
Implementing Mutation Testing for VDM-SL
in ViennaTalk

Tomohiro Oda

Software Research Associates, Inc.

Agenda

● Mutation Testing
● Add-one Mutation
● Negate Mutation
● UI & demo
● Experiment
● Discussion and Conclusion

2

Mutation Testing

● How do you confirm your isOdd function works as intended?
○ assert isOdd(1)
○ assert not isOdd(2)

● How do you confirm your tests work as intended?
○ assert TEST(correct_isOdd) ... you don't have correct_isOdd.
○ assert not TEST(buggy_isOdd) ... you can generate buggy_isOdd by injecting a bug.

test whether or not your test can detect bugs generated by mutation.

mutation score = number of red mutants / total number of mutants

3

Add-one mutation

replace expr with expr + 1 where expr is statically typed real.

isOdd : nat -> nat
isOdd(x) == x mod 2 = 1

● (x+1) mod 2 = 1
● x mod (2+1) = 1
● x mod 2 = 1+1

impacts on numeric computation, sequence indexing, cardinality of set/seq, and
for ... to ... do loop.

4

Negate mutation

replace expr with not expr where expr is statically typed bool.

isOdd : nat -> nat
isOdd(x) == x mod 2 = 1

● not (x mod 2 = 1)

impacts on boolean expression, if branch, while ... do loop, and assertion

5

UI (demo)

6

Experiment: Sieve of Eratosthenes

state Sieve of
sieve : seq of bool

init s == s = mk_Sieve([])
end
operations
isPrime : nat1 ==> bool
isPrime(n) ==

(if n > len sieve then createSieve(n);
 return sieve(n))
pre n >= 2
post RESULT <=>

 not (exists p in set {2, ..., n - 1} & n mod p = 0);

createSieve : nat1 ==> ()
createSieve(size) ==

(dcl newSieve:seq of bool := [true | i in set {1, ..., size}],
 n:nat1 := 2;

 newSieve(1) := false;
 while n * n <= size do

 (if newSieve(n) then
for m = n * 2 to size by n do

newSieve(m) := false;
 n := n + 1);

 sieve := newSieve)
pre size >= 2
post len sieve = size
 and (forall n in set {2, ..., size} &

 sieve(n) <=>
 not (exists p in set {2, ..., n - 1} & n mod p = 0));

7

Experiment: Sieve of Erathostenes ... tests

traces
 Singles:

let n in set {2, ..., 50} in
isPrime(n);

 Pairs:
let n1, n2 in set {2, ..., 50} in

(isPrime(n1);
 isPrime(n2));

test_pre_isPrime : () ==> ()
test_pre_isPrime() ==

(assert(not Eratosthenes`pre_isPrime(1, no_sieve), "should not give 1");
assert(not Eratosthenes`pre_isPrime(1, sieve), "should not give 1");
assert(Eratosthenes`pre_isPrime(2, no_sieve), "2 without sieve is OK");
assert(Eratosthenes`pre_isPrime(2, sieve), "2 with sieve is OK");
assert(Eratosthenes`pre_isPrime(4, no_sieve), "4 without sieve is OK");
assert(Eratosthenes`pre_isPrime(4, sieve), "4 with sieve is OK");
skip);

test_isPrime : () ==> ()
test_isPrime() ==

(assert(Eratosthenes`isPrime(2), "2 is prime");
assert(Eratosthenes`isPrime(3), "3 is prime");
assert(Eratosthenes`isPrime(5), "5 is prime");
assert(Eratosthenes`isPrime(5), "5 is prime");
assert(not Eratosthenes`isPrime(6), "6 is not prime");
assert(Eratosthenes`isPrime(5), "5 is prime"));

8

mutation scores from various test conditions

9

Discussion and Conclusion

● Do we want to mutate pre/post/inv in the spec?
○ Probably yes because assertions are the very core parts of the specification.
○ If we don't, our tests are against only the explicit statements/expressions.

● Lower mutation score means loose specification?
○ Probably yes if you give enough amount of tests.

Further investigation is needed.

● more kinds of mutation operators
● more kinds of VDM specifications

10

