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Abstract. This paper reports on an industrial application of formal methods to
develop an embedded control system for construction equipment. Informal spec-
ifications and safety requirements of the system are formalised using a formal
modelling language VDM, and the derived model is used for safety analysis of
the system. In our approach, we introduce a kind of modelling pattern: a fault
framework, which abstracts the notion of faults and can be widely exploited for
analysis and design of control systems dealing with faults. The results of vali-
dation and safety analysis of the model are presented, and it is revealed that our
modelling approach is effectively applied to the analysis of a practical embedded
control system in industry.

1 Introduction

A number of functions of modern construction equipment are realised by embedded
control systems in order to achieve desired performance, e.g. low fuel consumption
and emission as well as high productivity and comfort. The scale and complexity of
control software are rapidly increasing. This makes it difficult to ensure the correctness
of the software by conventional approaches such as testing and human review. Formal
techniques are expected to be promising approaches to make the control software more
reliable.

Safety is a critical factor in the control systems of construction equipment. In order
to ensure safety, the Failure Mode and Effects Analysis (FMEA) method [5] has been
used for decades. In FMEA, we identify all potential faults of the system to be devel-
oped and assess the effect of each fault. If the effect is not negligible for the system
from the viewpoint of safety or functionality, a way of detecting the fault and a measure
to be taken in case of the fault occurrence should be determined to guarantee a certain
level of safety or functionality.

The FMEA process is usually carried out manually by system experts. However,
the growth in the scale and complexity of the control system makes the task itself more
complicated and difficult. For example, it could be possible that a measure against some
fault would cause a side effect to another portion of the control system and lead to an



unpredictable behaviour. For the above reason, we aim to describe formally the speci-
fications of fault detection and associated measures of the system using a formal mod-
elling notation VDM [1, 2], and check if the system satisfies certain safety properties.

This paper reports on a case study of applying VDM to safety analysis of a trans-
mission controller for a wheel loader (a digging and loading vehicle). The controller
is responsible for gear change (including forward-reverse change) of the transmission,
which transfers engine power to the wheels. The transmission consists of a number
of gears and clutches hydraulically controlled by the system. By engaging the proper
combination of clutches, the rotating direction of an axle (that is, the moving direction
of the vehicle) and the gear ratio of the transmission are determined.3 The moving di-
rection of the vehicle is specified by a direction lever which is mounted on a steering
column and manipulated by an operator of the vehicle. The proper gear is selected by
a gear change algorithm implemented in the controller according to the vehicle speed
and the engine revolution etc. In our current research, however, we simply focus on a
part of the control system, a specification for detecting the direction lever position, and
investigate if its safety properties are guaranteed when some fault occurs in the system.
This is mainly because the wheel loader has characteristics that its moving direction is
frequently switched by the operator for digging and loading work, and detecting the di-
rection lever position is a crucial factor in the system. Moreover, the scale of the system
seems to be moderate for our initial trial.

The rest of the paper is organised as follows. The next section describes informal
specifications and safety requirements of the control system considered in the case
study. In Section 3, we present a formal model of the system along with a kind of
modelling pattern: a fault framework. Section 4 describes the results of validation and
safety analysis of the system. Finally, Section 5 concludes the paper. The full VDM++
model for the case study is provided in Appendix A.

2 Informal Description of the System

In this section, we informally describe the specifications and the safety requirements of
the control system under consideration.4

2.1 Control Specifications

The control system consists of the direction lever and the transmission controller. Fig-
ure 1 shows the system diagram. Each component is described as follows:

Direction Lever: It is an input device to the transmission controller, mounted on the
steering column of the vehicle and manipulated by the operator. The lever has three
positions, namely forward (F), neutral (N) and reverse (R), specifying the direction
to go. It generates three digital and one analogue input signals. For redundancy, the

3 The transmission is 4-speed in both forward and reverse directions.
4 The example in this paper is simplified to some extent from the original control specifications.

Furthermore, tangible data values, such as voltage etc., are not shown explicitly and denoted
by symbols for confidentiality reasons.
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Fig. 1. System Diagram

former are used as primary signals and the latter is used as a backup. The electrical
characteristics of the digital and the analogue input signals are illustrated in Figs. 2
and 3 respectively.

Digital Input Signals: Only one of the three signals F, N or R is “on” depending
on the lever position. The signals do not overlap one another. That is, there
need to exist areas in which no digital input signals are “on” between the lever
positions F and N, and between N and R. The lever can be intentionally held in
the middle of the lever positions. This means that we cannot distinguish open-
circuit of the digital input from the case in which the lever is being held in the
middle position.

Analogue Input Signal: It is a voltage signal which ranges depending on the lever
position, indicating a value from vR1 to vR2 at the position R, vN1 to vN2 at
the position N and vF1 to vF2 at the position F. It has some tolerance at each
position.

The possible combination of the digital and the analogue input signals is specified
in Table 1. For instance, when the lever is set to the position R, only the digital
input signal R should be “on” and the analogue input signal should be between
vR1 and vR2. In case the lever is held in the middle of the positions R and N, the
following are possible:

1. The digital input signal R is “on” and the analogue input signal is between
vR1 and vN2.

2. No digital input signals are “on” and the analogue input signal is between
vR1 and vN2.

3. The digital input signal N is “on” and the analogue input signal is between
vR2 and vN2.

This means it is possible that the lever positions detected by the digital and the
analogue input are different from each other (though the possibility is low in reality)
and this makes the control specifications complicated.

Notes. In older types of control system, the direction lever consisted of only digital
input signals. In case a fault has occurred in the system, the lever position is simply
regarded as N, which is allowed from a safety perspective. But from the viewpoint
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Table 1. Possible Combination of the Digital Input and the Analogue Input

Direction Digital Analogue input signal
lever input R Mid(RN) N Mid(FN) F

position signal vR1–vR2 vR2–vN1 vN1–vN2 vN2–vF1 vF1–vF2

R R © – – – –
R × × × – –

Mid(RN) None × × × – –
N – × × – –

N N – – © – –
N – – × × –

Mid(FN) None – – × × ×
F – – × × ×

F F – – – – ©

© : normal position, × : possible in the middle position, – : impossible



of functionality, it is desirable that the vehicle can move even if some fault occurs
in the system. For the above reason, we have worked on adding an analogue input
signal to the system to improve redundancy. This not only makes the control spec-
ifications complicated, but also makes safety analysis of the system difficult. This
motivates us to apply formal methods to our safety analysis process.

Transmission Controller: It detects the position of the direction lever using the digital
and the analogue input signals. In detection, it also diagnoses each input signal
and takes the proper measures if some fault has occurred. The specifications for
detecting the direction lever position are described as follows. Table 2 shows how
to detect the lever position by the digital input signals. If only one signal is “on”,
the signal indicates the lever position. If no or multiple signals are “on”, the lever
position is determined by a fault measure.
Table 3 specifies the lever position detection by the analogue input signal. In case
the signal indicates a voltage of a middle position of the lever, the position is recog-
nised as N. If it is out of range (too low or high), the lever position is determined
by a fault measure.

We identify the following six fault modes possible in the system.

F1: Digital input: open-circuit or short-circuit to ground (minor fault)
F2: Digital input: open-circuit or short-circuit to ground (severe fault)
F3: Digital input: short-circuit to power
F4: Analogue input: open-circuit or short-circuit to ground
F5: Analogue input: short-circuit to power
F6: Analogue input: internal circuit fault

A way of detecting each fault and a measure which should be taken in case the
fault is detected are specified. As an example, we show the specification of F1 in
Table 4. The table instructs how to detect the fault and what to do in case of the
fault. Specifically, if “error state” holds, the system starts to detect the fault and
takes a “measure before fault confirmation”. If the error state has continued for
“fault detecting time”, it is confirmed that the fault has occurred, and a “measure
after fault confirmation” is taken. After that, if “recovery state” holds continuously
for “recovery detecting time”, it is confirmed that the fault has recovered, and a
“measure after fault recovery” is taken.
Some fault modes deserve comment. Both F1 and F2 indicate open-circuit or short-
circuit to ground of the digital input signals. For the reason that we cannot distin-
guish the fault from the case in which the lever is being held in the middle position
(as mentioned above), the fault is detected in two-stage manner. The fault detecting
time of F1 (minor fault) is set to a value less than that of F2 (severe fault) so that
F1 is detected earlier than F2. In case the occurrence of F1 has been confirmed,
the system gives an alarm. If the operator puts the lever back to the normal posi-
tion (if possible) and the error state no longer holds, the fault F1 recovers and the
alarm stops. If the operator does not put the lever back or open-circuit has actually
occurred, the fault F2 is confirmed eventually.5

5 Strictly speaking, F1 is not regarded as a fault in the system, though this is not directly relevant
to our case study.



Table 2. Detection of the Direction Lever Position by the Digital Input Signals

No. Digital input signals Detected lever position
R N F

1 © R
2 © N
3 © F
4 Undefined. Obey fault detection and measure.
5 © © Undefined. Obey fault detection and measure.
6 © ©
7 © ©
8 © © ©

© : on, blank: off

Table 3. Detection of the Direction Lever Position by the Analogue Input Signal

No. Analogue input Detected lever position
voltage (Ain)

1 Ain < vR1 Undefined. Obey fault detection and measure.
2 vR1 ≤ Ain ≤ vR2 R
3 vR2 < Ain < vN1 N (middle position between R and N)
4 vN1 ≤ Ain ≤ vN2 N (normal position)
5 vN2 < Ain < vF1 N (middle position between F and N)
6 vF1 ≤ Ain ≤ vF2 F
7 vF2 < Ain Undefined. Obey fault detection and measure.

Table 4. An Example of Fault Detection and Measure

Fault mode Digital input: open-circuit or short-circuit to ground
Error state All digital input signals F, N and R are “off”.
Fault detecting time t1f seconds
Measure before fault confirma-
tion

Keep the detected lever position before the error state.

Measure after fault confirma-
tion

Obey the detected lever position by the analogue input.

Recovery state Only one digital input signal F, N or R is “on”.
Recovery detecting time t1r seconds
Measure after fault recovery Keep obeying the detected lever position by the analogue input

until it becomes consistent with that by the digital input. After
the consistency, obey the detected lever position by the digital
input.



The fault F6 indicates impossible combination of the digital and the analogue input
signals specified in Table 1. The system detects the situation as a fault of an internal
circuit.

In short, the specifications are summarised as follows:

1. If the digital input signals are normal, the position detected by the digital input
signals is valid.

2. If the digital input signals have a fault, the position detected by the analogue
input signal is valid.

3. Even if the digital input signals have recovered from the fault, the position
detected by the analogue input signal is still valid until the detected positions by
the digital and the analogue input signals are consistent with each other. Once
the consistency is reached, the position detected by the digital input signals
becomes valid.

4. If both the digital and the analogue input signals respectively have a fault, the
lever position is recognised as N.

2.2 Safety Requirements

We informally describe the safety requirements to be satisfied by the control system as
follows:

R1: If any fault occurs in the system, the detected position of the direction lever must
be consistent with the actual lever position or recognised as neutral (N), i.e. if the
actual position is F, the detected position must be F or N; if the actual position is
N, the detected position must be N; and if the actual position is R, the detected
position must be R or N.

R2: If any fault occurs in the system, the detected position of the direction lever must
not change to F or R without lever manipulation by the operator of the vehicle.

The above requirement R1 inhibits the vehicle from moving in the opposite direc-
tion of the lever position or moving while the lever is set to N. It is allowable from the
safety viewpoint that the lever position is recognised as N by a fault measure while the
actual position is not N. The requirement R2 inhibits the vehicle from moving suddenly
as opposed to the operator’s intention.

3 Formal Modelling of the System

We model the control system described informally in the previous section using an
object-oriented formal modelling notation VDM++ [2], because the notions of the object-
oriented method, e.g. inheritance, encapsulation etc., seem to be useful also in formal
specification description. The overview of the model (class diagram) is illustrated in
Fig. 4. In the following subsections, we explain the characteristics of the model and
describe each class in detail. The full VDM++ model is given in Appendix A.
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3.1 Periodic Execution Architecture

The actual transmission controller is a periodic real-time system with a certain period,
that is, a specific program is executed repeatedly every time unit. In order to reflect such
a mechanism into the model, we introduce a periodic execution architecture, referred
to as “time-triggered object-oriented model” in [6]. In this architecture, each class has
a method update, in which its attributes are updated.6 The Manager class, which
controls the model execution, calls the update method of each class in a specified
order as it increments the system timer by one time unit. That is, each class is updated
once per time unit.

3.2 Fault Framework

In the model, we abstract the notion of faults (e.g. open- or short-circuit etc.) as a class
containing a state represented by the state transition diagram of Fig. 5. The figure says:

1. As long as the device is normally working, the state stays in NORMAL.
2. If the error state holds, the state goes into DETECTING.
3. If the error state continues for a specified time (detectingTime), the fault is

confirmed (CONFIRMED). If the error state no longer holds while in DETECTING,
the state goes back to NORMAL.

4. If the recovery state holds while in CONFIRMED, the state goes into RECOVERING.
5. If the recovery state continues for a specified time (recoveryTime), the fault

recovers (NORMAL). If the recovery state no longer holds while in RECOVERING,
the state goes back to CONFIRMED.

NORMAL

Initial

DETECTING

CONFIRMEDRECOVERING

[timer.getTime() >= detectingTime]

[not recoveryState()]

[recoveryState() and recoveryTime <> nil]

/timer.reset()

[not errorState()]

[errorState() and detectingTime <> nil]

/timer.reset()

[timer.getTime() >= recoveryTime]

Fig. 5. State Transition Diagram of Fault

6 The method corresponds to a Step in a VDM-RT context [3, 4]. But we use the name update
in this paper according to [6] and our convention.



3.3 Detailed Description of Each Class

Common: Types and a function commonly used by various classes are defined in this
class. It is inherited by all the other classes to make the model description simple,
though in Fig. 4, inheritance arrows are hidden for legibility. Some of principal
types are illustrated here.�
types
public Time = nat;

public Direction = <DIR_F> | <DIR_N> | <DIR_R>;

public AinState = Direction | <SUB_R> | <MID_RN>
| <MID_FN> | <SUPER_F>;
� �

Time is defined as natural number (nat), denoting discrete time steps in the con-
trol system. The notion of direction (F, N and R) is defined as a union type of three
quote types. We abstract the analogue input signal using a union type AinState
instead of expressing it in voltage as follows:

<SUB_R>: Ain < vR1

<DIR_R>: vR1 ≤ Ain ≤ vR2

<MID_RN>: vR2 < Ain < vN1

<DIR_N>: vN1 ≤ Ain ≤ vN2

<MID_FN>: vN2 < Ain < vF1
<DIR_F>: vF1 ≤ Ain ≤ vF2
<SUPER_F>: vF2 < Ain

Manager: This class controls the overall model. It is responsible for constructing all
instances of the model and executing them. All instances are created in the con-
structor Manager, and the operation update calls the same operations of all the
other classes in a specified order (usually from lower to upper level classes). Spe-
cific values of fault and recovery detecting times, which are used to instantiate each
fault class, are defined in this class. Note that they do not express the actual val-
ues of the control system. They are properly chosen to make the model feasible
in practicable time and to simplify creation of test data. In our case, magnitude
relation between the values is significant, and the value itself is not.

Timer: A generic timer class containing one instance variable timer, which is incre-
mented by one step time in the operation update. The operation resetTimer
sets the timer to zero. Instances of the class are used as a system timer, which
denotes time evolution in the model, and a timer for each fault class, which is used
to detect the fault.

Environment: As advocated in [3, 4], the components outside the controller are mod-
elled as a class Environment. It provides input to the controller, i.e. the digital
input signals F, N, R and the analogue input signal, and receives the detected lever



position from the controller as output of the system. It also has the actual lever po-
sition used for safety requirement check. This information is put into one record
type SysState, and trace, a mapping from Time to SysState, is defined as
an instance variable of the class, indicating time series of input and output data of
the system.�
types
public SysState :: dinF : bool

dinN : bool
dinR : bool
ain : AinState
levPos : LeverPosition
detectLevPos : [Direction];

instance variables
private trace : map Time to SysState := {|->};
� �
The operations getDinValue and getAinValue respectively return the digital
and the analogue input value at the current system time, and another operation
setDetectLevPosition is called to set the detected lever position to trace.

DigitalInput and AnalogueInput: These two classes represent input channels of the
controller, serving as interface to Environment. In the operation update, each
class gets its current value from Environment and stores it in its instance vari-
able value, which is used by the other upper level classes, that is, Fault and
DirectionLever (described below). Three instances of the DigitalInput
class, namely the digital input F, N and R, are created by the Manager class.

Fault: A superclass of the following six subclasses. It implements the state transition
of fault described in Sect. 3.2, and provides the other classes with the state in-
formation. Fault detecting time and recovery time are respectively declared as an
instance variable of optional type [Time]. The value nil means that the fault
is undetectable or unrecoverable, respectively. The operations errorState and
recoveryState are implemented in each subclass representing each fault mode
(F1 to F6 in Sect. 2.1), because they are different depending on the fault modes.
Note that these operations are declared as abstract methods.

– FaultDinOpenMinor:
Digital input: open-circuit or short-circuit to ground (F1)

– FaultDinOpenSevere:
Digital input: open-circuit or short-circuit to ground (F2)

– FaultDinShort:
Digital input: short-circuit to power (F3)

– FaultAinOpen:
Analogue input: open-circuit or short-circuit to ground (F4)



– FaultAinShort:
Analogue input: short-circuit to power (F5)

– FaultAinInternal:
Analogue input: internal circuit fault (F6)

DirectionLever: A superclass of the following two subclasses. In the update oper-
ation (implemented in the subclass), it updates its instance variable position,
which denotes the position of the direction lever detected by the digital or the ana-
logue input depending on its subclass. Users of this class do not need to take into
account by which input the position is detected.

– DirectionLeverDigital:
This class detects the direction lever position using the digital input and its
fault information according to the control specifications described in Sect. 2.1.
The operation getPosition returns nil if at least one digital input fault is
confirmed, otherwise it returns the detected lever position.

– DirectionLeverAnalogue:
This class detects the direction lever position using the analogue input and its
fault information according to the control specifications described in Sect. 2.1.
It has an instance variable isValid, which is used to realise the measures
after fault recovery of F4 and F5. Briefly speaking, the variable is set to false
if an analogue input fault is confirmed, and held false unless the normal N
position is detected after fault recovery. As long as the variable is false, the
lever position is regarded as N.

LeverPositionDetection: In the operation update in this class, the conclusive direc-
tion lever position is determined using the positions detected by the digital and the
analogue input respectively, and the result is set to Environment. This class has
an instance variable dinHasPriority, which is used to realise the measures af-
ter fault recovery of F1 and F2. The variable is set to false if a digital input fault
is confirmed, and held false unless the detected lever positions by the digital and
the analogue input are consistent with each other after fault recovery. As long as
the variable is false, the lever position detected by the analogue input is valid.

3.4 Safety Requirements

Safety requirements are described in the Environment class because they require
to access the lever position information enclosed in the class. Specifically, the require-
ments are formalised as postconditions of the operation setDetectLevPosition,
which the LeverPositionDetection class calls to set the conclusive detected
lever position to the Environment class. The postconditions are divided into four
sub-operations (see Appendix A.4). We comment on the first and the last ones for illus-
tration:�
private IfLeverIsFThenNotR: () ==> bool
IfLeverIsFThenNotR() ==



let curTime = sysTime.getTime()
in
return
(((curTime >= Manager‘SafetyCheckTime) and

(forall t in set
{curTime - Manager‘SafetyCheckTime,..., curTime} &
trace(t).levPos = <DIR_F>))

=> trace(curTime).detectLevPos <> <DIR_R>)
post RESULT;
...
private NotMoveWithoutOperation: () ==> bool
NotMoveWithoutOperation() ==
let curTime = sysTime.getTime()
in
return
(((curTime >= Manager‘SafetyCheckTime) and

(forall t in set
{curTime - Manager‘SafetyCheckTime,..., curTime-1} &
(trace(t).levPos = trace(curTime).levPos and
trace(t).detectLevPos = <DIR_N>)))

=> trace(curTime).detectLevPos = <DIR_N>)
post RESULT;
� �

The operation IfLeverIsFThenNotR insists: if the lever has been set in the
position F for a specified time, the detected lever position at the current time should
not be R, which corresponds to the safety requirement R1 in Sect. 2.2. The operation
NotMoveWithoutOperation insists: if the lever has not been manipulated and the
detected lever position has been N for a specified time (until one step time before), the
detected lever position at the current time should also be N, corresponding to the safety
requirement R2.

4 Validation and Safety Analysis

In our approach, validation process is composed of two phases: unit testing and system
testing. The former tests each class of the model, while the latter deals with the whole
system. A testing framework VDMUnit [2, Chap. 9] is used for both testing phases.
Various time series of input data for the Environment class (so called test scenarios)
are elaborated. Using assert functions of VDMUnit, we check if a return value of each
method of each class (in the case of unit testing) or the detected lever position (in the
case of system testing) is consistent with the expected value at the time as we execute
the model periodically. An example of the test cases is given below:�
class SystemTest1 is subclass of TestCase, Environment

operations
...



public runTest : () ==> ()
runTest() ==
(

let testInData = {t |-> testData(t).inData |
t in set dom testData}

in (
dcl mgr : Manager := new Manager(testInData);
for t = 0 to (card dom testData - 1)
do (

mgr.update();
assertTrue("t=" ˆ VDMUtil‘val2seq_of_char[nat](t) ˆ

", failed.",
mgr.env.getTrace()(t).detectLevPos =
testData(t).expectVal)

)
)

);

types
private TestData :: inData : SysState

expectVal : [Direction];
values
-- time to (input data, expected value of trace(t).detectLevPos)
private testData: map Time to TestData =
{

0 |-> mk_TestData(mk_SysState(false, true, false,
<DIR_N>, <DIR_N>, nil), <DIR_N>),

1 |-> mk_TestData(mk_SysState(false, false, false,
<MID_FN>, <MID_FN_>, nil), <DIR_N>),

2 |-> mk_TestData(mk_SysState(true, false, false,
<DIR_F>, <DIR_F>, nil), <DIR_F>),

...
};

end SystemTest1
� �
The value testData denotes the time series of input data and expected values of

the test scenario. We considered various scenarios: for example, normal lever operation
without faults, a case in which open-circuit of the digital input signal F occurs and then
it recovers, and so on. As for the system testing, we executed 14 test scenarios in total.

As a result, we have confirmed that the model behaved as expected for all the in-
put data series elaborated. The test coverage information generated by Overture indi-
cates that almost all statements of the model are tested, except for a part of the follow-
ing two operations: DirectionLeverDigital‘update (coverage is 98.6%) and
Fault‘doFaultNormal (89.4%). But these statements can never been executed
under the current specifications of fault detection and the data settings. Therefore we
conclude that virtually every part of the model is tested.



In the validation process, however, we realised that one of the safety requirements
was not satisfied (a postcondition was violated) for certain input data series. This occurs
in the following manner:

1. The direction lever is in the middle of the positions F and N, and no digital input
signals are “on”.

2. The analogue input signal indicates the position F (this meets the specifications of
Table 1).

3. The digital input signal N periodically short-circuits to power with a period less
than the fault detecting time, that is, the signal N alternates between “on” and “off”
in a short period of time. The controller is not able to detect the fault (because the
time in which the signal N remains “on” or “off” respectively is too short for the
controller to detect the fault) and recognises the lever position as N.

4. In these situations, if the short-circuit of the digital input signal N recovers, that
is, the signal N settles down to “off”, the analogue input signal (recognised as
F) becomes valid by a fault measure. This indicates that the detected lever position
changes from N to F without manipulation by the operator, which violates the safety
requirement R2 in Sect. 2.2.

However, the above case could never happen in reality because it is caused by noth-
ing but a coincidence of several rare accidents. Nevertheless, it seems to be one of
the advantages of formal modelling that the above phenomenon which could hardly be
predicted in a manual fashion has been discovered.

5 Conclusion

In this paper, we have reported on a case study of applying a formal modelling technique
to safety analysis of an embedded control system for construction equipment, and we
have also presented a fault framework, which makes it possible to encapsulate a fault
detection mechanism into the Fault class and separate it from the other control logics.

The validation of the model revealed that, under particular conditions, the exempli-
fied system failed to satisfy certain safety requirement which had been considered to be
satisfied, though it could rarely happen in reality. This demonstrates the advantage of
the formal modelling and validation techniques.

The control system treated in this paper is only a part of the entire system. In future
work, we will apply the technique described above to a larger scale system. On the
other hand, in our test scenario based approach, the result considerably depends on the
quality of the scenarios. It might be sheer luck that we discovered the violation of the
safety requirements. We will challenge formal verification of the model with the help
of another verification tool, e.g. UPPAAL, in order to investigate if there exists another
case which violates the safety requirements.
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on a draft.
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A VDM++ Model for the Control System

A.1 The Common class

�
class Common

types
public Time = nat;

-- Digital input channel
public DinChannel = <CH_LEV_F> -- Direction lever F

| <CH_LEV_N> -- Direction lever N
| <CH_LEV_R>; -- Direction lever R

public Direction = <DIR_F> | <DIR_N> | <DIR_R>;

-- Analogue input state
public AinState = Direction

| <SUB_R> -- Lower than minimum
| <MID_RN> -- Middle between R & N
| <MID_FN> -- Middle between F & N
| <SUPER_F>; -- Higher than maximum

-- Physical position of the direction lever
public LeverPosition =

Direction
| <MID_RNR> -- Middle between R & N with Din R
| <MID_RN_> -- Middle between R & N without Din
| <MID_RNN> -- Middle between R & N with Din N
| <MID_FNN> -- Middle between F & N with Din N



| <MID_FN_> -- Middle between F & N without Din
| <MID_FNF>; -- Middle between F & N with Din F

public FaultMode = <DIN_OPEN_MINOR>
| <DIN_OPEN_SEVERE>
| <DIN_SHORT>
| <AIN_OPEN>
| <AIN_SHORT>
| <AIN_INTERNAL>;

functions
-- Count the number of ’true’ in a sequence of boolean values
public NumberOfTrue : seq of bool -> nat
NumberOfTrue(args) ==

len [args(i) | i in set inds args & args(i)];

end Common
� �
A.2 The Manager class

�
class Manager is subclass of Common

instance variables
-- Environment is declared as public
-- because it is referred to by test cases
public env : Environment;
private sysTime : Timer;
private timer : map FaultMode to Timer;
private din : map DinChannel to DigitalInput;
private ain : AnalogueInput;
private fault : map FaultMode to Fault;
private dirLevDin : DirectionLever;
private dirLevAin : DirectionLever;
private levPosDet : LeverPositionDetection;

values
-- Detecting or recovery time of faults
-- Declared as public because they are referred to by test cases
public DinOpMinorDetTime: Time = 8;
public DinOpMinorRecTime: Time = 0;
public DinOpSevereDetTime: Time = 15;
public DinOpSevereRecTime: Time = 5;
public DinShDetTime: Time = 3;
public AinFaultDetTime: Time = 5;
public AinFaultRecTime: Time = 5;



-- Time for safety requirements
public SafetyCheckTime: Time = (DinOpMinorDetTime +

AinFaultDetTime);

operations
public Manager : map Time to Environment‘SysState ==> Manager
Manager(mTrace) ==
(

-- Instantiate all objects
sysTime := new Timer();
timer := {fMode |-> new Timer() |

fMode in set {<DIN_OPEN_MINOR>, <DIN_OPEN_SEVERE>,
<DIN_SHORT>, <AIN_OPEN>,
<AIN_SHORT>, <AIN_INTERNAL>}};

env := new Environment(mTrace, sysTime);
din := {ch |-> new DigitalInput(ch, env) |

ch in set {<CH_LEV_F>, <CH_LEV_N>, <CH_LEV_R>}};
ain := new AnalogueInput(env);
let mapDin = {<DIR_F> |-> din(<CH_LEV_F>),

<DIR_N> |-> din(<CH_LEV_N>),
<DIR_R> |-> din(<CH_LEV_R>)}

in
(

fault := {<DIN_OPEN_MINOR> |->
new FaultDinOpenMinor(

DinOpMinorDetTime,
DinOpMinorRecTime,
timer(<DIN_OPEN_MINOR>),
mapDin),

<DIN_OPEN_SEVERE> |->
new FaultDinOpenSevere(

DinOpSevereDetTime,
DinOpSevereRecTime,
timer(<DIN_OPEN_SEVERE>),
mapDin, ain),

<DIN_SHORT> |->
new FaultDinShort(

DinShDetTime,
nil,
timer(<DIN_SHORT>),
mapDin),

<AIN_OPEN> |->
new FaultAinOpen(

AinFaultDetTime,
AinFaultRecTime,
timer(<AIN_OPEN>),
ain),

<AIN_SHORT> |->
new FaultAinShort(

AinFaultDetTime,



AinFaultRecTime,
timer(<AIN_SHORT>),
ain),

<AIN_INTERNAL> |->
new FaultAinInternal(

AinFaultDetTime,
nil,
timer(<AIN_INTERNAL>),
mapDin, ain)};

-- Add association from <AIN_INTERNAL> to <DIN_SHORT>
fault(<AIN_INTERNAL>).addFault(

{<DIN_SHORT> |-> fault(<DIN_SHORT>)});

dirLevDin := new DirectionLeverDigital(
{fMode |-> fault(fMode) |
fMode in set {<DIN_OPEN_MINOR>,

<DIN_OPEN_SEVERE>,
<DIN_SHORT>}},

mapDin)
);
dirLevAin := new DirectionLeverAnalogue(

{fMode |-> fault(fMode) |
fMode in set {<AIN_OPEN>,

<AIN_SHORT>,
<AIN_INTERNAL>}},

ain);
levPosDet := new LeverPositionDetection(

dirLevDin, dirLevAin, env);
);

public update : () ==> ()
update() ==
(

for all x in set dom din do din(x).update();
ain.update();
for all x in set dom fault do fault(x).update();
dirLevDin.update();
dirLevAin.update();
levPosDet.update();
sysTime.update();
for all x in set dom timer do timer(x).update();

);

end Manager
� �



A.3 The Timer class

�
class Timer is subclass of Common

instance variables
private timer : Time := 0;

operations
public Timer : () ==> Timer
Timer() ==

skip;

public update : () ==> ()
update() ==

timer := timer + 1;

public resetTimer : () ==> ()
resetTimer() ==

timer := 0;

public getTime : () ==> Time
getTime() ==

return timer;

end Timer
� �
A.4 The Environment class

�
class Environment is subclass of Common

types
public SysState :: dinF : bool -- Digital input F

dinN : bool -- Digital input N
dinR : bool -- Digital input R
ain : AinState -- Analogue input
levPos : LeverPosition
-- Physical lever position
detectLevPos : [Direction];
-- Detected lever position

instance variables
-- Time series of input/output data
private trace : map Time to SysState := {|->};
private sysTime : Timer;



operations
public Environment : map Time to SysState * Timer

==> Environment
Environment(inData, pTimer) ==
(

trace := inData;
sysTime := pTimer

);

public getDinValue : DinChannel ==> bool
getDinValue(ch) ==
(

let currentTime = sysTime.getTime()
in

cases ch:
<CH_LEV_F> -> return trace(currentTime).dinF,
<CH_LEV_N> -> return trace(currentTime).dinN,
<CH_LEV_R> -> return trace(currentTime).dinR

end
)
pre

sysTime.getTime() in set dom trace;

public getAinValue : () ==> AinState
getAinValue() ==

return trace(sysTime.getTime()).ain
pre

sysTime.getTime() in set dom trace;

public setDetectLevPosition : Direction ==> ()
setDetectLevPosition(dir) ==

trace(sysTime.getTime()).detectLevPos := dir
pre

sysTime.getTime() in set dom trace
post

-- Safety requirements
IfLeverIsFThenNotR() and
IfLeverIsRThenNotF() and
IfLeverIsNThenN() and
NotMoveWithoutOperation();

public getTrace : () ==> map Time to SysState
getTrace() ==

return trace;

-- Safety requirements
private IfLeverIsFThenNotR: () ==> bool
IfLeverIsFThenNotR() ==

let curTime = sysTime.getTime()
in



return
(((curTime >= Manager‘SafetyCheckTime) and
(forall t in set

{curTime - Manager‘SafetyCheckTime,..., curTime} &
trace(t).levPos = <DIR_F>))

=> trace(curTime).detectLevPos <> <DIR_R>)
post RESULT;

private IfLeverIsRThenNotF: () ==> bool
IfLeverIsRThenNotF() ==

let curTime = sysTime.getTime()
in

return
(((curTime >= Manager‘SafetyCheckTime) and
(forall t in set

{curTime - Manager‘SafetyCheckTime,..., curTime} &
trace(t).levPos = <DIR_R>))

=> trace(curTime).detectLevPos <> <DIR_F>)
post RESULT;

private IfLeverIsNThenN: () ==> bool
IfLeverIsNThenN() ==

let curTime = sysTime.getTime()
in

return
(((curTime >= Manager‘SafetyCheckTime) and
(forall t in set

{curTime - Manager‘SafetyCheckTime,..., curTime} &
trace(t).levPos = <DIR_N>))

=> trace(curTime).detectLevPos = <DIR_N>)
post RESULT;

private NotMoveWithoutOperation: () ==> bool
NotMoveWithoutOperation() ==

let curTime = sysTime.getTime()
in

return
(((curTime >= Manager‘SafetyCheckTime) and
(forall t in set
{curTime - Manager‘SafetyCheckTime,..., curTime-1} &
(trace(t).levPos = trace(curTime).levPos and
trace(t).detectLevPos = <DIR_N>)))

=> trace(curTime).detectLevPos = <DIR_N>)
post RESULT;

end Environment
� �



A.5 The DigitalInput class

�
class DigitalInput is subclass of Common

instance variables
private channel : DinChannel;
private value : bool := false;
private env : Environment;

operations
public DigitalInput : DinChannel * Environment ==> DigitalInput
DigitalInput(ch, pEnv) ==
(

channel := ch;
env := pEnv

);

public update : () ==> ()
update() ==

value := env.getDinValue(channel);

public getValue : () ==> bool
getValue() ==

return value;

end DigitalInput
� �
A.6 The AnalogueInput class

�
class AnalogueInput is subclass of Common

instance variables
private value : AinState := <SUB_R>;
private env : Environment;

operations
public AnalogueInput : Environment ==> AnalogueInput
AnalogueInput(pEnv) ==

env := pEnv;

public update : () ==> ()
update() ==

value := env.getAinValue();

public getValue : () ==> AinState



getValue() ==
return value;

end AnalogueInput
� �
A.7 The Fault class

�
class Fault is subclass of Common

types
public FaultState = <FLT_NORMAL>

| <FLT_DETECTING>
| <FLT_CONFIRMED>
| <FLT_RECOVERING>;

instance variables
private state : FaultState := <FLT_NORMAL>;
private detectingTime : [Time];

-- nil means the fault is undetectable
private recoveryTime : [Time];

-- nil means the fault is unrecoverable
private timer : Timer;
protected fault : map FaultMode to Fault := {|->};

operations
public Fault : [Time] * [Time] * Timer ==> Fault
Fault(detT, recT, pTimer) ==
(

detectingTime := detT;
recoveryTime := recT;
timer := pTimer

);

-- Add association to another Fault to watch
public addFault : map FaultMode to Fault ==> ()
addFault(mFault) ==

fault := fault ++ mFault;

public update : () ==> ()
update() ==

cases state:
<FLT_NORMAL> -> doFaultNormal(),
<FLT_DETECTING> -> doFaultDetecting(),
<FLT_CONFIRMED> -> doFaultConfirmed(),
<FLT_RECOVERING> -> doFaultRecovering()

end;



private doFaultNormal : () ==> ()
doFaultNormal() ==
(

if errorState() and detectingTime <> nil
then
(

timer.resetTimer();
if detectingTime = 0
then

state := <FLT_CONFIRMED>
else

state := <FLT_DETECTING>
)
else

skip
)
pre

state = <FLT_NORMAL>;

private doFaultDetecting : () ==> ()
doFaultDetecting() ==
(

if not errorState()
then

state := <FLT_NORMAL>
else if timer.getTime() >= detectingTime
then

state := <FLT_CONFIRMED>
else

skip
)
pre

state = <FLT_DETECTING>;

private doFaultConfirmed : () ==> ()
doFaultConfirmed() ==
(

if recoveryState() and recoveryTime <> nil
then
(

timer.resetTimer();
if recoveryTime = 0
then

state := <FLT_NORMAL>
else

state := <FLT_RECOVERING>
)
else

skip



)
pre

state = <FLT_CONFIRMED>;

private doFaultRecovering : () ==> ()
doFaultRecovering() ==
(

if not recoveryState()
then

state := <FLT_CONFIRMED>
else if timer.getTime() >= recoveryTime
then

state := <FLT_NORMAL>
else

skip
)
pre

state = <FLT_RECOVERING>;

private errorState : () ==> bool
errorState() == is subclass responsibility;

private recoveryState : () ==> bool
recoveryState() == is subclass responsibility;

public getFaultState : () ==> FaultState
getFaultState() ==

return state;

public isFaultConfirmed : () ==> bool
isFaultConfirmed() ==

return ((state = <FLT_CONFIRMED>) or
(state = <FLT_RECOVERING>));

end Fault
� �
A.8 The FaultDinOpenMinor class

�
class FaultDinOpenMinor is subclass of Fault

instance variables
private din : map Direction to DigitalInput;

operations
public FaultDinOpenMinor : [Time] * [Time] * Timer *

map Direction to DigitalInput



==> FaultDinOpenMinor
FaultDinOpenMinor(detT, recT, pTimer, mDin) ==
(

din := mDin;
Fault(detT, recT, pTimer)

)
pre

dom mDin = {<DIR_F>, <DIR_N>, <DIR_R>};

private errorState : () ==> bool
errorState() ==

return NumberOfTrue([din(<DIR_F>).getValue(),
din(<DIR_N>).getValue(),
din(<DIR_R>).getValue()]) = 0;

private recoveryState : () ==> bool
recoveryState() ==

return NumberOfTrue([din(<DIR_F>).getValue(),
din(<DIR_N>).getValue(),
din(<DIR_R>).getValue()]) = 1;

end FaultDinOpenMinor
� �
A.9 The FaultDinOpenSevere class

�
class FaultDinOpenSevere is subclass of Fault

instance variables

private din : map Direction to DigitalInput;
private ain : AnalogueInput;

operations

public FaultDinOpenSevere : [Time] * [Time] * Timer *
map Direction to DigitalInput *
AnalogueInput
==> FaultDinOpenSevere

FaultDinOpenSevere(detT, recT, pTimer, mDin, pAin) ==
(

din := mDin;
ain := pAin;
Fault(detT, recT, pTimer)

)
pre

dom mDin = {<DIR_F>, <DIR_N>, <DIR_R>};



private errorState : () ==> bool
errorState() ==

let ainValue = ain.getValue()
in
(

return (NumberOfTrue([din(<DIR_F>).getValue(),
din(<DIR_N>).getValue(),
din(<DIR_R>).getValue()]) = 0

and
(ainValue = <DIR_F> or
ainValue = <DIR_N> or
ainValue = <DIR_R>))

);

private recoveryState : () ==> bool
recoveryState() ==

return NumberOfTrue([din(<DIR_F>).getValue(),
din(<DIR_N>).getValue(),
din(<DIR_R>).getValue()]) = 1;

end FaultDinOpenSevere
� �
A.10 The FaultDinShort class

�
class FaultDinShort is subclass of Fault

instance variables
private din : map Direction to DigitalInput;

operations
public FaultDinShort : [Time] * [Time] * Timer *

map Direction to DigitalInput
==> FaultDinShort

FaultDinShort(detT, recT, pTimer, mDin) ==
(

din := mDin;
Fault(detT, recT, pTimer)

)
pre

dom mDin = {<DIR_F>, <DIR_N>, <DIR_R>};

private errorState : () ==> bool
errorState() ==

return NumberOfTrue([din(<DIR_F>).getValue(),
din(<DIR_N>).getValue(),



din(<DIR_R>).getValue()]) > 1;

private recoveryState : () ==> bool
recoveryState() ==

return false;

end FaultDinShort
� �
A.11 The FaultAinOpen class

�
class FaultAinOpen is subclass of Fault

instance variables
private ain : AnalogueInput;

operations
public FaultAinOpen : [Time] * [Time] * Timer * AnalogueInput

==> FaultAinOpen
FaultAinOpen(detT, recT, pTimer, pAin) ==
(

ain := pAin;
Fault(detT, recT, pTimer)

);

private errorState : () ==> bool
errorState() ==

return ain.getValue() = <SUB_R>;

private recoveryState : () ==> bool
recoveryState() ==

return ain.getValue() <> <SUB_R>;

end FaultAinOpen
� �
A.12 The FaultAinShort class

�
class FaultAinShort is subclass of Fault

instance variables
private ain : AnalogueInput;

operations
public FaultAinShort : [Time] * [Time] * Timer * AnalogueInput



==> FaultAinShort
FaultAinShort(detT, recT, pTimer, pAin) ==
(

ain := pAin;
Fault(detT, recT, pTimer)

);

private errorState : () ==> bool
errorState() ==

return ain.getValue() = <SUPER_F>;

private recoveryState : () ==> bool
recoveryState() ==

return ain.getValue() <> <SUPER_F>;

end FaultAinShort
� �
A.13 The FaultAinInternal class

�
class FaultAinInternal is subclass of Fault

instance variables
private din : map Direction to DigitalInput;
private ain : AnalogueInput;

operations
public FaultAinInternal : [Time] * [Time] * Timer *

map Direction to DigitalInput *
AnalogueInput
==> FaultAinInternal

FaultAinInternal(detT, recT, pTimer, mDin, pAin) ==
(

din := mDin;
ain := pAin;
Fault(detT, recT, pTimer)

)
pre

dom mDin = {<DIR_F>, <DIR_N>, <DIR_R>};

private errorState : () ==> bool
errorState() ==

let dinValueF = din(<DIR_F>).getValue(),
dinValueN = din(<DIR_N>).getValue(),
dinValueR = din(<DIR_R>).getValue(),
ainValue = ain.getValue()

in



(
return ((dinValueF and not dinValueN and

not dinValueR and
(ainValue = <DIR_R> or ainValue = <MID_RN>))

or
(not dinValueF and not dinValueN and
dinValueR and
(ainValue = <DIR_F> or ainValue = <MID_FN>))

or
(not dinValueF and dinValueN and
not dinValueR and
(ainValue = <DIR_F> or ainValue = <DIR_R>)))

and not fault(<DIN_SHORT>).isFaultConfirmed()
)

pre
<DIN_SHORT> in set dom fault;

private recoveryState : () ==> bool
recoveryState() ==

return false;

end FaultAinInternal
� �
A.14 The DirectionLever class

�
class DirectionLever is subclass of Common

instance variables
protected position : Direction := <DIR_N>;
protected fault : map FaultMode to Fault;

operations
public DirectionLever : map FaultMode to Fault

==> DirectionLever
DirectionLever(mFault) ==

fault := mFault;

public update : () ==> ()
update() == is subclass responsibility;

public getPosition : () ==> [Direction]
getPosition() == is subclass responsibility;

end DirectionLever
� �



A.15 The DirectionLeverDigital class

�
class DirectionLeverDigital is subclass of DirectionLever

instance variables
private din : map Direction to DigitalInput;

operations
public DirectionLeverDigital : map FaultMode to Fault *

map Direction to DigitalInput
==> DirectionLeverDigital

DirectionLeverDigital(mFault, mDin) ==
(

din := mDin;
DirectionLever(mFault)

)
pre

dom mFault = {<DIN_OPEN_MINOR>, <DIN_OPEN_SEVERE>,
<DIN_SHORT>} and

dom mDin = {<DIR_F>, <DIR_N>, <DIR_R>};

public update : () ==> ()
update() ==
(

-- Detect the lever position by the digital input.
-- In case the input has a fault,
-- the position is not updated.
if fault(<DIN_OPEN_MINOR>).getFaultState() = <FLT_NORMAL>

and
fault(<DIN_OPEN_SEVERE>).getFaultState() = <FLT_NORMAL>
and
fault(<DIN_SHORT>).getFaultState() = <FLT_NORMAL>

then
(

let dinValueF = din(<DIR_F>).getValue(),
dinValueN = din(<DIR_N>).getValue(),
dinValueR = din(<DIR_R>).getValue()

in
(

if dinValueF and
not dinValueN and
not dinValueR

then
position := <DIR_F>

else if not dinValueF and
dinValueN and
not dinValueR

then
position := <DIR_N>



else if not dinValueF and
not dinValueN and
dinValueR

then
position := <DIR_R>

else
skip

)
)
else

skip;
);

-- Return nil if at least one digital input fault is confirmed,
-- otherwise return detected lever position
public getPosition : () ==> [Direction]
getPosition() ==

if fault(<DIN_OPEN_MINOR>).isFaultConfirmed() or
fault(<DIN_OPEN_SEVERE>).isFaultConfirmed() or
fault(<DIN_SHORT>).isFaultConfirmed()

then
return nil

else
return position;

end DirectionLeverDigital
� �
A.16 The DirectionLeverAnalogue class

�
class DirectionLeverAnalogue is subclass of DirectionLever

instance variables
private isValid : bool := true;
private ain : AnalogueInput;

operations
public DirectionLeverAnalogue : map FaultMode to Fault *

AnalogueInput
==> DirectionLeverAnalogue

DirectionLeverAnalogue(mFault, pAin) ==
(

ain := pAin;
DirectionLever(mFault)

)
pre

dom mFault = {<AIN_OPEN>, <AIN_SHORT>, <AIN_INTERNAL>};



public update : () ==> ()
update() ==
(

let ainValue = ain.getValue()
in
(

-- Check if the analogue input is valid or not.
-- If an analogue input fault is confirmed,
-- then set to invalid.
-- If the normal N position is detected after
-- fault recovery, then set to valid.
if fault(<AIN_OPEN>).isFaultConfirmed() or

fault(<AIN_SHORT>).isFaultConfirmed() or
fault(<AIN_INTERNAL>).isFaultConfirmed()

then
isValid := false

else if ainValue = <DIR_N>
then

isValid := true
else

skip;

-- Detect the lever position by the analogue input
-- including fault measures
if fault(<AIN_OPEN>).getFaultState() = <FLT_NORMAL>

and
fault(<AIN_SHORT>).getFaultState() = <FLT_NORMAL>
and
fault(<AIN_INTERNAL>).getFaultState() = <FLT_NORMAL>
and isValid

then
(

if ainValue = <DIR_F> or ainValue = <DIR_R>
then

position := ainValue
else

position := <DIR_N>
)
else

position := <DIR_N>
)

);

public getPosition : () ==> [Direction]
getPosition() ==

return position;

end DirectionLeverAnalogue
� �



A.17 The LeverPositionDetection class

�
class LeverPositionDetection is subclass of Common

instance variables
private detectLevPos : [Direction] := nil;
private dinHasPriority : bool := true;
private din : DirectionLever;
private ain : DirectionLever;
private env : Environment;

operations
public LeverPositionDetection : DirectionLever *

DirectionLever *
Environment
==> LeverPositionDetection

LeverPositionDetection(pDin, pAin, pEnv) ==
(

din := pDin;
ain := pAin;
env := pEnv

);

public update : () ==> ()
update() ==
(

let dinPosition = din.getPosition(),
ainPosition = ain.getPosition()

in
(

-- Check which input has priority.
-- If a digital input fault is confirmed,
-- then analogue is valid.
-- After fault recovery, if the lever positions by
-- digital and analogue are consistent,
-- then digital is valid.
if dinPosition = nil
then

dinHasPriority := false
else if dinPosition = ainPosition
then

dinHasPriority := true
else

skip;

-- Get the lever position from the prior input
if dinHasPriority
then

detectLevPos := dinPosition



else
detectLevPos := ainPosition

);

-- Set the detected lever position to Environment
env.setDetectLevPosition(detectLevPos)

);

end LeverPositionDetection
� �


