO translator and proof script / strategy predictor
○ vdm2isa-lsp : VSCode LSP (editor) + DAP (debugger) integration of plugins

● VDM ANTLR
○ VDM syntax formal definition for parsing, printing, translations, etc.

● VDM Libraries
○ CSV, ISQ, Order, Z-Relations, Dense ranges, Logging, Binary and Matrix arithmetic, General support, etc.

● VDM Annotations
○ Specification profiling; user defined theorems; user defined proof attributes, hints and witnesses.

https://github.com/leouk/VDM_Toolkit

Isabelle recursion principles

● Primitive recursion
○ Reduction rules per type constructors; not possible to have pattern matching

● Total function with automatic proof
○ Implemented on top of primitive recursion with extended pattern matching and non-constructive types
○ Proof obligations:

■ Pattern compatibility (i.e. is the pattern given matchable to input type?);
■ Pattern completeness (i.e. are patterns given exhaustive?);
■ Recursion termination (i.e. are recursive calls well-founded?);

● Total (partial) function with user defined proof
○ Copes with any type and extended pattern as well as partial (non-terminating) functions
○ Partial functions require abstract domain predicates assumptions (psimps-rules) everywhere!
○ Pattern compatibility and completeness proofs are mandatory and with reasonable automation support
○ Termination proofs rely on knowledge of the “Size Change Termination” (SCT) principle(s)!

Extending translation of VDM recursion to Isabelle

● Translation of recursive functions

restricted over VDM sequence

parameters only

● Recursive functions over nat

parameters are (surprisingly)

non-trivial!

● Users requested support for sets,

maps, and of course, nat!

AKA: PGL’s Napkin @ ISoLA22 :-)

VDM-recursion Isabelle-translation caveats

● Isabelle (ℕ, ℤ, ℚ, ℝ) types are defined constructively through different embeddings
○ ℕ: defined inductively over two constructors (e.g. zero and suc n)
○ ℤ: defined algebraically as a quotient type between two ℕ (e.g. positive and negative parts)
○ ℚ: defined algebraically as a quotient type between two ℤ (e.g. numerator and denominator parts)
○ ℝ: defined algebraically as a “vanishing” Cauchy sequence quotient type

● VDM type widening rules forces the use of maximal type for translation
○ In VDM, for a x:nat, “0-x” becomes “-x” of type int. In Isabelle this is “0:ℕ”!
○ Translation encode VDM nat as VDMNat (ℤ) and ℚ as ℝ
○ Isabelle recursion must be constructive (i.e. will require various transformations for non ℕ)

● VDM recursion over sets and maps are finite; Isabelle sets are infinite and axiomatic
○ Isabelle requires a constructive well-formed recursive relation; some of which are inferrable
○ Isabelle will impose well-formed proof obligations for sets and map domain’s finiteness

● VDM measures are not expressive enough for certain recursion patterns (e.g. ack, recursive types, etc.)
○ Some (complex) recursive measures *must* be relational

VDM ℕ -factorial example caveats

Recursive VDM factorial
● Trivial recursive measure

Isabelle ℕ factorial
● Automatically discovered measure

Isabelle VDMNat (ℤ) factorial
● Requires user to prove termination

Translation recipe for basic types
● Translate (pre/post) specifications

○ Follows usual VDM translation strategy yet creating definition sets

● Translate recursive definition itself
○ Flag controls whether to try Isabelle discovered proofs (e.g. “fun”) or user defined (e.g. “functions”)

● Infers recursive relation from VDM AST
○ Flag controls whether to generate lemma about well-formedness of inferred recursive relation

○ Presumes inferred relation is within largest well-formed relation from lower bound (e.g. for ℕ bound is 0)

● Sets up pattern consistency, completeness and termination proofs
○ Pattern proofs are almost always found by sledgehammer (unless wicked patterns or mutually recursive calls)

○ Termination proof presumes inferred relation is within largest well-formed relation; up to the user otherwise

○ Harder recursive patterns will require users to define recursive relation as VDM annotations (@IsaMeasure, @Witness)

Isabelle Demo (or see paper theory sources)

1. Recursion for constructively defined basic types (ℕ)

2. Recursion for non-constructively defined basic types (ℤ)

3. Recursion for constructively defined structured types (seq) [paper/offline?]

4. Recursion for non-constructively defined structured types (set and maps) [paper/offline]

5. Complex recursion patterns (e.g. Ackerman, Permutation, Takeuchi, etc.) [paper/offline]

6. Simple mutual recursion (e.g. odd and even) [paper]

7. Complex mutual recursion (e.g. N-Queens, Sudoku solvers) [offline]

https://github.com/leouk/VDM_Toolkit/blob/development/plugins/vdm2isa/pub/recursion/RecursiveVDM.thy

https://github.com/leouk/VDM_Toolkit/blob/development/plugins/vdm2isa/pub/recursion/RecursiveVDM.vdmsl

https://github.com/leouk/VDM_Toolkit/blob/development/plugins/vdm2isa/pub/recursion/RecursiveVDM.thy
https://github.com/leouk/VDM_Toolkit/blob/development/plugins/vdm2isa/pub/recursion/RecursiveVDM.vdmsl

Discussion

● Results
○ Semi-automated (with proof support) translation recipes/strategies for:

■ VDM some numeric types (nat, nat1, int)
■ VDM structured types (sets, sequences, maps)

○ Automation caters for most common VDM recursive situations
■ Decreasing nat/int, set (or map domain), sequence

● Limitations
○ Recursive VDM types (e.g. VDM records for say linked lists)
○ General upper bound for inferred recursive relations works for nat, int and (simple) sets only.

● Complexities (e.g. will require user-defined auxiliary lemmas and their proofs)
○ Recursion over user-defined types
○ Recursion where recursive relation is outside predefined space
○ Mutual recursion will necessitate handling Isabelle union types

Discussion

● Wish list
○ completeness of VDM patterns to enable handling FMI models

○ including Isabelle/LSP back end IDE run in background to attempt proofs automatically

○ implement complex (and mutual) recursion templates (i.e. POC for now)

○ VSCode code lenses integration (e.g. akin to jUnit testing)

○ ????

○ ????

