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Formal methods

Adopting a formal notation standard such as VDM-SL isn’t
enough:

• abstract models involve conditions which lead to

• proof obligations that need to be discharged

As in other branches of engineering

e = m + c

that is,

engineering = model first, then calculate . . .

Calculate? Verify?

We know how to calculate since the school desk...
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Tradition on “al-djabr” equational reasoning

Examples of “al-djabr” rules: in arithmetics

x − z ≤ y ≡ x ≤ y + z

In logics:

(x ∧ ¬ z ) ⇒ y ≡ x ⇒ (y ∨ z )

“Al-djabr” rules are known since the 9c. (They are nowadays
known as Galois connections.)

Question
Can VDM proof obligations be calculated along the same
tradition?



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Tradition on “al-djabr” equational reasoning

Examples of “al-djabr” rules: in arithmetics

x − z ≤ y ≡ x ≤ y + z

In logics:

(x ∧ ¬ z ) ⇒ y ≡ x ⇒ (y ∨ z )

“Al-djabr” rules are known since the 9c. (They are nowadays
known as Galois connections.)

Question
Can VDM proof obligations be calculated along the same
tradition?



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

By the way

Nunes’ Libro de Algebra en Arithmetica y Geometria (1567)

(...) ho inuẽtor desta arte

foy hum Mathematico

Mouro, cujo nome era

Gebre, & ha em alguãs

Liuarias hum pequeno

tractado Arauigo, que

contem os capitulos de q̃

usamos

(fol. a ij r)

Reference to On the calculus of al-gabr and al-muqâbala 1 by Abû
Abd Allâh Muhamad B. Mûsâ Al-Huwârizm̂ı, a famous 9c Persian
mathematician.

1Original title: Kitâb al-muhtasar fi hisab al-gabr wa-almuqâbala.
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Examples of proof obligations

The following are standard in VDM:

• Satisfiability: a pre/post pair is satisfiable iff

∀ a · pre(a) ⇒∃ b · post(a, b) (1)

• Invariants: in case the pre/post pair specifies an operation
over a state with invariant inv,

∀ a · pre(a) ⇒∃ b · inv(b) ∧ post(a, b) (2)

Moreover, invariants are to be maintained:

∀ b, a · pre(a) ∧ post(a, b) ∧ inv(a) ⇒ inv(b) (3)
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Impact of (universal) quantification

Quantifiers:

• ∃ — easy to discharge (eg. by counter-examples)

• ∀ — hard to calculate with (in general), leading to (complex)
inductive proofs.

What can we do about this?

• Mechanical proof support is one way

• Investigation of alternative calculation methods is another

An analogy:

〈∀ x : 0 < x < 10 : x2 ≥ x〉

〈

∫
x : 0 < x < 10 : x2 − x〉

How has traditional engineering mathematics tackled the
complexity brought about by

∫
’s and ∂/∂x ’s?
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The Laplace transform

(L f )s =
∫
∞

0 e−st f (t)dt

f (t) L(f )

1 1
s

t 1
s2

tn n!
sn+1

eat 1
s−a

etc

Pierre Laplace (1749-1827)



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

How it works

t-space s-space

Given problem

y ′′ + 4y ′ + 3y = 0
y(0) = 3
y ′(0) = 1

//

Subsidiary equation

s2 + 4sY + 3Y = 3s + 13

��

Solution of given problem

y(t) = −2e−3t + 5e−t

Solution of subs. equation

Y = −2
s+3

+ 5
s+1

oo
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An “s-space analog” for logical quantification

The pointfree (PF) transform

φ PF φ

〈∃ a : : b R a ∧ a S c〉 b(R · S)c
〈∀ a, b : : b R a ⇒ b S a〉 R ⊆ S

〈∀ a : : a R a〉 id ⊆ R
〈∀ x : : x R b ⇒ x S a〉 b(R \ S)a
〈∀ c : : b R c ⇒ a S c〉 a(S / R)b

b R a ∧ c S a (b, c)〈R ,S〉a
b R a ∧ d S c (b, d)(R × S)(a, c)
b R a ∧ b S a b (R ∩ S) a
b R a ∨ b S a b (R ∪ S) a
(f b) R (g a) b(f ◦ · R · g)a

True b ⊤ a
False b ⊥ a
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A transform for logic and set-theory

An old idea

PF(sets, predicates) = binary relations

Calculus of binary relations

• 1860 - introduced by De Morgan, embryonic

• 1941 - Tarski’s school, cf. A Formalization of Set Theory
without Variables

• 1980’s - coreflexive models of sets (Freyd and Scedrov,
Eindhoven school)

Unifying approach

Everything is a (binary) relation
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Binary Relations

Arrow notation

Arrow A
R // B denotes a binary relation to B (target) from A

(source).

Identity of composition

id such that R · id = id · R = R

Converse
Converse of R — R◦ such that a(R◦)b iff b R a.

Ordering

“R ⊆ S — the “R is at most S” — the obvious R ⊆ S ordering.



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Binary relation taxonomy

Recall
endo-relation

symmetric transitive reflexive anti-symmetric connected

per preorder

coreflexive equivalence partial order

id linear order

where a relation A
R // A is

reflexive: iff idA ⊆ R

coreflexive: iff R ⊆ idA

transitive: iff R · R ⊆ R

anti-symmetric: iff R ∩ R◦ ⊆ idA

symmetric: iff R ⊆ R◦(≡ R = R◦)

connected: iff R ∪ R◦ = ⊤
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Binary relation taxonomy

The whole picture:
relation

injective entire simple surjective

representation function abstraction

injection surjection

bijection

where

Reflexive Coreflexive

ker R entire R injective R

img R surjective R simple R

ker R = R◦ · R
imgR = R · R◦



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Functions in one slide

• A function f is a binary relation such that

Pointwise Pointfree
“Left” Uniqueness

b f a ∧ b′ f a ⇒ b = b′ img f ⊆ id (f is simple)
Leibniz principle

a = a′ ⇒ f a = f a′ id ⊆ ker f (f is entire)

• Back to useful “al-djabr” rules (GCs):

f · R ⊆ S ≡ R ⊆ f ◦ · S

R · f ◦ ⊆ S ≡ R ⊆ S · f

• Equality:

f ⊆ g ≡ f = g ≡ f ⊇ g
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Simple relations in one slide

• “Al-djabr” rules for simple M:

M · R ⊆ T ≡ (δM) · R ⊆ M◦ · T (4)

R · M◦ ⊆ T ≡ R · δM ⊆ T · M (5)

where

δ R = ker R ∩ id

(=domain of R) is the coreflexive part of ker R .

• Equality

M = N ≡ M ⊆ N ∧ δN ⊆ δM (6)

follows from (4, 5).
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Predicates PF-transformed

• Binary predicates :

R = [[b]] ≡ (y R x ≡ b(y , x))

• Unary predicates become fragments of id (coreflexives) :

R = [[p]] ≡ (y R x ≡ (p x) ∧ x = y)

eg.

[[1 ≤ x ≤ 4]] =
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Boolean algebra of coreflexives

[[p ∧ q]] = [[p]] · [[q]] (7)

[[p ∨ q]] = [[p]] ∪ [[q]] (8)

[[¬p]] = id − [[p]] (9)

[[false]] = ⊥ (10)

[[true]] = id (11)

Note the very useful fact that conjunction of coreflexives is
composition
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LPF versus PF-transform

Example

PF-calculation of “partial” implication [5]:

∀ i , j ∈ ZZ · i ≥ j ⇒ subp(i , j) = i − j

where

subp : ZZ × ZZ → ZZ

subp(i , j) △ if i = j then 0 else 1 + subp(i , j + 1)
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Simplicity “does it all” — I think

First step — calculate its PF-transform:

(i , j) ∈ δ Subp ⇒ (i − j) Subp (i , j)

≡ { PF-transform rule (f b) R (g a) ≡ b(f ◦ · R · g)a }

δ Subp ⊆ (−)◦ · Subp

≡ { converses }

δ Subp ⊆ Subp◦ · (−)

≡ { “al-djabr” (simple relations) }

Subp ⊆ (−)

Second step: calculate Subp ⊆ (−), see overleaf
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Does Subp ⊆ (−) hold?

We draw

subp : ZZ × ZZ → ZZ

subp(i , j) △ if i = j then 0 else 1 + subp(i , j + 1)

in a “divide & conqueur” diagram:

ZZ × ZZ
D //

Subp

��

1 + ZZ × ZZ

id+Subp

��

ZZ 1 + ZZc
oo

where
∆ = λ x .(x , x)
D = [∆ · !◦ , id × (−1)]◦

c = [0 , (1+)]

Thus

Subp = µX .(c · (id + X ) · D))
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Does Subp ⊆ (−) hold?

Our calculation is based on the fixpoint rule:

µg ⊆ X ⇐ g X ⊆ X (12)

as follows

Subp ⊆ (−)

⇐ { fixpoint rule , for g X = c · (id + X ) · D }

c · (id + (−)) · D ⊆ (−)

≡ { unfold c and D }

[0 , (1+) · (−)] · [∆ · !◦ , id × (−1)]
◦

⊆ (−)

≡ { converses and coproducts }
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Calculate implication

0 · ∆◦ ∪ (1+) · (−) · (id × (−1))◦ ⊆ (−)

≡ { “al-djabr”s of ∪ and functions }

0 = (−) · ∆
(1+) · (−) = (−) · (id × (−1))

≡ { go pointwise }

0 = i − i
1 + (i − j) = i − (j − 1)

≡ { arithmetics }

true

In fact, it can be further shown that the implication is an equivalence —
let us see how:
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The other side of the equivalence

∀ i , j ∈ ZZ · subp(i , j) = i − j ⇒ i ≥ j

≡ { PF-transform }

(−)◦ · Subp ∩ id ⊆ δ Subp

⇐ { Dedekind ; domain is the coreflexive part of kernel }

((−)◦ ∩ Subp◦) · Subp ⊆ Subp◦ · Subp

≡ { converses ; Subp ⊆ (−), as calculated above }

Subp◦ · Subp ⊆ Subp◦ · Subp

≡ { trivial }

true
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Proof obligations (PF-transformed)

Let

Inv = [[inv ]] (a coreflexive)

Pre = [[pre]] (a coreflexive)

Post = [[post]]

in

Spec △ Post · Pre

and recall eg.

∀ a · pre(a) ⇒∃ b · post(a, b) (13)

∀ b, a · pre(a) ∧ post(a, b) ∧ inv(a) ⇒ inv(b) (14)

Then
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Proof obligations (PF-transformed)

1. Satisfiability — (13) PF-transforms to

Pre ⊆ δ Post (15)
equivalent to

Pre ⊆ ⊤ · Post

2. Invariants — (14) PF-transforms to

ρ (Spec · Inv) ⊆ Inv (16)
equivalent to

Spec · Inv ⊆ Inv · Spec (17)
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Proof obligations (PF-transformed)

Functions
The special case of (17) where Spec is a function f ,

f · Inv ⊆ Inv · f (18)

maps back to the pointwise

∀ a · inv(a) ⇒ inv(f (a)) (19)
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Invariants in general

In general, let A
Spec

// B be a spec over two datatypes A and B
each with its invariant, say Φ and Ψ, respectively. Then (18)
generalizes to

Spec · Φ ⊆ Ψ · Spec (20)

We will write

Φ
Spec

// Ψ (21)

to mean Spec · Φ ⊆ Ψ · Spec . Thus,

1. invariants can be regarded as types and

2. invariant preservation can be re-written as a type discipline,
eg.

Φ
R // Ψ , Ψ

S // Γ

Φ
S·R // Γ

(22)

(composition),
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Invariants “are” types

Φ
R // Ψ ,Φ′ ⊆ Φ

Φ′
R // Ψ

,
Ψ′ ⊆ Ψ, Φ

R // Ψ′

Φ
R // Ψ

(23)

(sub-typing), etc

Compare this invariants-as-types PF-theory with

Quoting [4], p.116
The valid objects of Datec are those which (...) satisfy inv-Datec. This
has a profound consequence for the type mechanism of the notation. (...)
The inclusion of a sub-typing mechanism which allows truth-valued
functions forces the type checking here to rely on proofs.
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Data structures PF-transformed

• Relational databases resort to the mathematical notion of a
relation to model data.

Why not do the same in VDM?

• In the sequel we regard VDM finite mappings (A →̃ B) as
simple relations and resort to “al-djabr” rules to prove
invariant preservation

• Why?
• No need for induction

• Proofs don’t even require finiteness
• (Quite a few) results of the standard VDM theory of mappings

• extend further to arbitrary binary relations
• are equivalences, not just implications
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VDM mappings are finite simple relations

This leads to a PF-transformed mapping theory, eg.

Mapping comprehension

{g(a) 7→ f (M(a)) | a ∈ dom M}

PF-transforms to

f · M · g◦ (24)

However
Need to ensure simplicity of the comprehension, see next slide
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Mapping comprehension — “simple” simplicity argument

f · M · g◦ · (f · M · g◦)◦ ⊆ id

≡ { converses }

f · M · g◦ · g · M◦ · f ◦ ⊆ id

≡ { “al-djabr” }

M · g◦ · g · M◦ ⊆ f ◦ · f

≡ { definition of kernel of a relation }

ker (g · M◦) ⊆ ker f

≡ { injectivity preorder R ≤ S ≡ kerS ⊆ kerR }

f ≤ g · M◦

That is to say, M satisfies the g → f functional dependency [6]
(always fine wherever g is injective).
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Straight from the VDM-SL on-line manual

Operator Name Semantics description

m1 † m2 Override

overrides and merges m1 with m2, i.e. it is like
a merge except that m1 and m2 need not be
compatible; any common elements are as by m2

(so m2 overrides m1.)

PF (formal) semantics:

[[m1 † m2]] = [[m2]] → [[m2]] , [[m1]]

which resorts to the relational version of McCarthy conditional:

R → S , T
def
= (S · δ R) ∪ (T · ¬δ R)
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Mapping override

From PF-definition

M † N
def
= N → N , M (25)

equivalent to

M † N = N ∪ M · (¬δN) (26)

it is easy to show

M † M = M (27)

M † ⊥ = ⊥ † M = M (28)

More generally, equivalences

N ⊆ M ≡ M † N = M (29)

δM ⊆ δN ≡ M † N = N (30)

hold.
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Override is associative (Lemma 6.7 in [4] — †-ass)

(R † S) † P

= { (25) twice }

P → P , (S → S , R)

= { (26) twice }

P ∪ (S ∪ R · (¬δ S)) · (¬δ P)

= { distribution ; de Rorgan }

P ∪ S · (¬δ P) ∪ R · (¬(δ S ∪ δ P))

= { (26) ; domain of override }

(S † P) ∪ R · (¬δ (S † P))

= { (26) }

R † (S † P)

Important

• Holds for
arbitrary

relations

• No need of
induction
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The ubiquitous finite mapping

Usual “design paterns” in VDM modelling:

• Classification: A →̃ B where the type of interest is A and B
is a classifier

Cf. recording (partial) equivalence relations [4]:
ker M = R◦ · R for M simple is always a per (partial
equivalence relation).

• Quantification: Bag A △ A →̃ IN (bags, orders, invoices etc)

• Identification: K →̃ A where A is the TOI and K is a space
of keys (eg. name-spaces, database entities, objects, etc)

• Heaps: K →̃ F(A,K ) where K is an address space (eg. in
modelling memory management)
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PF-transformed invariants

Typical invariant patterns associated to the identification design
pattern are

• Referential integrity:

M � N or M◦ � N

where � denotes the mapping definition partial order

M � N = δM ⊆ δN (31)

• Range-wise property: because the TOI is in the range, a
typical VDM invariant pattern arises, ∀ a ∈ rng M · ψ(a)
which PF-transforms to

M ⊆ Ψ · M (32)
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CRUD = identification + persistence

CRUD?

Wikipedia
In computing, CRUD is an acronym for Create, Read, Update, and
Delete. (...) It is used as a shorthand way to refer to the four basic
functions of persistence, which is a major part of nearly all computer
software.

CRUD on mapping M:

• Create(N): M 7→ N † M
• Read(a): b such that b M a
• Update(f ,Φ): M 7→ M † f · M · Φ
• Delete(Φ): M 7→ M · (¬Φ)

Example of proof discharge by PF-calculation: range-wise

invariant preservation by (selective) update
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Selective update

Notation shorthand

M f
Φ

△ M † f · M · Φ (33)

Very easy to show:

M id
Φ = M (34)

M f
⊥ = M (35)

M f
id = f · M (36)

Now, how does selective update ( f
Φ) preserve

inv M △ M ⊆ Ψ · M
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Proof discharge by PF-calculation

We have to find conditions for ( f
Φ) to bear type

Inv
( f

Φ)
// Inv (37)

Since ( f
Φ ) is a function, the proof discharge is easy (19), for all M:

inv(M) ⇒ inv(M f
Φ))

≡ { expand inv(M) }

M ⊆ Ψ · M ⇒ M f
Φ ⊆ Ψ · M f

Φ

≡ { since Ψ · M ⊆ M }

M = Ψ · M ⇒ M f
Φ ⊆ Ψ · M f

Φ

So we focus on M f
Φ ⊆ Ψ · M f

Φ, assuming M = Ψ · M:
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Proof discharge by PF-calculation

M f
Φ ⊆ Ψ · M f

Φ

≡ { (33) twice }

M † f · M · Φ ⊆ Ψ · (M † f · M · Φ)

≡ { M = Ψ · M ; distribution }

(Ψ · M) † f · (Ψ · M) · Φ ⊆ (Ψ · M) † (Ψ · f · M · Φ)

⇐ { monotonicity }

f · Ψ ⊆ Ψ · f

≡ { (21) — of course! }

Ψ
f // Ψ
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Other variations on mappings

Mapping aliasing

In computing, aliasing means multiple names for the same data
location.

VDM (pointwise)

alias(a, b,M) △

M † ( if b ∈ dom M then {a 7→ M(b))} else {7→} )

PF-transform

alias(a, b,M) △ M † M · b · a◦

where a and b are constant functions.
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Aliasing

Notation shorthand
Ma:=b for M † M · b · a◦ (suggestive of eg. regarding M as a piece
of memory and a and b variable names or addresses.)

Sample properties

• Identity:

Ma:=a = M (38)

• Idempotency:

(Ma:=b)a:=b = Ma:=b (39)

both instances of

Ma:=b = M ≡ M · b ⊆ M · a (40)
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Equating extends aliasing

Let us move on to the classification design pattern, and recall the
problem of Recording equivalence relations [4]:

Equate a and b

VDM:

equate(a, b,M) △

M † {x 7→ M(b)) | x ∈ dom M ∧ M(x) = M(a)}

PF-transform

equate(a, b,M) △ M † M · b · a◦ · (ker M)

Thus equate is an “evolution” of aliasing, equivalent to

M † (M · b) · (M · a)◦ · M
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Reasoning about equate

Abstraction function
Two mappings M,N represent the same PER iff

ker M = ker N

(ker is the abstraction function)

Properties of equate

Writing Ma≃b as abbreviation of M † (M · b) · (M · a)◦ · M:

Ma≃a = M (41)

ker Ma≃b = ker Mb≃a (42)

and so on.
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Summary

• Learn with the other engineering disciplines

• Rôle of PF-patterns (advantage of “writing less symbols”), eg.
easier to spot al-djabr rule

• Shift from “implication first” to “calculational” logic

“Chase” equivalence : bad use of implication-first
logic may lead to “50% loss in theory”

• PF-transform: need for a cultural “shift”?
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Inspiration

• John Backus Algebra of Programs (1978) [2]

• Binary relations already in Cliff’s thesis (1981) [3]

• Bird-Meertens-Backhouse approach [1]
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Context

• Coalgebraic semantics for components and objects

• Possibly applicable to VDM(++)

• Invariants regarded as coreflexive bisimulations in the
underlying coalgebra theory

• Finite mappings PF-reasoning relates to on-going work in
database theory “refactoring” [6]
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Current work

• Impact of partial predicates in PF-transform (LPP instead of
LPF?)

• Foundations: which approach to undefinedness? LPF [5]?
Dijkstra/Scholten’s (and variations thereof)? [7]

• Prospect for tool support:
• RelView (Kiel)
• ’G’alculator project (Minho)
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Limitations of RELVIEW

• RELVIEW only works on relations with finite domains.

• Relations between elements have to be explicitly defined.

• Thus, it is very specific and not usable in the general cases.

• We need a more generic tool . . .
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Galculator

• Galculator implements relation algebra.

• Relational calculus is done by expression manipulation.

• Manipulation is performed by a strategic typed term-rewriting
system implemented using Haskell and GADTs.

• Galois connections are used as rewriting rules allowing the
exploitation of proofs by indirect equality.
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Closing

“Algebra (...) is thing causing admiration”

(...) “Mainly because we see often a great Mathematician
unable to resolve a question by Geometrical means, and
solve it by Algebra, being that same Algebra taken from
Geometry, which is thing causing admiration.”

— my (literal, not literary) translation of:

(...) Principalmente que vemos algumas vezes, no poder vn
gran Mathematico resoluer vna question por medios
Geometricos, y resolverla por Algebra, siendo la misma Algebra
sacada de la Geometria, q̃ es cosa de admiraciõ.

[ Pedro Nunes (1502-1578) in Libro de Algebra en Arithmetica y

Geometria, 1567, fols. 270–270v. ]
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