

Parser
Development for
Overture Tools

http://www.overturetool.org

Marcel Verhoef, 25 May 2008, Fourth Overture Workshop
Abo Akademi University – Turku - Finland

Iteration One (2004)

● Pieter van der Spek (MSc thesis project, TU Delft)

– Build parser and simple pretty printer
– Experiments on improved error support in parser

generator (published as ACM Sigplan Notices)
– Delivered as Eclipse plug-in

– Limited (no) XML support
– Direct manipulation of concrete syntax tree

Iteration Two (2005)

● Jacob Porsborg Nielsen & Jens Kielsgaard Hansen
(MSc thesis project, TU Denmark)

– Re-implemented parser using ANTLR
– abstract syntax with appropriate Java interfaces
– XML support for reading / writing AST instances
– Experimented with Eclipse architecture, many useful

suggestions and prototype plug-ins

– Hand-coded AST implemention – very error prone
– Many errors in parser implemention

Meanwhile in 2006

● Address problem of AST maintenance
● Executive decision: we need a robust solution...
● ... to support language experiments
● Back To Basics: how can we re-use VDMTools parser

and know-how?
● How good are the open source jflex and byaccj tools?
● Automation is key
● “eat our own dogfood”

Automatic AST generation

OVERTURE
AST spec

(VDM-SL subset)
ASTGEN sed script

JAVA
interfaces

VDM++
classes

VDMTools

java
classes

sed

modified java
classes“implements”● specified in VDM++

● code generated

other users can use
these specs to specify
their own OVERTURE
extensions (in VDM++)

AST specification and code examples (1)

%directory "d:\projects\ShowTraceParser";
%package org.overturetool.tracefile.ast;

TraceFile ::
 Trace : seq of TraceEvent;

TraceEvent =
 ThreadSwapIn |
 DeployObj;

--
-- THREADS
--

ThreadSwapIn ::
 -- id of the thread
 id : nat
 -- id of the object
 objref : [nat]
 -- name of the class
 clnm : [seq of char]
 -- id of the CPU
 cpunm : nat
 -- swap-in overhead (time units)
 overhead : nat
 -- observation time
 time : nat;

(THE JAVA INTERFACE)

package org.overturetool.tracefile.ast.itf;

import jp.co.csk.vdm.toolbox.VDM.*;

public abstract interface IThreadSwapIn extends ITraceEvent
{

abstract Integer getId() throws CGException;
abstract Integer getObjref() throws CGException;
abstract Boolean hasObjref() throws CGException;
abstract String getClnm() throws CGException;
abstract Boolean hasClnm() throws CGException;
abstract Integer getCpunm() throws CGException;
abstract Integer getOverhead() throws CGException;
abstract Integer getTime() throws CGException;

}

AST specification and code examples (2)

%directory "d:\projects\ShowTraceParser";
%package org.overturetool.tracefile.ast;

TraceFile ::
 Trace : seq of TraceEvent;

TraceEvent =
 ThreadSwapIn |
 DeployObj;

--
-- THREADS
--

ThreadSwapIn ::
 -- id of the thread
 id : nat
 -- id of the object
 objref : [nat]
 -- name of the class
 clnm : [seq of char]
 -- id of the CPU
 cpunm : nat
 -- swap-in overhead (time units)
 overhead : nat
 -- observation time
 time : nat;

(VDM++ CLASSES - INTERFACE DEFINITION)

class IOmlThreadSwapIn

 is subclass of IOmlTraceEvent

operations
 public getId: () ==> nat

 getId() == is subclass responsibility;

operations

 public getObjref: () ==> nat

 getObjref() == is subclass responsibility;

 public hasObjref: () ==> bool

 hasObjref () == is subclass responsibility;

operations

 public getClnm: () ==> seq of char

 getClnm() == is subclass responsibility;

 public hasClnm: () ==> bool

 hasClnm () == is subclass responsibility;

...

end IOmlThreadSwapIn

AST specification and code examples (3)

%directory "d:\projects\ShowTraceParser";
%package org.overturetool.tracefile.ast;

TraceFile ::
 Trace : seq of TraceEvent;

TraceEvent =
 ThreadSwapIn |
 DeployObj;

--
-- THREADS
--

ThreadSwapIn ::
 -- id of the thread
 id : nat
 -- id of the object
 objref : [nat]
 -- name of the class
 clnm : [seq of char]
 -- id of the CPU
 cpunm : nat
 -- swap-in overhead (time units)
 overhead : nat
 -- observation time
 time : nat;

(VDM++ CLASSES - IMPLEMENTATION)

class OmlThreadSwapIn

 is subclass of IomlThreadSwapIn

operations
 public identity: () ==> seq of char

 identity () == return "ThreadSwapIn";

 public accept: IOmlVisitor ==> ()

 accept (pVisitor) == pVisitor.visitThreadSwapIn(self)

instance variables

 private ivId : [nat] := nil

operations

 public getId: () ==> nat

 getId() == return ivId;

 public setId: nat ==> ()

 setId(parg) == ivId := parg

...

end OmlThreadSwapIn

The Proof of the Pudding ...

● Applied this approach to implement Overture / VICE Tracefile viewer

● Implemented parser using JFLEX and BYACCJ

● Some “extra” bonuses

– implemented standard “visitor pattern” support

– implemented AST attribution “NodeProperty”

– default visitors for writing VDM++ and VDM-SL values
● Many changes occurred during development

● Turn-around time new parser: just a few hours

● JFLEX / BYACC seem quite robust and FAST

● IMHO: this is the way to go!

... is in the eating.

● Unfortunately BYACCJ needed to be patched

– VDM++ is a very (very) large language

– parser table initialization exceeds Java 64kb code limit

– we fixed this problem (initialization split over multiple operations)

– byaccj maintainers did not find the change “useful” (?!)

● ASTGEN was developed “as we go along”

– certainly not fit for public release, ad-hoc tool

– lacking support (no manuals, no documentation)

● Generated Java code from VDMTools needs patching

– dependence on extra set of (standard Unix) tools (cygwin)

Iteration 3 (2006, 2007)

● parser released through Overture web-site (zip file)

– as a pre-compiled Java binary library / executable

– partial source release of key implementation files
● overture.ast → description of the AST
● parser.y → bjaccy parser source file
● scanner.l → jflex scanner source file
● Java interfaces for the parser and AST implementation
● VDM++ sources of the AST

● developers can

– specify analysis tools in VDM++ using the VDM++ AST classes

– implement their own tools on top of Java parser library

The Good, The Bad and The Ugly

● GOOD

– very robust and stable parser (2000 test cases), quite acceptable performance

– seamless integration into Java and VDM++ environments

– language changes are easy to specify

– visitor support on AST

● BAD

– no position information available in the AST

– no Eclipse plug-in, no XML transformation available

● UGLY

– build process is not for the faint of heart, steep learning curve

– depends on many external tools, involves intricate manual steps

– cannot yet be built directly from (open-)source repository

Iteration 4 (2008)

● developers have actually proposed language extensions

– Thomas Christensen (2006, MSc project, Aarhus, Denmark)

● generic class type (as in Ada)
● typeless (truly polymorphic) explicit functions

– Marcel Verhoef (2007, PhD project, Nijmegen, The Netherlands)

● added “system”, “cycles” and “sporadic” constructs
● extended existing “duration” construct (VICE)

– Adriana Sucena (2008, MSc project, Minho, Portugal)

● added “traces” definition block for test case generation

● “edit-compile-debug” cycle remains responsibility of Overture core

● implementation of position information is now available

Iteration 4 (2008)

● new parser is released in May 2008 on Overture web-site

● main new feature is availability of accurate position information

● required significant update to ASTGEN and parser (BYACC source)

● each AST node provides getLine() and getColumn() operations

● availability of Overture core members to update parser is low

● to break this critical resource dependency:

– byaccj binary (+ source patch) is made available on-line

– ASTGEN binary + short “rough guide” is made available on-line

Parsing “3 + true”

new OmlDocument("expr3.vpp",
 new OmlBinaryExpression(
 new OmlSymbolicLiteralExpression(new OmlNumericLiteral(3,1,1),1,1),
 new OmlBinaryOperator(24,1,3),
 new OmlSymbolicLiteralExpression(new OmlBooleanLiteral(true,1,5),1,5),
 1,
 3
),
 [
 new OmlLexem(1,1,435,"3",0),
 new OmlLexem(1,3,43,"+",0),
 new OmlLexem(1,5,430,"true",1)
]
)

Plans for 2008 / 2009

● planned support activities:

– write paper and workshop focused on tool development

– rethink, rewrite and release ASTGEN support tool

– deal with reported bugs (if any) and language change requests

● planned development activities:

– add “poor mans” pretty printer for LaTeX

– move Overture repository on SourceForge from CVS to SVN

– enable build from repository with binary versions of support tools

– develop Eclipse parser plug-in

LETS PREPARE FOR OVERTURE @ FM 2009 @ EINDHOVEN

