
The rCOS Method and Modeler
Zhenbang Chen, Zhiming Liu, and Volker Stolz

vs@iist.unu.edu

http://rcos.iist.unu.edu

rCOS Overview

Motivation: Use case-driven component based S.E.

rCOS Models and their refinement and composition

Component based model driven design

The rCOS Modeler
Why UML?

The rCOS UML profile

The rCOS Modeler

The rCOS Method and Modeler — 2

Aims

Deal with two challenges in software engineering

1. inherent complexity of Software Projects

multiple aspects: structural, functionality, interaction,
security, timing, distribution, mobility and general QoS
most aspect are interrelated and assurance consistency
is hard

2. ensure correctness of software systems

formal modelling, design, verification and validation

The rCOS Method and Modeler — 3

State of Practical SE

Deal with complexity of component-based and model driven
development through

UML-like multi-view modelling of different aspects

Separation of design and validation of different concerns by
design patterns, object-oriented and component-based
designs techniques

No rigorous theories and tools for specification, verificati on and validation

The rCOS Method and Modeler — 4

Objectives of rCOS

1. Incorporating formal methods and tools of modelling, design
and VV into model-driven development process:

model different views and analyse correctness of different
concerned with different VV techniques and tools
automate verified design patterns and strategies to
reduce the burden on (automated) verification

2. Provide a semantic foundation for relating the methods and
the integrating of tools of VV with those of design

Putting theories, methods and tools consistently together in design

processes

The rCOS Method and Modeler — 5

Strands of Research on rCOS

1. Theory: a modelling language, its semantics, refinement
calculus, analysis and verification of models

2. Tool support: an integrated tool suite to support model
construction, model transformation and model verification

3. Applications: develop a set of verified case studies, trading
system, e-government, etc

4. Knowledge and technology transfer: teach a coherent and
comprehensive methodology that begins with design for
verification and validation and integrates verification into
development process

The rCOS Method and Modeler — 6

rCOS in a Nutshell

rCOS is a multi-view and multi-notational modelling framework
supporting the two key techniques of trustworthy software
development:

Separation of concerns and aspects

Formal modelling of requirements, design and analysis

rCOS specifies and analyzes models of

application requirements,

object-oriented designs and refinement,

component-based architecture,

component interfaces, and their contracts,

processes for glue and application programs.

The rCOS Method and Modeler — 7

Overview

Construction Verification

Development

behaviour data programming behaviour data

functional
specification

data model
(class diagram)

-static: CSP
-dynamic: TM

JML:
-static: ESC/Java
-dynamic: runtime

-state diagram
-sequence diagram
-regular trace

The rCOS Method and Modeler — 8

Object-Orientation in rCOS [TCS06]

An OOP: P = Classes • Main

Classes: an list of class declarations

Main: main class with a main method

Classes: represented by a (or a set of) UML class diagram(s)

Main: program of use cases (use case controller classes)

Classes: represented by a directed and labeled graph

A state of P : a rooted, directed and labelled graph/UML
Object Graph [ICFEM03,REFINE06]

A relational semantics based on UTP [TCS06]

A refinement calculus for both functional refinement and
structure refinement [TCS06]

Support analysis, design, refactoring and code generation
[ICTAC05]

The rCOS Method and Modeler — 9

Functional Refinement[TCS06]

Functional Decomposition

1n{c[c (o.x)]}

N
o

N

n{c[o.m]}

M

x

1m{c (x)}

M

x

1m{c (x)}

o

Class Decomposition 1

 M 2

o : M (o . o = o . o . o) .
1 2 1

1 1

M 1

22 2m {o . .m }

y
 1 1

2m {c . [o . m] } 2 1 1

x
m {c (x)}

M o

 1

2

1

2 1
m {c [m]}
m {c (x)}

y
x

M

m {o . .m } 1 1 1

o
1

o
2

M

The rCOS Method and Modeler — 10

More Refinement

Class Decomposition 2

 M 2

22 2m {o . .m }

1 1

M 1

2

M

m {o . .m } 1 1

 1

2

1

2 1
m {c [m]}
m {c (x)}

x
m {c (x)}

y
x

M

m { c [o . m] } 2 1 1

m {o . m } 1 1 1

y

o

o 1

2

2

Low Coupling

M1

m1{c[o1.m3()]

M2

M3

m3()

o2

o3

o1
o: M1 o.o2.o3=o.o1.

m2{o3.m3()}

M2

M3

m3()

o3

M1

m1{c[o2.m2()]

o2

The rCOS Method and Modeler — 11

rCOS Model of Components[FACS05, FSEN07]

Interfaces: operation signatures for syntactic compositionality

Contracts: interface specifications including static & dynamic
behavior, interaction protocol, timing ...; refinement

Components: Provided and required interface + code

Object rCOS: provides a common semantics for different PLs
to implement components (interoperability)

Semantics of Components: relation between components
and contracts (correctness), substitutability

Composition Operations: simple connectors

Component-Based Programming: glue, application
processes

The rCOS Method and Modeler — 12

Interfaces and their Contracts [ICTAC05]

An interface of a component is a description of what is
needed for the component to be used in building and
maintaining software without the need to know the code of
the component.

Interface determines external features of component and
allows component to be used as a black box.

Interfaces determine substitutability of components

<<component>>

Buffer
get(T out)put(T in)

The rCOS Method and Modeler — 13

Contracts

A contract is a tuple Ctr = (I, Init, MSpec, Prot)

MSpec assigns each operation to a guarded design g&D.

Prot is called the protocol and is a set of sequences of call
events; each is of the form ?op1(x1), . . . , ?opk(xk)

A contract Ctr is consistent, if it will never enter a deadlock
state if its environment interacts with it according to the
protocol:
For all 〈?op1(x1), . . . , ?opk(xk)〉 ∈ Prot,

wp

 Init;g1&D1[x1/in1]; . . . ; gk&Dk[xk/ink],

¬wait ∧ ∃op ∈ MDec•g(op)

 = true

The rCOS Method and Modeler — 14

Component Composition

Chaining

C1

put get1

C2

get

put1
put1

Hiding after Chaining

C1

put

C2

get

put1
put1

Feedback
C1

put

C2

get

put1
put1

The rCOS Method and Modeler — 15

Models of Application Requirements

Conceptual class model

use-case model – static functionality + interaction and
dynamic behavior

consistency and integration defined in rCOS [SOFSEM 2007]

(a)

Catalog Store

name
address

Sale

date
time

Product
Specification

description
price
upc

Line Item

quantity

Payment

amount

1 1

Uses

1

*
Has

 1 *

LogsCompleted

1

1

isPaidBy

1 0..1

Describes

Contains

*

1

(b)

 Cashier

:BuyItems-Controller

enterItem(ups,quanity)*

endSale()

makePayment()

(c)

BuyItems-Controller

loc=new
Quantity balalce=0
Quantity total=0
Sale sa=null

enterItem()
endSale()
makePayment() (d)

isCompletenew
enterItem()

isCompletemakePayment()

enterItem()

endSale()

The rCOS Method and Modeler — 16

Requirements Analysis

Static consistency (think “compiler ”):
all types and methods are defined in class diagram
type checking of signatures and statements

Dynamic consistency of SeqD, StD and ClassD
[[SeD]] ‖ [[StD]] deadlock free
application dependent properties: properties of the StD
Dynamic checking: e.g. through FDR

Automatic Prototype Generation

The rCOS Method and Modeler — 17

Component Architecture Design

addItem()
enterItem()
endSale()
makePayment()

Financial Officer Cashier Inventory Manager

makePayment()
findProduct()
removeQuantity()

managePayment()

PaymentManagement

<<Component>>

SalesManagement

<<Component>>

InventoryManagement

<<Component>>

Assign classes and associations to components according to
the use cases – partition the state space.

Decomposing use case sequence diagrams into component
sequence diagrams – define interaction protocols of
components.

Verifying the decomposition against the application
requirements model.

The rCOS Method and Modeler — 18

Applied to CoCoME

informal common problem description

component-based

various aspects to formally model and analyse

generate code

Case study:

trading System: cashdesks with GUI and peripherals

connected to store-server using a message bus

enterprise-server connected to various stores via RMI

8 use cases of (inter)actions between entities

GUI, hardware controllers (embedded systems design)

formal verification/analysis

The rCOS Method and Modeler — 19

Interface Sequence Diagram

Cashier

::cashDeskLine

startSale()

finishSale()

Alt mode=off

enterItem(Barcode, Quantity)
loop

maxloop

Alt

cardPay(CardInf)

True

mode=off

disableExpress()

Alt mode=on

enterItem(Barcode, Quantity)

*

cashPay(Amount, Amount)

mode=off

enableExpress()

mode=on

The rCOS Method and Modeler — 20

Interface State Diagram

True

mode = off

complete
mode = on

complete
mode = on

 complete
mode = onmode = on

 enableExpress()

 complete
mode = off

complete
mode = off

complete
mode = off

 startSale() enterItem(Barcode,Quantity)

finishSale()CashPay(Amount,Amount)

finishSale()

 enterItem(Barcode,Quantity) startSale()

CardPay(CardInfo)

 disableExpress()

CashPay(Amount,Amount)

¬�

¬�

¬�

¬�

*

<max

The rCOS Method and Modeler — 21

Class Diagram

Cashdesk

exmode : Boolean

startSale()
enterItem(barcode : Integer, quantity : Integer)
finishSale()
cardPay(card : Card)
cashPay(amount : double) : double
enableExpress()
disableExpress()

Sale

complete : Boolean
total : double
date : date

LineItem

barcode : Integer
quantity : Integer
subtotal : double

Item

barcode : Integer
price : double
stock : Integer

CashPayment

amount : double
change : double

CardPayment

Payment

Clock
Store

CardBank

-clock

1

1

-bank

1

1

-sales

*

0
+store

1

*

-lines

*

0

-card

0..1

1

-catalog

*

0

-sale

1

1

-pay 0..1

1

-line

1

The rCOS Method and Modeler — 22

Functionality Specification of Method

Updating actions:

object creation: ℓ′ = C.New(e)

attribute or variable modification
ℓ′ = a.x – association link established
ℓ′ = e(a1.d1,ak.dk) – data modified

actions on sets: s.find(ID id), s.add(T a), s.delete(T a)

Conditions: a.x = null | c(a1.d1, . . . , ak.dk)

Quantification: ∀T x : S(x) ∃T x : R(x)

Specification:: S ::= f : [p,R] | S;S | S ⊓ S | S ⊳ b ⊲ S | b ∗ S

m(T x;U y){S}

The rCOS Method and Modeler — 23

Functionality Specification

Use Case UC 1: Process Sale

class Cashdesk{

method enterItem(Barcode c, int q) {

pre : /* there exists a product with the input barcode c */

store.catalog.find(c) 6= null,

post : /* a new line is created with its barcode c and quantity q, and then */

line’ = LineItem.New(c,q)

/* the subtotal of the line item is set, and then */

∧ line.subtotal′ = store.catalog.find(c).price × q

/* add line to the current sale */

∧ sale.lines′ = sale.lines ∪ {line}

invariant store 6= null ∧ store.catalog 6= null ∧ sale 6= null

}

The rCOS Method and Modeler — 24

Use Case Decomposition and Composition

ProcessSale =̂ CashDesk ≪ (CashPay|||CardPay)

[*]

[]

[*]

[1..max]

loop

loop

[else]

[*]

[]

[else]

alt

[1..*]

loop

loop

alt

loop

Cashier <<Component>>

 : CashPayment

<<Component>>

 : Cashdesk

<<Component>>

 : CardPayment

enableExpress()1:

startSale()2:

enterItem(Barcode, int)3:

finishSale()4:

disableExpress()7:

enterItem(Barcode, int)9:

finishSale()10:

cardPay(Card)11:

cashPay(double):double13:

startSale()8:

cashPay(double):double5:
cashPay(Sale, double):double6:

cashPay(Sale, double):double14:

cardPay(Sale, Card)12:

[*]

[]

[*]

[1..max]

loop

loop

[else]

[*]

[]

[else]

alt

[1..*]

loop

loop

alt

loop

The rCOS Method and Modeler — 25

Component Diagram

<<component>>

CashDesk

<<component>>

CardPayment

<<component>>

CashPayment

CashDeskIF PaymentIF

The rCOS Method and Modeler — 26

Object-Oriented Refinement

Expert pattern for functional decomposition:

[*]

[else]

[*]

[1..*]

loop

[]

[else]

alt

loop

[]

[*]

[1..max]

loop

loop

alt

loop

 : CashdeskCashier

enableExpress()1:

startSale()2:

enterItem(Barcode, int)3:

disableExpress()6:

enterItem(Barcode, int)8:

finishSale()9:

cardPay(Card)10:

cashPay(double):double11:

cashPay(double):double5:

startSale()7:

finishSale()4:

[*]

[else]

[*]

[1..*]

loop

[]

[else]

alt

loop

[]

[*]

[1..max]

loop

loop

alt

loop

[]

[]

loop

[else]

[]

loop

alt

[]

loop

 : CashPayment : CardPayment : Cashdesk : LineItemCashier : Clock : Store : Bank : Sale

getDate():Date2:

Sale.New(boolean, set(LineItem), Date)3:

find(Barcode):Item5:

LineItem.New(Barcode, int)6:

getPrice(Barcode):double7:

subtotal(double, int)8:

addLine(LineItem)9:

setComplete()11:

setTotal()12:

getTotal():double14:

CashPayment.New(double, double)15:

setPay(Payment)16:

getLines():set(LineItem)18:

updateInventory(Barcode, int)19:

getTotal():double21:

authorize(Card, double):boolean22:

CardPayment.New(Card)23:

addSale(Sale)25:

getLines():set(LineItem)26:

updateInventory(Barcode, int)27:

setPay(Payment)24:

addSale(Sale)17:

startSale()1:

enterItem(Barcode, int)4:

finishSale()10:

cashPay(double):double13:

cardPay(Card)20:

Automate the expert pattern

Design by drawing using provably correct rules/design patterns

The rCOS Method and Modeler — 27

Quantified Specification to Code

updateInventory()

Class Cashdesk::

∀l ∈ sale.lines, p ∈ store.catalog • (if p.barcode=l.barcode then

p.amount ’ = p.amount -l.quantity)

yields almost executable Java with assertions:

class Product:: update(int qty) { amount := amount-qty }

class set(Product):: update(Barcode code, int qty) {

Iterator i := iterator();

while (i.hasNext()) {

Product p := i.next();

if p.barcode=code then p.update(qty); }

class Store:: update(Barcode code, int qty) { catalog.update(code,qty) }

∃T o ∈ s : p(o) ∧ statement(o) ⊑ ⊓o∈sp(o) ∧ statement(o)

boolean b := true; Iterator i := s.iterator();

while i.hasNext() ∧ b{T o := i.next(); if p(o) then {b := ¬b; statement(o)}}

FM should take advantages of high level PL!

The rCOS Method and Modeler — 28

Component-Based Logical Design

[]

[]

loop

[else]

[]

loop

alt

[]

loop

 : CashPayment : CardPayment : Cashdesk : LineItemCashier : Clock : Store : Bank : Sale

getDate():Date2:

Sale.New(boolean, set(LineItem), Date)3:

find(Barcode):Item5:

LineItem.New(Barcode, int)6:

getPrice(Barcode):double7:

subtotal(double, int)8:

addLine(LineItem)9:

setComplete()11:

setTotal()12:

getTotal():double14:

CashPayment.New(double, double)15:

setPay(Payment)16:

getLines():set(LineItem)18:

updateInventory(Barcode, int)19:

getTotal():double21:

authorize(Card, double):boolean22:

CardPayment.New(Card)23:

addSale(Sale)25:

getLines():set(LineItem)26:

updateInventory(Barcode, int)27:

setPay(Payment)24:

addSale(Sale)17:

startSale()1:

enterItem(Barcode, int)4:

finishSale()10:

cashPay(double):double13:

cardPay(Card)20:

ProcessSale b= SalesHandler ≪

(StoreSale ‖ Clock ‖ Light)

[]

[]

loop

[else]

[]

loop

alt

[]

loop

<<Component>>

SalesHandler

<<Component>>

StoreSale

<<Component>>

 : Clock

<<Component>>

 : Bank
GUI

Sale.New(boolean, set(LineItem), Date)3:

find(Barcode):Item5:

LineItem.New(Barcode, int)6:

subtotal(double, int)8:

addLine(LineItem)9:

setComplete()11:

setTotal()12:

getTotal():double14:

addSale(Sale)16:

updateInventory(Barcode, int)18:

addSale(Sale)23:

updateInventory(Barcode, int)25:

getDate():Date2:

getPrice(Barcode):double7:

getLines():set(LineItem)17:

setPay(Payment)15:

getTotal():double20:

setPay(Payment)22:
authorize(Card, double):boolean21:

getLines():set(LineItem)24:

startSale()1:

enterItem(Barcode, int)4:

finishSale()10:

cashPay(double):double13:

cardPay(Card)19:

The rCOS Method and Modeler — 29

From OOA to CBA

<<component>>

StoreServer

<<component>>

StoreInventory

<<component>>

StoreSale

StoreManageIFStoreOrderIFStoreSaleIF

<<component>>

InventoryHandler

<<component>>

SalesHandler

InventoryDeskIF

StoreManageIFStoreOrderIF

OrderDeskIFCashDeskIF

StoreSaleIF

ClockIF

LightIF

BankIF

identify components and intercomponent interfaces

choose middle ware

The rCOS Method and Modeler — 30

The rCOS Modeler

rCOS Modeler

“Guided tour” through use-case driven development process

Uses UML models

Diagramming support built on top of Eclipse/TOPCASED

http://www.topcased.org

Implemented features:

CSP generation from state- and sequence diagrams

Expert Pattern transformation

Modelling the Modeler in the Modeler!

The rCOS Method and Modeler — 32

Design Decision

Advantages of using UML
many artifacts overlap:
(classes/methods/associations, state machines,
sequence diagrams)
existing tool support for UML modeling
easy to store additional data

Disadvantages of using UML
allows incomplete specifications
not every UML model an rCOS model
subtle differences may confuse the casual user
some datastructures convoluted (e.g. in state machines)

The rCOS Method and Modeler — 33

UML Stereotypes/Profiles

Stereotypes. . .

allow extension of UML through specialization

tagged values introduce attributes
(very much like OO modeling)

may use constraints in OCL

have user-defined semantics

may be processed by other tools

Profiles. . .

define set of stereotypes and tagged values

existing, standardized profiles for many purposes

graphically specified similar to class diagrams

can be complex, and require documentation

The rCOS Method and Modeler — 34

rCOS Data Model

ComponentRealization

InterfaceRealization

ProcessComponentServiceComponent

ComponentModel

ContractInterface

ContractInterface

NamedElement

RCOSUseCase

UsecaseModel

Collaboration

StateMachine

Composition

Dependency

RCOSModel

Component

Component

ClassModel

Interaction

Delegation

Constraint

Constraint

Constraint Operation

Contract

Usage

Port

Class

ClassPort

0..*

0..*

0..*0..*

UsecaseModel

1

Type

1

0..*

Contract

1

0..*

0..1

0..*

Component
1 0..*

ClassModel

1

0..1

0..1

supplier

1..*

client

1..*

0..*

0..*

Interface

0..1

1

ComponentModel

1

0..* 0..*

0..*

1

0..*

2

1

1

The rCOS Method and Modeler — 35

. . . as a Profile Diagram:

<<stereotype>>

Delegation

[Dependency]

Interface : ContractInterface
<<stereotype>>

ProcessComponent

[Component]

<<stereotype>>

ServiceComponent

[Component]

<<stereotype>>

ComponentModel

[Package]

<<stereotype>>

ContractInterface

[Interface]

<<stereotype>>

UsecaseModel

[Package]

<<stereotype>>

RCOSUseCase

[UseCase]

<<stereotype>>

RCOSModel

[Model]

<<stereotype>>

ClassModel

[Package]

<<stereotype>>

Contract

[Package]

<<stereotype>>

Composition

[Dependency]

ClassModel

1

UsecaseModel

1

ComponentModel

1

Component

1

Contract

1

The rCOS Method and Modeler — 36

Class Diagrams

The rCOS Method and Modeler — 37

Component View

The rCOS Method and Modeler — 38

Modeling the Modeler

The rCOS Method and Modeler — 39

CSP Generation

State machines with guarded transitions and link to
operations (method bodies)

Pre/post conditions have to be abstracted to CSP manually
(data!)

Model can contain various abstractions

FDR2 must still be run interactively

Component composition still to implement

The rCOS Method and Modeler — 40

Refinement

Expert Pattern:
refinement of navigation path to setters/getters

modifies class structure and method bodies

does not update diagrams

versioning

The rCOS Method and Modeler — 41

More technical stuff

Make use of EMF
implicit: Eclipse UML explicit: class skeleton generation

TOPCASED: easy start, but inherit all their “issues”

UML support at the moment Eclipse specific

Other input support: MagicDraw (NetBeans)
(no diagramming info, only model)

OCL preserved from modeling to generated code

The rCOS Method and Modeler — 42

Summary

rCOS: Refinement of Component and Object Systems

Formal method

Accompanying methodology for
component-based modeling

Consistent multi-view modeling (use case, data, behaviour)

Compatibility check of component composition through CSP

UML modeling tool

The rCOS Method and Modeler — 43

Future Work

1. Theoretical Aspects: Extensions for Real-Time, QoS,
Web-Services; Formal Syntax, Type system, Operations
Semantics; Specification and Verification; Link to and
Compare with JML, Alloy

2. Tool Development: Development of Correctness Preserving
Transformations, Bring in Model Checking, Theorem Proving
in rCOS, Model and Code Generation, Roles/Activities
[ISoLA06]

3. Applications: Case Studies – POS, Production Cell, CORBA,
Mondex, Drive By Wire, The space-flight file-store (POSIX)....

The rCOS Method and Modeler — 44

	rCOS Overview
	Aims
	State of Practical SE
	Objectives of rCOS
	Strands of Research on rCOS
	rCOS in a Nutshell
	Overview
	Object-Orientation in rCOS {small [TCS06]}
	Functional Refinement {small [TCS06]}
	More Refinement
	rCOS Model of Components {small [FACS05, FSEN07]}
	Interfaces and their Contracts {small [ICTAC05]}
	Contracts
	Component Composition
	Models of Application Requirements
	Requirements Analysis
	Component Architecture Design
	Applied to CoCoME
	Interface Sequence Diagram
	Interface State Diagram
	Class Diagram
	Functionality Specification of Method
	Functionality Specification
	Use Case Decomposition and Composition
	Component Diagram
	Object-Oriented Refinement
	Quantified Specification to Code
	Component-Based Logical Design
	From OOA to CBA
	
	rCOS Modeler
	Design Decision
	UML Stereotypes/Profiles
	rCOS Data Model
	ldots as a Profile Diagram:
	Class Diagrams
	Component View
	Modeling the Modeler
	CSP Generation
	Refinement
	More technical stuff
	Summary
	Future Work

