
The Case for Simple
Object-Orientation in

VDM++

Erik Ernst
Aarhus University, Denmark

onsdag den 15. september 2010

“An outsider..”

• My research area is OO language design,
implementation, formalization, esp. type
systems (virtual classes, fam.pol.)

• Worked in Coq, lectured on contracts

• No background specifically on VDM*

• Will offer some loud opinions ;-)

onsdag den 15. september 2010

Overview

• Premises

• Language design rationale

• Features to include

• Features to omit

• Reductions (syntactic sugar)

• Summary

onsdag den 15. september 2010

Overview

• Premises

• Language design rationale

• Features to include

• Features to omit

• Reductions (syntactic sugar)

• Summary

onsdag den 15. september 2010

Premises

• VDM++ should remain compatible with the
relevant VDM dialects (VDM-SL)

• VDM++ should enable precise reasoning
about software, including tool support

• VDM++ should embrace multiple target
languages

• The VDM ‘mindset’ is practical

onsdag den 15. september 2010

From premises..

• The VDM++ language should have a well-
defined semantics (for precision)

• The semantics should be simple (for
reasoning and tool support)

• The semantics should build on core OO
concepts, only (for coverage)

onsdag den 15. september 2010

Semantic conflicts

• It is not possible to “take the union” of the
semantics of all languages, e.g.:

• Java: two m-interfaces have shared impl.

• C#: may implement m per interface

• Java cannot support distinct behavior, C#
cannot promise distinct declarations

• Conflict!

onsdag den 15. september 2010

Overview

• Premises

• Language design rationale

• Features to include

• Features to omit

• Reductions (syntactic sugar)

• Summary

onsdag den 15. september 2010

Language Design
Rationale

• Go for a precise semantics based on a few,
powerful core OO abstractions

• Familiar features may unfold to more
verbose forms; name clashes etc. may be
avoided because specification is an early
activity

onsdag den 15. september 2010

Overview

• Premises

• Language design rationale

• Features to include

• Features to omit

• Reductions (syntactic sugar)

• Summary

onsdag den 15. september 2010

Features to include

• Static typing

• Object; method; class

• Mutable state; dispatch

• Inheritance; subtyping

• Assertions (invariants, pre-/post-cond...)

onsdag den 15. september 2010

A word on inheritance

• A plethora of variants exist

• A simple core: Single inheritance

• Multiple inh. may be needed for coverage

• Really difficult — but could try to do

• specification of superclass relations

• explicit resolution of clashes, repeating...

onsdag den 15. september 2010

Overview

• Premises

• Language design rationale

• Features to include

• Features to omit

• Reductions (syntactic sugar)

• Summary

onsdag den 15. september 2010

Features to omit

• Static features

• Constructors

• Declarative initialization

• Static overloading

• Access control

• Nesting

onsdag den 15. september 2010

Omitted: Static features

• Static state is just global variables with
twisted names; so let’s have globals
explicitly, or leave it out

• (Isn’t it “class object state”? No: try
2*getClass(), then newInstance())

• Static methods are just global procedures,
similar treatment

onsdag den 15. september 2010

Omitted: Constructors

• An anomaly — not inherited, implicit super
chain calls, does not return the object

• It’s just wrong to execute code in a context
that does not exist! ;-)

• Primitive allocation establishes invariants
from scratch by complete state arguments

• Factory procedures provide abstraction

onsdag den 15. september 2010

Omitted: Declarative
initialization

• Declarative = Good?

• Requires too much magic for initialization,
in multiple un-ordered modules!

• Object strategy (start with complete state)
not realistic

• Use explicit, multi-step initialization

• E.g., per module when dependencies acyclic

onsdag den 15. september 2010

Omitted: Static
overloading

• Static overloading rules are horribly
complex. (Ask Gilad Bracha...)

• Incompatibilities in the details unavoidable

• Trivial to remove by using more explicit
naming

onsdag den 15. september 2010

Omitted: Access
control

• Many different incompatible models

• Seems simple, but even Java has quirks
(nesting, packages, protected)

• Should be separable: It only rejects some
programs, never changes the semantics

• Can be added orthogonally

onsdag den 15. september 2010

Omitted: Nesting

• Standard semantics does not depend
crucially on block structure (nesting)

• Example: The javac compiler flattens the
class space, adds immutable references to
enclosing objects

• With virtual classes etc, this would be a
crucial element, but not for mainstream
languages

onsdag den 15. september 2010

Overview

• Premises

• Language design rationale

• Features to include

• Features to omit

• Reductions (syntactic sugar)

• Summary

onsdag den 15. september 2010

Reductions

• Idea: The core language is the output from a
transformation process

• Several surface languages may add various
features (e.g., constructors) to the core

• Specification writing is pragmatic

• Proof obligations in the core language?

onsdag den 15. september 2010

Reduction issue

• Code generation may need to be based on
surface language (for performance)

• Need justification for a surface language
semantics

• Must be shown by (1) core language
semantics, (2) transformation semantics
preservation

onsdag den 15. september 2010

Overview

• Premises

• Language design rationale

• Features to include

• Features to omit

• Reductions (syntactic sugar)

• Summary

onsdag den 15. september 2010

The Case for Simple
Object-Orientation in

VDM++

• Premises/rationale: simple core + sugar

• Included: object, method, class, inheritance

• Omitted: static features, ctrs, declarative
initialization, overloading, access ctl, nesting

• Priority: reasoning about programs!

onsdag den 15. september 2010

