
Translating a VDM Model of a Medical Device into
Kapture

Joe Hare1, Leo Freitas1, and Ken Pierce2

School of Computing, Newcastle University, United Kingdom
j.hare2@ncl.ac.uk,leo.freitas@ncl.ac.uk,kenneth.pierce@ncl.ac.uk

Abstract. As the complexity of safety-critical medical devices increases, so does
the need for clear, verifiable, software requirements. This paper explores the use
of Kapture, a formal modelling tool developed by D-RisQ, to translate an exist-
ing formal VDM model of a medical implant for treating focal epilepsy called
CANDO. The work was undertaken without prior experience in formal methods.
The paper assess Kapture’s usability, the challenges of formal modelling, and
the effectiveness of the translated model. The result is a model in Kapture which
covers over 90% of the original VDM model, and produces matching traces of re-
sults. While several issues were encountered during design and implementation,
mainly due to the initial learning curve, this paper demonstrates that complex
systems can be effectively modelled in Kapture by inexperienced users and high-
lights some difficulties in translating VDM specifications to Kapture.

1 Introduction

As medical technology advances, the development of complex medical devices has be-
come increasingly common [10]. With complex systems comes the challenge of man-
aging large and intricate codebases, where errors are frequently present [15]. In the
context of safety-critical medical devices, these errors have the potential to be particu-
larly problematic, as they could have serious consequences for patients’ health. A major
cause for errors or unintended behaviour in systems is the presence of poorly defined or
ambiguous system requirements [14]. In addition to being a safety risk, poor require-
ments are also a source of high development costs, as they increase the likelihood of
encountering unforeseen implementation issues and lead to a greater number of defects
that must be identified and resolved later in the development process.

Formal methods, such as the Vienna Development Method (VDM), can offer a ro-
bust solution to these challenges by enabling the modelling of systems thoroughly and
mathematically, allowing for the creation of system requirements whose correctness
can be verified [5], however the process of using formal methods to model complex
systems can often be a similarly complex and specialist task in itself. Kapture is a tool
developed by D-RisQ Ltd’1 that aims to address the entry barrier to formal modelling
by allowing users to link natural-language requirements to formal definitions.

The CANDO project (Controlling Abnormal Network Dynamics using Optogenet-
ics) explored creation of an implant for treating focal epilepsy2. This is an example of

1 D-RisQ Ltd website: https://www.drisq.com/.
2 CANDO website: http://www.cando.ac.uk/

https://www.drisq.com/
http://www.cando.ac.uk/

2

a safety-critical device, for which a VDM model was built. In this paper, we describe
initial attempts to translate this VDM model to Kapture, as a valuable opportunity to
explore the usability and effectiveness of Kapture. The work was undertaken primarily
by the main author who had no prior experience with VDM, Kapture, nor formal meth-
ods in general, and we discuss the challenges presented, as well as the time required to
complete the model and various aspects of it.

In the remainder of this paper, Section 2 provides relevant background on VDM,
Kapture; Section 3 covers the CANDO project through the VDM model. Section 4
describes the main efforts in translation to Kapture; Section 5 provides some reflections
on the process; and finally, Section 6 provides conclusions and future work.

2 Background

2.1 Safety and Verification of Complex Medical Devices

Modern medical devices commonly rely on software systems consisting of thousands
of lines of code, with software in pacemakers and defibrillators containing 80,000–
100,000 lines of code [20]. As code bases grow in size and complexity, the risk of
errors and unexpected behaviour increases. Failures of safety-critical medical devices,
such as the Therac-25 radiation-therapy machine that caused serious injury and death
in patients [8], are unacceptable.

Despite new and updated standards for medical software development, such as as
IEC 62304 [9], software issues in safety-critical medical devices still occur. For exam-
ple, Tandem Diabetes Care’s Apple iOS application, used to control an insulin pump,
was rapidly draining the pump’s battery, shutting it down sooner than expected, leading
to 224 reported injuries [4].

CANDO’s cortical implant is an example of a safety-critical medical device, so it
is imperative that the device functions as intended. Failure of the device may mean it
fails to prevent seizures in a patient. As the implant produces light, of which heat is a
by-product, another possible concern is whether the device failing to turn the light off
as intended could result in temperature changes affecting neuronal processes [12].

2.2 VDM

VDM is a long-established formal method for modelling and verifying computer sys-
tems, used in frequently industry. As a model-oriented language, VDM-SL represents
systems through data, state, and behaviours that act on these. Invariants on types / state
allow for modelling of data, while behaviour can be defined through functions and oper-
ations, with pre- and post-conditions capturing assumptions and commitments, as well
as explicit definitions that allow for execution of a subset of models.

Formal modelling with VDM can help to recognise elements of system’s require-
ments or specification that may be ambiguous or incomplete [1]. Development of the
existing CANDO project specification in VDM confirmed several issues with unused
states and states which could not correctly self-loop in the defined Finite State Machine
(FSM) [17].

3

Fig. 1. CANDO optrode and chest piece [19]

2.3 Kapture

Kapture is a tool developed by D-RisQ with the goal of lowering development costs for
safety-critical software. It aims to help developers write clear, verifiable, and intuitive
requirements in English that are converted into Communicating Sequential Processes
(CSP). CSP-based modelling and verification has been successfully applied to medi-
cal device software previously, for example at Phillips Healthcare, where Analytical
Software Design (ASD), a design approach using CSP, was used for the design and
verification of a trolley system for patients to lie on [11].

Kapture supports compliance with safety standard including DO-178C and DO-333,
covering formal development for airborne systems [7,2]. While these standards do not
officially apply to medical devices, the thorough requirements definition, verification,
and traceability set out by these standards can still be helpful for strengthening the reli-
ability and safety of a similarly critical medical device. The work reported in the paper
is part of a larger project applying Kapture to medical and automotive case studies,

3 Existing CANDO VDM Model

The CANDO project aimed to develop a cortical implant to treat epilepsy. Epilepsy is
currently an incurable condition, affecting around 50 million people worldwide [18],
which causes seizures. As a treatment, CANDO proposed to use genetically modified
neurons [6] to make brain tissue sensitive to light, then stimulate these using an implant
with optrodes generating light induce electrical currents to influence brain activity. The
implant is a closed-loop system, constantly monitoring brain activity in real-time to ad-
just stimulation. The brain’s electrical signals are captured by electrodes and processed
on a microcontroller located on the chest, connected via a wire, to control stimulation
through LEDs, creating a continuous feedback loop modulating and monitoring neural
activity to prevent seizures from developing [3].

The software of the CANDO system has a set of optrodes that act as both sensors
and actuators of electrical activity. The behaviour of each optrode is controlled by a

4

Finite State Machine (FSM), executed in a control loop, using a state transition table
to determine state changes based on the current state and an event variable. States have
their own associated function, determined by a lookup table, which perform the neces-
sary action and updates the event variable accordingly [13].

The VDM model has approx. 1000 LOC, so it is not described in full here. The
optrodes are controlled by sending and receiving packets over a bus, captured by the
following types:�

types
Packet_Data = <LED_addr> | <NO_LED_ADDR> | <DAC_value> |
<diag_delay> | <mem_len> | <constructed_data> |
<fs_ratio_to_clk> | <rec_config>;

Address = <Optrode_addr>;

Packet :: addr : [Address]
cmd : [Command]

data : [Packet_Data];

Flag = bool;

Bytes = nat
inv b == b <= PACKET_LENGTH;

Count = nat
inv t == t <= MAX_COUNT;

values
PACKET_LENGTH: nat1 = 3;
MAX_COUNT: nat1 = 2;
� �

The key types defining the FSM are enumerations of Command (there are 17 com-
mands), Event (21 events), and State (34 states) that are used to define the FSM:�

types
Command = <LED_ON_C>| <LED_OFF_C>| ... | <DUMMY_C>;

Event = <CONT> | <ERROR> | ... | <GET_CMD_E>;

State = <get_cmd> | <LED_off> | ... | <cmd_finish>;
� �
There are six types of state: send, receive, packet creator, stage one packet creation,
stage two packet creation, and error states. The StateMap type captures state transi-
tions, with an invariant (not shown) that restricts which state transitions are possible
(for example, an error state can never transition back to a non-error state). Additional
StateMap types are defined that may only contain one of the six state types (IdMap,
ErrorMap, PacketMap, and ReceiveMap). For example, a TStateMap (total
state map) must contain all states. The core FSM type is then defined through events

5

mapped to state transitions, and a total FSM is defined through the TFSM type, and
CANDO is a total FSM:�

types
StateMap = map State to State
inv s == ...

...

TStateMap = StateMap
inv sm == dom sm = {s | s:State};

...

FSM = map Event to StateMap;

TFSM = FSM
inv fsm ==

dom fsm = {s | s:State}
and

forall e in set dom fsm & is_TStateMap(fsm(e));

CandoFSM = TFSM
inv fsm == ...
� �

There are two CandoFSM values defined, one the original_initial_fsm at the
time the model was created, and the recommended_fsm which contains additional
invariants discovered. The functions and operations of the model then cover the vari-
ous commands to construct data packets and implement methods to exercise the FSM
including sending packets, receiving packets, and resetting the system.

To broadly illustrate the working of the FSM, the following is a valid sequence.
Note that blue indicates a stage one packet creation state and red a stage two package
creation state, respectively:

– set_vLED → send_packet_6 → receive_packet_28 → set_sDac → send_packet_3
→ receive_packet_27 → cmd_finish

This is encoded within the VDM with the following transitions:�
recommended_fsm: FSM = {
<CONT> |-> {...,

<set_vLED> |-> <send_packet_6>,
<send_packet_6> |-> <receive_packet_28>,
<receive_packet_28> |-> <set_sDac>,
<set_sDac> |-> <send_packet_3>,
<send_packet_3> |-> <receive_packet_27>,
<receive_packet_27> |-> <cmd_finish>,
...

}, ...
};
� �

6

Fig. 2. The available Requirement templates in Kapture

4 Translation to Kapture

4.1 Kapture Overview

In Kapture, there are three main sections the user will spend most of their time working
in: Data Dictionary, Definitions, and Requirements. An additional Assumptions area
allows any additional context to be informally described. The Data Dictionary is where
the user can define data records to be used in the Definitions and Requirements sections.
When creating a data record there are four templates to choose from:

Type allows for definition of custom data types (building on Boolean, numeric, enu-
merations, and arrays).

Constant are similar to VDM values but can optionally set a minimum, maximum, and
tolerance value to allow for defining fixed values with possible slight deviations as
constants.

Signal definitions template is for defining variable data. They have assignable data
types, and optionally minimum, maximum, and initial values.

Mode allows for definition of an enumerated list of modes and a current mode to
specifically capture modal behaviour in systems.

The Definitions section allows the user to create an expression and associate it with
an English text description with the Definition template. These natural language defini-
tions can then be referenced when creating Requirements or other Definitions to help
make them more readable and easier to maintain. There is also a Function Definition
Template, which can return a single result based on an expression and parameters.

The Requirements section allows the user to design the expected behaviour of the
system by defining the conditions that should hold based on other conditions. There are

7

Fig. 3. The available comparison operations in Kapture and their input types

several Requirement Templates to choose from as seen in the Figure 2. The Mode Set
Template is specifically for defining the modes a component can be in at any time, as
well as whether the component can be in multiple modes simultaneously or not.

The Latch and Trigger On Change templates are specifically for working with sig-
nals, where the latch requirement holds a signal at a certain value while a condition
holds, while the Trigger On Change requires a condition holds based on a signal’s value
changing. For these templates more complex definitions cannot be used in place of the
signals. The Trigger On Event requires that the trigger condition is what causes the
required condition to hold. The template contains extra options to specify whether the
required condition must hold precisely when the trigger condition holds, or it can hold
a certain amount of time after the trigger. The When template only specifies that the
required condition holds when the guard condition is true.

When writing expressions for Definitions and Requirements, there are several cate-
gories of operations to choose from to perform on the data. The most notable categories
for this project are arithmetic, comparison, logical, and user-defined operations, the
latter consisting of any functions created in the Definitions section.

The comparison operations available for modes are _ is (in)active at _,
_ becomes _, and _ has ever been_. When using the _ is (in)active
at _ comparison, the second field is a time-point value, which can be set to the
start/end of the round, where a round’ is an abstract tick of a wall clock. If the _
becomes _ template is assumed to signal only the precise moment a mode changes to
the specified status (e.g. if mode X of component A is already active, then the expres-
sion mode "A.X" becomes activewould be false), then it seems that without
creating extra data and definitions or using time-points, there is no way to create a guard
condition to check the current status of a mode.

4.2 Kapture Model

Given the work in this paper was carried out by a new user of both VDM and Kapture,
an iterative approach was taken, breaking the overall task down into manageable pieces,
with most going through several versions that were evaluated in an ongoing basis.

8

States and Events The first decision was how to represent the states and events of the
FSM. In Kapture, it seems logical that states would be represented with modes, however
as VDM-SL does not have in-built abstractions for modal behaviour, it could have been
the case that defining them in this way in Kapture may have lead to problems later.
Despite this, after experimenting with representing the data in multiple combinations of
modes and signals, modes were used to represent the states, with events represented as
enumerated values type, and a separate signal to represent the current event.

The second decision was to decide how a state transition requirement should be
defined. The logic of the requirement needed to be as such:

if currentState = A and event = X
then currentState := B

As mentioned in previous section, there is no built-in comparison operator in Kap-
ture to check if a mode is currently active, and as such, implementing this logic would
require extra steps. Two options considered were:

– Implement transitions using the _ is active at _ comparison. This would
mean introducing the concept of rounds into the model, and would require two
definitions for each state: one for when the state is active at the start of a round, and
one for when it is active at the end.

– Create a separate signal to represent the current active state, which can be used
directly in a requirement to determine the next state, then use the _ becomes _
comparison to set the corresponding ‘mode’ versions of the current state to inactive
and the next state to active, then update the current state signal.

Ultimately the former method was chosen, as after attempting to create the model
using the latter method, it transpired that maintaining a separate signal to indicate the
current state would introduce redundancy to the model, given that the mode component
already encapsulates this information.

To do this, a states group was created in the Definitions section with two subgroups:
to states and from states indicating when a state is active at the start of the round and
end of the round, respectively. In the Requirements section, a Requirement was created
for each transition in the FSM, grouped by the required event. The Trigger On Event re-
quirement template was used for state transitions, as the guard for the current event and
state are triggers for the next state. To address the concern of setting states to inactive
after transitioning from them, an addition Mode Set requirement was added to require
the state component must have exactly one state active at a time.

FSM Translation The FSM in VDM uses six state types using the StateMap type.
When performing the translation, Kapture does not allow the type of element in an Ar-
ray to be a Mode, so it was not possible to create separate sets for each group in the
Data Dictionary. Instead, the definitions in the to states and from states groups men-
tioned above were used, combining them in expressions using logical OR comparisons
to create new definitions that hold true when any state within a state group is active at
the start or end of the round.

The invariants in the VDM model, elided in the above for brevity, establish the
following constraints:

9

1. Constraints defined within StateMap invariant:
1.1. No state can map to start
1.2. start only maps to get_cmd or error_
1.3. chip_rst only maps to get_cmd or error_
1.4. error_ only maps to get_cmd, error_, or chip_rst
1.5. cmd_finish only maps to error_
1.6. Packet creator states only map to send states or error_
1.7. Receive states only map to stage two packet creator states, cmd_finish,

or error_
1.8. get_cmd only maps to stage one packet creator states or error_

2. For CONT, all send states map to receive states
3. For SPI_TX_FINISH send states map to themselves
4. For SPI_RX_FINISH receive states map to themselves
5. For event CONT, all packet creator states map to send states
6. For event CONT, all error states map to error_
7. For event CONT, start maps to get_cmd.
8. For event CONT, error_ maps to chip_rst
9. For event GET_CMD_E, error_ maps to get_cmd

10. For event GET_CMD_E, chip_rst maps to get_cmd
11. For event CONT, receive states map to stage two packet creators / cmd_finish
12. Under events CONT/GET_CMD_E, error_ remains in error_ unless overridden

For 1.1, Kapture’s unconditional Every requirement template was used as the con-
straint unconditionally blocks states from transitioning to _start. For constraints 1.2
through to 2, as well as 5, 6, and 11, the When template was used to indicate that these
requirements represent rules that must hold under certain conditions, rather than trig-
gers for the state transition. The Trigger On Event template was used to represent the
explicitly defined state transitions in constraints 7 through to 10.

In the VDM model, constraints 3 and 4 use IDMap (identity), which maps a state
to itself. In Kapture, as the from state and to state definitions are defined separately,
with no explicit link, it was not possible to easily write an expression that simply states
that the state to transition from is the same as the state being transitioned to. The pos-
sibility of including signals to represent the to state and from state were considered,
but was decided against to avoid making the Mode component redundant. Instead, new
‘IDMap’ definitions were created for send and receive states, as these are the only states
checked against IDMap in VDM, to say any from state definition that holds implies its
corresponding to state definition also holds.

Model State The state of the VDM model is defined as (see type definitions above):�
state FSM of
fsm : CandoFSM
currentSt : State
currentEvt : Event
currentCmd : Command
command_finish_flag : Flag
optrode_TX_finish : Flag

10

optrode_RX_finish : Flag
s_packet : [Packet]
bytes_received : Bytes
bytes_sent : Bytes
tx_cnt : Count

inv mk_FSM(-,-,-,-,-,-,-,-,-,-,-) == ...
init FSM == ...
� �

An enumerated values Command type was created for the currentCmd type. Al-
though Flag is simply a Boolean type, to keep the Kapture model close to its VDM
counterpart, a Flag type was created and signals assigned to it. The Bytes and Count
type are defined natural numbers with invariants defining upper bounds. In Kapture,
constant records for PACKET_LENGTH and MAX_COUNT were created and used them
for the maximum values of the Bytes and Count types respectively. These had to be
defined as integers in Kapture as there is no option for natural numbers (due to this, a
minimum value of 0 was also set).

Functionality The VDM model defines operations execute and manual to perform
the control loop and exercise the FSM. Since Kapture focuses on requirements, it does
not include the same notion of operation as VDM. However, since Kapture includes a
notion of rounds, the explicit implementation of the execute operation is not required.
Therefore the requirements for each transition can be encoded using the When require-
ment template. Several of the VDM operations use nested conditional statements, which
aren’t directly supported in Kapture. To get around this issue, the requirements were re-
made as a single case template, splitting each possible trace of the operation in VDM
into different cases. Kapture provides an HTML export to allow for models to be read
outside of the GUI. To illustrate this, the first transition of the trace show previously
appears as:

projectId/28.00: set_vLED to send_packet_6
If

The fsm is in state set_vLED at the start of the round
and The current event is CONT

occurs, then
The fsm is in state send_packet_6 at the end of the round

holds.

Another issue that arose from operations that need to increment bytes_received
and bytes_sent. In VDM, this increment is written as:

bytes_received := bytes_received + 1;

It was possible to encode this behaviour by defining signals like ‘next_bytes_received’
and ‘next_bytes_sent’ with Trigger On Event template requirements, using the optional
AtSomePoint and Within fields, to make the fields the same within 0 rounds. This was
also used for tx_cnt signal and optrode_TX/RX_finish flags. This is
certainly a ‘hack’ and a more abstract version of a requirements model may well be
able to handle these in a more idiomatic way in Kapture.

11

Fig. 4. A trace of the Kapture model with initial command LED_ON_C

Pre- and Post-conditions In the VDM model, operations are defined with both explicit
functionality and associated pre- and post-conditions, allowing a combination of declar-
ative and operational specification. Each VDM operation was captured as a requirement
with the postconditions extended to consider all possible cases, stating exactly which
event the system should be in and what value tx_cnt should be relative to its ini-
tial value for each. This contrasts the VDM models where each postcondition simply
states the possible current events after execution. This approach effectively encodes the
intended behaviour of the operation within Kapture’s declarative framework.

4.3 Testing

To check the Kapture model, the VDM-SL was used to generate traces for every initial
command value, with each compared to traces generated by the Kapture model with the
same command.

While the VDM traces contain just a single field for the packet, it is split into three
separate fields in the Kapture traces, as this is how s_packet is represented in Kapture.
The Kapture traces also additionally include the optrode_TX/RX_finish flag values,
as this made the trace much easier to complete. Every time a value changes in the
Kapture traces, a reference to the ID of the Kapture requirement responsible for the
change is listed next to it. Some values such as bytes sent and received list two different
requirements next to them. These show the requirement that updates the next version of
that record, and then the requirement where the actual record is updated.

The Kapture traces were completed manually by checking through all of the re-
quirements that held for the current values of all records. Kapture’s filter tool made this
task significantly quicker, allowing me to filter requirements that reference the current
relevant signals and states.

The Kapture traces are formatted slightly differently to the VDM traces. While the
VDM traces contain just a single field for the packet, it is split into three separate fields
in the Kapture traces, as this is how s_packet is represented in Kapture. The Kapture
traces also additionally include the optrode_TX/RX_finish flag values, as this made the
trace much easier to complete. Every time a value changes in the Kapture traces, a
reference to the ID of the Kapture requirement responsible for the change is listed next
to it. Some values such as bytes sent and received list two different requirements next
to them. These show the requirement that updates the next version of that record, and
then the requirement where the actual record is updated.

The Kapture traces were completed manually by checking through all of the re-
quirements that held for the current values of all records. Kapture’s filter tool made this
task significantly quicker, allowing me to filter requirements that reference the current
relevant signals and states.

12

5 Discussion

5.1 Model Coverage and Effort

The Kapture model was completed over a time period of eight weeks, although a large
majority of the implementation was completed in a shorter four-week time period. The
proportion of time spent on translating into Kapture was as follows: 40% on state op-
eration requirements, 32% on state transition requirements, 21% on looping behaviour,
and 7% on FSM looping behaviour.

The propertion of the VDM model covered by the Kapture model is a difficult metric
to measure precisely, as due to the differences between the two modelling methods,
various parts of the VDM model could not be translated in a one-to-one direct manner.
While they are functionally implemented in Kapture, drawing a link between the two
equivalent parts in each model is not always possible.

Despite this, the Kapture model covers close to all parts of the VDM model. Exclud-
ing some auxiliary definitions (such as printing to console), the only parts of the VDM
model not fully covered are the functions and maps that ensure all events and states are
included in the finite state machine’s domain, and the grouping of states by whether
a packet should exist after the state’s corresponding state operation is executed. When
accounting for the lack of these implementations, the proportion of the VDM model
covered by the Kapture model is over 90%. In Kapture, this translates to 26 Data Dic-
tionary records, 105 Definitions, and 113 Requirements.

5.2 Issues Encountered During Development

Using Kapture was generally an intuitive experience, but some issues were encountered
with the tool during the project. As the tool uses a GUI, creation of a large number of
definitions and requirements for similar cases is time consuming. There were 84 such
cases in the CANDO model, where the fastest option was to create a requirement and
copy repeatedly using external keyboard input automation scripts.

During testing, it was discovered that many of the requirements in the model were
created as the wrong template, with several Trigger On Event templates that should
have been When templates, and When templates that should have been Trigger On Event
templates. It is not currently possible to change the template of an existing requirement,
so each had to be recreated manually.

Another issue was a lack of an easy method to copy records from one Kapture file
to another. Mid-way through the project, a group of definitions was accidentally deleted
that contained a large conditional definition. A backup was created, but the only way to
copy it into the current project is by importing the old project. Kapture allows the user to
select whether to import Definitions, Requirements, Data, and Assumptions separately,
but there is no further control to specify exactly which of the definitions to import, so
the only option was to import a large number of definitions and delete them individually
to get the function back.

13

5.3 Impact of Novice User

Due to the lack of experience of the project team, there were several issues encountered
that may only come from lack of experience with Kapture. One of the biggest challenges
was deciding between Kapture’s different methods of implementation for different parts
of the VDM model, such as whether states, events, and commands should be modes,
signals, or a combination of both; whether to use Trigger On Event templates or When
templates for requirements where either would seem appropriate; or when to split a
requirement into several smaller requirements rather than using a larger Case template
requirement or function.

While the answers to these questions did become apparent, it often took progressing
far enough with the model to run into an issue with the current implementation for it
to become clear as to why one implementation was the better option, requiring time-
consuming reworking and modifying earlier parts of the model.

Another difficulty came from having the system states set up as modes, while keep-
ing all of other state variables as signals. The initial decision to implement only states
as modes and all other variables as signals was mainly based on modes being likened to
states in Kapture’s documentation. This made updating and comparing variables con-
fusing early on in the project, and it later became apparent that the model may have
been better organised by defining state variables consistently as all modes or signals.

5.4 Impact of VDM on the Kapture Model

Towards the end of the project, the model was sent to D-RisQ for feedback. The primary
feedback was that the model is an embedding of the VDM specification into Kapture, as
opposed to a higher-level set of requirements for which Kapture is intended. The VDM
specification was designed to be executable and to permit proof through Isabelle. So
while having a clear, intuitive model in VDM helped an unfamiliar user, the lower-level
of abstraction seems to be a mismatch with Kapture.

Several of the issues described above stemmed from having to work with several
similar requirements for each enumerated value of a data type. This may be due to
the fact that Kapture is intended for the creation of high-level requirements, whereas
the CANDO model is of the optrode command interface for a medical implant, with
data records representing logical states and data packets. The lower-level nature of the
model may have resulted in an atypical use-case of Kapture. This suggests perhaps a
further iteration with guidance from D-RisQ on abstraction could be the best next step.
It would be interesting to see whether a more abstract version of the VDM model could
be created and translated by another user new to Kapture.

6 Conclusions and Future Work

In this paper we described the translation of a VDM model of a medical device, de-
scribed as an FSM, to Kapture. The resulting Kapture model covers approximately
90% of the original VDM model. The fact that the Kapture model was created by a user
with no prior experience of either VDM or Kapture suggests an accessibility of both

14

methods; completing the Kapture model over a few weeks supports D-RisQ’s claims
regarding Kapture’s usability, while suggesting that, with minimal training, new users
could become productive with Kapture in a short period of time, offering potential for
cost saving in development.

The readability of the Kapture model, through the use of its English language con-
structs, along with the organisation provided by Kapture’s different sections and the
groups defined within them, makes for a model of the CANDO project which someone
with little to no prior understanding of the CANDO project or VDM may be able to read
and understand in less time than it’s VDM counterpart, helping to make future work on
the CANDO project by others more accessible.

Most problems encountered throughout development stemmed from an initial lack
of understanding of formal methods and the conceptual difference between Kapture and
VDM, leading to suboptimal design decisions early on in the project in an attempt to
keep the Kapture model as close to its VDM counterpart as possible, which then evolved
into larger issues in the later stages. Undertaking this or a similar project a second time
would result in a much more efficient and streamlined development process.

There are several other opportunities for further work on this project. First, the Kap-
ture model has an issue with the incorrect templates being used for several requirements,
to better follow the Kapture idiom (as suggested by feedback from D-RisQ). While sev-
eral traces have been completed to test that the model behaves correctly, the next step
in testing the model would be to use D-RisQ’s Modelworks tool to automatically verify
requirements created in Kapture [16], allowing the model to make stronger claims of
reliability and correctness.

During development, there was some uncertainty regarding whether modes or sig-
nals would be the best approach for representing the system’s state variables, and as
a result of this, the final model incorporates a combination of the two. To investigate
this design choice further, it would be valuable to create two additional versions of the
model: one that uses only modes for state variables, and one that relies solely on events.
The requirements for each of these models could then be evaluated in comparison to
each other to determine whether one approach offers a clearer advantage in terms of
clarity or alignment with intended system behaviour.

Acknowledgements

We acknowledge funding from the Federal Ministry for Economic Affairs and Climate
Action (BMWK) on the basis of a decision by the German Bundestag through the Cen-
tral Innovation Programme for SMEs (ZIM) and Innovate UK under the Third Call for
Proposals for Joint Research and Development (R&D) Projects between Germany and
the United Kingdom. We would like to thank our colleagues at D-Risq for their support
and feedback, including Dr Nick Taylor, Dr Colin O’Halloran, and Dr Anthony Smith.

15

References
1. Andrews, D., Bruun, H., Hansen, B., Larsen, P., Plat, N., et al.: Information Technology

— Programming Languages, their environments and system software interfaces — Vienna
Development Method-Specification Language Part 1: Base language. ISO (1995), draft In-
ternational Standard: 13817–1

2. Cofer, D., Miller, S.P.: Formal methods case studies for do-333. Tech. rep., Rockwell Collins
Inc. (2014)

3. Firfilionis, D., Hutchings, F., Tamadoni, R., Walsh, D., Turnbull, M., Escobedo-Cousin, E.,
Bailey, R.G., Gausden, J., Patel, A., Haci, D., Liu, Y., LeBeau, F.E.N., Trevelyan, A., Con-
standinou, T.G., O’Neill, A., Kaiser, M., Degenaar, P., Jackson, A.: A closed-loop optogenic
platform. Frontiers in Neuroscience 15 (2021)

4. Food, U., Administration, D., et al.: Tandem diabetes care, inc. recalls version 2.7 of the apple
ios t: connect mobile app used in conjunction with t: slim x2 insulin pump with control-iq
technology prompted by a software problem leading to pump battery depletion. FDA (2024)

5. Hu, A.J.: Automatic formal verification of software: Fundamental concepts. In: 2009 Inter-
national Conference on Communications, Circuits and Systems. pp. 1155–1159 (2009)

6. Iseri, E., D., K.: Implantable optoelectronic probes for in vivo optogenetics. Journal of neural
engineering 14(3) (2017)

7. Jacklin, S.A.: Certification of safety-critical software under do-178c and do-278a. In: In-
fotech@aerospace Conference (2012)

8. Leveson, N., Turner, C.: An investigation of the therac-25 accidents. Computer 26(7), 18–41
(1993)

9. LHF Regulatory: Iec 62304 update: Powerful changes you need to know and why they matter
(2025), https://lfhregulatory.co.uk/iec-62304-update-2026/

10. Neuman, M.R., Baura, G.D., Meldrum, S., Soykan, O., Valentinuzzi, M.E., Leder, R.S.,
Micera, S., Zhang, Y.T.: Advances in medical devices and medical electronics. Proceedings
of the IEEE 100 (2012)

11. Osaiweran, A., Boosten, M., Mousavi, M.R.: Analytical Software Design: Introduction and
Industrial Experience Report. Technische Universiteit Eindhoven (2010)

12. Owen, S., Liu, M., Kreitzer, A.: Thermal constraints on in vivo optogenetic manipulations.
Nature Neuroscience 22 (2019)

13. Pollitt, A.: Verifying the CANDO Project Optrode Command Interface in eCv. Master’s the-
sis, School of Computing Science, Newcastle University, UK (2018)

14. Riaz, M.Q., Butt, W.H., Rehman, S.: Automatic detection of ambiguous software require-
ments: An insight. In: 2019 5th International Conference on Information Management
(ICIM). pp. 1–6 (2019)

15. Sommerville, I., Cliff, D., Calinescu, R., Keen, J., Kelly, T., Kwiatkowska, M., McDermid, J.,
Paige, R.: Large-scale complex it systems (2011), https://arxiv.org/abs/1109.
3444

16. Tudor, N.: Meeting DO-178C and the formal methods supplement DO-333. White paper,
D-RisQ Ltd. (may 2019)

17. Wooding, B.: Using Formal Methods and Proof to Verify a CANDO Epilepsy Medical De-
vice. Master’s thesis, School of Computing Science, Newcastle University, UK (2019)

18. World Health Organisation: Epilepsy: a public health imperative. World Health Organization
(2019)

19. Zhao, H., Dehkhoda, F., Ramezani, R., Sokolov, D., Degenaar, P., Liu, Y.: A cmos-based
neural implantable optrode for optogenetic stimulation and electrical recording. 2015 IEEE
Biomedical Circuits and Systems Conference (BioCAS) (2015)

20. Ziang, Z., Abbas, H., Jang, K., Mangharam, R.: The challenges of high-confidence medical
device software. Computer 49(1), 34–42 (2016)

https://lfhregulatory.co.uk/iec-62304-update-2026/
https://arxiv.org/abs/1109.3444
https://arxiv.org/abs/1109.3444

	Translating a VDM Model of a Medical Device into Kapture

