
Proving the Correctness of CANDO3 Optrode
Command Interface VDM model in Isabelle/HOL

Leo Freitas∗, Ben Wooding∗, Bill Scott+, Alastair Pollitt∗ and Patrick Degenaar=

School of Computing∗, School of Medicine+ and School of Electronic Engineering=,
Newcastle University, UK

Abstract. Background: implantable medical devices are safety-critical systems.
This paper describes the proof of feasibility of a CMOS chip finite state machine
(FSM) for an optogenetics brain pacemaker preventing epileptic seizures.
Methods: we use a combination of state-based modelling, theorem proving, model
checking, and low-level C program verification. This paper describes the Is-
abelle/HOL proof of correctness for the FSM only.
Results: we mathematically proved that hidden assumptions were true. A few sub-
tle assumptions turned out to be too strong (i.e. impossible proof), which high-
lighted a rather subtle flaw.
Conclusions: this was a socio-technical experiment: a computing-MSc student
with minimal previous experience in formalisms. This convinced stakeholders
of formalism usefulness with clearly defined costs in time, effort, and expertise.
Results are part of the evidence for the ongoing certification process.

1 Introduction

“Controlling Abnormal Network Dynamics using Optogenetics” (CANDO, cando.
ac.uk) is a clinically orientated project to develop a new form of brain implant. Its
aim is to utilise a combination of gene therapy and optoelectronics to provide closed-
loop therapies to aberrant neurological conditions. The first target condition is being
developed for focal epilepsy, which affects millions of people worldwide [20].

The approach is radically different . The objective is to continuously control the brain
state of the location of brain tissue where the seizures begin (seizure focus) to prevent
it from operating outside of a safe domain. CANDO utilises a gene therapy called op-
togenetics to make brain cells light sensitive using channelrhodopsin [8]

All new techniques create challenges. Neuro-modulator devices have a central control
unit , which determines the therapeutic intervention. However, in addition to a central
control unit, there is an intelligent brain unit with electronic communication between the
two. The brain unit provides optoelectronic stimulation and electrical recording.

This is a multidisciplinary project involving electronic, chemical and material engi-
neering, physics, computing science, medicine and microbiology at multiple academic
institutions. The task of formalising the complex electronics became and interesting and
difficult challenge given limited documentation. We started participation just before the
middle (2016) of the pre-clinical phase (2014–2021). Both rodent and non-human pri-

cando.ac.uk
cando.ac.uk


mate trials are underway. It is hoped that human trials can be expected in the early
2020’s during a follow up clinical phase.

This paper focuses on the formal proof in Isabelle/HOL of a VDM model of the CAN-
DOv3 micro chip FSM. With VDM, we discovered three serious problems described
in [13]. The work presented here describes the principles of translating VDM to Isabelle
and the VDM model proof of correctness. The proof confirmed all findings from VDM,
as well as discovered a new subtle issue missed during VDM simulation and coverage
analysis, as well as in the C code verification. This was a useful exercise in exploring
a combination of different formalisms to ensure the correctness of the low-level C de-
vice driver running on embedded hardware that communicates with and commands the
cortical implant which applies the optogenetic treatment [13,19].

1.1 CANDO System

The CANDO system (see Figure 1) is composed of two primary intelligent compo-
nents: i) a control unit placed in the chest; and ii) a brain unit responsible for brain
stimulation and recording, as well as performing self-diagnostics. The control unit is
responsible for the overall operation, closed loop processing, and communication with
the outside world (for monitoring and programming). It is sealed in a hermetic metal
canister placed in the chest. The brain unit needs to implement precisely timed stim-
ulus and recording and comprises both local electronics and an optoelectronic array
of “optrodes” that penetrate the target brain tissue. The design and implementation of
the implantable optrodes are discussed in [3,22]. The area of the brain that the op-
toelectronic array will be implanted into will have been made sensitive to light via a
vector-mediated gene therapy [8].

Fig. 1. The CANDO System

The brain unit consists of four optoelectronic arrays of optrodes that are assembled into
a single package and implanted into the brain. The brain unit has three primary func-
tions [3,21,22]: i) record neural activity from specific electrodes to amplify and filter
that data and convert to a digital data stream to be sent to the control unit; ii) stimulate



from specific light sources with defined intensity and pulse widths as determined by the
control unit; and iii) perform diagnostic checks to ensure continued safe function of the
brain unit with period data to be sent to the control unit.

Each optrode contains multiple electrodes and LEDs, all of which are controlled by
a specially designed complementary metal oxide semiconductor (CMOS) chip with a
24-bit word bus and 17 optrode commands APIs (e.g. switching LEDs on/off, switch-
ing electrode recording sites on/off, diagnostics, etc.). The array, in turn, controls each
of its optrodes (e.g. synchronicity between multiple electrode recording sites and LED
response sites). Each control chip has a FSM, which determines the state of interven-
tion (e.g. recording data, transmitting data and optical stimulation and subsets thereof).
Global control and closed-loop processing occurs in the control unit situated in the chest
(e.g. specific focal epilepsy treatment algorithms).

Treatment is delivered through algorithms in the chest unit, which distill to commands
for the individual optrode (e.g. switch specific LEDs on for specified amounts of time
and intensity; monitor/diagnose intended behaviour to ensure expected treatment is de-
livered, etc.), hence delivering the countermeasure to the focal seizure electric spike.
For each optrode LED, a crucial safety property is that LEDs cannot stay on for long,
as this would cause intolerable temperature differentials [5], and consequent brain func-
tion impairments [15]. Other properties exist within optrodes, within the optrodes in the
array, and within the array and the chest unit.

As the CANDO project is implementing a medical device with complex control soft-
ware in a safety critical application, verification is critical to ensure that the optrode
command interface is free from errors, operates as expected meeting its specification
and ultimately ensuring the safety of patients. However, medical devices certification
does not always guarantee safety. In [1], authors report recalls by the Food and Drug
Administration (FDA) databases between 2006–2011 and found that 14.7% of recalls
were software related. There were 1210 computer-related recalls that affected over 12
million devices. For these computer-related recalls, the FDA found that software failure
was the single biggest cause of recall, making up 64.3% of the total. This is despite the
fact that medical device software is heavily regulated [2,16].

Related Work

An ambitious and successful attempt at applying formalisms that inspired our earlier
efforts was the formal analysis of the Boston Scientific cardiac pacemaker [11]. This
was done within the McMaster’s mock certification centre initiative (i.e. development
was done as if under regulatory approval for Canada). To our knowledge, this was the
first attempt to tackle the combination of applying formal techniques realistically for
industrial-scale certified medical applications. A crucial difference to our efforts, how-
ever, is that it was a post-hoc exercise, rather than during actual development. Despite
Boston Scientific’s involvement throughout the exercise, a challenging (yet common)
socio-technical issue emerged: what happens if an error is found? Pacemaker recalls
are complicated, and serious perception/financial/legal damage would follow. To solve
the conundrum, an earlier version was used in the exercise, where later/current ver-



sions were adjusted to take the use of findings through formal techniques into account.
CANDO is similar given its embedded in-vivo nature as a brain implant.

We have successfully applied our approach to other medical devices. In [4], the identifi-
cation, adaptation, and application of cost-effective industry standard formal techniques
with acceptable learning requirements is described for a novel heamodialyser. Many of
these results featured in the final CE-marked product (allmedgroup.com). Patent
protected IP exists, and this machine is now in use within the UK national health ser-
vice. Finally, in [7], we describe the social-technical issues in using formal modelling
and tools within three different certified medical devices.

2 Verification Method

The micro chip architecture (i.e. hardware commands, and data layouts) and embedded
device driver control software is written in C. The chip fabrication automatically gener-
ates 115KLOC of C types, structs, etc. The user written (3.1KLOC) code is the actual
controller that we modelled and verified. It comprises of three entities:

1. CMOS FSM governing chip’s behaviour;
2. CMOS command APIs, assembling instructions packets for each optrode;
3. CMOS main loop, gluing together the FSM and serial communication.

A significant challenge arose from the nature and completeness of the documentation.
The CANDOv3 CMOS design was documented via a mixture of circuit diagrams and
VHDL code. As an academic project, it was difficult to get better documentation at this
stage. As such we had no choice but to start from the C directly.

Understanding the interaction of modules and their dependencies allows the order of
verification to be determined, where a bottom-up approach from the C was inevitable.
We used VDM as an intermediate language to help hunt for formal specification before
verifying the C code [13], which was guided by the workflow in Figure 2. This enabled
the capture of various invariants implicitly expected from the FSM and the C code, but
that had never been explicitly stated anywhere.

Fig. 2. Verification workflow

Our approach in translating VDM to Isabelle is pragmatic: VDM tools are excellent
for modelling, symbolic simulation and test coverage; they have no proof support. Our

allmedgroup.com


interest in proof is related to the feasibility of discovered specifications.We are also
interested in some global properties like a chain of operations under certain initial con-
ditions entails desirable outcomes.

One option would have been to write the abstract specification representing the C code
directly to Isabelle. We learned from [6] that, even though this is possible given Is-
abelle’s rich libraries, we found ourselves spending considerable effort battling so-
called “Isabellisms” (i.e. specific Isabelle idioms not always suited to the task at hand).
Given the partial (knowledge) and exploratory nature of the modelling exercise, we
view the use of VDM (or any other state-based method with sub-typing and partial func-
tions like Z, B or ASM) as adequate. This is useful to explore various modelling sce-
narios quickly and clearly: modelling decisions are directly related to the abstractions
within the original problem, rather than formal languages idiosyncrasies. For example,
a type as simple as nat1 is tricky to encode in Isabelle for various technical reasons.
As is common among many theorem provers in our experience, one has to adhere to
Isabelle’s library design decisions, otherwise there is considerable setup and auxiliary
proof support effort involved. Arguably, other theorem provers with sub-typing like
PVS or CoQ would be a better choice. Nevertheless, we find Isabelle proof automa-
tion support invaluable: automatic proof search with sledgehammer, try, etc.; and
counter-example finding with quickcheck, nitpick, etc..

Theoretically, we took a narrower logic-view of VDM (i.e. left-to-right logic with
“possible-semantics” as embedded within the Overture Tools [10]), where LPF plays
only a small role. This was based on previous experience in proving VDM theorems
within different logics soundly [17,18]. As in this cited experience, our encoding of
VDM in HOL entailed theorems proved by Isabelle are valid in VDM. Theoretical de-
tails about how that is the case is beyond the scope of this paper. For instance, we use
Isabelle’s undefined polymorphic constant to capture various situations where the
expected VDM answer is undefined, yet Isabelle might give something different
(e.g. the head of an empty sequence in VDM — hd [] — is undefined, whereas
in Isabelle the result is uninterpreted, hd [] = hd []). In Isabelle, undefined
is effectively a dead end: if it is reached within any proof, no further progress can be
made. This suffices to show that there is a problem or missing assumption somewhere
in the VDM model translation.

3 Translating VDM to Isabelle

In [6], we present a detailed account on a pragmatic translation strategy from VDM
to Isabelle, details of which are beyond the scope of this paper. Since then, we have
developed tools to automatically translate from VDM to Isabelle [14].

After logic differences, a key technical aspect of the translation is to account for differ-
ences between VDM and Isabelle mathematical toolkit. This is implemented as an Is-
abelle theory that embeds VDM aspects within Isabelle alongside sufficient automation
lemmas enabling proof support. The VDM toolkit has 50 operator and auxiliary defi-
nitions alongside over 200 lemmas linking VDM-specific definitions with Isabelle’s li-
braries. This includes numerous bridging interpretations of types from VDM to Isabelle



(e.g. VDM sequence indexes start from 1, whereas Isabelle list indexes start from 0) and
at same time introducing undefined interpretations in Isabelle to VDM expressions
where necessary (e.g. in VDM hd[] returns undefined).

There were 13 specific situations when such VDM undefined scenarios had to be
handled. Our approach here is again pragmatic: we optimise for effectiveness rather
than completeness, by addressing operators used in various translation exercises. We
define 15 type synonyms and notations as aliases to properly defined types (and their
type classes): they do not entail much automation or specification burden. These syn-
onyms serve to provide the Isabelle/VDM user with type names that correspond to
VDM types like nat, nat1, int. Other type synonyms include (non-empty) sets,
sequences, and maps. For every VDM-type translation, the necessary type invariants
are explicitly defined and introduced at the necessary places within the translation. Ar-
guably, a thorough/complete syntactic-driven approach to translation would have been
better and we consider this and reporting on design-decisions and proof support as fu-
ture work. For this paper, we present key principles involved only.

VDM primitive types and constants. Primitive numerical types (i.e. nat, nat1, int)
need to account for type coercions. VDM performs implicit type coercions, whereas Is-
abelle expects explicit proof-dependant transformations. For instance, in VDM (0− x)
for a natural number x becomes the value −x of type int, whereas in Isabelle (0− x)
equals 0 of type N. We chose to define these VDM types as type synonyms for Is-
abelle’s integer type (Z). This choice for the maximal type mean no type coercions are
necessary in Isabelle. On the other hand, type invariants have to be explicitly imposed
(e.g. every nat1 variable has to call inv nat1, which is a function from int to bool
stating the value is strictly greater than zero). VDM real, char and token types
are translated directly to corresponding Isabelle types R, char and string, respec-
tively. VDM quote (or enumerated) types are defined with Isabelle datatype with-
out type-constructors, whereas VDM union types are defined with Isabelle datatype
constructors. VDM values are defined as Isabelle abbreviations, which are like
definitions that do not require manual unfolding during proof.

VDM implicit type checks and coercions. The use of explicitly imposed type invariants
is a lightweight (shallow-embedding) approach to the translation: we use the adequate
Isabelle type already available. This makes proof support easier to bridge and maintain.
It also keeps every implicit check from VDM explicitly given within Isabelle.

Overall, we find this clear and easy to follow and it is not a burden given adequate tool
support [14]. Alternatively, we could embed these checks in properly defined Isabelle
typedecl (i.e. axiomatically defined types with non-emptiness proof obligation) or
typedef (i.e. semantic subtypes of existing type) definitions. We had in fact started
with this (deep-embedding) approach when first attempting to define VDM’s nat1 as
a subtype of Isabelle’s N. Given Isabelle’s polymorphic type classes, the price to pay
is that each new subtype has to be instantiated to the necessary type classes in order
to link with underlying definitions and proof machinery. For instance, Isabelle’s N has
to instantiate 24 type classes to enable: access to mathematical theories for arithmetic,



linear algebra, etc.; and proof support for counter example generation and provably-
correct code generation.

VDM set and sequence types. All VDM sets are finite, which is not the case in Isabelle.
Thus, a finiteness invariant has to be defined for all VDM sets. Every set element type
invariant has to be checked as well (Listing 1). VDM sequences map almost directly
to Isabelle lists, where we have to cater for sequence indexes starting from 1 in VDM
and 0 in Isabelle and implicit invariant checks for the sequence element type as done for
sets. This combination between user defined and implicit checks is pervasive throughout
the translation. In fact, to make the translation systematic, we add invariant checks for
every type definition (as true) even when none is required. This made the work of
mechanising the strategy much simpler to implement with no onus in proof effort or
translation efficiency [14].

VDM maps. Maps are partial and with implicit invariant checks as in sets and se-
quences. Isabelle defines a map type that is total to an option type: values outside the
map domain relate to None. In VDM, this effectively means a total map to an optional
type (VDM nil) for values outside the domain. Furthermore, given all VDM sets are
finite, all VDM map domains are also finite and must be restricted within Isabelle. Even
though this works well most of the time and Isabelle maps provide a number of the nec-
essary VDM toolkit map operators, one still has to deal with Isabelle option types
and its complications associated with function application. An attempt at properly em-
bedding partial maps in Isabelle with type classes instantiations exists: the typedef
fmap defines a finite Isabelle map with all the necessary machinery for its use. We
considered using this at first, yet the necessary embedding of VDM type invariants for
domain and range elements would entail numerous type class instantiations again. Thus,
we decided to keep it simple and use shallow-embedding with Isabelle maps alongside
various implicit checks made explicit.

VDM set, sequences and map comprehension and enumeration. Set and sequence
comprehension translate directly to Isabelle. Set and sequence expression, binder, gen-
erator and filter are available in both languages (e.g. {expr | bind in gen &
filter}), albeit with a slightly different concrete syntax. Like in VDM, Isabelle se-
quence comprehension generators must be sequences. Set and sequence enumeration
are available in Isabelle.

VDM map comprehension is not directly available in Isabelle. Map construction is
possible in Isabelle through two lists for domain and range elements that are recursively
put together. Practically, we can encode map comprehension through Isabelle’s map
update over lists operator. These are usually complex and entail difficulties in proof and
are better avoided. For instance, one can refactor VDM map comprehension definitions
to use VDM toolkit operators instead. Map enumeration is available in Isabelle.

VDM mathematical toolkit. Mathematical operators have to be available within Is-
abelle, where some are already defined like map domain filtering (<:) or map override
(++). We have to define implicit checks for certain primitive types like nat1 being



greater than zero or set1 being finite and non-empty. We define VDM set cardinality,
where infinite sets lead to undefined. We also define expected pre and post con-
ditions for various toolkit operators implicitly checked in VDM through the operator’s
type signature. For instance, VDM cardinality returns a nat, which entails the postcon-
dition that its result is always greater than or equal to zero, when viewed as the wider
type int defined in Isabelle to avoid type coercions.s

More complex VDM operators, such as let-be-st or let-in-set, can be trans-
lated to Isabelle’s Hilbert’s choice (SOME) operator. It can also be used to encode
VDM’s iota operator for definite description. Care needs to be taken in these cases
because Hilbert’s choice operator is quite difficult to work with during proof.

VDM records. These are translated directly to Isabelle records, where user-defined
and implicit record invariants are checked explicitly as done for sets, sequences and
maps. An important consideration is that VDM records field access is by projection
(R.x), whereas in Isabelle it is through functions (x R). That means field names have
to be renamed in Isabelle to avoid name clashes. A further complication is that Isabelle
records are extensible. This might complicate proof, but it can easily be avoided with
narrowing type casts where necessary. Record enumeration is available.

VDM functions. These are translated to Isabelle definitions or fun in case they
are recursive. VDM measures can be useful to inform recursion behaviour, yet do
not need to be translated to Isabelle, given its automatic (or user-provided) proof of
termination for all recursively defined functions. Furthermore, pre/post conditions are
also translated. For the example function f below, precondition translation entails the
implicit check that: the invariant of type T holds for the input x; and the precondition
of auxiliary function g holds. It also entails the explicit encoding of the user-defined
precondition (x > V) and the call to g itself. The same is the case for the postcondi-
tion. This is done recursively: implicit type invariants checks for g’s input are part of
the precondition, as well as any further auxiliary function it might call.

1 f: T -> T
2 f(x) = x + 1
3 pre x > V and g(x) post RESULT > x and h(x);

VDM state and operations. State is translated as if it was a VDM record, whereas
operations are translated like functions with an extra state parameter and result values.
The limitation that only functions (or pure operations) can appear in operation pre/-
postconditions is not checked in Isabelle, given only well-formed VDM models are
translated. Operation framing conditions (i.e. what part of the state remains constant
or can change; VDM ext read/write clauses) are translated as implicit post condition
checks. State initialisation is defined as a VDM constant of state type with explicitly
chosen values under the state invariant.

VDM traces and proof obligations. Traces are useful for symbolic execution and spec-
ification coverage. They are translated as Isabelle theorems. Similarly, proof obligations



(PO) are translated as boolean-value definitions, which are then stated as theorems. This
two-stage definition is important for maintenance reasons: the stated theorem is always
the same (i.e. the PO name, whereas the definition varies as the specification evolves).
Crucially, our primary PO of interest is feasibility: preconditions imply postconditions
under universally assumed inputs and outputs given by explicitly defined function/op-
eration calls. That is, in VDM models constructed for executability, all definitions are
given explicitly, hence the existential quantification from the feasibility PO can be sim-
plified as:

1 (forall i : T & pre_f(i) => exists o : T & o = f(i) and post_f(i, o))
2 = (forall i : T & pre_f(i) => post_f(i, f(i)))

4 Technical Considerations

A deep embedding of all VDM types and mathematical toolkit operators with proof
support would be ideal. Pragmatically, it is too much work unrelated to the proof task
at hand. This is the main reason why we took a shallow-embedding approach.

VDM specification-style for Isabelle proving. To make the explicit checks necessary
for VDM type invariants within Isabelle productive, it is useful to follow certain spec-
ification guidelines. For instance, the implicit checks for type Better below enforce
it is a finite set. It also enforces that every element satisfy the invariant for type T.
This entail another implicit check that values in T are natural numbers together with
the user defined check they are strictly smaller than 10. These checks are mostly about
type invariant compartmentalisation during specification, which entails easier (or more
controlled) proofs. For instance, the example below illustrates it is better to have type
invariants as close to their related types as possible: even though it is Ok to define a
set with a universal invariant over its values, it is Better to define an invariant on a
separate type T, which is implicitly checked for all elements of the set type.

1 Ok = set of nat inv s == forall x in set s & x < 10;
2

3 T = nat inv x == x < 10;
4 --@Witness({1,2,3})
5 Better = set of T;

Listing 1. Example better VDM specification-style for proof support

This style is effective for code verifiers like the one we used (eCv) to verify the CANDO
C device driver. That is because it helps the code verifier break the problem down,
whilst avoiding handling user-defined quantified formulae; a known proof automation
bottleneck. Furthermore, VDM allows declaration after use, whereas Isabelle insists on
declaration before use: every VDM definition defined this way has to be rearranged
during translation. To avoid the visual confusion and complexities involved, we kept to
a declaration-before-use style in VDM.



We strongly adhered to the principle that specification clarity cannot be compro-
mised by tool needs. We strive to keep the specification as clean/clear as possible,
regardless of any entailed proof complexities. Of course, if equivalently clear defini-
tions are possible with operators with better proof support, this is preferred. Detailed
discussion about this is beyond the scope of this paper [6]. This is a crucial part of
modelling: if followed correctly, 70-90% of proofs tend to be discoverable or disproved
with Isabelle’s proof search and counter-example finding support [19]. This has been
true of our experience in translating VDM models to Isabelle over the years across nu-
merous domains (e.g. payment protocols, garbage collection and memory management
algorithms, embedded medical devices, mathematical games, etc.). This is not surpris-
ing: formal methods proofs are usually numerous yet mathematically shallow, albeit
with complex/large expressions.

VDM type witnesses. Existential quantifiers are difficult to automate. To aid this, we
extended VDM with proof annotation comments: they enable the specifier to define
concrete witnesses for types and function and operation calls. This documents a valid
(i.e. statically checked invariant preerving) guess for the existentially quantifier witness
required during proof. Further details on VDM witnesses annotations are in [9].

5 Results and Discussion

At first, we translated the CANDO CMOS chip VDM model (1040LOC) to Isabelle
(1456LOC) manually. Then we proved the 26 theorems about operations feasibility and
state initialisation. This required 72 lemmas (822 LOC).

The majority of the proof effort (1 theorem plus 34 lemmas over 430LOC; 52%) was
about state initialisation. Optrode command API operation feasibility were next (25
theorems over 155LOC; 19%). The remainder (237LOC; 29%) effort was on 38 lemmas
useful for various expressions. This split is not surprising: VDM model complexity is
entirely on the FSM type invariant. The 25 command API proofs were mostly the same
with minor variations. The state initialisation witness provided by the VDM model
annotation helped improve the state initialisation proof.

The VDM model traces had already uncovered the three serious design issues. Never-
theless, two POs failed in Isabelle: one for the execute function, which represented
in VDM the optrode API function pointers lookup table in C; and the other was for the
totalisation of the state initialisation witness, given the C array is dense (i.e. every ele-
ment of the VDM map domain representing the FSM matrix had to have a value). They
uncovered a potential retry-reset loop problem within the error recovery command — a
situation known to engineers. It also uncovered unknown nuances between the C global
variables controlling the optrode device driver SPI message exchanges and how this had
to be properly partitioned between 2–3 send/receive commands due to bus (8 bits) vs.
message (24 bits) size differences. The proof exercise was crucial to help understand
and ensure what was the correct specification for the various FSM commands encoded
in the C device driver. That is particularly important given that eliciting such invariants
directly from C is very difficult and error prone (e.g. C details were mixed within the
key hidden abstractions we were hunting for).



Furthermore, C code analysis in [13] led to a discovery of an incorrect timeout being
implemented: each FSM state had an associated timeout function that moved to an error
state. Thus, it was possible for erroneous code to never allow the loop to terminate.
We used the SPIN model checker to exhaustively verify the existence of non-progress
cycles (or infinite loops) within a model. We created a SPIN model of the FSM loop,
which had a message moving between states to represent the transitions, including the
error states mentioned above [19]. A progress and an end label were included to detect
infinite looping, as the loop terminates only at one state. This setup would show correct
and erroneous termination. This has showed a non-progress cycle at depth 26: it was
possible for the loop to run infinitely unless a timeout broke the loop. The given timeout
function did not break from the loop but transitioned to another state within it (the error
state). Thus, should an erroneous attempt to run the FSM loop be made, then the loop
could never terminate. This would be especially dangerous when the chest unit runs
treatment algorithms for epilepsy as the patient’s health could be directly affected. The
correction was trivial: timeout functions within the loop stop it and move onto code
outside the FSM loop.

Socio-technical Challenges. We hope to improve on incorporating formal verification
into the design process of a multidisciplinary team on a project with funding and time-
scale constraints. Pre-clinical projects first need to demonstrate efficacy and that is
where the predominant scientific effort needs to be placed. Nevertheless, scalability to
long-term safe operation is of significant interest. So in balancing these needs, the key
perceived issue centred on the opportunity cost: within a defined budget any time not
spent by the development team on the primary objective (demonstrating effective oper-
ation), could lead to greater project risk. The ideal situation would be for a verification
team exploring the secondary objective (demonstrating safe operation).

A key challenge was that the development team, mostly researchers and PhD students
in electronic engineering, point blank refused any extra work/learning given the intense
milestone delivery timelines. This first round of development from a semi-experienced
team would be code from exemplar functions provided by the Microcontroller company.
This makes adding MISRA compliance [12] during the development phase a significant
extra challenge. It was through convincing the team leader about the research potential
(i.e. represent the FSM and the assessed risks mathematically in order to enable multi-
ple kinds of analysis), that work was possible. Device driver programmers became cu-
rious, and in conjunction with their patience to explain various unclear/undocumented
decisions, they engaged with the process. Once that happened, we could see a direct im-
provement in how the next stages of the C device driver code got implemented: MISRA-
compliance, a key characteristic of safety-critical C programs was achievable and the
verification process has since been completed. Eventually, the CMOS engineers also
got onboard once they “saw” how mistakes could be prevented.

Even though this capability of modelling and proof in uncovering unintended (and of-
ten complex/nuanced) behaviours is not surprising to formalists, it was a pivotal mo-
ment in the trust-relationship: it changed engineer’s demeanour from “impatient skep-
tics” (e.g. why should I bother with the extra work?) to “healthy academic curiosity”
(e.g. how do you do this? Are there any other issues we missed?). Device driver en-



gineers appreciated the outcomes in terms of helping them identify issues, as well as
ensure that potential (error-prone) device driver encoding mistakes were caught as early
as possible. Regulatory approval and trial administrators appreciated the emphasis on
safety through mathematically precise documentation that enforced design decisions as
they evolve and before critical primate and human trials started.

Introducing the process of formal verification to the development team and working
with them during the application of the techniques to help develop their understand-
ing was crucial. This transfer of knowledge was accompanied by regularly attending
engineering meetings for discussion and presenting work progress, as well as our un-
derstanding of the medical device software regulatory process.

To illustrate the possibility of applying this work in practice with a team not solely
dependant on a theorem proving expert, we set out the VDM translation and proof as
an MSc project [19]. This was risky, yet bounded by the fact we had already manually
translated and proved all POs within Isabelle. The VDM translation and Isabelle proof
was completed over 5 months, where the involved MSc student had some experience in
VDM and Isabelle proof and no prior knowledge of CANDO. This demonstrated that
the barrier to entry for an engineer to perform proof requires previous training, but was
not too onerous.

The VDM model was translated using an automated tool resulting from a undergradu-
ate student project [14], where 135 POs were generated from a strategy developed by
the MSc student. Of these, 130 or 96% of proofs were discovered automatically with
Isabelle’s sledgehammer. The remainder 5 proofs had to do with state initialisation
and the optrode function pointer lookup table. The latter (failed proofs) highlighted an
(obvious) subtlety missed through the manual translation: each function pointer call re-
quired specific current optrode state in order to function properly. We missed this over
the manual translation because we only proved initialisation from a single initial state
(i.e. we never allowed the lookup table to be called directly but through the start com-
mand API). There were 34 of such possible “initialisation options”, given the FSM’s 34
states; many of which were easily proved given they immediately satisfied the FSM
state invariant, apart from these missing 5 cases. Expert time proving these remaining
POs was minimal (2 days).

6 Conclusions

This paper summarises the issues in translating VDM to Isabelle and its specific appli-
cation to the VDM model [13] of a CMOS chip finite state machine (FSM) controlling a
novel closed-loop optogenetics brain neuromodulator for epilepsy. We prove feasibility
for all CMOS (17) optrode command APIs. State initialisation proof also establishes
that the system invariant holds. More details can be found in [19]. These proofs helped
ensure the safety properties of a safety-critical medical device that is about to start
primate and human trials. The work is now part of the CE-marking certification pro-
cess. Alongside other work on CANDO’s CMOS FSM C device driver [13], it demon-
strates how formalisms can be effectively applied for realistic novel medical devices



in practice. VDM extensions, libraries and the Isabelle translator can be found at the
VDM Toolkit github repository1.

Acknowledgements. We are thankful to Alastair Pollitt, Dimitrios Firfilionis and
Ahmed Soltan from CANDO (Wellcome: 096975/Z/11/Z, EPSRC: 102037/Z/13/Z) for
their patience and interest. To STRATA (EPSRC EP/N023641/1) programme grant for
financial support. Finally, thanks to Nina for inspiration to work with medical devices
dependability.

References
1. H. Alemzadeh, R. K. Iyer, Z. Kalbarczyk, and J. Raman. Analysis of safety-critical computer

failures in medical devices. IEEE Security & Privacy, 11(4):14–26, 2013.
2. BSI. Medical device software — software life-cycle processes. Technical Report BS EN

62304, British Standards (BSi), May 2011.
3. F. Dehkhoda, A. Soltan, R. Ramezani, H. Zhao, Y. Liu, T. Constandinou, and P. Degenaar.

Smart optrode for neural stimulation and sensing. In SENSORS, pages 1–4. IEEE, 2015.
4. M. D.Harrison, L. Freitas, M. D. snd Jose C. Campos, P. Masci, C. di Maria, and

M. Whitaker. Formal Techniques in the Safety Analysis of Software Components of a new
Dialysis Machine. Science of Computer Porgramming, 175:17–34, Feb 2019.

5. N. Dong et al. Opto-electro-thermal optimisation of optoelectronic probes for optogenetic
neural stimulation. Journal of Biophotonics, 11(10), March 2018.

6. L. Freitas, C. B. Jones, A. Velykis, and I. Whiteside. How to say why. Technical Report
CS-TR-1398, Newcastle University, www.ai4fm.org/tr, November 2013.

7. L. Freitas, B. Scott, and P. Degenaar. Medicine-by-wire: formal techniques for dependable
medical systems automation. Science of Computer Porgramming, under-corrections, 2020.

8. P. Hegemann and G. Nagel. From channelrhodopsins to optogenetics. EMBO Molecular
Medicine, 5(2):173–176, Feb 2013.

9. E. Jacobs. Implementing witness annotations for vdmj. Master’s thesis, School of Comput-
ing, May 2018.

10. P. G. Larsen et al. Vdm-10 language manual. Technical Report TR-001, Aarhus University,
Feb 2018.

11. Macedo H.D. et al. Incremental Development of a Distributed Real-Time Model of a Cardiac
Pacing System Using VDM. In International Symposium on Formal Methods, volume 5014
of LNCS, pages 181–197. Springer, 2008.

12. MISRA Ltd. MISRA-C:2012 Guidelines for the use of the C language in critical systems.
Technical Report MISRAC:2012, MISRA Ltd, March 2013.

13. A. Pollitt. Verifying the CANDO Project Optrode Command Interface in eCv. Master’s
thesis, School of Computing Science, Newcastle University UK, August 2018.

14. J. Simm. Creating a Tool for Translating VDM to Isabelle/HOL. Master’s thesis, School of
Computing Science, Newcastle University UK, July 2019.

15. A. Soltan et al. A head mounted device stimulator for optogenetic retinal prosthesis. Journal
of Neural Engineering, 15(6), August 2018.

16. U.S. Department of Health and Human Services. General principles of software validation;
final guidance for industry and fda staff. Technical Report UCM085281, FDA, Jan 2002.

17. J. Woodcock and L. Freitas. Linking vdm and z. In 13 ICECCS, pages 143–152. IEEE, April
2008.

1 https://github.com/leouk/VDM_Toolkit

https://github.com/leouk/VDM_Toolkit


18. J. Woodcock, M. Saaltink, and L. Freitas. Unifying theories of undefinedness. In NATO
Series D: Information and Communication Security (Marktoberdorf), volume 22, pages 311–
330. IOS Press, Aug 2009.

19. B. Wooding. Using Formal Methods and Proof to Verify a CANDO Epilepsy Medical De-
vice. Master’s thesis, School of Computing Science, Newcastle University UK, June 2019.

20. World-Health-Organization. Epilepsy, Feb 2018. Accessed 08-4-2018.
21. H. Zhao, F. Dehkhoda, R. Ramezani, D. Sokolov, P. Degenaar, Y. Liu, and T. Constandinou.

A cmos-based neural implantable optrode for optogenetic stimulation and electrical record-
ing. In Biomedical Circuits and Systems Conference (BioCAS), 2015 IEEE, pages 1–4. IEEE,
2015.

22. H. Zhao, A. Soltan, P. Maaskant, N. Dong, X. Sun, and P. Degenaar. A scalable optoelec-
tronic neural probe architecture with self-diagnostic capability. IEEE Transactions on Cir-
cuits and Systems I: Regular Papers, 2018.


	Proving the Correctness of CANDO3 Optrode Command Interface VDM model in Isabelle/HOL

