

VDMJ

Nick Battle, Fujitsu
(nick.battle@uk.fujitsu.com)

VDMJ Overview

● Where did VDMJ come from...?

● Provides support for VDM-SL and VDM++ parsing, static type
checking, interpreting/debugging, PO generation, test coverage
and combinatorial testing

● Pure Java (5 or later), no external dependencies

● Released under GPLv3 by Fujitsu

● Command line interface only

● Informally developed (eg. not specified in VDM)

● User Guide and Design Specification docs available

● Passes CSK test suite (>3000 tests, converted to JUnit tests)

● Quite fast (3000 tests in ~20 seconds).

Lexical Reader
(VDM-SL, VDM++)

Syntax Reader
(VDM-SL, VDM++)

AST(J)

AST Converter

AST

Overture Parser

Type Checker
(VDM-SL, VDM++)

Interpreter
(VDM-SL, VDM++)

CommandReader DBGPReaderLibrary

VDMJ Architecture

LatexStreamReader extends InputStreamReader – overrding readLine()

BacktrackInputReader creates a LatexStreamReader – using its readLine() to read the whole file

LexTokenReader

lines as Unicode Java Strings

Unicode chars

extends BacktrackInputReader – overrding push, unpush and pop

SyntaxReaders

LexTokens

constructed with a LexTokenReader

AST

VDMJ Parser 1

VDMJ Parser 2

● One SyntaxReader subclass for each major group in the grammar
● Top level ModuleReader and ClassReader combine the others and

return the AST (class list or module list)
● Each reader typically has one public method, like readPattern(),

readType(), readClass() etc. and many private methods.
● All readers are constructed by being passed a LexTokenReader

VDMJ AST 1

Class
Definition

Value
Definition

Function
Definition

Type Body
Expression

Param
Patterns

Class
Definition

Class
Definition

Type
Definition

Name Type
Inv

Function
Definition

etc

etc

● AST is a "washing line" of classes or modules at the top level
● Classes and modules contain definitions
● Definitions can contain yet more definitions - "mk_(a,b) = tupval"

NamePattern Type Expression

Tree

VDMJ AST 2

VDMJ AST 3

VDMJ AST 4

VDMJ AST 5

VDMJ AST 6

VDMJ AST 7

VDMJ Type Checking 1
Principles

● VDM syntax allows "3 + true", but type checking does not

● Concerned with types, which are ultimately defined by the types of
literals and named definitions, and their combination via
expressions, statements and further function/operation definitions.

● Also concerned with the scope of the names of definitions, the
duplication of names (error) or when local named definitions are
unused or hide outer names (warning).

● Syntax does not link type names to their definitions, so "x:T = 123"
has an UnresolvedType called "T", but this may not even exist.

● Note that functions cannot see "state" definitions, and operation
post conditions can see "old" variable values

● Classes are types (hence ClassDefinition), but modules are not.

VDMJ Type Checking 2
Principles

● Type checking is coordinated by subclasses of TypeCheck. The
actual business of checking is performed by the AST elements

● An Environment refers to a list of definitions and allows them to be
searched by name

● Environments chain together to add definitions to the current
"scope" temporarily, such as parameters inside a function or new
definitions from a let expression

VDMJ Type Checking 3
ModuleTypeChecker outline

● Check for duplicate module names in the list passed
● For each module, generate its definitions’ implicit definitions (like pre and

post functions)
● For each module, check the export definitions exist and are of the declared

type, and make a list of exported definitions for the module.
● For each module, go through the import definitions and resolve against the

exports.
● Create a list of all definitions from all modules (including their imports),

create an Environment that contains them all, and attempt to perform type
resolution on them – ie. find the type definition for every named type.

● In the pass order: [types, values, definitions], for each module, create a
ModuleEnvironment representing the visible definitions, and type check
the definitions of the given pass.

● Report any discrepancies between the final checked types of the modules’
definitions and their explicit imported types elsewhere.

● Any definition names that have not been referenced or exported produce
"unused" warnings.

VDMJ Type Checking 4
ClassTypeChecker outline

● Make sure there are no duplicate class definitions.
● For all classes and their definitions, generate the implicit definitions. This

includes the construction of the class type hierarchy and the implicit local
names for access to inherited definitions.

● Create a PublicClassEnvironment that can see all public class definitions.
● For each class, chain a PrivateClassEnvironment to the public

environment, and perform type resolution on the definitions in the class.
● For each class, check for overloading and overriding of its definitions.
● In the pass order: [types, values, definitions], for each class, chain a

PrivateClassEnvironment to the public environment, and type check the
definitions of the given pass.

● Check for any definition names that have not been referenced, and
produce "unused" warnings.

VDMJ Type Checking 5
Key Methods

● Type checking methods on Definition are all void, whereas those on
Expression and Statement return the type of their content

● Type resolution is only performed on Definitions, not Expressions and
Statements. Resolution of their types is delayed until their type check

● Expression's typeCheck has a list of "qualifier" types, used to resolve
overloading with function apply expressions

● NameScope indicates whether state etc. is in scope or not

VDMJ Type Checking 6
TypeComparator

● TypeComparator is used to check whether one type is assignment
compatible with another, and whether one type is a subtype of another

● VDMJ always does type checking with "possible semantics"
● The "compatible" method provides possible semantics for type

conversion, eg. a real is possibly an int
● The "isSubType" method provides definite semantics for type

comparison, eg. a real is not a subtype of int. This is used in PO
generation

VDMJ Type Checking 7
Checking Functions (1)

● If there are any polymorphic type parameters for this function, check that
the overall function type does not reference any type parameters except
those named type parameters.

● For each type parameter, create a LocalDefinition of a ParameterType and
add this to a local Environment.

● Check that the parameter patterns match the overall Type’s parameters,
and iterate through curried sets of parameters, using the return value from
the overall Type (and its return value and so on for subsequent sets of
parameters). Remember the expected result.

● Extend the local Environment with definitions for all the variables of all the
patterns from all of the curried parameter sets.

● Type check the definitions this produced in the base environment (this will
just do type resolution, if necessary).

● Label the local Environment as static (VDM++) if the definition’s access
specifier is static.

● If we are in VDM++ and the function is not static, add a “self” definition to
the local Environment.

● continued...

VDMJ Type Checking 8
Checking Functions (2)

● If there is a precondition expression, type check the definition for it.
● If there is a post condition expression, type check the definition for that too.
● Type check the body expression of the function, remembering the actual

type returned.
● If the actual return type is not (possibly) assignable to the expected return

type, raise an error.
● If the VDM++ accessibility of the expected return type is narrower than that

of the definition itself, raise an error (eg. a public function cannot have a
private or protected return type).

● If the function is recursive and does not define a "measure" function, raise
a warning, else if there is a measure defined, check that it exists and has
the correct type.

● Check that the parameter variables have been referenced in the local
Environment, else raise an unused parameter warning. (This is
suppressed for pre and post condition functions, which are permitted to not
necessarily use their implicit parameters).

VDMJ Interpreter 1

● Interpreter evaluates expressions from their definitions in the AST
● Acts as the common “interface” for external user interaction

classes (command line or IDE).
● Uses a default module or class. Used for simplified naming.

Defaults to the first module/class on the AST list
● Contains a list of breakpoints, and methods to set/clear/list them,

as well as to locate expressions/statements in AST by file/line
number

● Contains a list of source file contents for source debugging
● Also acts as the initiator for PO generation, though POs are

generated in the AST elements.
● Initialization method creates or restores an “initial context”

representing the global static context for all subsequent
evaluations

● Can evaluate expressions in the initial context, or in a local context
when a breakpoint is reached

VDMJ Interpreter 2

● Evaluation is coordinated by subclasses of Interpreter. The actual
business of evaluation is performed by the AST elements

● Runtime name/value pairs held in Context subclasses which mirror
the Environment subclasses used in type checking

● Contexts chain together to form the runtime stack. RootContext is
the abstract base of a function/operation call. ObjectContext has a
“self”, and StateContext points to any module state

● Global values (module state or class static fields) are held in
ClassDefinition or Module definitions in AST

VDMJ Interpreter 3

VDMJ Interpreter 4

VDMJ Interpreter 5
Key Methods

● Expression and Statement's eval methods return their Value, given the
passed Context

● Evaluation recurses over the AST, evaluating and combining the Values of
sub-expressions or contained Statements

● The Context is extended by expressions or statements which add variables
(eg. let expressions)

● Evaluations can throw ContextExceptions – a runtime exception which
includes the Context (stack) as well as a number, text and location

VDMJ Interpreter 6
TailExpression.eval

VDMJ Interpreter 7
BlockStatement.eval

sequence for loop = ‘for’, pattern bind, ‘in’, [‘reverse’], expression, ‘do’, statement ;

VDMJ Exercise 1

● Currently, the "reverse" keyword is part of the sequence loop grammar
● It would be better to treat "reverse" as a new unary sequence operator, like

hd, tl, len, elems, inds and conc.
● Grammar becomes: "for", pattern bind, "in", expression, "do", statement
● ReverseExpression.java is partly written in SVN. The VDMJ parser has

been changed to build the AST already.
● Complete the eval method of ReverseExpression as an exercise –

compare with TailExpression.java
● Test with "print rev [1,2,3]" – should give [3,2,1]. Check that the reverse for

loop still works too. See whether you can set a breakpoint.
● The typeCheck method is also blank. Complete this as an exercise too –

test with "rev 123". It should complain that the argument is not a sequence.
● What should the getProofObligations method look like?

VDMJ Exercise 2

VDMJ Exercise 3
Tests...

VDMJ Exercise 4
Solutions...

 1

VDMJ

Nick Battle, Fujitsu
(nick.battle@uk.fujitsu.com)

 2

VDMJ Overview

● Where did VDMJ come from...?

● Provides support for VDM-SL and VDM++ parsing, static type
checking, interpreting/debugging, PO generation, test coverage
and combinatorial testing

● Pure Java (5 or later), no external dependencies

● Released under GPLv3 by Fujitsu

● Command line interface only

● Informally developed (eg. not specified in VDM)

● User Guide and Design Specification docs available

● Passes CSK test suite (>3000 tests, converted to JUnit tests)

● Quite fast (3000 tests in ~20 seconds).

 3

Lexical Reader
(VDM-SL, VDM++)

Syntax Reader
(VDM-SL, VDM++)

AST(J)

AST Converter

AST

Overture Parser

Type Checker
(VDM-SL, VDM++)

Interpreter
(VDM-SL, VDM++)

CommandReader DBGPReaderLibrary

VDMJ Architecture

This is the overall architecture of VDMJ.

VDM source files are read by the Lexical Reader which uses a LaTeX filter to remove
markup, and produces a stream of LexTokens. The reader is told which dialect it is
reading (VDM-SL or VDM++, VICE is under development).

The LexTokens are used by the Syntax Reader to create the AST.

Alternatively, the Overture parser can be used to produce its own AST (different) and this
can be translated to VDMJ's AST by an ASTConverter (fast).

The AST is examined by the Type Checker for static type errors, and enriched with extra
type information. There are module and class specific checkers for checking the different
dialects.

ASTs that have been type checked can be serialized and compressed, and saved to disk.
Loading such ASTs again from disk is faster than re-parsing and re-checking them (at
least for large specifications).

The Interpreter creates a runtime environment based on the classes or modules in the
AST, then allows expressions to be evaluated in that environment. The Interpreter also
allows the setting of breakpoints etc. The Interpreter is operated through the command
line (console) or via the Xdebug remote debugging protocol.

 4

LatexStreamReader extends InputStreamReader – overrding readLine()

BacktrackInputReader creates a LatexStreamReader – using its readLine() to read the whole file

LexTokenReader

lines as Unicode Java Strings

Unicode chars

extends BacktrackInputReader – overrding push, unpush and pop

SyntaxReaders

LexTokens

constructed with a LexTokenReader

AST

VDMJ Parser 1

These four class groups comprise the VDMJ parser.

A LatexStreamReader extends InputStreamReader, replacing its readLine with a method
that searches for LaTeX markup headers, turning such "non-content" lines into blank
lines. This has the effect of preserving line number layout, but avoiding the syntax errors
that LaTeX markup would otherwise produce.

A BacktrackInputReader is used to replace the InputReader's mark() and reset() methods
with a more flexible stack of markers that can be pushed and popped. This allows
arbitrary backtracking to occur which simplifies the token reader and syntax readers. To
enable this, the entire source file is read in to memory (via the readLine of the LaTeX
reader). The output is a sequence of Unicode Java chars.

The LexTokenReader extends BacktrackInputReader, replacing its push/pop methods
with its own which push/pop the full lexical state – eg. including the current line number,
character position and last token read. It provides two methods to the SyntaxReaders, in
addition to push/pop, to read the next token from the stream or repeat the last token. The
output is a stream of LexTokens.

Lastly, SyntaxReaders consume the LexTokens and build the AST. There are different
SyntaxReader subclasses for each of the major syntactic groups in the grammar
(definitions, expressions, statements, patterns, bindings and types), plus two top level
readers for modules and classes respectively.

 5

VDMJ Parser 2

● One SyntaxReader subclass for each major group in the grammar
● Top level ModuleReader and ClassReader combine the others and

return the AST (class list or module list)
● Each reader typically has one public method, like readPattern(),

readType(), readClass() etc. and many private methods.
● All readers are constructed by being passed a LexTokenReader

The SyntaxReaders comprise the syntax analyser of the VDMJ parser.

The readers use "recursive descent" parsing with backtracking, which means that the
structure of the code closely resembles the structure of the grammar being parsed. This
is intuitive and easy to debug, but laborious to write.

The readers create and attach new instances of other readers to their lexical stream
when they need to read parts of the parse of a larger structure. For example, a
DefinitionReader creates a TypeReader and PatternReader to parse the type/parameter
signature of a function, and an ExpressionReader to parse the body expression, finally
putting the parts together into an ExplicitFunctionDefinition object (part of the AST).

Syntax errors throw exceptions. The syntax recovery catches these exceptions and
advances in the stream until a token in one of two lists is encountered: the first is a list of
tokens which must be read up to and past; the second list is those which must be read
up to and from which parsing will continue. For example, when parsing statements,
immediately after a semi-colon would be a good place to recover, and at the next
definition section ("functions" or "types" etc) would be a good place to recover from (ie.
including that token).

In the case of grammar ambiguities, the parser uses backtracking to keep the structure of
the code simple, at the cost of re-reading the source. For example, a lexical identifier at
the start of a statement is either an assignment or an operation call. Assignments start
with state designators and operation calls with object state designators (in VDM++), and
the parser cannot tell which it is until more tokens have been read. To keep the parse of
the two separate and clean, the statement parser "pushes" the position at the start; tries
to parse one alternative, and if that fails tries to parse the other(s) after "popping" back.

 6

VDMJ AST 1

Class
Definition

Value
Definition

Function
Definition

Type Body
Expression

Param
Patterns

Class
Definition

Class
Definition

Type
Definition

Name Type
Inv

Function
Definition

etc

etc

● AST is a "washing line" of classes or modules at the top level
● Classes and modules contain definitions
● Definitions can contain yet more definitions - "mk_(a,b) = tupval"

NamePattern Type Expression

Tree

At the top level an AST is a list of class or module definitions, so it is more like a washing
line than a "tree".

The top level definitions contain a list of definitions for the various subsections of the
class or module (values, types, functions, operations, threads, sync, trace, instance
variables).

Each definition contains a tree structure representing the parsed structure of the source
file, including the patterns, types, binds, expressions, statements etc read by the various
SyntaxReaders.

Definitions can contain definitions, for example because they include something that
generates a function definition (eg. types with invariants generate a definition of inv_T
with the body of that function being the expression parsed), or because they are defined
with patterns that produce several named variables, such as a value definition defined as
"mk_(a, b) = ..." which defines "a" and "b".

 7

VDMJ AST 2

All AST definitions in VDMJ are subclasses of Definition.

Most of the subclass names relate directly to the names of the grammar for the
corresponding definition types. Note that not all of them are top level grammar items,
such as AssignmentDefinition, which appears in the "dcl" statement grammar, and is
identical to the grammar for instance variable definitions. Similarly, EqualsDefinitions
appear in "def" statements.

ExternalDefinitions are for the "ext" clauses that can be given with operation definitions.

ImportedDefinitions and RenamedDefinitions are used in module import clauses. They
wrap another defintion, but indicate that the defintion is not within the module (or has
been renamed within the module).

LocalDefinitions are used for local variables, such as those created from parameter
patterns and "let" defintions. They just contain a name and a type.

MultiBindListDefinition is used for several grammatical constructs which use "bind lists",
such as quantified forall and exists expressions.

UntypedDefinition is the odd one out. This is used as a placeholder when a value
definition is given, but where there is no type information, such as "x = 1" rather than
"x:nat = 1". The UntypedDefinition is subsequently replaced with a typed definition
(usually a LocalDefinition) in the type checking phase.

 8

VDMJ AST 3

Types in AST are represented by subclasses of the Type class. Their names closely
follow the names in the grammar.

Notice that the types which can have invariants (NamedTypes and RecordTypes) are
distinguished in the Type hierarchy, whereas in the grammar the invariant is part of the
TypeDefinition rather than the Type itself. This is for the VDMJ runtime, which needs
access to the invariant, given only the type, when new values are being created.

VoidType means "no type" and is used to indicate that most statements don't return a
value. The VoidReturnType is the type of the bare "return" statement – ie. this should
return from the operation, but the return type is still void.

UnknownType is used during error handling. This type will pretend to be anything and
tries to behave in a way that will not aggravate the type checker into producing a cascade
of spurious errors due to a single cause.

UnresolvedType is used to hold named types when then come from the syntax phase.
They are replaced with real types in an early phase of type checking (called type
resolution).

 9

VDMJ AST 4

All AST expressions in VDMJ are subclasses of the Expression class.

Most Expressions relate directly to an expression in the grammar. A couple are
manufactured in order to make the type checking and execution easier, such as
PreOpExpression and PostOpExpression (which include a link to the module state
definition, and are used exclusively for operations' pre and post expressions). Similarly
StateInitExpression is used in the setup of module state (the body of the state's "init"
clause, if any).

 10

VDMJ AST 5

All AST statements in VDMJ are subclasses of Statement.

The class names closely follow the grammar. The hierarchy is less structured than the
Expression hierarchy because generally statements are independent of each other. The
only subclassing is with SimpleBlockStatements, which are just a sequence of
statements, where the BlockStatement subclass can have additional DclStataments at
the start, and a NonDeterministicStatement subclass is used to identify a block used in
this way.

 11

VDMJ AST 6

All AST patterns in VDMJ are subclasses of Pattern, and closely follow the grammar.

Note that a Pattern plus a Type is able to generate a set of typed Definitions for the
identifiers it includes.

 12

VDMJ AST 7

Modules differ from classes in AST in that they have import/export defintions in addition
to a list of definitions.

 13

VDMJ Type Checking 1
Principles

● VDM syntax allows "3 + true", but type checking does not

● Concerned with types, which are ultimately defined by the types of
literals and named definitions, and their combination via
expressions, statements and further function/operation definitions.

● Also concerned with the scope of the names of definitions, the
duplication of names (error) or when local named definitions are
unused or hide outer names (warning).

● Syntax does not link type names to their definitions, so "x:T = 123"
has an UnresolvedType called "T", but this may not even exist.

● Note that functions cannot see "state" definitions, and operation
post conditions can see "old" variable values

● Classes are types (hence ClassDefinition), but modules are not.

 14

VDMJ Type Checking 2
Principles

● Type checking is coordinated by subclasses of TypeCheck. The
actual business of checking is performed by the AST elements

● An Environment refers to a list of definitions and allows them to be
searched by name

● Environments chain together to add definitions to the current
"scope" temporarily, such as parameters inside a function or new
definitions from a let expression

 15

VDMJ Type Checking 3
ModuleTypeChecker outline

● Check for duplicate module names in the list passed
● For each module, generate its definitions’ implicit definitions (like pre and

post functions)
● For each module, check the export definitions exist and are of the declared

type, and make a list of exported definitions for the module.
● For each module, go through the import definitions and resolve against the

exports.
● Create a list of all definitions from all modules (including their imports),

create an Environment that contains them all, and attempt to perform type
resolution on them – ie. find the type definition for every named type.

● In the pass order: [types, values, definitions], for each module, create a
ModuleEnvironment representing the visible definitions, and type check
the definitions of the given pass.

● Report any discrepancies between the final checked types of the modules’
definitions and their explicit imported types elsewhere.

● Any definition names that have not been referenced or exported produce
"unused" warnings.

 16

VDMJ Type Checking 4
ClassTypeChecker outline

● Make sure there are no duplicate class definitions.
● For all classes and their definitions, generate the implicit definitions. This

includes the construction of the class type hierarchy and the implicit local
names for access to inherited definitions.

● Create a PublicClassEnvironment that can see all public class definitions.
● For each class, chain a PrivateClassEnvironment to the public

environment, and perform type resolution on the definitions in the class.
● For each class, check for overloading and overriding of its definitions.
● In the pass order: [types, values, definitions], for each class, chain a

PrivateClassEnvironment to the public environment, and type check the
definitions of the given pass.

● Check for any definition names that have not been referenced, and
produce "unused" warnings.

 17

VDMJ Type Checking 5
Key Methods

● Type checking methods on Definition are all void, whereas those on
Expression and Statement return the type of their content

● Type resolution is only performed on Definitions, not Expressions and
Statements. Resolution of their types is delayed until their type check

● Expression's typeCheck has a list of "qualifier" types, used to resolve
overloading with function apply expressions

● NameScope indicates whether state etc. is in scope or not

 18

VDMJ Type Checking 6
TypeComparator

● TypeComparator is used to check whether one type is assignment
compatible with another, and whether one type is a subtype of another

● VDMJ always does type checking with "possible semantics"
● The "compatible" method provides possible semantics for type

conversion, eg. a real is possibly an int
● The "isSubType" method provides definite semantics for type

comparison, eg. a real is not a subtype of int. This is used in PO
generation

 19

VDMJ Type Checking 7
Checking Functions (1)

● If there are any polymorphic type parameters for this function, check that
the overall function type does not reference any type parameters except
those named type parameters.

● For each type parameter, create a LocalDefinition of a ParameterType and
add this to a local Environment.

● Check that the parameter patterns match the overall Type’s parameters,
and iterate through curried sets of parameters, using the return value from
the overall Type (and its return value and so on for subsequent sets of
parameters). Remember the expected result.

● Extend the local Environment with definitions for all the variables of all the
patterns from all of the curried parameter sets.

● Type check the definitions this produced in the base environment (this will
just do type resolution, if necessary).

● Label the local Environment as static (VDM++) if the definition’s access
specifier is static.

● If we are in VDM++ and the function is not static, add a “self” definition to
the local Environment.

● continued...

 20

VDMJ Type Checking 8
Checking Functions (2)

● If there is a precondition expression, type check the definition for it.
● If there is a post condition expression, type check the definition for that too.
● Type check the body expression of the function, remembering the actual

type returned.
● If the actual return type is not (possibly) assignable to the expected return

type, raise an error.
● If the VDM++ accessibility of the expected return type is narrower than that

of the definition itself, raise an error (eg. a public function cannot have a
private or protected return type).

● If the function is recursive and does not define a "measure" function, raise
a warning, else if there is a measure defined, check that it exists and has
the correct type.

● Check that the parameter variables have been referenced in the local
Environment, else raise an unused parameter warning. (This is
suppressed for pre and post condition functions, which are permitted to not
necessarily use their implicit parameters).

 21

VDMJ Interpreter 1

● Interpreter evaluates expressions from their definitions in the AST
● Acts as the common “interface” for external user interaction

classes (command line or IDE).
● Uses a default module or class. Used for simplified naming.

Defaults to the first module/class on the AST list
● Contains a list of breakpoints, and methods to set/clear/list them,

as well as to locate expressions/statements in AST by file/line
number

● Contains a list of source file contents for source debugging
● Also acts as the initiator for PO generation, though POs are

generated in the AST elements.
● Initialization method creates or restores an “initial context”

representing the global static context for all subsequent
evaluations

● Can evaluate expressions in the initial context, or in a local context
when a breakpoint is reached

 22

VDMJ Interpreter 2

● Evaluation is coordinated by subclasses of Interpreter. The actual
business of evaluation is performed by the AST elements

● Runtime name/value pairs held in Context subclasses which mirror
the Environment subclasses used in type checking

● Contexts chain together to form the runtime stack. RootContext is
the abstract base of a function/operation call. ObjectContext has a
“self”, and StateContext points to any module state

● Global values (module state or class static fields) are held in
ClassDefinition or Module definitions in AST

 23

VDMJ Interpreter 3

Contexts are used as "stack frames", but they encompass less than an entire frame for a
function or operation.

In the example above, a breakpoint has been set on line 11 which returns the final value
"a". The inset shows the stack trace when control reaches the breakpoint.

Note that the only name/value pair in the top Context is a=6, being the Context of the
"let" expression that defines it. Then the outer "let" expression defines another Context
that defines r and s. Then the object context for g(x) defines x, g itself, and the "self"
value. Lastly the object context for f(a,b) defines a, b, f itself and its "self". Notice that the
two self pointers have different object references (#1 and #2), due to the fact that "g" is
applied via a new object reference.

 24

VDMJ Interpreter 4

The Value hierarchy represents all runtime VDM values in VDMJ.

It can be compared to the Type hierarchy, in that there are Values corresponding to most
Types, but note that there is no "UnionValue" – a value cannot be a union of values, at
runtime the value must be one of the alternative types discovered during type checking.

Note that NumericValues form a hierarchy: a nat1 is a nat, which is an int, what is a rat,
which is a real.

Abstract ReferenceValues are values which refer to other values. The concrete
InvariantValue is a value associated with a type with an invariant function, such that any
value it refers to must conform to that invariant. An UpdatableValue adds a "set" method
to allow changes to the value being referenced.

VoidValue is "no value", and is returned by statements which do not return a value. The
VoidReturnValue is returned by the bare "return" statement, which does not return a
value as such, but which causes the flow of control to return as though it did.

 25

VDMJ Interpreter 5
Key Methods

● Expression and Statement's eval methods return their Value, given the
passed Context

● Evaluation recurses over the AST, evaluating and combining the Values of
sub-expressions or contained Statements

● The Context is extended by expressions or statements which add variables
(eg. let expressions)

● Evaluations can throw ContextExceptions – a runtime exception which
includes the Context (stack) as well as a number, text and location

 26

VDMJ Interpreter 6
TailExpression.eval

This is the eval method of a TailExpression.

The AST element only contains one sub-expression, "exp", which is the sequence
expression for which the tail is to be taken.

The sub-expression is evaluated using the same Context as passed – "exp.eval(ctxt)" –
which yields a Value (presumably a SeqValue). The seqValue method will take any Value
and return the inner List<Value> type that it contains, or throw a ValueException if the
Value does not actually contain a sequence.

Note that the value returned by seqValue is duplicated by being passed to a new
ValueList constructor. This is so that the copy can be modified – without doing this, the
original list would be modified, which could change the value of a string literal, for
example.

For a tail expression, the resulting list must not be empty, and a test is made for that
case, aborting (throwing a ContextException) with error 4033 if that is the case.

Otherwise the list is manipulated to remove the head, and a new SeqValue is returned
based on the remaining tail of the list.

All statements and expressions must include the breakpoint check line at the start of their
eval methods if a breakpoint is permitted to stop before their evaluation.

 27

VDMJ Interpreter 7
BlockStatement.eval

This is the eval method of a block statement – ie. a statement that can include dcl
statements to define new variables.

This evaluation must execute the statements in the block within a Context that is based
on the one passed in, but extended with the name/value pairs defined by the dcl
statements at the start of the block. The AST element calls these definitions
"assignmentDefs" – a List<Definition>.

A new Context is created, given a sensible location and title (for stack display) and
chained onto the end of the one passed in. The new context is populated with
name/value pairs generated from the dcl definitions by calling their "getNamedValues"
method. All Definitions' implementations of this method return a List<NameValuePair>
which can be added directly to a Context.

Having extended the context passed in, each statement in the block is evaluated and the
return value of each in sequence is tested to see whether it is non-void. If so, the block
evaluation terminates at that point and the value is returned as the value of the block.
Otherwise the statements are all executed and a new VoidValue is returned.

As with the Expression example, all Statements must call the breakpoint check method if
a breakpoint is allowed to stop before their execution.

 28

sequence for loop = ‘for’, pattern bind, ‘in’, [‘reverse’], expression, ‘do’, statement ;

VDMJ Exercise 1

● Currently, the "reverse" keyword is part of the sequence loop grammar
● It would be better to treat "reverse" as a new unary sequence operator, like

hd, tl, len, elems, inds and conc.
● Grammar becomes: "for", pattern bind, "in", expression, "do", statement
● ReverseExpression.java is partly written in SVN. The VDMJ parser has

been changed to build the AST already.
● Complete the eval method of ReverseExpression as an exercise –

compare with TailExpression.java
● Test with "print rev [1,2,3]" – should give [3,2,1]. Check that the reverse for

loop still works too. See whether you can set a breakpoint.
● The typeCheck method is also blank. Complete this as an exercise too –

test with "rev 123". It should complain that the argument is not a sequence.
● What should the getProofObligations method look like?

 29

VDMJ Exercise 2

 30

VDMJ Exercise 3
Tests...

 31

VDMJ Exercise 4
Solutions...

