
Support for Hypothetical Initiation and Dynamic
Exploration using History of Operation in ViennaTalk

Tomohiro Oda1

Software Research Associates, Inc. (tomohiro@sra.co.jp)

Abstract. The specification phase of software development involves exploratory
efforts with trial and error, especially in its early stages. While IDEs and engineer-
ing tools support the authoring and analysis of specifications, the burden of man-
aging exploratory activities—such as enumerating possible design choices and
testing each one—remains with specification engineers. Hi-De-Ho is a library-
based framework that stores the history of design artifacts to support exploratory
tasks in various fields, such as simulation modeling and data analysis. ViennaTalk
Milan, released in April 2025, adopts Hi-De-Ho as a personal versioning tool,
complementing Git as a collaborative versioning tool. This report provides an
overview of Hi-De-Ho, its integration with ViennaTalk, and the division of roles
between Hi-De-Ho and Git.

1 Introduction

Developing a formal specification is a creative process that involves both problem
solving and the effective presentation of design intent. Specifications are often refined
through iterative exploration and learning from failure. Thus, progress in the specifica-
tion phase is not always incremental. A specification may sometimes face breakdowns,
requiring some design decisions made so far to be retracted.

Deciding how to present a design is not straightforward, either. Specification lan-
guages allow multiple ways to define design constituents and the relationships among
them. Finding a concise presentation of a specification is often exploratory and involves
trial and error, since it is difficult to predict which form will best support further devel-
opment.

ViennaTalk has been developed to support the exploratory nature of the specifica-
tion phase by making effective and visual use of specification animation techniques [3].
It offers GUI prototyping, intuitive animation interfaces, and unit testing frameworks to
promote agility in specification tasks. Two version management tools, Git and Hi-De-
Ho, were integrated into ViennaTalk in its April 2025 release to strengthen support for
exploration. Git is a widely used version control system for large-scale and distributed
software development projects, such as the Linux kernel [1]. With Git, users can man-
age version propagation across multiple repositories to coordinate contributions from
multiple developers.

Hi-De-Ho (Hypothetical Initiation and Dynamic Exploration using History of Oper-
ation) is a personal version management framework for creative work. Whereas Git is a
command-line tool for managing source files written in general-purpose languages, Hi-
De-Ho is a framework that client applications can use to implement language-specific



and task-specific versioning functionality. With every modification, evaluation, loading,
or reverting operation in ViennaTalk, its integration with Hi-De-Ho automatically stores
the specification source, the internal state of the specification animation, and metadata
such as the date, the type of operation, and links to predecessor snapshots. Users can
later refine these automatically generated versions by editing comments, adding tags,
organizing them into folders, reverting to a previous version, or removing unnecessary
ones.

This report explains ViennaTalk’s integration with Hi-De-Ho. Section 2 describes
the objectives of Hi-De-Ho and how it is integrated with ViennaTalk. Section 3 presents
the implemented functionality along with its user interface. Finally, the current devel-
opment status and future work are discussed in Section 4.

The source code of ViennaTalk is available at Github repository https://github.
com/tomooda/ViennaTalk and its development branch at https://github.
com/tomooda/ViennaTalk/tree/dev. The public repository of Hi-De-Ho is
also at Github https://github.com/tomooda/HiDeHo. The installation pack-
ages can be downloaded from ViennaTalk’s distribution site https://viennatalk.
org/builds/viennatalk/milan for Milan and https://viennatalk.org/
builds/viennatalk/dev for the development version.

2 Objectives

ViennaTalk is an IDE for VDM-SL [2] designed to support the exploratory stage of
the formal specification phase. VDM engineers often face uncertainty, where multiple
design choices are available but it is difficult to determine the best one at the time.
Specifiers may also need to revert the specification to an earlier version, prior to the
point where a wrong decision was made. The integration of ViennaTalk with Hi-De-
Ho aims to provide lightweight and flexible version management as a personal tool to
support such exploratory tasks.

Version management tools are generally expected to help users move back and forth
between versions. Conventional tools like Git support both personal and collaborative
development. For instance, Git was originally designed to support the development of
the Linux kernel. It is a powerful tool that enables skilled engineers to coordinate code
contributions across a development community. However, using Git requires users to
follow specific steps: staging files, committing with messages, and pushing to remote
repositories. Moreover, Git treats all files as plain text or binary data without knowledge
of language-specific structures. Its power comes at the cost of requiring careful and
deliberate workflows.

Exploratory work, involving trial and error, does not always align with such planned
workflows. Sterman et al. [4] identified the four roles of version management tools in
creative work: versions as a palette of materials, confidence to explore, lightweight
snapshotting, and long-term reflection. Sterman also pointed out that conventional ver-
sion management tools do not align well with creative workflows and fails to adequately
capture the explorative process. Hi-De-Ho was integrated into ViennaTalk to offer more
flexible versioning: it automatically records every modification, presents changes in
terms of VDM-SL modules and top-level definitions rather than file names and line

https://github.com/tomooda/ViennaTalk
https://github.com/tomooda/ViennaTalk
https://github.com/tomooda/ViennaTalk/tree/dev
https://github.com/tomooda/ViennaTalk/tree/dev
https://github.com/tomooda/HiDeHo
https://viennatalk.org/builds/viennatalk/milan
https://viennatalk.org/builds/viennatalk/milan
https://viennatalk.org/builds/viennatalk/dev
https://viennatalk.org/builds/viennatalk/dev


numbers, and supports history management without requiring explicit user actions or
predefined workflows.

In Hi-De-Ho, a version is called a snapshot of the design artifact. Each snapshot
includes metadata such as timestamps, the type of operation, and predecessor links, en-
abling effective browsing, searching, and organizing of the version history. A snapshot
is automatically recorded not only when the specification is modified, but also when
expressions are evaluated, statements are executed, commits are made to Git, files are
loaded from disk, or older versions are restored. Snapshots are captured as a side effect
of these actions to minimize the user’s effort in managing history while working on
specifications. Users can later browse, search, and annotate the stored snapshots with
comments and tags, if needed.

3 ViennaTalk’s Integration with Hi-De-Ho

ViennaTalk is designed to support users in exploratory modeling, helping them to better
understand the system under development and to incorporate feedback into their mod-
els. To achieve this, ViennaTalk provides refactoring operations such as extracting value
definitions and renaming identifiers, allowing users to make modifications quickly and
focus on semantic-level changes rather than low-level text editing.

refactoring
operations

manual editing

type checking

animation

Smalltalk 
objects

file system

source 
text

animation 
state

AST

save

load

transpile

setupresult
pretty-print

parse

snapshot

Fig. 1. AST-centric architecture of ViennaTalk



Figure 1 illustrates how the abstract syntax tree (AST) of a VDM-SL specification
plays a central role in ViennaTalk’s functionality. Unlike conventional IDEs that let
users edit source files and pass them to compilers or interpreters, ViennaTalk maintains
the specification internally as an AST and generates other representations on demand.
For example, when a user edits the textual definition of an operation, ViennaTalk pretty-
prints the corresponding AST node with syntax highlighting. After editing, the text is
parsed back into an AST, replacing the corresponding part of the specification. Refac-
toring operations directly manipulate the AST. The type checker performs inference on
expression nodes and annotates them with static type information.

Animation is also implemented in an AST-centric manner. When evaluating an ex-
pression, ViennaTalk transpiles the AST to Smalltalk classes, instantiates them with
the current animation state, and evaluates the corresponding Smalltalk expression. The
result is returned along with the updated animation state and shown in the browser.

ViennaTalk maintains both the specification AST and the animation state. Snap-
shots, which include both, are recorded to support reverting not just code but also the
animation state during exploratory testing.

In the rest of this section, the term source specification refers to an AST of a VDM-
SL specification. The term animation state refers to a mapping from global state vari-
able names (e.g., module-name‘identifier) to their runtime values. A model is a pair of a
source specification and animation state. A snapshot is a model enriched with metadata
and supplemental data, stored as a persistent record in the filesystem.

3.1 Storage

Hi-De-Ho’s storage layer assigns a unique ID to each snapshot and stores them in a
space called the chronicle. The chronicle maintains a linear sequence of snapshots based
on creation time and provides an API to enumerate snapshot metadata, enabling host
applications to locate desired snapshots efficiently. In addition to the chronicle, Hi-
De-Ho offers narratives—folders that store only user-associated snapshots. While the
chronicle contains all snapshots, narratives are populated via the addToNarrative
API.

ViennaTalk stores snapshots under the .hideho directory at the base of the model.
Snapshots are placed in subdirectories under chronicle. Each snapshot directory
contains the files listed in Table 1.

Table 1. Contents of a snapshot directory

Filename Format Description
metadata.json JSON Metadata describing the snapshot
source.vdmsl VDM-SL The complete source specification
state.json JSON Mapping of state variables to their values

Each snapshot includes metadata fields as shown in Table 2. This metadata enables
snapshot selection using tags, timestamps, or comments without requiring the full spec-
ification or state to be loaded.



Table 2. Metadata fields in a snapshot

Field Type Description
id String Unique snapshot ID
timestamp String ISO 8601 creation timestamp
tags Array of String User-defined tags
comment String User comment describing the snapshot
class String Type of operation that created the snapshot
prev String ID of the previous snapshot
destination String Reversion target snapshot ID (if applicable)

Snapshots are created during various operations in ViennaTalk. The class field
indicates the operation that triggered the snapshot, as summarized in Table 3.

Table 3. Snapshot types and corresponding user operations

Value Description
"Vanilla" Created when initializing a new model
"Loading" Loaded from disk
"Modification" Edited manually or via refactoring
"Initialization" State initialized
"Evaluation" Expression evaluated
"Execution" Statement executed
"Reversion" Reverted to an earlier snapshot

3.2 Timelines

Like other version control tools, ViennaTalk maintains relationships between snapshots
and lists them in chronological order using link structures. ViennaTalk distinguishes be-
tween two types of links: predecessor and previous. Figure 2 illustrates both the artifact
timeline (based on predecessor links) and the user timeline (based on previous links)
from the latest version modification2. The artifact timeline reflects the evolution
of the model itself, while the user timeline reflects the sequence of user interactions.
Please note that Fig 2 shows only predecessor links traceable from modification2.
Predecessor links among all versions together form version trees.

Predecessor links are conceptually similar to those in systems like Git. When snap-
shot A is modified to produce snapshot B, B’s predecessor points to A. All snapshots
except the initial Vanilla have a predecessor, typically created through specifica-
tion changes, expression evaluation, or statement execution. The previous link, on the
other hand, connects to the snapshot taken immediately prior to the current user opera-
tion—capturing the workflow history akin to the undo/redo chain in authoring tools.

Figure 3 shows ViennaTalk’s specification browser UI. The upper section con-
tains three lists: modules (left), sections (center), and top-level definitions (right), from
which users can select items to edit. The lower section has tabbed pages: Source,



vanilla

modification1

refactoring1

revert to 
modification1

refactoring2

revert to refactoring1

modification2

artifact timeline
(predecessor links)

user timeline
(previous links)

Fig. 2. Example of user timeline and artifact timeline

Fig. 3. ViennaTalk’s UI with Hi-De-Ho integration



Playground, HiDeHo, and Git. The HiDeHo tab provides the version history in-
terface.

At the top of the Hi-De-Ho page in the lower half of the browser window, users
can choose a timeline—user timeline, artifact timeline, or a narrative. Snapshots in the
selected timeline are listed on the left with timestamps, operation types, and comments.
Selecting a snapshot displays the diff or full specification on the right-hand panel.

At the bottom of the Hi-De-Ho page, buttons to manage snapshots are horizontally
layouted. The user can update the list, revert to the selected snapshot, add or remove tags
at the snapshot, edit a comment, add the snapshot to a narrative, or delete the snapshot
from the chronicle.

3.3 Collaboration with Git

Fig. 4. A screenshot of UI for git

ViennaTalk is also integrated with Git. The user interface is shown in Fig. 4. Users
can clone repositories from GitHub, pull from and push to the origin repository, com-
mit the current working copy, and merge commits. These operations are explicitly per-



formed by the user, whereas Hi-De-Ho automatically records snapshots and allows the
user to manage them afterward.

Although both Hi-De-Ho and Git are version management tools, they serve different
purposes in ViennaTalk. The Git interface is intended for collaborative development,
while Hi-De-Ho is designed to support personal exploration. Users can utilize Hi-De-
Ho to try out ideas and refine models through trial and error before committing to the
Git repository. Once a user is satisfied with the current version, they can commit it to
Git and push it to the upstream repository. Snapshots stored in Hi-De-Ho can optionally
be cleared using the checkbox at the bottom-right of the Git interface.

4 Concluding remarks and future plans

Version management tools are widely used in software development. However, the ex-
plorative nature of creative tasks—such as writing formal specifications—often makes
version management a burden for individual developers. The integration of Hi-De-Ho
into ViennaTalk aims to bridge this gap by providing lightweight, automatic, and se-
mantically meaningful version control tailored to personal exploration.

While formal methods are typically studied from an engineering perspective, the
author believe there is growing value in viewing formal specification as a form of cre-
ative authoring. Hi-De-Ho embodies a design philosophy that embraces uncertainty
and iteration, supporting a more natural flow of creative thinking in formal modeling
tasks. Further research in this direction – exploring tools and environments that support
experimentation, reflection, and iteration – may lead to broader adoption and deeper
engagement with formal modeling practices.

Acknowledgements

A part of this research was supported by JSPS KAKENHI Grant Number JP 23K01632
and 24K09052). The author thanks anonymous reviewers for their valuable feedback.

References

1. Chacon, S.: Git. In: Brown, A., Wilson, G. (eds.) The Architecture of Open Source Applica-
tions, Volume 1. aosabook.org (2012), https://aosabook.org/en/git.html

2. Larsen, P.G., Lausdahl, K., Battle, N., Fitzgerald, J., Wolff, S., Sahara, S., Verhoef, M., Tran-
Jørgensen, P.W.V., Oda, T.: VDM-10 Language Manual. Tech. Rep. TR-001 (2013)

3. Oda, T., Araki, K., Larsen, P.G.: A formal modeling tool for exploratory modeling in software
development. IEICE Transactions on Information and Systems 100(6), 1210–1217 (2017)

4. Sterman, S., Nicholas, M.J., Paulos, E.: Towards creative version control. Proceedings of the
ACM on Human-Computer Interaction 6(CSCW2), 1–25 (2022)

https://aosabook.org/en/git.html

	Support for Hypothetical Initiation and Dynamic Exploration using History of Operation in ViennaTalk

