
Toward Customizable and Bi-directionally
Traceable Transformation

between VDM++ and Java

Fuyuki Ishikawa1

GRACE Center, National Institute of Informatics,
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan,

f-ishikawa@nii.ac.jp

Abstract. VDM allows for formalization, verification and validation of
software specifications, typically focusing on only abstract essences of
the target system. Therefore, it is necessary to derive programs from
VDM specifications in an efficient and reliable way, while incorporating
details and reflecting implementation strategies. This paper discusses a
method and tool to support this process through customizable and bi-
directionally traceable transformation. Specifically, transformation rules
from VDM++ to Java are specified for explicitly defining the imple-
mentation strategies and customizing the code generation process, e.g.,
introduction of implementation-specific variables. These rules can then
be used for bidirectional transformation between VDM++ specifications
and Java code. Changes at either of the two sides can be reflected to
the other side even with the existence of implementation strategies that
essentially lead to gaps between VDM++ and Java. This paper reports
initial attempts that started with definitions of variables and method
signatures, or structure definitions as in class diagrams.

Keywords: VDM, Bidirectional Model Transformation, Code Genera-
tion, Traceability

1 Introduction

VDM is a method for formal specification of software systems [5, 6]. Currently,
VDM is said to be lightweight, because the languages and current supporting
tools for VDM can be used in a similar way to those for programs. Specifically,
modules or classes are defined with variables and methods (functions/operations),
and typically tested by using the interpreter [1, 4].

Because structures of the languages for VDM (VDM-SL and VDM++) are
similar to those of common programming languages such as Java, it is some-
what easy to syntactically map VDM specifications to implementation code, for
many common notations often used. Actually it is necessary to do so in an ef-
ficient and reliable way, to reflect what are defined and examined in VDM into
implementation code.

On the other hand, abstraction is the key in VDM (or specifications in gen-
eral) [5,6]. Only abstract essences of the target system are modeled while imple-
mentation details are abstracted away. For example, the languages use abstract
data types that do not mention how they are allocated with the memory space
and manipulated. In addition, developers may choose to use declarative nota-
tions or to omit details unnecessary for the intended analysis of the specification.
This way, there are gaps between VDM specification and implementation code.
It is therefore necessary to derive programs from VDM specifications in an effi-
cient and reliable way, while incorporating details and reflecting implementation
strategies.

Existing VDM tools have not investigated this aspect. For example, code
generators in VDM Toolbox only provide a few options and do not allow for in-
corporation of implementation strategies [4]. As a result, developers often need
to modify the generated code to reflect the strategies. In addition, in that case
it is necessary for developers to exclude the modified parts to avoid override by
code generation and manually manage the changes. As another example, trans-
formation tools between UML class diagrams and VDM specifications have been
recently focused on [4, 11]. However, this leads to a situation where developers
have two class diagrams: one written in VDM vocabularies with abstraction, and
the other written in C++ or Java vocabularies with implementation details. Al-
though the latter is popularly used in common development processes, it is not
clear how to locate the former when introducing VDM. In order to effectively
leverage VDM in the development process, the essential gaps in such a situation
should be discussed and handled.

In response to the problem discussed above, this paper discusses a method
and tool to manage the gaps between VDM specification and implementation
code through customizable and bi-directionally traceable transformation. The
approach is to use transformation rules from VDM++ to Java for explicitly
defining the implementation strategies and customizing the code generation pro-
cess. The rule language allows for local overriding so that default rules are de-
fined to generate valid Java code while developers can add rules to customize
the transformation process. In addition, a solid transformation theory and its
implementation are used to provide the basis of bi-directionally traceable trans-
formation [3,7]. This allows for reflecting changes at either of the VDM and Java
sides to the other side, even with the existence of the gaps.

Realization of the method and tool requires much effort for coverage of var-
ious syntax elements as well as ideally sophisticated user interface. This paper
reports initial attempts for proof-of-concept implementation, which deal with
very basic parts of VDM++ and Java.

class TestClass

instance variables

private a : real;

private b : real;

private s : seq of nat;

private state : State;

-- only in model

end TestClass

public class TestClass{

private double a;

private float b;

private int x;

private LinkedList<Integer> s;

private Logger log;

// only in impl

}

Fig. 1. Transformation Example

2 Motivation

2.1 Abstraction Gaps between VDM++ and Java

Figure 1 shows a simple example of variable definitions in a VDM++ spec-
ification and its transformation into Java code. Besides the necessary syntax
translation, this example includes the following transformation.

1. The variable a of the real type in VDM++ is implemented as the double
type in Java.

2. The variable b of the real type in VDM++ is implemented as the float type
in Java.

3. The variable s of the seq of nat type in VDM++ is implemented as the
LinkedList<Integer> type in Java.

4. The variable state is unnecessary in the implementation code. This situation
happens, for example, when a variable is necessary only to define invari-
ants, or to define a mock to let the model run (replaced by libraries in the
implementation code).

5. The variable log is necessary only in the implementation code. This situation
happens, for example, when details unnecessary for the targeted analysis or
value-added functionality such as logging are abstracted away in VDM++.

The transformations #1, #2 and #3 illustrate how abstract types are con-
verted to concrete types that define how to allocate data with the memory space
and manipulate. Among them, #1 and #2 illustrate customization (definition
of different conversion for the same type). The transformations #4 and #5 il-
lustrate model-specific or implementation-specific variables that exist at only
one side of VDM++ and Java. Although the example only includes variable
definitions, equivalent discussion stands also for method definitions.

This way, VDM, or early (formal) modeling methods in general, essentially
leads to abstraction gaps. Specifically, to clarify the links between abstract model
and the implementation, it is necessary to explicitly distinguish and manage
different aspects included or excluded in the abstract model.

– What aspects in formal specification (VDM) are essential decisions, inherited
to the implementation (Java code)

• Inherited as they are (with syntax translation)
• Inherited as with additional decisions (e.g., how to allocate and manip-

ulate data on memory)
– What aspects in formal specification (VDM) are tentative and unnecessary

in implementation (e.g., assertions, tentative mock to let it run without
concrete implementation)

– What additional aspects are introduced only into the implementation (e.g.,
loggers)

This paper focuses on these gaps between VDM++ and Java. The gaps essen-
tially come from the fact generally design decisions or implementation strategies
are made and introduced when deriving implementation code from specifications.
The approach in this paper thus does not consider VDM-to-Java ”translation”
but ”transformation” (not generating code with equivalent structures and be-
haviors).

2.2 Expected Usage of VDM

VDM does not define one specific usage on how to incorporate it into the devel-
opment process. This paper focuses on usages to rigorously model and validate
design, used as input to implementation teams (rather than to model early re-
quirements only for understanding the domains and problems there). VDM is
suitable for the usages, compared with other methods for abstract and formal
modeling, as its languages include more concrete and design-aware syntax such
as object-orientation.

As illustrated in the example in Section 2.1, each class is modeled with some
abstraction, but the basic class structures are discussed defined concretely. With
this expectation, this paper does not consider integrating variables and methods
from multiple VDM++ classes to one Java class, or decomposing variables and
methods in one VDM++ class into multiple Java classes. The latter is especially
useful to gradually introduce complexity, but is covered with other methods such
as Event-B [2] or similar refinement methods for VDM [10].

2.3 Goal Setting

For the usages to be cost-effective and attractive, it is necessary to reflect what
are modeled and validated in VDM into the implementation, in an efficient and
reliable way. This paper proposes an approach to explicitly describe the gaps
between the formal specification and the implementation as transformation rules.
Below describes the goals this approach is intended to achieve, as well as detailed
approaches given characteristics of VDM and the expected usages.

First, customized code generation is supported. In the approach, developers
can customize the code generation to incorporate their own abstraction strate-
gies or implementation strategies by specifying transformation rules. Assuming
similar structures in the formal specification and in the implementation, the
transformation rules denote strategies such as making data type concrete. The

rules themselves just denote syntax transformation to accept wide range of cus-
tomization, e.g., use of database connectivity and comment insertion. On the
other hand, it is costly and often unnecessary to specify all the transformation
rules. Therefore default rules are provided, and the proposed language for trans-
formation rules allows for customization through overriding the defaults. This
approach also facilitates to leverage hierarchical definition and reuse of rule sets,
e.g., to reflect common implementation strategies in the domain, to generate
comments in specific styles required in the team, or to generate annotations for
further processing and analysis.

Second, verification through common test cases is supported. As VDM itself,
if referred to as a lightweight method, does not define a specific formal way to
obtain concrete code that satisfies what are validated in the specification. The
approach in this paper does not consider to formally obtain code, either, as it
allows for very wide range of syntax transformation. This point is different from
fully formal methods that consider stepwise refinements where each refinement
step is semantically (mathematically) describable and provable. Although step-
wise refinements would be possible also in VDM, current tools do not support
and there will be limitations when dealing with object-orientation in VDM++.
Instead, test cases used for checking the VDM specification should be used for
checking the implementation code. To support this test case inheritance, it is
possible to automatically generate test code for the VDM specification and the
implementation from one configuration, by understanding the abstraction gaps
explicitly specified within the transformation rules. This aspect was discussed
in the author’s previous paper [8] and is omitted in this paper (though trivial
changes are necessary).

Finally, traceability between formal specification and its implementation is
supported. Transformation rules explicitly keep the relationships between the
VDM specification and the implementation code, or how the latter is derived
from the former. The relationships are essential to understand and make modi-
fications in an existing set of specification and implementation. This paper con-
structs the transformation rules on the basis of a solid underpinning for bidi-
rectional graph transformation. It allows for tracking what part in the VDM
specification correspond to what part in the implementation code. In addition,
it also allows for automatically reflecting changes in the implementation code
to the VDM specification. Specifically, given the limitations of the current code
generator, discussed in Section 2.1, this paper aims at supporting the following
properties,

1. Suppose Java code J is generated from VDM++ specification V , and J
is modified into J ′ only by introducing implementation-specific elements.
Generation of VDM++ specification from J ′ then leads to V . The same
holds for the case where J ′ = J .

2. Suppose Java code J is generated from VDM++ specification V , and V is
modified into V ′ only by introducing model-specific elements. Generation of
Java code from V ′ then leads to J .

VDM++

Specification

Java

Codes

Transformation

Rules Trace Logs

VDM++ Test

Specification

Java Test

Specification

Fig. 2. Expected Usages of Proposed Framework

3. Suppose Java code J is generated from VDM++ specification V , J is modi-
fied into J ′, and VDM++ specification V ′ is generated from J ′. Generation
of Java code from V ′ then lead to J ′.

The current scope of this paper is to investigate benefits and limitations of
the proposed framework when the transformation rules are explicitly given by
developers. Further challenges are discussed as future work, i.e., to deal with
vagueness that appears when explicit knowledge is not given by developers.

2.4 Expected Features

Figure 2.4 illustrates expected features and usages of the proposed framework. As
in common usages of VDM, formal specification models are built in the VDM++
language with some abstraction strategies. Class diagrams can be used to first
clarify the structural aspects (variables and method signatures) of the design
before the rigorous specification in VDM++. Behavioral aspects can also be
modeled too, in an abstract but executable way. The VDM++ specification is
analyzed through type check, review and other techniques as well as check with
given test cases. These tasks can be supported by existing tools, i.e., VDM++
editor, interpreter, debugger and test frameworks as well as UML editor and
UML-VDM translators.

Transformation rules are then specified, defining differences to be introduced
between the VDM specification and the Java code, besides the syntax differ-
ences. Java code are then generated using the rules. The transformation pro-
cedure internally processes parse trees of the VDM specification and the Java
code. Transformation itself can be done with Abstract Syntax Trees (ASTs), but
locations of syntax elements in texts are also kept for implementing visual sup-
port for traceability. This paper uses the term ”parse tree” instead of common
”AST”. In addition to transformation of the VDM specification (of the target
system), the VDM test specification can be also transformed into Java test code,

by using the transformation rules. Thus common test cases can be checked both
for the VDM specification and the Java code.

When modifications are made in the VDM specification, Java code are gen-
erated again. Depending on contents of the modifications, transformation rules
may be changed as well. It is possible to extract what parts of the VDM specifi-
cation are affected by each rule, to help understand whether each rule is affected
by the modifications or not. When modifications are made in the Java code,
basically they can be reflected back to the VDM specification by using the logs
kept in the previous transformation (VDM++ to Java). However, completeness
of this functionality depends on the user interface to manage changes at the Java
code, which is out of the scope of this paper.

Features involved in the above description may be used in different ways.
For example, developers may choose to only rigorously model and validate the
interface, and use generated Java code as skeleton. Developers may define rules
incrementally and iteratively, to check the result of transformation, find points
to customize by additional rules, and run transformation again.

This way, the framework provides support for connecting various deliver-
ables in the VDM++ (or abstract modeling) world and ones in the Java (or
implementation) world.

3 Overview of Approach

3.1 Transformation Rules

Transformation rules specify how to syntactically transform specific parts of a
VDM++ specification into Java code. First of all, pure syntax translation, with-
out introducing any implementation decisions, is at the base of transformation.
Suppose VDM++ specification includes the following variable definition.

private x : real;

This fragment is translated into the following Java fragment.

private real x;

Syntax differences (the order and the delimiter in this case) are handled,
without any transformation rules.

The above example is only for illustration, as real is not a valid Java type.
There is no really equivalent type in Java, as real in VDM++ refers to a math-
ematical notion and does not define any specific format put on the memory 1.
Therefore a transformation rule is mandatory in this case to declare how the
real type is implemented in Java, as double, as float or possibly as a user-defined
class.

Suppose double is chosen to implement all the references to the real type.
The following rule indicates this decision.

1 VDM tools, especially interpreters may define specific formats to implement the real
type

type-implement: real by double

This rule changes the transformation result as follows.

private double x;

The first part (type-implement in the rule denotes a pattern of implementa-
tion decisions. Default rules are defined so that valid Java code can be obtained
even if developers define no rule. The current framework follows an existing code
generator, and choose double as the default for real. It is actually unnecessary
for developers to specify the above rule by themselves.

Suppose only for the variable x, exceptionally the float type is used. Another
rule, reflecting an implementation decision, is then added by developers. This
rule clarifies to which part the rule is applied, and locally overrides the above
rule.

class: TestClass{

type-implement: real by float in variable x

}

This way, the language for transformation rules allows developers to cus-
tomize code generation behaviors when the default is not acceptable. The re-
mainder of this section describes patterns embedded in the rule language, which
are extracted from existing literatures on VDM, primarily books [5, 6].

Other rules include introduction or removal of a new variable, a new argu-
ment of a method, a new method, and a sentence inserted within the behavioral
description of a method.

3.2 Foundations in Transformation

A theory for bidirectional graph transformation is applied to process the trans-
formation rules [7]. It defines a set of graph transformation functions and their
semantics so that changes in the result graph can be reflected to the source graph
in a well-behaved way (in a certain sense).

Graph transformation can be defined by using the languages UnCAL or
UnQL+. UnQL+ provides a high-level notation for four types of manipulation,
select, replace, delete and extend. On the other hand, UnCAL is a foundational
algebra with full expressivity, working as the background of UnQL+. In this
paper, the high-level language UnQL+ is sufficient to illustrate the essences,
though implementation of the proposed framework may also use UnCAL for
detailed control of transformation.

UnQL+ allows for definition of transformation as a query, similar to a SQL
query, extracting specific parts from the source graph and constructing a graph
possibly adding new parts. For example, below reviews the rule in Section 3.1,
that implements the real type by double.

type-implement: real by double

This rule is converted to UnQL+ queries including the following one, which
replaces the term real in the type declaration in each variable definition.

varblock

vardef

real x private

vartype varname varaccess

char

vartype

real

vardef vardef

... ...

...

Fig. 3. Manipulation on Syntax Tree

replace

varblock.vardef.vartype -> $a

by {double:{}}

in $db

where {real:{}} in $a

Figure 3.2 illustrates an expected VDM++ syntax tree and how this query
works. The first line denotes the type of query: replace some parts of the source
graph with a given graph. The second and fifth lines define subtrees to be re-
placed. The second line refers to child subgraphs of a node reached by tracing
the path varblock.vardef.vartype from the root. The fifth line defines conditions
to declare each of the extracted subgraphs is replaced only if it contains a leaf
node with the label real. The third line defines each of the subgraphs is replaced
with a leaf node with the label double. The fourth line just refers to the source
graph as the input to the processor ($db).

The above query is one of the queries generated from the transformation
rule to implement real by double. For example, another rule is necessary to use
Double inside the complex type (e.g, HashSet<Double>). This rule is converted
to a similar query, but a regular expression are used for the path description to
match occurrences of real nested in complex types.

A result graph of a query can be an input to another query. UnQL+ ensures
composablity, i.e., it is possible to define a complex transformation by defining
and applying small transformations one by one. In the proposed framework,
each transformation rule is converted to one or a few queries in UnQL+, and
then processed in order. When a query is composed from multiple rules, specific
rules are evaluated before default rules. In the example described in Section 3.1,

first the specific occurrence of the label real are replaced with float, and then
remaining occurrences of real are replaced with double.

The other types of queries are also available, selecting or deleting designated
subgraphs as well as extending (inserting) a graph to be a child of the designated
path. With these types of UnQL+ queries, the transformation rules can be im-
plemented on the basis of a solid graph transformation theory, though further
examples are omitted.

3.3 Understanding and Tracing

The underlying theory and tool make logs about from which node in the VDM++
syntax tree each node in the Java syntax tree is derived from (see [7] for details).
This allows for extracting correspondences between VDM++ fragments and Java
fragments. When VDM++ fragments are deleted by transformation rules, there
is no corresponding Java fragments. The same stands for the case when Java
fragments are inserted.

As a UnQL+ query includes description of target subgraphs to be replaced,
deleted or extended, it is possible to construct a select query to extract the
subgraphs. Thus it is possible to identify VDM++ fragments that are replaced
or deleted by each transformation rule. In addition, it is possible to identify
Java fragments that are inserted by each transformation rule by identifying and
logging nodes newly introduced by each rule application.

With these mechanisms, it is possible to identify correspondences among
VDM++ fragments, Java fragments and transformation rules.

3.4 Reflecting Changes Backward

This paper discusses what support is feasible when the Java program is modified,
and then the changes are reflected back to the VDM++ specification.

When a syntax element is replaced, added or deleted in the Java program, it
can mean either an implementation-specific decision or an essential change that
should be reflected to the VDM++ specification. Therefore it is necessary for
supporting tools to ask developers to make some input to identify the intention.

When a modification in the Java programmeans an additional implementation-
specific decision, a transformation rule should be defined accordingly (e.g., chang-
ing the way a concrete type is implemented, removing/introducing a variable/method).
The rule is necessary to keep the modification even if a Java program is regener-
ated from the VDM++ specification (possibly with further modification). Thus
this case can be dealt with the presented framework. Practically, automatically
deriving a rule from the edited Java program would be attractive and feasible,
rather than explicitly inputing the rule, but it is out of the scope of this paper
and will be discussed as future work.

When a modification in the Java program means an essential change, it de-
pends on the kind of the modification how it should be reflected to the VDM++
specification. Below discusses this point.

Suppose an element that equally exists in both VDM++ and Java is replaced.
An example of this case is renaming of a variable or method, which requires the
same renaming in the VDM++ specification (note that any transformation rule
does not change a name of a variable or method). In this case, it is possible
to reflect the change in the Java syntax tree back to the VDM++ syntax tree.
The underlying transformation theory originally supports this kind of backward
transformation, though the tracing mechanism presented in Section 3.3 can do
as well. On the other hand, it is necessary for the user interface to understand
the renaming change occurred. This will be realized, for example, by forcing
developers to use a provided command for renaming (common in Eclipse-based
editors), or by detecting text edit by the developer. The same discussion stands
for removing an element that equally exists in both VDM++ and Java.

On the other hand, careful consideration is required for reflection of insertion
in the Java program to the VDM++ specification. Generally in the underly-
ing transformation theory, there can be multiple source graphs (VDM++ parse
trees) that are transformed into the identical target graph (Java parse tree). In
the case of insertion, logs kept in the previous forward transformation do not
provide any information for identifying how a unique source graph is chosen
among the possible ones, specifically for the inserted nodes at the target graph.
This general discussion also stands for the transformation rules proposed in this
paper. For example, a new int variable in Java may be reflected back as a new
int variable in VDM++, but there is no reason to exclude the possibility to
have a new nat variable in VDM++. Use of custom rules makes it difficult to
deal with this problem. Because of this essential difficulty, currently insertion is
recommended to be made in the VDM++ specification, though accumulation
of practical use will lead to definition of default unique inverse transformation
rules for insertion.

4 Prototype Implementation of GUI-based Tool

This section describes a prototype implementation of GUI-based tool for the
framework.

The tool internally uses the implementation of the transformation theory
with UnQL+/UnCAL, called GRoundTram [3]. GRoundTram provides the func-
tionalities for transformation from a VDM++ syntax tree to a Java one, leaving
traces for understanding from which VDM++ syntax elements each Java syntax
element is derived. GRoundTram also provides the functionalities for backward
transformation using the logs in the forward transformation, involving change
detection in the Java syntax tree.

The tool implements the features described in Section 3, which are integrated
with the features of GRoundTram. The features include conversion of transfor-
mation rules into UnQL+ queries as well as construction of select queries to
identify the VDM++ fragments to which each rule affect.

Currently, the primary feature in terms of the user interface is a three-window
interface to help understand and trace relationships between VDM++ specifi-

Fig. 4. Screenshot of GUI-based Tool

cation, transformation rules and Java code (Figure 4). When a text fragment is
selected in one of the three texts (i.e., VDM++, Java, and transformation rules),
highlight related text fragments in the other two texts. For example, when some
text fragment is selected in the VDM++ specification, then transformation rules
are highlighted that make changes on the fragment. At the same time, Java code
that correspond to the VDM++ fragments are also highlighted. This user inter-
face can be implemented with the mechanisms described in Section 3.3.

The current implementation is based on partial syntax definitions of VDM++
and Java. Future work for practical use includes full coverage of the syntax or
integration with existing parsers.

5 Concluding Remarks

This paper has discusses a method and tool to support the process to derive
implementation from VDM specification, in an efficient and reliable way, through
customizable and bi-directionally traceable transformation.

The approach allows developers to choose any point between two extremes:
fully automatic code generation without customizability and fully manual cod-
ing. Examples include cases where only some classes are implemented to accept
concurrent access, and cases where a platform-specific library is used to replace
a few mock classes in VDM++. On the other hand, the approach is also suit-
able for iterated and derivative development where both of the specification and
the implementation need to be updated consistently. The transformation rules
work as explicit documentation of relationships between the specification and
the code, which is essential especially when responsible developers change.

Future work includes enhancement of practical implementation, such as cov-
erage of default transformation rules, dedicated user interface and evaluation
with large specifications and various implementation strategies (e.g., using databases).
Future work also includes semantical support on the top of the current syntac-
tical layer, in order to ensure transformation results are valid, at least with the

default rules and preferably certain types of custom rules by developers. How-
ever the author believes the approach presented in this paper provides a solid
foundation for traceability between formal specification in VDM and its imple-
mentation with programming languages.

Acknowledgments

The author would like to thank participants in Top SE [9], an education program
for the industry, for questions and opinions on the problem discussed in this
paper. The author would like to thank for the BiG project [3] team for quick
support in the GRoundTram tool as well as Florian Wagner for his help on
implementation of the prototype.

References

1. Overture - Open-source Tools for Formal Modelling. http://www.overturetool.
org/

2. RODIN - rigorous open development environment for complex systems. http://
rodin.cs.ncl.ac.uk/

3. The BiG Project. http://www.biglab.org/
4. VDM information web site. http://www.vdmtools.jp/
5. Fitzgerald, J., Larsen, P.G.: Modelling Systems: Practical Tools and Techniques in

Software Development. Cambridge University Press (1998)
6. Fitzgerald, J., Larsen, P.G., Mukherjee, P., Plat, N., Verhoef, M.: Validated Designs

For Object-oriented Systems. Springer (2005)
7. Hidaka, S., Hu, Z., Inaba, K., Kato, H., Nakano, K., Matsuda, K.: Bidirectionalizing

graph transformations. In: The 15th ACM SIGPLAN International Conference on
Functional Programming (ICFP 2010) (September 2010)

8. Ishikawa, F., Murakami, Y.: Challenges in inheriting test cases configurations from
vdm to implementation. In: The 7th VDM-Overture Workshop (2009)

9. Ishikawa, F., Taguchi, K., Yoshioka, N., Honiden, S.: What Top-Level Software
Engineers Tackles after Learning Formal Methods - Experiences from the Top SE
Project. In: The 2nd International FME Conference on Teaching Formal Methods
(TFM 2009). pp. 57–71 (November 2009)

10. Kawamata, Y., Sommer, C., Ishikawa, F., Honiden, S.: Specifying and checking
refinement relationships in vdm++. In: The 7th IEEE International Conference
on Software Engineering and Formal Methods (SEFM 2009) (2009)

11. Lausdahl, K., Lintrup, H.K., Larsen, P.G.: Connecting UML and VDM++ with
open tool support. In: The 16th International Symposium on Formal Methods (FM
2009). pp. 563–578 (2009)

