
Fuyuki Ishikawa
National Institute of Informatics, Japan

Towards Customizable and
Bi-directionally Traceable

Transformation between VDM++ and Java

Write formal specification on the basis of the
one in natural languages

Forced to remove ambiguity and to have some types
of completeness and consistency (e.g., in type def.)
Validate through test, review, and other analyses

Should be reflected to the implementation
(not only improving and using the specification in
natural languages)

Avoid dual cost of formalization (spec. and impl.)
Inherit what are validated to the implementation
(VDM itself does not force to be fully formal for this,
e.g., unlike stepwise refinement in B)

2011/06/20 5Fuyuki Ishikawa @ 9th
Overture/VDM WS

Motivation: Positioning in Dev. Process

class EventManager

instance variables
private t : real;
private s : set of real;
private user : token;
private state : State;
inv state.isValid();

operations
compute1 : nat ==> nat
compute1(x) == (

let p in set s be st p in s and p > avg(s)
in return round p * x;

)
pre forall i in set s & i <= t;

2011/06/20 6Fuyuki Ishikawa @ 9th
Overture/VDM WS

Difficulty: Abstraction in VDM
Don’t care about “how” on computers
- real (don’t say float or double)
- set (don’t say HashSet or TreeSet)

May abstract away
nonessential data structures
May include elements only
for verification purpose, and
may exclude implementation
details (e.g., loggers)

Use declarative notations

There are “VDM2Java” and “Java2VDM” tools
The implementation strategy is basically fixed by the
code generator
Translation basically overwrites the other side

Difficulties in introducing and managing
implementation-specific decisions
The same stands for the VDM-UML Link tools
(even in the interface or skeleton level)
How to correlate a class diagram of the VDM
model with one of the Java code, with different
abstraction levels (essentially in vocabularies)?

2011/06/20 7Fuyuki Ishikawa @ 9th
Overture/VDM WS

Motivation: Gaps between VDM and Impl.

2011/06/20 8Fuyuki Ishikawa @ 9th
Overture/VDM WS

Motivation: Gaps between VDM and Impl.

class TestClass

instance variables

private x : nat;
private a : real;
private b : real;
private c : set of int;
private state: State;

end TestClass

public class TestClass{

private int x;
private double a;
private float b;
private HashSet<Integer>c;

private Logger log;

}

VDM Java

Necessary to distinguish and manage
What parts in formal specification (VDM) are essential
decisions, inherited to implementation

As they are (possibly with syntax translation)
With additional decisions (e.g., how to implement
on memory, using array? hash table?)

What parts in formal specification (VDM) are tentative
and not necessary in implementation

e.g., assertions, tentative mock to let it run early
What additional parts are newly introduced in
implementation

e.g., logger, encryption, exception handling

2011/06/20 9Fuyuki Ishikawa @ 9th
Overture/VDM WS

Motivation: Essential Requirement

VDM++ to Java transformation (not translation)
Specify the gaps, or implementation decisions,
explicitly as transformation rules
Customize, and explicitly keep traces

Technical approaches
Specify transformation rules syntactically (not link
invariants), and use them also for Java test code
generation from VDM++ test specification
Leverage lightweight usages (“specify, run and test”)
supported in the current tools
Apply a bidirectional transformation theory and tool
Explore potentials in “code to spec” change reflection

2011/06/20 10Fuyuki Ishikawa @ 9th
Overture/VDM WS

Approach

1. Describe a specification in VDM

2011/06/20 11Fuyuki Ishikawa @ 9th
Overture/VDM WS

Illustrating Usage Scenario

class TestClass

instance variables

private x : nat;
private a : real;
private b : real;
private c : real;
private state : State;

end TestClass

VDM

class TestClass

instance variables

private x : nat;
private a : real;
private b : real;
private c : real;
private state : State;

end TestClass

2. Define transformation rules

2011/06/20 12Fuyuki Ishikawa @ 9th
Overture/VDM WS

Illustrating Usage Scenario

Default Rules
- Implement the nat type

as the int type
- Implement the real type

as the double type

Rules defined by Developers
- Implement the real type

of variable b as the float type
- The variable state only exists

in the model

VDM

(formal rule syntax omitted)

3. Call the forward transformation

2011/06/20 13Fuyuki Ishikawa @ 9th
Overture/VDM WS

Illustrating Usage Scenario

class TestClass

instance variables

private x : nat;
private a : real;
private b : real;
private c : real;
private state : State;

end TestClass

public class TestClass{

private int x;
private double a;
private float b;
private double c;

}

VDM Java

4. Modify the generated codes if necessary
(choosing whether to reflect insertions or not)

2011/06/20 14Fuyuki Ishikawa @ 9th
Overture/VDM WS

Illustrating Usage Scenario

public class TestClass{

private int newx;
private double a;
private float b;
private double c;
private Logger log;

}Rule
- The variable log exists only
in implementation

Java

5. Call the backward transformation

2011/06/20 15Fuyuki Ishikawa @ 9th
Overture/VDM WS

Illustrating Usage Scenario

class TestClass

instance variables

private newx : nat;
private a : real;
private b : real;
private c : real;
private state : State;

end TestClass

public class TestClass{

private int newx;
private double a;
private float b;
private double c;
private Logger log;

}

VDM Java

Log of the previous forward
transformation is used

2011/06/20 16Fuyuki Ishikawa @ 9th
Overture/VDM WS

Test Case Inheritance

public op1 :
seq of int ==> bool

op1(s) == … ;

public boolean
op1(LinkedList<Integer> s){
…

}

s = [1, 2, 3];
assertTrue(op1(s))

s = new LinkedList();
s.add(1);
s.add(2);
s.add(3);
assert(op1(s) == true);

Transformation rule
Implement the seq type as
LinkedList in op1

VDM Java

Test Test

[reported in the 7th
workshop at FM 2009]

2011/06/20 17Fuyuki Ishikawa @ 9th
Overture/VDM WS

The Whole Picture
VDM++

Specification
Java
Code

VDM++VDM++
AST

JavaJava
AST

Transformation
Rules

VDM++
Class

Diagram

Java
Class

Diagram

VDM++
Test Case

Specification

Common
Test Case

Specification

Java
Test Case

Code

replace ...vartype -> $a
by {double:{}} in $db
where {real:{}} in $a

…

2011/06/20 18Fuyuki Ishikawa @ 9th
Overture/VDM WS

Internal Mechanism: Overview

VDM++
Specification

VDM++
Parse Tree

Java
Code

Java
Parse Tree

type-implement:
real by float in variable x

…

Transformation Rules

Convert
Graph
Queries
(UnQL+,
UnCAL)

Built-in queries
(default transformation
+ syntax translation)

Transformation
Logs

Forward
Transform

Backward
Transform

Parse
Serialize

Parse
Serialize

Rule expressivity: change (types), remove or add
(variables, arguments, methods, sentences, …)

The underlying theory/tool potentially support
“select”, “replace”, “delete” and “insert” operations
on the parse trees

Override: overriding rules
are first applied, and
then the defaults for
remaining elements

2011/06/20 19Fuyuki Ishikawa @ 9th
Overture/VDM WS

Internal Mechanism: Transformation

Transformation supported by GRoundTram
[Hidaka, ICFP10 / http://www.biglab.org/]

Bidirectionality: Suppose Java J is generated from
VDM++ V, then J is modified into J', and VDM++ V' is
generated from J'. Generation of Java code from V'
results in J'.
Limitation: insertion
at the Java side may
lead to possible
multiple VDM++
(need user decision,
or default)

2011/06/20 20Fuyuki Ishikawa @ 9th
Overture/VDM WS

Internal Mechanism: Bidirectionality

Extraction of corresponding parts
VDM-ReplaceRules/DeleteRules: A select query is
generated from each replace/delete query to identify
which parts of VDM++ are processed by it
VDM-Java: Transformation logs include from which
VDM++ node each Java node is derived

InsertRules-Java:
At the same time,
it is possible to
extract which
Java nodes are
newly inserted
by each rule

2011/06/20 21Fuyuki Ishikawa @ 9th
Overture/VDM WS

Internal Mechanism: Traceability

2011/06/20 22Fuyuki Ishikawa @ 9th
Overture/VDM WS

GUI Prototype

VDM++ Java

Transformation Rules

Highlighting the corresponding parts in the two other views

Syntactical transformation with test case generation
Match with the lightweight “specify, run and test”
usages primarily supported in the current tools
Customization of code generation
Match most with situations where the (default)
generated code is almost acceptable

e.g., customize the generated skeleton with
implementation-specific types
e.g., situational applications without so tight NFR

Traceability and bidirectional transformation
Match with iterated or derivative development,
which often appears in many present projects

2011/06/20 23Fuyuki Ishikawa @ 9th
Overture/VDM WS

Discussion (1): Expected Advantages

A lot!
Coverage of the syntax by default rules

Libraries of domain-specific custom rules
Method for semantics validation

Validation of default rules (by the provider)
Validation framework for custom rules by users

Sophisticated user interface
Extraction of rules from Java code

Case studies and applications
…

2011/06/20 24Fuyuki Ishikawa @ 9th
Overture/VDM WS

Discussion (2): Limitations and Future Work

Thank you!

2011/06/20 25Fuyuki Ishikawa @ 9th
Overture/VDM WS

