

Object Oriented Issues in VDM++

Nick Battle, Fujitsu UK
(nick.battle@uk.fujitsu.com)

Background

VDMJ implemented VDM-SL first (started late 2007)

Formally defined. Very few semantic problems

VDM++ support added to VDMJ subsequently (started mid 2008)

Informally defined. Several semantic ambiguities

Problems and proposed solutions detailed in [1]

This paper summarizes the original issues:

● Mainly common sense

● Based on normal OO programming

● Try to make formal analysis simpler where possible

VDM-SL and VDM++ Compared

VDM-SL has a simple “flat” structure

State is local to a module

State initializers are atomic record expressions

Import/export of everything except state

VDM++ has a hierarchical class structure

Public static state can be accessed directly from anywhere

Object (instance) state as well as class (static) state

State initializers are separate expressions

Inheritance, overloading, overriding and polymorphism

Threads (non-deterministic?)

Static Initialization

Public static instance variables are roughly like state in VDM-SL

A specification must initialize into a known state

Similar to defining a single spec_init() operation

Must be deterministic

Proposal: static variables are initialized by computing the dependency
graph of static variables and constants in the specification, including
references made via operations and constructors. The order of initialization
of independent sub-graphs is not defined. A circular dependency is an
error. Initialization cannot create threads, or use loose or non-deterministic
statements.

Static InitializationStatic Initialization

But initializers can update state, so ordering is important even
within the graph of dependencies

There is no convenient ordering of variable definitions in arbitrary
classes (files) in a specification

VDMJ and VDMTools initialize the following differently:

class A
instance variables

static varA:nat := Z`nextValue();
...

class B
instance variables

static varB:nat := Z`nextValue();
...

Instance Initialization

Similar issue when initializing instance variables in a new object

But declaration order can be used

Relax the deterministic requirement?

Proposal: instance variables are evaluated using a dependency graph of
the variables they depend on, including references made via operations and
constructors. Independent sub-graphs can be initialized in any order, and
circular dependencies are an error. Variables which have common
dependencies are initialized in declaration order.

Multiple Superclass Construction

Superclass constructors are called explicitly, in any order

Difficult to call multiple explicit constructors without “hiding” the
return value:

class Z is subclass of A, B
operations

public Z: int * int ==> Z
Z(a, b) ==

let - = B(b), - = A(a) in skip;

end Z

Multiple Superclass Construction

Proposal: VDM++ should have an explicit superclass construction syntax,
similar to C++ and C#. Superclasses are constructed before subclasses. It
would then be an error to try to call a constructor operation explicitly.

class Z is subclass of A, B
operations

public Z: int * int -- NB. return type implicit
Z(a, b): A(a), B(b) ==

skip;

end Z

Multiple Superclass Construction

In what order are multiple superclasses constructed?

When are instance variables initialized in a hierarchy?

Proposal: VDM++ should make a depth first construction of superclasses,
in the order of the classes in the “is subclass of” clause. Instance variable
initializers are evaluated before the constructor at each object level.

When are default constructors used in a hierarchy?

Proposal: if no explicit constructor is called in the proposed new syntax,
then a default constructor is called at the appropriate position in the
initialization sequence. If no default constructor is provided by the class, a
blank one is provided which just initializes the instance variables.

Construction and Inheritance

If a constructor calls an operation which is overridden, does it
call the local version (C++) or the overridden one (Java)?

Similarly with variable initializers which call overridden
operations

Proposal: both constructors and instance variable initializers should call
the local version of operations and functions. This means a constructor
behaves the same way stand alone and in a hierarchy.

Construction and Inheritance

Are constructors inheritable?

Proposal: VDM++ should not allow constructor inheritance. Most OO
languages do not permit this, and inheritance would not fit with
constructors calling local versions of overridden operations

When are class invariants enforced during construction?

Proposal: invariants are only enforced once the construction of an object
is complete. This applies recursively to invariants on superclasses in a
hierarchy. On completion of construction, the invariant is evaluated once,
and on state changes thereafter.

Diamond Inheritance

A

B C

D

Who constructs A?

Is there one copy of A in D or two?

Proposal: In diamond inheritance, subclasses have their own private
copies of common superclasses, which are constructed separately. Hence,
any formal analysis for subclasses in isolation is still applicable when the
classes are composed in a diamond hierarchy.

Behavioural Subtyping

When do members with co/contravariant parameter and return
types override superclass members?

Proposal: VDM++ should implement strong behavioural subtyping in
class hierarchy overriding. This will simplify the formal analysis of
specifications.

What does strong behavioural subtyping mean for pre- and
postconditions?

Proposal: An overriding member's preconditions can be no stronger than
the overridden member's preconditions. An overriding member's
postconditions must be stronger than the overridden member's
postconditions. An overriding member must have a covariant return type
and contravariant parameter types (else it is an overload).

Polymorphism and Currying

How do polymorphic functions behave regarding overriding and
overloading?

Proposal: A polymorphic function can be overridden by a function of the
same name, with the same shape of parameter types as the superclass (for
example, "seq of @T" and "set of @T" are not the same shape).
Polymorphic functions with the same name can overload each other if they
have parameters that are a different shape.

How do curried functions behave regarding overriding and
overloading?

Proposal: A curried function can be overridden by another function with
the same type signature (ie. including all the function type returns).
Polymorphic functions, curried functions and simple functions can all
overload each other as long as they are distinguishable by parameter
types.

Miscellaneous

Can static functions/operations be called via an object reference,
and do they behave polymorphically or bind statically?

Note that all functions in VDM-10 are static

Proposal: static functions and operations can be called via an object
reference, and do act polymorphically.

Note for code generation: neither C++ nor Java do this!

Operation pre- and postconditions

What are the prototypes and semantics of operations' pre- and
postcondition functions in VDM++?

VDM-SL is simple, using local Sigma structures passed to
pre_op and post_op

VDM++ operations can potentially read/write the entire state of
the specification

Proposal: VDM++ pre- and postcondition functions are similar to those
in VDM-SL, except with “self” parameters rather than Sigma parameters.
The self objects represent a deep copy of the state. Operations which
reference static variables do not have pre- and postcondition functions.

Further Issues

Is VDM++ thread scheduling deterministic? If so, what is the
scheduling policy?

How can we do code generation if VDM++ semantics does not
match the target language's “natural” OO semantics?

What does #act(op) etc. mean if op is overloaded?

What are the binding rules in the light of overloading, overriding,
and a type checker with possible semantics?

Many other subtleties...

	Title page
	Background
	SL/PP comparison
	Static Init 1
	Static Init 2
	Instance Init
	Multiple Ctor 1
	Multiple Ctor 2
	Multiple Ctor 3
	Inheritance 1
	Inheritance 2
	Diamond inheritance
	SBS
	Poly Curry
	Misc
	pre/post ops
	Further issues

