Parser
Development for
Overture Tools

http://ww. overturetool.org

Marcel Verhoef, 25 May 2008, Fourth Overture Workshop
Abo Akademi University — Turku - Finland

lteration One (2004)

* Pieter van der Spek (MSc thesis project, TU Delft)

- Build parser and simple pretty printer

- Experiments on improved error support in parser
generator (published as ACM Sigplan Notices)

- Delivered as Eclipse plug-in

- Limited (no) XML support
- Direct manipulation of concrete syntax tree

Iteration Two (2005)

« Jacob Porsborg Nielsen & Jens Kielsgaard Hansen
(MSc thesis project, TU Denmark)

- Re-implemented parser using ANTLR
- abstract syntax with appropriate Java interfaces
— XML support for reading / writing AST Instances

- Experimented with Eclipse architecture, many useful
suggestions and prototype plug-ins

- Hand-coded AST implemention — very error prone
- Many errors in parser implemention

Meanwhile in 2006

Address problem of AST maintenance
Executive decision: we need a robust solution...
... to support language experiments

Back To Basics: how can we re-use VDMTools parser
and know-how?

How good are the open source |flex and byaccj tools?
Automation is key
“eat our own dogfood”

Automatic AST generation

ey JAVA _
» specified in VDM++ interfaces “|mts”
» code generated

OVERTURE _
AST spec E> ASTGEN sed script E> sed
(VDM-SL subset)
R

modified java
classes

VDM++

java
classes

classes

other users can use

these specs to specify
their own OVERTURE &> ﬁ
extensions (in VDM++) VDMTools

S

AST specification and code examples (1)

%li rectory "d:\projects\ShowlraceParser";

%package org.overturetool.tracefile. ast; (THE JAVA INTERFACE)
TraceFile ::))
Trace : seq of TraceEvent; package org.overturetool.tracefile.ast.itf;
TraceEvent = import jp.co.csk.vdm.toolbox.VDM.*;
Thr eadSwapl n |
Depl oyQoj ; . .
POy public abstract interface IThreadSwaplin extends ITraceEvent
. {
- - THREADS abstract Integer getld() throws CGException;
T abstract Integer getObjref() throws CGException;
Thr eadSwapl n : : abstract Boplean hasObjref() throws CGExqeption;
- id of the thread abstract String getClnm() throws CGException;
id: nat _ abstract Boolean hasCInm() throws CGException;
- ' df of the object abstract Integer getCpunm() throws CGException;
objref : [nat] abstract Integer getOverhead() throws CGException;
-- nanme of the class : .
clnm: [seq of char] abstract Integer getTime() throws CGException;
-- id of the CPU }

cpunm : nat

-- swap-in overhead (tinme units)
overhead : nat

-- oObservation tine

time : nat;

AST specification and code examples (2)

%li rectory "d:\projects\ShowlraceParser"
%package org.overturetool.tracefile. ast;

TraceFile ::
Trace : seq of TraceEvent;

TraceEvent =
Thr eadSwapl n |
Depl oy Qbj ;

- - THREADS

ThreadSwapln ::

- id of the thread
id: nat

- 1d of the object
objref : [nat]

- nanme of the class
clnm: [seq of char]
- id of the CPU
cpunm : nat

- swap-in overhead (time units)
over head : nat

- oObservation tine
time : nat;

(VDM++ CLASSES - INTERFACE DEFINITION)

class IOmIThreadSwapln
is subclass of IOmITraceEvent

operations

public getld: () ==> nat

getld() == is subclass responsibility;
operations

public getObjref: () ==> nat

getObjref() == is subclass responsibility;

public hasObjref: () ==> bool

hasObjref () == is subclass responsibility;
operations

public getClnm: () ==> seq of char

getClnm() == is subclass responsibility;

public hasClnm: () ==> bool
hasClnm () == is subclass responsibility;

end IOmIThreadSwaplIn

AST specification and code examples (3)

(VDM++ CLASSES - IMPLEMENTATION)

%li rectory "d:\projects\ShowlraceParser";

%package org.overturetool.tracefile. ast; class OmIThreadSwaplIn
TraceFile :: is subclass of IomIThreadSwaplIn
Trace : seq of TraceEvent;
_ operations
TraceEvent = .. .
ThreadSwapln | public identity: () ==> seq of char
Depl oy Qvj ; identity () == return "ThreadSwapIn";
-~ THREADS public accept: IOmIVisitor ==> ()

accept (pVisitor) == pVisitor.visitThreadSwapIn(self)
ThreadSwapln ::

- id of the thread instance variables

id: nat private ivld : [nat] := nil
- 1d of the object

objref : [nat] .

-- nanme of the class opera_tlons

clnm: [seq of char] public getld: () ==> nat
- id of the CPU getld() == return ivld,

cpunm : nat
- swap-in overhead (time units)

over head : nat public setld: nat ==> ()
t;ﬁgbs?r‘r’lgt! on time setld(parg) == ivId := parg

end OmIThreadSwapln

The Proof of the Pudding ...

Applied this approach to implement Overture / VICE Tracefile viewer
Implemented parser using JFLEX and BYACCJ
Some “extra” bonuses

- Implemented standard “visitor pattern” support

- Implemented AST attribution “NodeProperty”

- default visitors for writing VDM++ and VDM-SL values
Many changes occurred during development
Turn-around time new parser: just a few hours
JFLEX / BYACC seem quite robust and FAST

IMHO: this is the way to go!

... IS In the eating.

« Unfortunately BYACCJ needed to be patched

- VDM++ Is a very (very) large language

- parser table initialization exceeds Java 64kb code limit

- we fixed this problem (initialization split over multiple operations)
- byaccj maintainers did not find the change “useful” (?!)

« ASTGEN was developed “as we go along”

- certainly not fit for public release, ad-hoc tool
- lacking support (no manuals, no documentation)

« Generated Java code from VDMTools needs patching

- dependence on extra set of (standard Unix) tools (cygwin)

lteration 3 (2006, 2007)

« parser released through Overture web-site (zip file)

- as a pre-compiled Java binary library / executable
- partial source release of key implementation files

« overture.ast — description of the AST

parser.y — bjaccy parser source file

scanner.| — jflex scanner source file
Java interfaces for the parser and AST implementation
VDM++ sources of the AST

« developers can
- specify analysis tools in VDM++ using the VDM++ AST classes
- Implement their own tools on top of Java parser library

The Good, The Bad and The Ugly

GOOD

very robust and stable parser (2000 test cases), quite acceptable performance
seamless integration into Java and VDM++ environments
language changes are easy to specify

visitor support on AST

BAD

no position information available in the AST

no Eclipse plug-in, no XML transformation available

UGLY

- build process is not for the faint of heart, steep learning curve

- depends on many external tools, involves intricate manual steps

- cannot yet be built directly from (open-)source repository

lteration 4 (2008)

« developers have actually proposed language extensions

- Thomas Christensen (2006, MSc project, Aarhus, Denmark)

* generic class type (as in Ada)
 typeless (truly polymorphic) explicit functions

- Marcel Verhoef (2007, PhD project, Nijmegen, The Netherlands)

« added “system”, “cycles” and “sporadic” constructs
« extended existing “duration” construct (VICE)

- Adriana Sucena (2008, MSc project, Minho, Portugal)
« added “traces” definition block for test case generation

e “edit-compile-debug” cycle remains responsibility of Overture core

« Iimplementation of position information is now available

lteration 4 (2008)

new parser is released in May 2008 on Overture web-site
main new feature is availability of accurate position information
required significant update to ASTGEN and parser (BYACC source)

each AST node provides getLine() and getColumn() operations

availability of Overture core members to update parser is low
to break this critical resource dependency:

- byaccj binary (+ source patch) is made available on-line
- ASTGEN binary + short “rough guide” is made available on-line

Parsing “3 + true”

new OmlIDocument("expr3.vpp",

new OmiBinaryExpression(
new OmISymbolicLiteralExpression(new OmINumericLiteral(3,1,1),1,1),
new OmIBinaryOperator(24,1,3),
new OmISymbolicLiteralExpression(new OmiBooleanLiteral(true,1,5),1,5),
1,
3

),

[
new OmlLexem(1,1,435,"3",0),

new OmlLexem(1,3,43,"+",0),
new OmlLexem(1,5,430,"true",1)
]
)

Plans for 2008 / 2009

e planned support activities:

- write paper and workshop focused on tool development
- rethink, rewrite and release ASTGEN support tool
- deal with reported bugs (if any) and language change requests

« planned development activities:

- add “poor mans” pretty printer for LaTeX

- move Overture repository on SourceForge from CVS to SVN

- enable build from repository with binary versions of support tools
- develop Eclipse parser plug-in

LETS PREPARE FOR OVERTURE @ FM 2009 @ EINDHOVEN

