
Implementing Mutation Testing for VDM-SL in
ViennaTalk

Tomohiro Oda1

Software Research Associates, Inc. (tomohiro@sra.co.jp)

Abstract. Executable subsets of formal specification languages allow software
testing techniques to be applied earlier, during the specification phase. In the
VDM family of languages, both unit testing and combinatorial testing have been
actively studied, implemented as tools, and applied in practice. The effectiveness
of these techniques depends on the quality of the test suite. Mutation testing is a
widely used approach to assess this quality by measuring the ability of test cases
to detect faults. This report presents a mutation testing framework implemented
in ViennaTalk and demonstrates its application to both unit test cases and combi-
natorial test traces.

1 Introduction

Detecting defects in specifications is highly desirable, as it is well known that such
defects can significantly impact the overall development cost and the quality of the fi-
nal product. Formal specification techniques have been studied and applied to uncover
these defects using mathematically grounded theories and tools. Testing techniques,
alongside theorem proving, are effective means of detecting faults in formal specifi-
cations. The rich executable subsets of VDM-family specification languages make it
possible to apply software testing techniques even before the implementation phase
begins. Unit testing and combinatorial testing techniques have been implemented in
development tools for the VDM family, including VDMTools, the Overture Tool, and
ViennaTalk [2][5][6].

Evaluating the quality of tests remains an active area of research in the field of
software testing. A single execution of a test case can only confirm the presence or
absence of a failure along one particular execution path. Moreover, test execution incurs
cost both in writing the test code and in running it. Therefore, managing the quality of
a test suite is essential for the effective use of testing techniques.

Mutation testing is a widely studied approach for evaluating the quality of software
tests [1]. Its core idea is to create faulty versions of a program called mutants by intro-
ducing small syntactic changes to the original program, and then measuring how many
of these mutants are detected (or killed) by the test suite.

This report describes the mutation testing functionality implemented in ViennaTalk [4].
Section 2 provides a brief overview of mutation testing, and Section 3 explains its im-
plementation in ViennaTalk. Section 4 presents case studies demonstrating the applica-
tion of mutation testing to both unit tests and combinatorial test traces for the Sieve of
Eratosthenes. Finally, Section 5 offers discussion, concluding remarks, and directions
for future work.



The mutation testing functionality described in this report is implemented in the de-
velopment version of ViennaTalk. Its source code is available at https://github.
com/tomooda/ViennaTalk/tree/dev. Binary packages for macOS (Apple Sil-
icon and Intel 64-bit) and 64-bit Windows can be downloaded from https://viennatalk.
org/builds/viennatalk/dev/.

2 Overview of mulation testing in ViennaTalk

Passing a software test does not guarantee that the target system is free of defects.
Mutation testing addresses this limitation by evaluating the quality of test code through
the use of numerous error-prone variants of the original specification, known as mutants.
These variants are generated by applying small syntactic modifications, called mutation
operators, to the original specification.

In mutation testing, a large number of mutated specifications are created by system-
atically applying mutation operators to the original test target. The test suite, typically
composed of unit test cases and named traces, is then executed against each mutant. If
the test suite fails when run on a mutant, the defect introduced by the mutation has been
successfully detected, and the mutant is considered killed. If the test suite passes, it has
failed to detect the defect, and the mutant is considered surviving. The mutation score
is defined as the proportion of killed mutants relative to the total number of mutants. A
higher mutation score indicates a more effective test suite.

Mutation operators are the core of mutation testing. ViennaTalk currently imple-
ments two such operators, which are described in the remainder of this section.

2.1 Add-One Mutation

module Numbers
exports all
definitions
functions
isEven : int -> bool
isEven(x) == x mod 2 = 0
end Numbers

module Numbers
exports all
definitions
functions
isEven : int -> bool
isEven(x) == (x+1) mod 2 = 0
end Numbers

module Numbers
exports all
definitions
functions
isEven : int -> bool
isEven(x) == x mod (2+1) = 0
end Numbers

module Numbers
exports all
definitions
functions
isEven : int -> bool
isEven(x) == x mod 2 + 1 = 0
end Numbers

module Numbers
exports all
definitions
functions
isEven : int -> bool
isEven(x) == x mod 2 = 0+1
end Numbers

reference specification

mutated specifications

Fig. 1. An example application of the add-one mutation

The add-one mutation modifies numeric expressions in the specification. When this
operator is applied, an expression of type real is selected and replaced with exp +
1, where exp is the original expression.

https://github.com/tomooda/ViennaTalk/tree/dev
https://github.com/tomooda/ViennaTalk/tree/dev
https://viennatalk.org/builds/viennatalk/dev/
https://viennatalk.org/builds/viennatalk/dev/


It is worth noting that in VDM-SL, the types int, nat, and nat1 are subtypes of
real. Mutation operators for other data types are planned for future development. The
add-one mutation was chosen first because the nat1 type is widely used in VDM-SL,
particularly in contexts like sequence indexing.

An important feature of the add-one mutation is that it typically preserves static
typing, except in cases where a type invariant is violated. Even when an invariant is
broken, such mutations remain useful, as they allow the test code’s ability to catch run-
time invariant violations to be evaluated.

Mutants generated by the add-one operator are valid in both the interpreter and tran-
spiler (code generator), though the proof obligation generator (POG) may still produce
unprovable conditions. Ensuring that mutated specifications remain executable aligns
with the central goal of mutation testing: to evaluate the test suite, not the specification
itself.

2.2 Negate Mutation

module Numbers
exports all
definitions
functions
isEven : int -> bool
isEven(x) == x mod 2 = 0
end Numbers

module Numbers
exports all
definitions
functions
isEven : int -> bool
isEven(x) == not x mod 2 = 0
end Numbers

reference specification mutated specification

Fig. 2. An example application of the negate mutation

The second mutation operator implemented in ViennaTalk is the negate mutation.
This operator targets Boolean expressions, replacing each expression exp of type bool
with not exp.

While the add-one mutation introduces numeric discrepancies, the negate mutation
is intended to alter control flow by affecting decisions such as conditional branches
and guard expressions. Boolean expressions are prevalent in VDM specifications, and
applying negation does not violate type rules. Thus, this operator provides a valuable
means of testing the sensitivity of the specification to logical conditions.

3 Implementation in ViennaTalk

This section describes the implementation of mutation testing in ViennaTalk. Mutation
testing requires two core components: a set of mutation operators, which generate a
large number of mutated specifications, and a test runner, which executes tests on each
mutated specification and collects the results. Each component is described in the sub-
sections below.



Table 1. Abstract methods that subclasses of ViennaMutation should implement

method name argument return value description
canMutate: node bool answers whether the operator can be applied to

the given AST node.
mutate: node node mutate at the given AST node.
name - string answers the name of the operator.

3.1 Mutation

Two mutation operators have been implemented in ViennaTalk as subclasses of the
abstract class ViennaMutation. The primary responsibility of a mutation object is
to generate mutated abstract syntax trees (ASTs) from a given reference specification
AST. In general, a reference AST may contain multiple mutation points – locations
where AST nodes can be replaced with alternative versions. As a result, applying a
mutation operator may produce multiple mutated specifications.

The ViennaMutation class provides a method that takes a reference specifi-
cation AST as input and enumerates all possible mutated ASTs. It also defines three
abstract methods that must be implemented by each subclass, as summarized in Ta-
ble 1.

3.2 Test Runner

Figure 3 shows a screenshot of ViennaTalk’s specification browser [5]. The user in-
terface for testing is located in the lower-left section of the window. The Run button
executes all unit test cases and named traces, while the Auto Run button toggles auto-
matic re-execution of tests upon each modification to the specification. The Mutation
Testing button initiates mutation testing for the module selected in the top-left list of
modules and opens the results window shown in Figure 4.

In Figure 4, the left pane displays a list of mutated specifications. Killed mutants
are marked with green circles, and surviving mutants with red circles. Each entry also
shows the mutation operator used and the name of the mutated definition. When a
mutant is selected, the right pane displays the annotated source code. In the example
shown, the argument n of the createSieve operation has been replaced with n +
1 by the add-one mutation. Above the list, the mutation score is displayed, along with
the number of killed mutants, the total number of mutants tested, and the total number
of generated mutants. Mutation testing is executed in the background, allowing users to
continue editing or navigating the specification while testing is in progress.

4 Examples

The Sieve of Eratosthenes is an algorithm for identifying prime numbers by iteratively
eliminating multiples of known primes. A VDM-SL specification of this algorithm, in-
cluding unit tests and combinatorial traces, is available at https://github.com/
tomooda/Eratosthenes/blob/main/Eratosthenes.vdmsl, and is also at-
tached to this report as an appendix for convenience.

https://github.com/tomooda/Eratosthenes/blob/main/Eratosthenes.vdmsl
https://github.com/tomooda/Eratosthenes/blob/main/Eratosthenes.vdmsl


Fig. 3. A screenshot of testing UI

Fig. 4. A screendump of mutation testing results



The Eratosthenesmodule defines two operations, isPrime and createSieve,
which access a shared state variable sieve. The isPrime operation takes a natural
number as input and returns whether it is a prime number. It relies on the state vari-
able sieve, a sequence of booleans where the n-th element indicates whether n is
prime. If the sieve is not long enough to answer a query, the operation createSieve
is invoked to extend it accordingly. The precondition of isPrime requires the input
argument to be greater than or equal to 2. The postcondition specifies that the result
must be logically equivalent to: not (exists p in set {2, ..., n - 1}
& n mod p = 0)

The module also includes two named traces for combinatorial testing. The Singles
trace verifies that isPrime(n) works correctly for all n in 2,...,50. The Pairs
trace verifies the correct management of the sieve length by checking all ordered
pairs (n, m) where n, m ∈ 2,...,50—i.e., it executes isPrime(n) followed
by isPrime(m) to simulate reuse of an extended sieve.

Additionally, the EratosthenesTest module defines two unit test cases. The
test pre isPrime test case verifies that the operation correctly rejects 1 as input
and accepts 2 and 4, regardless of whether the current sieve is shorter or longer
than the input. The test isPrime test case validates a scenario in which the input
argument increases, remains the same, and then decreases relative to previous inputs.

Mutation testing was conducted using both the add-one and negate mutation oper-
ators under various conditions related to preconditions and postconditions. One exper-
imental condition determined whether the mutation operators were allowed to mutate
expressions inside pre and pos tconditions. In general, mutation testing in program-
ming languages does not alter the test code itself. Since postconditions in VDM-SL
often correspond to assertions in program tests, we performed unit and combinatorial
testing without mutating postconditions to simulate this conventional setting.

However, pre and post conditions are central to formal model-based specifications.
Defects in these conditions are considered defects in the specification itself. Therefore,
to properly assess the ability of test cases and traces to detect such faults, additional ex-
periments were conducted including mutations in pre and pos tconditions. Furthermore,
as a baseline, we conducted mutation testing with postconditions entirely removed from
the specification, noting that mutated specifications may fail during animation due to
runtime errors, not just assertion violations.

Table 2. The summarized result of mutation testing to unit testing and combinatorial testing

test condition killed surviving mutation score
unit testing without mutating pre/post conditions 20 9 0.6897
unit testing including mutated pre/post conditions 55 14 0.7971
unit testing without post conditions 16 13 0.5517
combinatorial testing without mutating pre/post conditions 25 4 0.8621
combinatorial testing including mutated pre/post conditions 60 9 0.8696
combinatorial testing without post conditions 7 22 0.2414



The results are summarized in Table 2. With postconditions, combinatorial testing
outperformed unit testing, demonstrating its superior ability to detect specification-level
faults. Without postconditions, unit testing yielded better scores than combinatorial test-
ing, as it retained instance-based internal assertions within the test operations. In con-
trast, combinatorial tests relied solely on assertions in the target specification, lacking
additional instance-based assertion checks, which led to a lower mutation score. Please
note that the lower mutation score of the combinatorial testing without postconditions
does NOT mean a limitation of combinatorial testing but of specifications with loose
assertions.

5 Discussions and Concluding Remarks

Two mutation operators, the add-one operator and the negate operator, have been im-
plemented in ViennaTalk. Extending the set of mutation operators to handle other types
of expressions and statements, beyond just real and bool, remains an important di-
rection for future work.

The current implementation allows expressions within pre- and postconditions to
be mutated. However, further applications of mutation testing to formal specifications
are needed to clarify how assertions (i.e., preconditions and postconditions) should be
treated: whether they should be protected as part of the test suite, or mutated to evaluate
the robustness of the specification itself.

In general, mutation testing is costly because it requires executing the entire test
suite for each mutant. This cost becomes more significant in the context of combinato-
rial testing, which generates many input combinations. In the case study of the Sieve
of Eratosthenes, 2,450 test cases were run for each mutant in the combinatorial trace,
alongside two unit test cases. With 69 mutants generated (including those mutated in
postconditions), this leads to a worst-case estimate of 169,188 test executions. It is
important to note, however, that many mutants were killed early in the test process
leaving many test cases unexecuted. The number of mutants and total test executions
will further increase with the introduction of additional mutation operators and more
comprehensive test suites.

Despite this computational cost, performance remained practical in the evaluation.
On an Apple M2 Pro processor, ViennaTalk completed the full mutation testing process,
including postcondition mutations, in approximately 44 seconds. This efficiency is due
to ViennaTalk’s transpilation approach, which translates VDM specifications into native
Smalltalk classes [3]. Each mutant is executed as compiled Smalltalk code, benefiting
from the just-in-time (JIT) compilation capabilities of the underlying Smalltalk virtual
machine. This makes it possible to handle a large number of repeated executions per
mutant efficiently. Mutation testing is performed in the background, allowing users to
continue working without interruption.

A key distinction between VDM specifications and traditional programming lan-
guages lies in where assertions are written: VDM embeds them within the specifica-
tion, while programming languages often place them in test cases. This raises questions
about how best to interpret mutation results in the context of formal methods. For exam-
ple, Table 2 raises the question: Can mutation testing on combinatorial testing be used



as an indicator of loose assertions? Further research is needed to investigate how mu-
tation testing can guide the improvement of test cases, traces, and embedded assertions
in formal specifications.

Acknowledgements

The author thanks anonymous reviewers for their valuable comments.

References

1. Jia, Y., Harman, M.: An analysis and survey of the development of mutation testing. IEEE
Transactions on Software Engineering 37(5), 649–678 (2011)

2. Larsen, P.G., Lausdahl, K., Battle, N.: Combinatorial Testing for VDM. In: Proceedings of
the 2010 8th IEEE International Conference on Software Engineering and Formal Methods.
pp. 278–285. SEFM ’10, IEEE Computer Society, Washington, DC, USA (2010), http:
//dx.doi.org/10.1109/SEFM.2010.32, ISBN 978-0-7695-4153-2

3. Oda, T., Araki, K., Larsen, P.G.: Automated VDM-SL to Smalltalk Code Generators for Ex-
ploratory Modeling. In: Larsen, P.G., Plat, N., Battle, N. (eds.) The 14th Overture Workshop:
Towards Analytical Tool Chains. pp. 48–62. Aarhus University, Department of Engineering,
Aarhus University, Department of Engineering, Cyprus (2016)

4. Oda, T., Araki, K., Larsen, P.G.: A formal modeling tool for exploratory modeling in software
development. IEICE Transactions on Information and Systems 100(6), 1210–1217 (2017)

5. Oda, T., Araki, K., Sahara, S., Chang, H.M., Gorm, P.: Refactoring for exploratory specifica-
tion in vdm-sl. Proceedings of the 19th Overture Workshop pp. 21–35 (2021)

6. Tran-Jørgensen, P.W.V., Nilsson, R., Lausdahl, K.: Enhancing Testing of VDM-SL Models.
In: Pierce, K., Verhoef, M. (eds.) The 16th Overture Workshop. pp. 7–22. Newcastle Univer-
sity, School of Computing, Oxford (2018)

http://dx.doi.org/10.1109/SEFM.2010.32
http://dx.doi.org/10.1109/SEFM.2010.32


Appendix: The source specification of the Sieve of Eratosthenes

�
1 module Eratosthenes
2 exports all
3 definitions
4 state Sieve of
5 sieve : seq of bool
6 init s == s = mk_Sieve([])
7 end
8 operations
9 isPrime : nat1 ==> bool

10 isPrime(n) ==
11 (if n > len sieve then createSieve(n);
12 return sieve(n))
13 pre n >= 2
14 post
15 RESULT <=>
16 not (exists p in set {2, ..., n - 1} & n mod p = 0);
17
18 createSieve : nat1 ==> ()
19 createSieve(size) ==
20 (dcl
21 newSieve:seq of bool := [true | i in set {1, ..., size}],
22 n:nat1 := 2;
23 newSieve(1) := false;
24 while n * n <= size
25 do
26 (if newSieve(n) then
27 for m = n * 2 to size by n do
28 newSieve(m) := false;
29 n := n + 1));
30 sieve := newSieve)
31 pre size >= 2
32 post
33 len sieve = size
34 and (forall n in set {2, ..., size} &
35 sieve(n) <=>
36 not (exists p in set {2, ..., n - 1} & n mod p = 0));
37 traces
38 Singles:
39 let n in set {2, ..., 50} in isPrime(n);
40
41 Pairs:
42 let n1, n2 in set {2, ..., 50}
43 in
44 (isPrime(n1);
45 isPrime(n2));
46 end Eratosthenes
47



48 module EratosthenesTest
49 imports
50 from Eratosthenes all,
51 from UnitTesting
52 operations assert: bool * seq of char ==> () renamed assert;
53 exports all
54 definitions
55 values
56 no_sieve : Eratosthenes‘Sieve = mk_Eratosthenes‘Sieve([]);
57 sieve : Eratosthenes‘Sieve =
58 mk_Eratosthenes‘Sieve([false,true,true,false,true,false]);
59 operations
60 test_pre_isPrime : () ==> ()
61 test_pre_isPrime() ==
62 (assert(not Eratosthenes‘pre_isPrime(1, no_sieve),
63 "should not give 1");
64 assert(not Eratosthenes‘pre_isPrime(1, sieve),
65 "should not give 1");
66 assert(Eratosthenes‘pre_isPrime(2, no_sieve),
67 "2 without sieve is OK");
68 assert(Eratosthenes‘pre_isPrime(2, sieve),
69 "2 with sieve is OK");
70 assert(Eratosthenes‘pre_isPrime(4, no_sieve),
71 "4 without sieve is OK");
72 assert(Eratosthenes‘pre_isPrime(4, sieve),
73 "4 with sieve is OK");
74 skip);
75
76 test_isPrime : () ==> ()
77 test_isPrime() ==
78 (assert(Eratosthenes‘isPrime(2), "2 is prime");
79 assert(Eratosthenes‘isPrime(3), "3 is prime");
80 assert(Eratosthenes‘isPrime(5), "5 is prime");
81 assert(Eratosthenes‘isPrime(5), "5 is prime");
82 assert(not Eratosthenes‘isPrime(6), "6 is not prime");
83 assert(Eratosthenes‘isPrime(5), "5 is prime"));
84 end EratosthenesTest
85
86 module UnitTesting
87 exports all
88 definitions
89 types
90 AssertFailure :: msg : seq of char;
91 AssertEqualsFailure :: actual:? expected:? msg:seq of char;
92 operations
93 assert : bool * seq of char ==> ()
94 assert(b, msg) == if not b then exit mk_AssertFailure(msg);
95 end UnitTesting
� �


	Implementing Mutation Testing for VDM-SL in ViennaTalk

