To be or not to be (LPF)

John Fitzgerald Cliff Jones

The Logic of Partial Functions

Undefinedness is commonplace

```
hd []
if s <> [] then hd s else nil
d in set dom m and m(d) = 3

subp(i,j) == if i=j then 0 else subp(i,j+1)+1
```

- A generalisation of classical logic
- Admits undefinedness, e.g.

$$x = 0 \lor x/x = 1$$

application of partial functions outside their domains

■ The model theory adds "⊥"

<u> </u>	T	F	\perp	\neg	
Т	Т	Т	Т	T F	F
F	Т	F	\perp	F	Т
\perp	Т	\perp	\perp	\perp	上

■ The proof theory builds on true, ∨, ¬

true-I true Ax

$$v-E$$
 $el \lor e2 ; el \models e ; e2 \models e$
 $el \lor e2 ; el \models e ; e2 \models e$
 $el \lor e2 ; el \models e ; e2 \models e$
 $el \lor e2 ; el \models e ; e2 \models e$
 $el \lor e2 ; el \models e ; e2 \models e$
 $el \lor e2 ; el \models e ; e2 \models e$
 $el \lor e2 ; el \models e ; e2 \models e$
 $el \lor e2 ; el \models e ; e2 \models e$
 $el \lor e2 ; el \models e ; e2 \models e$
 $el \lor e2 ; el \models e ; e2 \models e$
 $el \lor e2 ; el \models e ; e2 \models e$
 $el \lor e2 ; el \models e ; e2 \models e$
 $el \lor e2 ; el \models e ; e2 \models e$
 $el \lor e2 ; el \models e ; e2 \models e$
 $el \lor e2 ; el \models e ; e2 \models e$
 $el \lor e2 ; el \models e ; e2 \models e$
 $el \lor e2 ; el \models e ; e2 \models e$
 $el \lor e2 ; el \models e ; e2 \models e$
 $el \lor e2 ; el \models e ; e2 \models e$
 $el \lor e2 ; el \models e ; e2 \models e$
 $el \lor e2 ; el \models e ; e2 \models e$
 $el \lor e2 ; el \models e ; e2 \models e$
 $el \lor e2 ; el \models e ; e2 \models e$
 $el \lor e2 ; el \models e ; e2 \models e$
 $el \lor e2 ; el \models e ; e2 \models e$
 $el \lor e2 ; el \models e ; e2 \models e$
 $el \lor e2 ; el \models e ; e2 \models e$
 $el \lor e2 ; el \models e ; e2 \models e$
 $el \lor e2 ; el \models e ; e2 \models e$
 $el \lor e2 ; el \models e ; e2 \models e$
 $el \lor e2 ; el \models e ; e2 \models e$
 $el \lor e2 ; el \models e ; e2 \models e$
 $el \lor e2 ; el \models e ; e2 \models e$
 $el \lor e2 ; el \models e ; e2 \models e$
 $el \lor e2 ; el \models e ; e2 \models e$
 $el \lor e2 ; el \models e ; e2 \models e$
 $el \lor e2 ; el \models e ; e2 \models e$
 $el \lor e2 ; el \models e ; e2 \models e$
 $el \lor e2 ; el \models e ; e2 \models e$
 $el \lor e2 ; el \models e ; e2 \models e$
 $el \lor e2 ; el \models e ; e2 \models e$
 $el \lor e2 ; el \models e ; e2 \models e$
 $el \lor e2 ; el \models e ; e2 \models e$
 $el \lor e2 ; el \vdash e ; e2 \models e$
 $el \lor e2 ; el \vdash e ; e2 \models e$
 $el \lor e2 ; el \vdash e ; e2 \models e$
 $el \lor e2 ; el \vdash e ; e2 \models e$
 $el \lor e2 ; el \vdash e ; e2 \models e$
 $el \lor e2 ; el \vdash e ; e2 \vdash e$
 $el \lor e2 ; el \vdash e2 ; e$

Definitions

false
$$\underline{\Delta} \neg \text{true}$$
 $e1 \land e2 \ \underline{\Delta} \neg (\neg e1 \lor \neg e2)$
 $e1 \Rightarrow e2 \ \underline{\Delta} \neg e1 \lor e2$
 $e1 \Leftrightarrow e2 \ \underline{\Delta} \ e1 \Rightarrow e2 \land e2 \Rightarrow e1$

Missing ...

The 'excluded middle'
$$e \Rightarrow e$$
 $e \lor \neg e$

The 'deduction theorem'
$$\frac{e1 + e2}{e1 \Rightarrow e2}$$

We define

$$\delta e \ \underline{\Delta} \ e \lor \neg e$$

and there are derived rules for introduction and elimination of δ

The qualified version of the excluded middle:

Typed LPF with Equality

- Undefinedness "rises" to the logic level via Boolean ops like =, < etc.
- So the definition of these ops, and the handling of definedness via typing is important.
- So ... what equality?

=	0	1	2	⊥ _N					⊥ _N
0	Т	F	F		0	Т	F	F	F F
1	F	Т	F	T	1	F	T	F	F
2	F	F	Τ	\perp	2	F	F	Т	F
\perp_{N}		1	1	Т	\perp_{N}	F	F	F	F

Weak Equality allows \perp up into the logic.

Existential Equality lets predicates denote even where operands fail to denote.

Typed LPF with Equality

Definedness interacts with the quantifiers:

Equality is "weak" (i.e. strict) in LPF:

In reasoning about VDM models, this leads to an abundance of typing hypotheses in rules relating to equality: easy but tedious to discharge (suggests automated support).

What Equality?

Consider

```
a in set dom m and m(a) = 3
```

With the first conjunct false

In FOPC with =, this is \perp

In FOPC with =∃=, this is false

In LPF with =, this is false

"Goldsmith's Conjecture"

```
-3- means provable in LPF+=
⊢ means provable in FOPC+ =∃=
                           -3- exp iff - exp
\vdash3- exp \rightarrow \vdash exp
-3- e1=e2 \rightarrow - e1 == e2
-3- e1=e2 or p \rightarrow -1 e1 = -3 e2 or p
\mid-3-\negexp \rightarrow \mid-\negexp
```

"Goldsmith's Conjecture"

```
-3- means provable in LPF+=
⊢ means provable in FOPC+ =∃=
                                     -3- exp iff - exp
\vdash \exp \rightarrow \vdash 3-\exp
\vdash e1 = \exists = e2 \rightarrow \vdash3- e1 = e2
\vdash e1 = \exists = e2 or p \rightarrow \vdash 3- e1 = e2 or p
\vdash \neg (\bot_N = \exists = 1) \quad X \rightarrow \quad \vdash 3 - \neg (\bot_N = 1)
```

So exclude negative occurrences of =∃=

Some open questions

- In the Goldsmith conjecture ... can we characterise the negative occurrence exclusion precisely? Role of delta, strong equality etc.
- Where is LPF in the spectrum (lattice?) of logics?
- LPF has properties that are suited to proof but reduce support for test-based analysis ... what is the trade-off?