
Reinvigorating pen-and-paper proofs in VDM:
the pointfree approach

J.N. Oliveira

Dept. Informática,
Universidade do Minho

Braga, Portugal

VDM’06 Workshop
Newcastle, 27-28 November 2006



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Formal methods

Adopting a formal notation standard such as VDM-SL isn’t
enough:

• abstract models involve conditions which lead to

• proof obligations that need to be discharged

As in other branches of engineering

e = m + c

that is,

engineering = model first, then calculate . . .

Calculate? Verify?

We know how to calculate since the school desk...



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Formal methods

Adopting a formal notation standard such as VDM-SL isn’t
enough:

• abstract models involve conditions which lead to

• proof obligations that need to be discharged

As in other branches of engineering

e = m + c

that is,

engineering = model first, then calculate . . .

Calculate? Verify?

We know how to calculate since the school desk...



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Formal methods

Adopting a formal notation standard such as VDM-SL isn’t
enough:

• abstract models involve conditions which lead to

• proof obligations that need to be discharged

As in other branches of engineering

e = m + c

that is,

engineering = model first, then calculate . . .

Calculate? Verify?

We know how to calculate since the school desk...



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Tradition on “al-djabr” equational reasoning

Examples of “al-djabr” rules: in arithmetics

x − z ≤ y ≡ x ≤ y + z

In logics:

(x ∧ ¬ z ) ⇒ y ≡ x ⇒ (y ∨ z )

“Al-djabr” rules are known since the 9c. (They are nowadays
known as Galois connections.)

Question
Can VDM proof obligations be calculated along the same
tradition?



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Tradition on “al-djabr” equational reasoning

Examples of “al-djabr” rules: in arithmetics

x − z ≤ y ≡ x ≤ y + z

In logics:

(x ∧ ¬ z ) ⇒ y ≡ x ⇒ (y ∨ z )

“Al-djabr” rules are known since the 9c. (They are nowadays
known as Galois connections.)

Question
Can VDM proof obligations be calculated along the same
tradition?



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

By the way

Nunes’ Libro de Algebra en Arithmetica y Geometria (1567)

(...) ho inuẽtor desta arte

foy hum Mathematico

Mouro, cujo nome era

Gebre, & ha em alguãs

Liuarias hum pequeno

tractado Arauigo, que

contem os capitulos de q̃

usamos

(fol. a ij r)

Reference to On the calculus of al-gabr and al-muqâbala 1 by Abû
Abd Allâh Muhamad B. Mûsâ Al-Huwârizm̂ı, a famous 9c Persian
mathematician.

1Original title: Kitâb al-muhtasar fi hisab al-gabr wa-almuqâbala.



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Examples of proof obligations

The following are standard in VDM:

• Satisfiability: a pre/post pair is satisfiable iff

∀ a · pre(a) ⇒∃ b · post(a, b) (1)

• Invariants: in case the pre/post pair specifies an operation
over a state with invariant inv,

∀ a · pre(a) ⇒∃ b · inv(b) ∧ post(a, b) (2)

Moreover, invariants are to be maintained:

∀ b, a · pre(a) ∧ post(a, b) ∧ inv(a) ⇒ inv(b) (3)



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Examples of proof obligations

The following are standard in VDM:

• Satisfiability: a pre/post pair is satisfiable iff

∀ a · pre(a) ⇒∃ b · post(a, b) (1)

• Invariants: in case the pre/post pair specifies an operation
over a state with invariant inv,

∀ a · pre(a) ⇒∃ b · inv(b) ∧ post(a, b) (2)

Moreover, invariants are to be maintained:

∀ b, a · pre(a) ∧ post(a, b) ∧ inv(a) ⇒ inv(b) (3)



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Impact of (universal) quantification

Quantifiers:

• ∃ — easy to discharge (eg. by counter-examples)

• ∀ — hard to calculate with (in general), leading to (complex)
inductive proofs.

What can we do about this?

• Mechanical proof support is one way

• Investigation of alternative calculation methods is another

An analogy:

〈∀ x : 0 < x < 10 : x2 ≥ x〉

〈

∫
x : 0 < x < 10 : x2 − x〉

How has traditional engineering mathematics tackled the
complexity brought about by

∫
’s and ∂/∂x ’s?



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Impact of (universal) quantification

Quantifiers:

• ∃ — easy to discharge (eg. by counter-examples)

• ∀ — hard to calculate with (in general), leading to (complex)
inductive proofs.

What can we do about this?

• Mechanical proof support is one way

• Investigation of alternative calculation methods is another

An analogy:

〈∀ x : 0 < x < 10 : x2 ≥ x〉

〈

∫
x : 0 < x < 10 : x2 − x〉

How has traditional engineering mathematics tackled the
complexity brought about by

∫
’s and ∂/∂x ’s?



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

The Laplace transform

(L f )s =
∫
∞

0 e−st f (t)dt

f (t) L(f )

1 1
s

t 1
s2

tn n!
sn+1

eat 1
s−a

etc

Pierre Laplace (1749-1827)



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

How it works

t-space s-space

Given problem

y ′′ + 4y ′ + 3y = 0
y(0) = 3
y ′(0) = 1

//

Subsidiary equation

s2 + 4sY + 3Y = 3s + 13

��

Solution of given problem

y(t) = −2e−3t + 5e−t

Solution of subs. equation

Y = −2
s+3

+ 5
s+1

oo



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

An “s-space analog” for logical quantification

The pointfree (PF) transform

φ PF φ

〈∃ a : : b R a ∧ a S c〉 b(R · S)c
〈∀ a, b : : b R a ⇒ b S a〉 R ⊆ S

〈∀ a : : a R a〉 id ⊆ R
〈∀ x : : x R b ⇒ x S a〉 b(R \ S)a
〈∀ c : : b R c ⇒ a S c〉 a(S / R)b

b R a ∧ c S a (b, c)〈R ,S〉a
b R a ∧ d S c (b, d)(R × S)(a, c)
b R a ∧ b S a b (R ∩ S) a
b R a ∨ b S a b (R ∪ S) a
(f b) R (g a) b(f ◦ · R · g)a

True b ⊤ a
False b ⊥ a



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

A transform for logic and set-theory

An old idea

PF(sets, predicates) = binary relations

Calculus of binary relations

• 1860 - introduced by De Morgan, embryonic

• 1941 - Tarski’s school, cf. A Formalization of Set Theory
without Variables

• 1980’s - coreflexive models of sets (Freyd and Scedrov,
Eindhoven school)

Unifying approach

Everything is a (binary) relation



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

A transform for logic and set-theory

An old idea

PF(sets, predicates) = binary relations

Calculus of binary relations

• 1860 - introduced by De Morgan, embryonic

• 1941 - Tarski’s school, cf. A Formalization of Set Theory
without Variables

• 1980’s - coreflexive models of sets (Freyd and Scedrov,
Eindhoven school)

Unifying approach

Everything is a (binary) relation



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Binary Relations

Arrow notation

Arrow A
R // B denotes a binary relation to B (target) from A

(source).

Identity of composition

id such that R · id = id · R = R

Converse
Converse of R — R◦ such that a(R◦)b iff b R a.

Ordering

“R ⊆ S — the “R is at most S” — the obvious R ⊆ S ordering.



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Binary relation taxonomy

Recall
endo-relation

symmetric transitive reflexive anti-symmetric connected

per preorder

coreflexive equivalence partial order

id linear order

where a relation A
R // A is

reflexive: iff idA ⊆ R

coreflexive: iff R ⊆ idA

transitive: iff R · R ⊆ R

anti-symmetric: iff R ∩ R◦ ⊆ idA

symmetric: iff R ⊆ R◦(≡ R = R◦)

connected: iff R ∪ R◦ = ⊤



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Binary relation taxonomy

Recall
endo-relation

symmetric transitive reflexive anti-symmetric connected

per preorder

coreflexive equivalence partial order

id linear order

where a relation A
R // A is

reflexive: iff idA ⊆ R

coreflexive: iff R ⊆ idA

transitive: iff R · R ⊆ R

anti-symmetric: iff R ∩ R◦ ⊆ idA

symmetric: iff R ⊆ R◦(≡ R = R◦)

connected: iff R ∪ R◦ = ⊤



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Binary relation taxonomy

The whole picture:
relation

injective entire simple surjective

representation function abstraction

injection surjection

bijection

where

Reflexive Coreflexive

ker R entire R injective R

img R surjective R simple R

ker R = R◦ · R
imgR = R · R◦



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Functions in one slide

• A function f is a binary relation such that

Pointwise Pointfree
“Left” Uniqueness

b f a ∧ b′ f a ⇒ b = b′ img f ⊆ id (f is simple)
Leibniz principle

a = a′ ⇒ f a = f a′ id ⊆ ker f (f is entire)

• Back to useful “al-djabr” rules (GCs):

f · R ⊆ S ≡ R ⊆ f ◦ · S

R · f ◦ ⊆ S ≡ R ⊆ S · f

• Equality:

f ⊆ g ≡ f = g ≡ f ⊇ g



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Functions in one slide

• A function f is a binary relation such that

Pointwise Pointfree
“Left” Uniqueness

b f a ∧ b′ f a ⇒ b = b′ img f ⊆ id (f is simple)
Leibniz principle

a = a′ ⇒ f a = f a′ id ⊆ ker f (f is entire)

• Back to useful “al-djabr” rules (GCs):

f · R ⊆ S ≡ R ⊆ f ◦ · S

R · f ◦ ⊆ S ≡ R ⊆ S · f

• Equality:

f ⊆ g ≡ f = g ≡ f ⊇ g



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Simple relations in one slide

• “Al-djabr” rules for simple M:

M · R ⊆ T ≡ (δM) · R ⊆ M◦ · T (4)

R · M◦ ⊆ T ≡ R · δM ⊆ T · M (5)

where

δ R = ker R ∩ id

(=domain of R) is the coreflexive part of ker R .

• Equality

M = N ≡ M ⊆ N ∧ δN ⊆ δM (6)

follows from (4, 5).



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Simple relations in one slide

• “Al-djabr” rules for simple M:

M · R ⊆ T ≡ (δM) · R ⊆ M◦ · T (4)

R · M◦ ⊆ T ≡ R · δM ⊆ T · M (5)

where

δ R = ker R ∩ id

(=domain of R) is the coreflexive part of ker R .

• Equality

M = N ≡ M ⊆ N ∧ δN ⊆ δM (6)

follows from (4, 5).



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Predicates PF-transformed

• Binary predicates :

R = [[b]] ≡ (y R x ≡ b(y , x))

• Unary predicates become fragments of id (coreflexives) :

R = [[p]] ≡ (y R x ≡ (p x) ∧ x = y)

eg.

[[1 ≤ x ≤ 4]] =



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Boolean algebra of coreflexives

[[p ∧ q]] = [[p]] · [[q]] (7)

[[p ∨ q]] = [[p]] ∪ [[q]] (8)

[[¬p]] = id − [[p]] (9)

[[false]] = ⊥ (10)

[[true]] = id (11)

Note the very useful fact that conjunction of coreflexives is
composition



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

LPF versus PF-transform

Example

PF-calculation of “partial” implication [5]:

∀ i , j ∈ ZZ · i ≥ j ⇒ subp(i , j) = i − j

where

subp : ZZ × ZZ → ZZ

subp(i , j) △ if i = j then 0 else 1 + subp(i , j + 1)



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Simplicity “does it all” — I think

First step — calculate its PF-transform:

(i , j) ∈ δ Subp ⇒ (i − j) Subp (i , j)

≡ { PF-transform rule (f b) R (g a) ≡ b(f ◦ · R · g)a }

δ Subp ⊆ (−)◦ · Subp

≡ { converses }

δ Subp ⊆ Subp◦ · (−)

≡ { “al-djabr” (simple relations) }

Subp ⊆ (−)

Second step: calculate Subp ⊆ (−), see overleaf



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Does Subp ⊆ (−) hold?

We draw

subp : ZZ × ZZ → ZZ

subp(i , j) △ if i = j then 0 else 1 + subp(i , j + 1)

in a “divide & conqueur” diagram:

ZZ × ZZ
D //

Subp

��

1 + ZZ × ZZ

id+Subp

��

ZZ 1 + ZZc
oo

where
∆ = λ x .(x , x)
D = [∆ · !◦ , id × (−1)]◦

c = [0 , (1+)]

Thus

Subp = µX .(c · (id + X ) · D))



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Does Subp ⊆ (−) hold?

We draw

subp : ZZ × ZZ → ZZ

subp(i , j) △ if i = j then 0 else 1 + subp(i , j + 1)

in a “divide & conqueur” diagram:

ZZ × ZZ
D //

Subp

��

1 + ZZ × ZZ

id+Subp

��

ZZ 1 + ZZc
oo

where
∆ = λ x .(x , x)
D = [∆ · !◦ , id × (−1)]◦

c = [0 , (1+)]

Thus

Subp = µX .(c · (id + X ) · D))



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Does Subp ⊆ (−) hold?

Our calculation is based on the fixpoint rule:

µg ⊆ X ⇐ g X ⊆ X (12)

as follows

Subp ⊆ (−)

⇐ { fixpoint rule , for g X = c · (id + X ) · D }

c · (id + (−)) · D ⊆ (−)

≡ { unfold c and D }

[0 , (1+) · (−)] · [∆ · !◦ , id × (−1)]
◦

⊆ (−)

≡ { converses and coproducts }



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Calculate implication

0 · ∆◦ ∪ (1+) · (−) · (id × (−1))◦ ⊆ (−)

≡ { “al-djabr”s of ∪ and functions }

0 = (−) · ∆
(1+) · (−) = (−) · (id × (−1))

≡ { go pointwise }

0 = i − i
1 + (i − j) = i − (j − 1)

≡ { arithmetics }

true

In fact, it can be further shown that the implication is an equivalence —
let us see how:



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

The other side of the equivalence

∀ i , j ∈ ZZ · subp(i , j) = i − j ⇒ i ≥ j

≡ { PF-transform }

(−)◦ · Subp ∩ id ⊆ δ Subp

⇐ { Dedekind ; domain is the coreflexive part of kernel }

((−)◦ ∩ Subp◦) · Subp ⊆ Subp◦ · Subp

≡ { converses ; Subp ⊆ (−), as calculated above }

Subp◦ · Subp ⊆ Subp◦ · Subp

≡ { trivial }

true



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Proof obligations (PF-transformed)

Let

Inv = [[inv ]] (a coreflexive)

Pre = [[pre]] (a coreflexive)

Post = [[post]]

in

Spec △ Post · Pre

and recall eg.

∀ a · pre(a) ⇒∃ b · post(a, b) (13)

∀ b, a · pre(a) ∧ post(a, b) ∧ inv(a) ⇒ inv(b) (14)

Then



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Proof obligations (PF-transformed)

Let

Inv = [[inv ]] (a coreflexive)

Pre = [[pre]] (a coreflexive)

Post = [[post]]

in

Spec △ Post · Pre

and recall eg.

∀ a · pre(a) ⇒∃ b · post(a, b) (13)

∀ b, a · pre(a) ∧ post(a, b) ∧ inv(a) ⇒ inv(b) (14)

Then



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Proof obligations (PF-transformed)

1. Satisfiability — (13) PF-transforms to

Pre ⊆ δ Post (15)
equivalent to

Pre ⊆ ⊤ · Post

2. Invariants — (14) PF-transforms to

ρ (Spec · Inv) ⊆ Inv (16)
equivalent to

Spec · Inv ⊆ Inv · Spec (17)



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Proof obligations (PF-transformed)

1. Satisfiability — (13) PF-transforms to

Pre ⊆ δ Post (15)
equivalent to

Pre ⊆ ⊤ · Post

2. Invariants — (14) PF-transforms to

ρ (Spec · Inv) ⊆ Inv (16)
equivalent to

Spec · Inv ⊆ Inv · Spec (17)



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Proof obligations (PF-transformed)

Functions
The special case of (17) where Spec is a function f ,

f · Inv ⊆ Inv · f (18)

maps back to the pointwise

∀ a · inv(a) ⇒ inv(f (a)) (19)



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Invariants in general

In general, let A
Spec

// B be a spec over two datatypes A and B
each with its invariant, say Φ and Ψ, respectively. Then (18)
generalizes to

Spec · Φ ⊆ Ψ · Spec (20)

We will write

Φ
Spec

// Ψ (21)

to mean Spec · Φ ⊆ Ψ · Spec . Thus,

1. invariants can be regarded as types and

2. invariant preservation can be re-written as a type discipline,
eg.

Φ
R // Ψ , Ψ

S // Γ

Φ
S·R // Γ

(22)

(composition),



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Invariants in general

In general, let A
Spec

// B be a spec over two datatypes A and B
each with its invariant, say Φ and Ψ, respectively. Then (18)
generalizes to

Spec · Φ ⊆ Ψ · Spec (20)

We will write

Φ
Spec

// Ψ (21)

to mean Spec · Φ ⊆ Ψ · Spec . Thus,

1. invariants can be regarded as types and

2. invariant preservation can be re-written as a type discipline,
eg.

Φ
R // Ψ , Ψ

S // Γ

Φ
S·R // Γ

(22)

(composition),



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Invariants in general

In general, let A
Spec

// B be a spec over two datatypes A and B
each with its invariant, say Φ and Ψ, respectively. Then (18)
generalizes to

Spec · Φ ⊆ Ψ · Spec (20)

We will write

Φ
Spec

// Ψ (21)

to mean Spec · Φ ⊆ Ψ · Spec . Thus,

1. invariants can be regarded as types and

2. invariant preservation can be re-written as a type discipline,
eg.

Φ
R // Ψ , Ψ

S // Γ

Φ
S·R // Γ

(22)

(composition),



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Invariants “are” types

Φ
R // Ψ ,Φ′ ⊆ Φ

Φ′
R // Ψ

,
Ψ′ ⊆ Ψ, Φ

R // Ψ′

Φ
R // Ψ

(23)

(sub-typing), etc

Compare this invariants-as-types PF-theory with

Quoting [4], p.116
The valid objects of Datec are those which (...) satisfy inv-Datec. This
has a profound consequence for the type mechanism of the notation. (...)
The inclusion of a sub-typing mechanism which allows truth-valued
functions forces the type checking here to rely on proofs.



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Invariants “are” types

Φ
R // Ψ ,Φ′ ⊆ Φ

Φ′
R // Ψ

,
Ψ′ ⊆ Ψ, Φ

R // Ψ′

Φ
R // Ψ

(23)

(sub-typing), etc

Compare this invariants-as-types PF-theory with

Quoting [4], p.116
The valid objects of Datec are those which (...) satisfy inv-Datec. This
has a profound consequence for the type mechanism of the notation. (...)
The inclusion of a sub-typing mechanism which allows truth-valued
functions forces the type checking here to rely on proofs.



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Data structures PF-transformed

• Relational databases resort to the mathematical notion of a
relation to model data.

Why not do the same in VDM?

• In the sequel we regard VDM finite mappings (A →̃ B) as
simple relations and resort to “al-djabr” rules to prove
invariant preservation

• Why?
• No need for induction

• Proofs don’t even require finiteness
• (Quite a few) results of the standard VDM theory of mappings

• extend further to arbitrary binary relations
• are equivalences, not just implications



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Data structures PF-transformed

• Relational databases resort to the mathematical notion of a
relation to model data.

Why not do the same in VDM?

• In the sequel we regard VDM finite mappings (A →̃ B) as
simple relations and resort to “al-djabr” rules to prove
invariant preservation

• Why?
• No need for induction

• Proofs don’t even require finiteness
• (Quite a few) results of the standard VDM theory of mappings

• extend further to arbitrary binary relations
• are equivalences, not just implications



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

VDM mappings are finite simple relations

This leads to a PF-transformed mapping theory, eg.

Mapping comprehension

{g(a) 7→ f (M(a)) | a ∈ dom M}

PF-transforms to

f · M · g◦ (24)

However
Need to ensure simplicity of the comprehension, see next slide



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

VDM mappings are finite simple relations

This leads to a PF-transformed mapping theory, eg.

Mapping comprehension

{g(a) 7→ f (M(a)) | a ∈ dom M}

PF-transforms to

f · M · g◦ (24)

However
Need to ensure simplicity of the comprehension, see next slide



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Mapping comprehension — “simple” simplicity argument

f · M · g◦ · (f · M · g◦)◦ ⊆ id

≡ { converses }

f · M · g◦ · g · M◦ · f ◦ ⊆ id

≡ { “al-djabr” }

M · g◦ · g · M◦ ⊆ f ◦ · f

≡ { definition of kernel of a relation }

ker (g · M◦) ⊆ ker f

≡ { injectivity preorder R ≤ S ≡ kerS ⊆ kerR }

f ≤ g · M◦

That is to say, M satisfies the g → f functional dependency [6]
(always fine wherever g is injective).



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Straight from the VDM-SL on-line manual

Operator Name Semantics description

m1 † m2 Override

overrides and merges m1 with m2, i.e. it is like
a merge except that m1 and m2 need not be
compatible; any common elements are as by m2

(so m2 overrides m1.)

PF (formal) semantics:

[[m1 † m2]] = [[m2]] → [[m2]] , [[m1]]

which resorts to the relational version of McCarthy conditional:

R → S , T
def
= (S · δ R) ∪ (T · ¬δ R)



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Straight from the VDM-SL on-line manual

Operator Name Semantics description

m1 † m2 Override

overrides and merges m1 with m2, i.e. it is like
a merge except that m1 and m2 need not be
compatible; any common elements are as by m2

(so m2 overrides m1.)

PF (formal) semantics:

[[m1 † m2]] = [[m2]] → [[m2]] , [[m1]]

which resorts to the relational version of McCarthy conditional:

R → S , T
def
= (S · δ R) ∪ (T · ¬δ R)



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Mapping override

From PF-definition

M † N
def
= N → N , M (25)

equivalent to

M † N = N ∪ M · (¬δN) (26)

it is easy to show

M † M = M (27)

M † ⊥ = ⊥ † M = M (28)

More generally, equivalences

N ⊆ M ≡ M † N = M (29)

δM ⊆ δN ≡ M † N = N (30)

hold.



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Override is associative (Lemma 6.7 in [4] — †-ass)

(R † S) † P

= { (25) twice }

P → P , (S → S , R)

= { (26) twice }

P ∪ (S ∪ R · (¬δ S)) · (¬δ P)

= { distribution ; de Rorgan }

P ∪ S · (¬δ P) ∪ R · (¬(δ S ∪ δ P))

= { (26) ; domain of override }

(S † P) ∪ R · (¬δ (S † P))

= { (26) }

R † (S † P)

Important

• Holds for
arbitrary

relations

• No need of
induction



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Override is associative (Lemma 6.7 in [4] — †-ass)

(R † S) † P

= { (25) twice }

P → P , (S → S , R)

= { (26) twice }

P ∪ (S ∪ R · (¬δ S)) · (¬δ P)

= { distribution ; de Rorgan }

P ∪ S · (¬δ P) ∪ R · (¬(δ S ∪ δ P))

= { (26) ; domain of override }

(S † P) ∪ R · (¬δ (S † P))

= { (26) }

R † (S † P)

Important

• Holds for
arbitrary

relations

• No need of
induction



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

The ubiquitous finite mapping

Usual “design paterns” in VDM modelling:

• Classification: A →̃ B where the type of interest is A and B
is a classifier

Cf. recording (partial) equivalence relations [4]:
ker M = R◦ · R for M simple is always a per (partial
equivalence relation).

• Quantification: Bag A △ A →̃ IN (bags, orders, invoices etc)

• Identification: K →̃ A where A is the TOI and K is a space
of keys (eg. name-spaces, database entities, objects, etc)

• Heaps: K →̃ F(A,K ) where K is an address space (eg. in
modelling memory management)



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

PF-transformed invariants

Typical invariant patterns associated to the identification design
pattern are

• Referential integrity:

M � N or M◦ � N

where � denotes the mapping definition partial order

M � N = δM ⊆ δN (31)

• Range-wise property: because the TOI is in the range, a
typical VDM invariant pattern arises, ∀ a ∈ rng M · ψ(a)
which PF-transforms to

M ⊆ Ψ · M (32)



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

CRUD = identification + persistence

CRUD?

Wikipedia
In computing, CRUD is an acronym for Create, Read, Update, and
Delete. (...) It is used as a shorthand way to refer to the four basic
functions of persistence, which is a major part of nearly all computer
software.

CRUD on mapping M:

• Create(N): M 7→ N † M
• Read(a): b such that b M a
• Update(f ,Φ): M 7→ M † f · M · Φ
• Delete(Φ): M 7→ M · (¬Φ)

Example of proof discharge by PF-calculation: range-wise

invariant preservation by (selective) update



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

CRUD = identification + persistence

CRUD?

Wikipedia
In computing, CRUD is an acronym for Create, Read, Update, and
Delete. (...) It is used as a shorthand way to refer to the four basic
functions of persistence, which is a major part of nearly all computer
software.

CRUD on mapping M:

• Create(N): M 7→ N † M
• Read(a): b such that b M a
• Update(f ,Φ): M 7→ M † f · M · Φ
• Delete(Φ): M 7→ M · (¬Φ)

Example of proof discharge by PF-calculation: range-wise

invariant preservation by (selective) update



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Selective update

Notation shorthand

M f
Φ

△ M † f · M · Φ (33)

Very easy to show:

M id
Φ = M (34)

M f
⊥ = M (35)

M f
id = f · M (36)

Now, how does selective update ( f
Φ) preserve

inv M △ M ⊆ Ψ · M



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Proof discharge by PF-calculation

We have to find conditions for ( f
Φ) to bear type

Inv
( f

Φ)
// Inv (37)

Since ( f
Φ ) is a function, the proof discharge is easy (19), for all M:

inv(M) ⇒ inv(M f
Φ))

≡ { expand inv(M) }

M ⊆ Ψ · M ⇒ M f
Φ ⊆ Ψ · M f

Φ

≡ { since Ψ · M ⊆ M }

M = Ψ · M ⇒ M f
Φ ⊆ Ψ · M f

Φ

So we focus on M f
Φ ⊆ Ψ · M f

Φ, assuming M = Ψ · M:



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Proof discharge by PF-calculation

M f
Φ ⊆ Ψ · M f

Φ

≡ { (33) twice }

M † f · M · Φ ⊆ Ψ · (M † f · M · Φ)

≡ { M = Ψ · M ; distribution }

(Ψ · M) † f · (Ψ · M) · Φ ⊆ (Ψ · M) † (Ψ · f · M · Φ)

⇐ { monotonicity }

f · Ψ ⊆ Ψ · f

≡ { (21) — of course! }

Ψ
f // Ψ



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Other variations on mappings

Mapping aliasing

In computing, aliasing means multiple names for the same data
location.

VDM (pointwise)

alias(a, b,M) △

M † ( if b ∈ dom M then {a 7→ M(b))} else {7→} )

PF-transform

alias(a, b,M) △ M † M · b · a◦

where a and b are constant functions.



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Other variations on mappings

Mapping aliasing

In computing, aliasing means multiple names for the same data
location.

VDM (pointwise)

alias(a, b,M) △

M † ( if b ∈ dom M then {a 7→ M(b))} else {7→} )

PF-transform

alias(a, b,M) △ M † M · b · a◦

where a and b are constant functions.



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Aliasing

Notation shorthand
Ma:=b for M † M · b · a◦ (suggestive of eg. regarding M as a piece
of memory and a and b variable names or addresses.)

Sample properties

• Identity:

Ma:=a = M (38)

• Idempotency:

(Ma:=b)a:=b = Ma:=b (39)

both instances of

Ma:=b = M ≡ M · b ⊆ M · a (40)



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Aliasing

Notation shorthand
Ma:=b for M † M · b · a◦ (suggestive of eg. regarding M as a piece
of memory and a and b variable names or addresses.)

Sample properties

• Identity:

Ma:=a = M (38)

• Idempotency:

(Ma:=b)a:=b = Ma:=b (39)

both instances of

Ma:=b = M ≡ M · b ⊆ M · a (40)



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Aliasing

Notation shorthand
Ma:=b for M † M · b · a◦ (suggestive of eg. regarding M as a piece
of memory and a and b variable names or addresses.)

Sample properties

• Identity:

Ma:=a = M (38)

• Idempotency:

(Ma:=b)a:=b = Ma:=b (39)

both instances of

Ma:=b = M ≡ M · b ⊆ M · a (40)



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Equating extends aliasing

Let us move on to the classification design pattern, and recall the
problem of Recording equivalence relations [4]:

Equate a and b

VDM:

equate(a, b,M) △

M † {x 7→ M(b)) | x ∈ dom M ∧ M(x) = M(a)}

PF-transform

equate(a, b,M) △ M † M · b · a◦ · (ker M)

Thus equate is an “evolution” of aliasing, equivalent to

M † (M · b) · (M · a)◦ · M



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Equating extends aliasing

Let us move on to the classification design pattern, and recall the
problem of Recording equivalence relations [4]:

Equate a and b

VDM:

equate(a, b,M) △

M † {x 7→ M(b)) | x ∈ dom M ∧ M(x) = M(a)}

PF-transform

equate(a, b,M) △ M † M · b · a◦ · (ker M)

Thus equate is an “evolution” of aliasing, equivalent to

M † (M · b) · (M · a)◦ · M



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Equating extends aliasing

Let us move on to the classification design pattern, and recall the
problem of Recording equivalence relations [4]:

Equate a and b

VDM:

equate(a, b,M) △

M † {x 7→ M(b)) | x ∈ dom M ∧ M(x) = M(a)}

PF-transform

equate(a, b,M) △ M † M · b · a◦ · (ker M)

Thus equate is an “evolution” of aliasing, equivalent to

M † (M · b) · (M · a)◦ · M



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Reasoning about equate

Abstraction function
Two mappings M,N represent the same PER iff

ker M = ker N

(ker is the abstraction function)

Properties of equate

Writing Ma≃b as abbreviation of M † (M · b) · (M · a)◦ · M:

Ma≃a = M (41)

ker Ma≃b = ker Mb≃a (42)

and so on.



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Reasoning about equate

Abstraction function
Two mappings M,N represent the same PER iff

ker M = ker N

(ker is the abstraction function)

Properties of equate

Writing Ma≃b as abbreviation of M † (M · b) · (M · a)◦ · M:

Ma≃a = M (41)

ker Ma≃b = ker Mb≃a (42)

and so on.



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Summary

• Learn with the other engineering disciplines

• Rôle of PF-patterns (advantage of “writing less symbols”), eg.
easier to spot al-djabr rule

• Shift from “implication first” to “calculational” logic

“Chase” equivalence : bad use of implication-first
logic may lead to “50% loss in theory”

• PF-transform: need for a cultural “shift”?



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Inspiration

• John Backus Algebra of Programs (1978) [2]

• Binary relations already in Cliff’s thesis (1981) [3]

• Bird-Meertens-Backhouse approach [1]



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Context

• Coalgebraic semantics for components and objects

• Possibly applicable to VDM(++)

• Invariants regarded as coreflexive bisimulations in the
underlying coalgebra theory

• Finite mappings PF-reasoning relates to on-going work in
database theory “refactoring” [6]



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Current work

• Impact of partial predicates in PF-transform (LPP instead of
LPF?)

• Foundations: which approach to undefinedness? LPF [5]?
Dijkstra/Scholten’s (and variations thereof)? [7]

• Prospect for tool support:
• RelView (Kiel)
• ’G’alculator project (Minho)



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Limitations of RELVIEW

• RELVIEW only works on relations with finite domains.

• Relations between elements have to be explicitly defined.

• Thus, it is very specific and not usable in the general cases.

• We need a more generic tool . . .



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Galculator

• Galculator implements relation algebra.

• Relational calculus is done by expression manipulation.

• Manipulation is performed by a strategic typed term-rewriting
system implemented using Haskell and GADTs.

• Galois connections are used as rewriting rules allowing the
exploitation of proofs by indirect equality.



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Closing

“Algebra (...) is thing causing admiration”

(...) “Mainly because we see often a great Mathematician
unable to resolve a question by Geometrical means, and
solve it by Algebra, being that same Algebra taken from
Geometry, which is thing causing admiration.”

— my (literal, not literary) translation of:

(...) Principalmente que vemos algumas vezes, no poder vn
gran Mathematico resoluer vna question por medios
Geometricos, y resolverla por Algebra, siendo la misma Algebra
sacada de la Geometria, q̃ es cosa de admiraciõ.

[ Pedro Nunes (1502-1578) in Libro de Algebra en Arithmetica y

Geometria, 1567, fols. 270–270v. ]



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

Closing

“Algebra (...) is thing causing admiration”

(...) “Mainly because we see often a great Mathematician
unable to resolve a question by Geometrical means, and
solve it by Algebra, being that same Algebra taken from
Geometry, which is thing causing admiration.”

— my (literal, not literary) translation of:

(...) Principalmente que vemos algumas vezes, no poder vn
gran Mathematico resoluer vna question por medios
Geometricos, y resolverla por Algebra, siendo la misma Algebra
sacada de la Geometria, q̃ es cosa de admiraciõ.

[ Pedro Nunes (1502-1578) in Libro de Algebra en Arithmetica y

Geometria, 1567, fols. 270–270v. ]



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

R.C. Backhouse.
Mathematics of Program Construction.
Univ. of Nottingham, 2004.
Draft of book in preparation. 608 pages.

J. Backus.
Can programming be liberated from the von Neumann style? a
functional style and its algebra of programs.
, 21(8):613–639, August 1978.

C.B. Jones.
Development Methods for Computer Programs including a
Notion of Interference.
PhD thesis, Oxford University, June 1981.
Printed as: Programming Research Group, Technical
Monograph 25.

C.B. Jones.
Systematic Software Development Using VDM.
Series in Computer Science. Prentice-Hall International, 1986.



Motivation Obligations Laplace PF-transform LPF/PF Invariants PF data VDM maps Summary Concerns Closing

C.A. R. Hoare.

C.B. Jones.
Reasoning about partial functions in the formal development
of programs.
pages 3–25. ENTCS, volume 145, Elsevier, 2006.

J.N. Oliveira.
Pointfree foundations for lossless decomposition, 2006.
Draft of paper in preparation.

B. Schieder and M. Broy.
Adapting calculational logic to the undedfined.
The Computer Journal, 42(2):74–81, 1999.


	Motivation
	Obligations
	Laplace
	PF-transform
	LPF/PF
	Invariants
	PF data
	VDM maps
	Summary
	Concerns
	Closing

