
VDM++ as a Basis
 of Scalable Agile Formal Software Development

Hiroshi Mochio1 and Keijiro Araki2

1Chikushi Jogakuen University, 2-12-1 Ishizaka, Dazaifu-shi, 818-0192 Fukuoka, Japan
1mochio@chikushi-u.ac.jp

2Kyushu University, 744 Motooka Nishi-ku, Fukuoka-shi, 819-0395 Fukuoka, Japan
2araki@csce.kyushu-u.ac.jp

Abstract. This paper presents the use of VDM++ formal specification language
as a basis of scalable agile formal (SAF) software development method, which
is an agile method for mission-critical or large-scale software development.
Combination of agile method, of which usefulness has been recently
recognized, and VDM++, a formal method, enables describing system
architecture, verifying specification and generating source code all in an agile
and formal way. The system architecture and the verification are indispensable
for SAF software development.

Keywords: agile method, formal method, scalable development

1 Background

It has been about ten years since the Agile Manifesto was declared. [1] During this
period, agile software development method has been more and more adopted in real
industry field and realistic results have been obtained. The significance of the agile
development method is already undoubted today. Agile development principles, such
as iteration based on lean requirements, good communication among the stakeholders
and regularly responding to changes, lead to satisfaction of developers and customers.
Consequently, it brings about high productivity.

The method of lean requirements enables developers to catch an outline of the
iteration that they are working on. Therefore, the developers can easily understand the
whole requirements and always keep their motivations high. Good communication
enables developers to keep products of high quality because they can recognize a gap
between the status of the products and the requirements. Iteration of a short term
development enables developers to cope with changes of the market and the customer
flexibly.

Contrarily, there have been several comments about proper problems of the agile
development method. Lack of ability to develop mission-critical software and lack of
scalability are typical ones.

About the lack of ability for mission-critical software, Kent Beck, who promotes

eXtreme Programming (XP), one of the most commonly used agile development
methods, notes that “more than XP” may be needed in safety-critical systems. It
means that in such situations additional process measures such as documented
traceability, formal design review by outside experts and the like, may also be
required. [2]

In XP, reliability of software is built up by means of test and review. Since XP is a
test-driven development method, at first, tests must be described before design, and
then verification by tests is performed at every stage in the iteration. Additionally,
pair-programming, so to say, a kind of real-time peer review, is the basic coding style
of XP. Therefore, software produced through XP always has high quality, but more
reliable means of verification, for example, verification by proof, is needed for safety-
critical domains.

Documentation in agile development is a little peculiar because of the principle that
agile method is based on iteration for lean requirements. In agile iteration, developers
should select the functions to be realized from the ordered list of requirements by
themselves, and implement them. In such situation “working software over
comprehensive documentation (Agile Manifesto)” is the most important, and so, no
rigorous document about requirements or specifications exists. This is because there
is a tacit understanding that a developing team can get the iteration into perspective.
However, when high safety is required, specification about safety must be shared
through the whole development process. In other words some kind of means to
describe the specification strictly is needed.

On the other hand it has been pointed out in relation to scalability of agile software
development that in case of a large-scale project, developers cannot get the whole
development process into perspective. Namely agile development method is suitable
only for not so large-scale a project. Kent Beck says as follows.

For the first iteration, pick a set of simple basic stories that you expect will force you
to create the whole architecture. Then narrow your horizon and implement the stories
in the simplest way that can possibly work. At the end of the exercise you will have
your architecture. [3]

This means that if a system is of modest scope such that a small number of stories and
an iteration or two can lay out a reasonable architectural baseline, then this approach
may be very effective, and architecture can emerge quite nicely in this model. [2]
Conversely, if the system is not of modest scope, it may be difficult to lay out an
architectural baseline. It is the point of criticism about the scalability of the agile
method.

Formal method is the generic name for methods to describe and verify a system based
on mathematics, which were originally studied in Europe in the 1970’s. Formal
methods are usually applied to the upper stage of development so as to exclude
ambiguity or errors of specification by rigorous description and verification. These
days the application cases to industry field are increasing. As a result, it is found that
formal methods are effective in reinforcing safety of a mission-critical system or
reducing regression processes in software development.

There are two major usages of formal methods. One is formal specification
description and another is formal verification. For the former, formal specification
languages, such as Z, B, VDM and OBJ are used. The typical method of the latter is
model checking, and many kinds of model checking systems, such as SMV, SPIN and
LTSA, are available. Usually the right formal method is applied to the right place. It
is unusual to apply only one formal method to all over the development process
rigidly.

Sometimes formal methods are criticized because of cost increase with its
introduction or developers’ antipathy against it.

The reason of the cost increase is that at least one new process for formal description
or verification must be added to the upper stage of development. Besides, in the initial
introduction process of formal methods, cost of training developers is necessary.
Nevertheless some report says that these costs are offset by the decrease of regression
processes in lower stage of development, which leads to reduction of the total cost.

The antipathy of developers is more critical than the cost increase. Indeed many of
developers hesitate to make use of formal methods in spite of admitting the
effectiveness of them. In such cases people are likely to regard the difficulty of formal
methods as the reason for the hesitation. However, if analyzed in detail, it becomes
clear that there is another factor of the hesitation. The true reason developers often
reject formal methods is that formal methods are usually introduced into traditional
predictable development process such as “the waterfall.” Since the whole detailed
specification of a system must be defined in the early stage of such process,
developers are forced to take great pains in upper stage. The developers do not resist
the difficulty of formal methods, but resist the difficulty to specify such a system as
consists of not predictable factors all at once. [4] If the scope of the target system is
modest and the perspective on it is easy to be detected, actually the difficulty of
formal methods does not matter.

Agile method and formal method were originated in respective contexts, and have
been developed separately. They are often taken as conflicting methodologies. But,
the same as the two concepts, “agile” or “formal”, are not opposed to each other, the
two methodologies are mutually compatible. Appropriate combination of them rather
results in more efficient and higher quality development method, because each can get
rid of the other’s problem. [5], [10]

In this paper, VDM++ is introduced as the core of a SAF development method, which
is applicable to mission-critical or large-scale software. First, requirements for SAF
method and those for the core formal method are showed. Second, after a brief
overview of VDM++, it is presented that VDM++ can work as the core formal
method of SAF development. Third, realizability of SAF method is discussed
referring to a case of VDM++ application from industry and a software development
environment with VDM++.

2 Scalable Agile Formal (SAF) Software Development

The requirements for SAF method are roughly divided into those to deal with

mission-critical systems and those to deal with large-scale systems.

The former requirements are satisfied by formal specification description and
verification, which are primary functions of formal methods. Rigorous description
based on mathematics and detailed verification makes it possible to achieve the
required high-level reliability or safety.

The latter are satisfied mainly by these three means. [2]

• Intentional Architecture
• Lean Requirements at Scale
• Managing Highly Distributed Teams

Leffingwell explains them as follows.

An intentional architecture typically has two key characteristics: (1) it is component-
based, each component of which can be developed as independently as possible and
yet conform to a set of purposeful, systematically defined interfaces; (2) it aligns with
the team’s core competencies, physical locations, and distribution. Agile teams should
organize around components, each of which can be defined/built/tested by the team
that is accountable for delivering it. Moreover, because of the existence of a set of
interfaces that define a component’s behavior, teams can be isolated from changes in
the rest of the system. Sufficient architecture must be established prior to substantive
development. In the first few iterations, a primary version of architecture is built and
tested. The architecture should be implemented, not just modeled. This process is
called “architectural runway.” [2]

Requirements that define performance, reliability, and scalability of a system must be
understood by all teams who contribute to the solution. To this end, requirements,
which are naturally lean, should have three main elements: a vision, a roadmap, and
just-in-time elaboration. The vision carries the common objectives for the teams and
serves as a container for key nonfunctional requirements that must be imposed on the
system as a whole. The roadmap illustrates how that vision is to be implemented over
time in accordance with a prioritized backlog. Just-in-time requirements elaboration
defers specific requirements expression until the “last responsible moment,”
eliminating the waste and scrap of overly detailed. [2]

At scale, all agile is distributed development. Tooling is also different for distributed
teams. Larger teams require relatively more tooling, and at enterprise level, a more
systematic approach is required. Enterprise-level communication environment needs
shared, program-wide visibility into priorities, real-time status and signaling, and
dependencies. Teams must have access to networks and Internet-enabled tools that
enable shared repositories for agile project management, shared requirements,
source code management, a common integrated build environment, change
management, and automated testing. [2]

In addition to the above-mentioned requirements, the core formal method of SAF
development must meet the requirements of “ordinary” agile method. Since one of the
most important characteristics of agile methods is test-driven development based on
the principle of “working software over comprehensive documentation,” high-quality
working software is demanded at every the end of each iteration. Therefore, ability to

describe tests, framework for automated tests, function to animate specification, and
an automated code generation tool are indispensable to the core formal method
environment.

Taking all mentioned above into consideration, requirements for the core formal
method for SAF software development are the following.

1. Rigorous description and verification
2. Test-driven development
3. Object-oriented description of architecture
4. Animation of specification
5. Just-in-time requirements elaboration
6. Automated code generation
7. Internet-enabled tool for communication

3 VDM++ as a Basis of SAF Software Development

VDM++ is an object-oriented extension of the formal specification description
language for Vienna Development Method (VDM), which is a formal methodology
originally developed at the IBM Vienna Laboratory in the 1970’s. VDM++ is a
product of the Aphrodite project in EU and its original, VDM-SL, was internationally
standardized as ISO/IEC13817-1 in 1996. It can express many kinds of abstract data
types based on mathematical equipment, such as propositional or predicative logic, set,
mapping, and so on. Hence VDM++ can describe objects in a variety of abstraction
levels, from an abstract model like system architecture to a concrete component. It
rigorously defines functional behaviors of a system with explicit description of
preconditions, postconditions, and invariants. Both implicit and explicit styles are
available for definition of a function. Implicit style definition, which defines “what to
do” without any description of concrete processing, declares relation between the
input and the output as functional specification. It is usually used to describe highly
abstract models. On the other hand, explicit ones, which define “how to do” the
output from the input in terms of algorithm, can run on an interpreter, and so enables
prototyping and verification by animation.

It is worth mentioning that VDM++, a formal specification language, resembles to
ordinary programming languages in description style. The following is a part of an
example in Fitzgerald 2005. [6] It describes the specification of an operation to return
the schedule of experts who are called up by the alarm system of a chemical plant.

class Plant
…
public ExpertIsOnDuty: Expert ==> set of Period
ExpertIsOnDuty(ex) ==
 return {p | p in set dom schedule &
 ex in set schedule(p) }
end Plant

In Java, it would look something like:

import java.util.*;

class Plant {

 Map schedule;

 Set ExpertIsOnDuty(Integer ex) {
 TreeSet resset = new TreeSet();
 Set keys = schedule.keySet();
 Iterator iterator = keys.iterator();

 while(iterator.hasNext()) {
 Object p = iterator.next();
 if (((Set)
 schedule.get(p)).contains(ex))
 resset.add(p);
 }

 return resset;
 }
}

The VDM++ description looks like that of an ordinary programming language and is
familiar to most programmers. Meanwhile it is, as is characteristic of formal
specification languages, more abstract than the Java description, where it captured the
essentials of the object simply.

Here the VDM++ adaptability to the SAF requirements mentioned above is
considered step by step.

Rigorous description and verification: VDM++ can rigorously define behavior of a
system with preconditions, postconditions, and invariants in function specification.
Additionally it can verify the specification by satisfiability check for implicit
definition or integrity check for explicit one. [6]

Test-driven development: VDMUnit is a test framework for VDM++, which is a
transplant from JUnit developed for Java by Kent Beck and Eric Gamma. The figure 1
is an overview of VDMUnit framework. [6]

Figure 1. An overview of VDMUnit test framework

Object-oriented description of architecture: VDM++ can describe system architecture
that defines components and their interfaces of a system in variety of description
styles, from the abstract one for concept models to the concrete one for detailed
specification.

Animation of specification: One of the most important principles of agile
development is constant and close communication with customers. Customers should
usually check the products during iteration, so that tasks of the iteration will comply
with their stories, which are, so to say, requirements of agile style. Thus moving
objects should be demonstrated for the customers to grasp the development state
easily. In VDM++ development environment, specification described in explicit style
can be animated with interpreter.

Just-in-time requirements elaboration: VDM++ has an abstract data type, called
“token”, with which VDM++ describes, without concrete definition, such objects as is
not necessary to the modeling for the moment. Moreover, when function specification
is described in implicit style, no more detailed definition is needed until concrete
specification is demanded.

Automated code generation: There are two major kinds of description environments
for VDM++, VDMTools of CSK and Overture of the Overture Project. Each of them
has function to generate Java/C++ source code from VDM++ specification.

Internet-enabled tool for communication: Tooling, such as above-mentioned
VDMTools or Overture, must be expanded and enriched.

4 Prospects

While a large-scale development case with VDM++ and support tooling for VDM++
are presented, realizability of SAF software development is considered.

FeliCa Networks Company developed the firmware of mobile FeliCaIC chip from
2004 until 2006. They used VDM++ to describe the external specification of
components, which had about 100,000 lines, while the C++ source code of the
firmware had about 160,000. [7, 8] The whole development was based on traditional
waterfall process, but some kinds of formal methods were partly introduced to

improve the process. According to Kurita, there were four major purposes in applying
formal methods: (1) rigorous specification description all through the development,
(2) achievement of high quality in upper stage of development through high-precision
description and tests, (3) thorough testing based on specification, and (4) activation of
communication within the development team and with customers. As a result they had
corrected many faults in the upper stage, and therefore no bug has been detected since
the product was released.

Though the project followed the traditional waterfall development process, it implies
possibility of VDM++ architecture description in SAF development, because the
external specification of the components was described with VDM++. Besides, the
fact that the tests was based on the formal specification with VDM++ and the fact that
VDM++, a formal method, contributed to activation of communication, both of them
are hints of realizability of SAF development with VDM++.

The Overture project is an open-source project to develop new generation tooling for
VDM. The mission of the Overture project is twofold: (1) to provide an industrial-
strength tool that supports the use of precise abstract models in any VDM dialect for
software development. (2) to foster an environment that allows researchers and other
interested parties to experiment with modifications and extensions to the tool and
different VDM dialects. [9]

Overture is an integrated development environment (IDE) built on top of the Eclipse
platform. The core element of Overture, called VDMJ, consists of parser, abstract
syntax tree, type checker, interpreter with test coverage function, and integrity
examiner. Overture is the integration of VDMJ, editor, file navigator, debugger, and
formatting tool, which can be evolved by expansion plug-ins.

Today, large-scale development is almost inevitably done in distributed circumstances.
Therefore network-enabled powerful IDE is indispensable to SAF development.
Overture is one of the likeliest candidates for such an IDE.

5 Concluding Remarks

With VDM++ and its supporting tool, system architecture can be described,
components can be specified and verified, and the source code can be generated,
consistently. Thus SAF software development, an agile development method for
mission-critical or large-scale systems, is possible with VDM++.

Future works are as follows.

Overture IDE needs to be expanded for scalable agile development. The first thing to
do is to equip online video chat and whiteboard-like system as circumstances for real-
time communication among all concerned. Secondly test-driven function should be
improved so that tests can be generated and run automatically. Additionally,
specification animation with enriched interface is desirable because such function is
useful especially for communication between a developer and a customer. Then
reinforcement of prototyping and code generating function is needed, for working
software is the most important thing in agile development process. Finally a team

management tool is necessary for making development teams correspond to the
components defined as elements of system architecture.

References

1. Beck, K., Grenning, J., et al.: Manifesto for Agile Software Development.
http://agilemanifesto.org/ (2001)

2. Leffingwell, D.: Scaling Software Agility: Best Practices for Large Enterprises. Pearson
Education, Inc. (2007)

3. Beck, K.: Extreme Programming Explained: Embrace Change. Boston, MA: Addison-
Wesley. (2000)

4. Fowler, M.: The New Methodolgy.
http://www.martinfowler.com/articles/newMethodology.html (overhauled in 2005)

5. Black, S., Boca, P., Bowen, J., Gorman, J., and Hinchey, M.: Formal Versus Agile:
Survival of the Fittest? In: Computer, September 2009. IEEE Computer Society, pp. 37-
45. (2009)

6. Fitzgerald, J.S., Larsen, P. G., Mukherjee, P., Plat, N., and Verhoef, M.: Validated
Designs for Object-Oriented Systems. Springer-Verlag London. (2005)

7. Kurita, T., Chiba, M. and Nakatsugawa, Y.: Application of a Formal Specification
Language in the Development of the "Mobile FeliCa" IC Chip Firmware for Embedding
in Mobile Phone. In: FM 2008: Formal Methods, Springer, pp. 425-429. (2008)

8. Kurita, T. and Nakatsugawa, Y.: The Application of VDM to the Industrial Development
of Firmware for a Smart Card IC Chip. International Journal of Software and
Informatics, Vol. 3, No. 2-3, pp. 343-355. (2009)

9. Overture Community: Overture: Formal Modelling in VDM.
http://www.overturetool.org/

10. Larsen, P.G., Fitzgerald, J.S., Wolff, S.: Are Formal Methods Ready for Agility? A
Reality Check. In: Grüner, S., Rumpe, B. (eds.) FM+AM 2010, 2nd Intl Workshop on
Formal Methods and Agile Methods. Lecture Notes in Informatics, vol. 179,
Gesellschaft für Informatik, 2010, pp. 13-25. (2010)

