Draft Fourth VDM-Overture Workshop Programme

The 26th May 2008, Co-located with FM 08, Turku, Finland

9:00 – 9:10		
Participant	Title	Abstract
Peter Gorm	Welcome and	Overview of the events that have led to the start of
Larsen and Shin	Introduction	Overture. The current status of the project will be
Sahara		presented and a list of "open issues" will be
		introduced. These issues will form the basis of the
		brainstorm session held later. New issues may, of
		course, be added as the day progresses.

9:10 - 9:35		
Participant	Title	Abstract
Zhiming Liu and	The rCOS Method in	The state of the practice in model driven
Volker Stolz	Nutshell	development is the UML-like multi-view and multi-
		notational modeling and design. However, a major
		challenge in the practice of model-based software
		development is to ensure correctness and
		dependability of the software product. To deal with
		this challenge, we need a common semantics for the
		multi-view modeling approach. In this paper, we
		discuss how the calculus of refinement of component
		and object systems, rCOS, can be used as such a
		common semantic model. The discussion focuses on
		how the main ideas, and techniques of model driven
		development can be addressed in the framework of
		rCOS, and how the problems there can be solved.
		The presentation is informal without mathematical
		formalization.

9:35: - 10:00		
Participant	Title	Abstract
Zhenbang Chen, Zhiming Liu,	The rCOS tool	The goal of the rCOS tool is to harness state of the art techniques from use case- and model driven-
Volker Stolz		development of component-based systems on top of
		UML. It facilitates both the development process and
		the persistence of formal verification artefacts in the
		model: use cases are specified in multiple views,
		using Class, Sequence and State Diagrams to capture
		their behaviour. Functionality is specified in rCOS
		pre-/postconditions based on UTP. Provably correct
		refinement steps transform the Requirements Model
		into a component-based Design Model. Consistency
		of the different views is ensured, for example by

	checking that the State Diagram accepts the protocol specified in the Sequence Diagram. For component composition, protocol compatibility is verified. To that end, either third party tools like the FDR2 model checker are invoked, or annotations to code skeletons for additional tools like the Java Modeling Language (JML) are generated. The tool is implemented on top of the Eclipse platform using a UML profile, ensuring compatibility with other UML-based software engineering tools.
--	---

10:00 - 10:30		
Participant	Title	Abstract
Kristian Bisgaard	Developing Tool	In this paper, we describe ongoing work on the
Lassen and	Support for Problem	development of tool support for formal description
Simon Tjell	Diagrams with CPN	of domains found in Problem Diagrams. The purpose
-	and VDM++	of the tool is to handle the generation of a CPN
		model based on a collection of Problem Diagrams.
		The Problem Diagrams are used for representing the
		structure and parallel decomposition of a software
		development problem while the CPN model is used
		for formal specification of assumed and desired
		behaviour of the domains found in the Problem
		Diagrams. After generation, the CPN model will be
		manually refined and during this process, it is
		repeatedly validated against structural constraints
		found in the Problem Diagrams. The generation and
		validation algorithms as well as the definitions of the
		two modelling formalisms are specified using
		VDM++.

10:30 – 11:00 Coffee break

11:00 - 11:30		
Participant	Title	Abstract
Carlos M. G.	Overture: Connecting	This paper discusses a number of possibilities for
Vilhena	VDM++ and JML	automatic conversion between VDM++ and JML, in
		both directions, as part of a project to enable
		VDM++ as a front-end for contract-based
		programming and the possible usage of tool support
		both from VDM++ and JML. In particular, the
		project aims at identifying the notational subsets for
		which the envisaged automatic translation is
		possible, as well as describing in detail all the
		limitations encountered. The development of a
		prototype proof-of-concept implementation for this
		bi-directional conversion is being carried through. At
		a latter stage this prototype will be integrated on top

	of the Eclipse platform as part of the Overture Tool.

11:30 - 12:00		
Participant	Title	Abstract
Adriana Sucena	Overture:	Testing is an important, expensive, repetitive and
Santos	Combinatorial Test Automation Support for VDM++	exhaustive task in software development. It does not guarantee that a model has no errors, but the developer can be more confident that a model is working properly after testing it. If the testing process is done along the development, it will have to be frequently repeated because a small change in the model might influence its behaviour. Repeating tests, without automation support, each time a change is made is a tedious manual task. It is also time consuming and, consequently, expensive. This paper suggests a test automation support for the Overture which may be useful for VDM++ developers.

12:00 - 12:30	12:00 – 12:30		
Participant	Title	Abstract	
Miguel Ferreira	Verifying Intel's Flash	This contribution will report on the use of Alloy and	
and Samuel	File System Core	HOL to validate and verify a VDM model of Intel's	
Silva		Flash File System Core specification. The approach	
		uses the VDMTools proof obligation generator and	
		the VDM to HOL translator developed by Sander	
		Vermolen. The VDM to Alloy conversion is manual.	
		In this "all-in-one" approach, modeling and testing	
		takes place in the VDM phase. Alloy is	
		particularly helpful in finding counter examples to	
		proof obligations. The prospect of using the point-	
		free transform as a means to simplify the proof	
		obligations submitted to Alloy (for model checking)	
		and HOL (for theorem proving) is also considered.	

12:30 – 14:00 Lunch break

14:00 - 14:30		
Participant	Title	Abstract
Hugo Macedo,	Incremental	The construction of formal models of real-time
John Fitzgerald	Development of a	distributed systems is a considerable practical
and Peter Gorm	Distributed Real-Time	challenge. We propose and illustrate a pragmatic
Larsen	Model of a Cardiac	incremental approach in which detail is progressively
	Pacing System using	added to abstract system-level specifications of
	VDM	functional and timing properties via intermediate
		models that express system architecture, concurrency
		and timing behaviour. The approach is illustrated by
		developing a new formal model of the cardiac

pacemaker system proposed as a "grand challenge" problem in 2007. The models are expressed using the Vienna Development Method (VDM) and are validated primarily by scenario-based tests, including the analysis of timed traces. We argue that the insight gained using this staged modelling approach will be valuable in the subsequent development of implementations, and in detecting potential bottlenecks within suggested implementation
architectures.

14:30 - 15:00		
Participant	Title	Abstract
Sander	Automating	The value of formal models depends upon their
Vermolen	Consistency Proofs of	consistency and the features available to prove
	VDM++ Models using	consistency. Hence, it is important to have access to
	HOL	efficient proof support which is able to automate a
		large part of the consistency proof. We have
		developed a tool that can perform an automatic
		translation of a large subset of VDM++ and its
		associate proof obligations, which ensure model
		consistency, to the theorem prover HOL. In addition,
		powerful tactics have been constructed to discard
		most of the proof obligations automatically. The
		application of our approach to a number of case
		studies shows that a high degree of automation can
		been achieved.

15:00 - 15:30		
Participant	Title	Abstract
Marcel Verhoef	Co-simulation of Distributed Embedded Real-time Control Systems – Coupling VDM++ to 20-sim	The complexity of contemporary real-time embedded control systems is increasing continuously. This is primarily caused by tighter control objectives, challenging functional and performance demands, cost-price optimizations and the use of novel, mostly distributed, system-on-chip architectures. The challenge of the system architect is to get this increased complexity under control as soon as possible, preferably using rigorous engineering approaches. Although domain specific design methods and tools are performing better, the real challenge in industry is to close the well-known inter-disciplinary design gap. The author has worked on the semantic integration of two formal techniques: VDM++ and 20-sim, to address this issue. The former method is well known from computer science, the later is well-established in control engineering. In this talk, we focus on the

it can be used in a prac a case study, we use th	port for this approach and how ctical engineering situation. As ne development of a paper path rinter to illustrate the impact of
---	--

15:30 – 16:00 Coffee break

16:00 - 16:30			
Participant	Title	Abstract	
Shin Sahara	VDMTools Past and		
	Future Plans		

16:30 – 17:30				
Participant	Title	Abstract		
All	Brainstorm session	The closing session of the day will be an open format		
		brainstorm session, intended to make progress with a		
		number of selected issues relating to Overture. Here		
		we hope to have input from Colin Snook from the		
		DEPLOY project with whom we can discuss how		
		best to share experience and sources for Eclipse		
		plug-ins.		

19:00 Workshop dinner (pay your own food and drinks)