Towards Customizable and
Bi-directionally Traceable
Transformation between VDM++ and Java

Fuyuki Ishikawa
National Institute of Informatics, Japan

Motivation: Positioning in Dev. Process

B Write formal specification on the basis of the
one in natural languages

® Forced to remove ambiguity and to have some types
of completeness and consistency (e.g., in type def.)

B Validate through test, review, and other analyses

®» Should be reflected to the implementation

(not only improving and using the specification in
natural languages)

B Avoid dual cost of formalization (spec. and impl.)

B Inherit what are validated to the implementation
(VDM itself does not force to be fully formal for this,
e.g., unlike stepwise refinement in B)

Fuyuki Ishikawa @ 9th

2011/06/20 Overture/VDM WS

Difficulty: Abstraction in VDM

Don't care about “how” on computers
- real (don't say float or double)
instance variables |- set (don't say HashSet or TreeSet)

private t : real;
orivate s : set of real; Mayabstractaway

private user : token; nonessential data structures

private state : State;
inv state.i1svValid();

class EventManager

May include elements only
for verification purpose, and
operations may exclude implementation

computel : nat ==> nat details (e.g., loggers)
computel(x) == (
let p In set s be st p In s and p > avg(s)
In return round p * X; : :
) Use declarative notations

pre forall i in set s & i <= t; ‘

Fuyuki Ishikawa @ 9th 6

2011/06/20 Overture/VDM WS

Motivation: Gaps between VDM and Impl.

B There are “WVDM2Java” and “Java2VDM" tools

B The implementation strategy is basically fixed by the
code generator

B Translation basically overwrites the other side

® Difficulties in introducing and managing
implementation-specific decisions

B The same stands for the VDM-UML Link tools
(even in the interface or skeleton level)

®» How to correlate a class diagram of the VDM
model with one of the Java code, with different
abstraction levels (essentially in vocabularies)?

Fuyuki Ishikawa @ 9th

2011/06/20 Overture/VDM WS

Motivation: Gaps between VDM and Impl.

VDM

Java

class TestClass

Instance variables

private
private
private
private
private

X nat;

a real ;

b : real;

c - set of Int;

state State;

end TestClass

public class TestClass{

private Int Xx;

private double a;
private float b;
private HashSet<Integer>c;

private Logger log;

1

2011/06/20

Fuyuki Ishikawa @ 9th
Overture/VDM WS

Motivation: Essential Requirement

Necessary to distinguish and manage

B What parts in formal specification (VDM) are essential
decisions, inherited to implementation

B As they are (possibly with syntax translation)

B With additional decisions (e.g., how to implement
on memory, using array? hash table?)

B What parts in formal specification (VDM) are tentative
and not necessary in implementation

B e.g. assertions, tentative mock to let it run early

® What additional parts are newly introduced in
implementation

F e.g. logger, encryption, exception handling

Fuyuki Ishikawa @ 9th

2011/06/20 Overture/VDM WS

Approach

VDM++ to Java transformation (not translation)

B Specify the gaps, or implementation decisions,
explicitly as transformation rules

B Customize, and explicitly keep traces

B Technical approaches

B Specify transformation rules syntactically (not link
invariants), and use them also for Java test code
generation from VDM++ test specification

B) Leverage lightweight usages (“specify, run and test”)
supported in the current tools

® Apply a bidirectional transformation theory and tool
B Explore potentials in “code to spec” change reflection

Fuyuki Ishikawa @ 9th

2011/06/20 Overture/VDM WS

10

lllustrating Usage Scenario
1. Describe a specification in VDM

VDM

class TestClass

Instance variables

private x : nat;

private a : real;
private b : real;
private c : real;

private state : State;

end TestClass

Fuyuki Ishikawa @ 9th
2001020 Overture/VDM WS

lllustrating Usage Scenario
2. Define transformation rules

VDM

Default Rules
- Implement the nattype

class TestClass
Instance variables

private x : nat;

private a : real;
private b : real;
private c : real;

private state : State;

end TestClass

as the /nttype
- Implement the rea/type
as the doubletype

| (formal rule syntax omitted)

Rules defined by Developers
- Implement the rea/type
of variable b as the floattype
- The variable state only exists
in the model

2011/06/20

Fuyuki Ishikawa @ 9th 1
Overture/VDM WS

llustrating Usage Scenario
3. Call the forward transformation

VDM

Java

class TestClass

Instance variables

public class TestClass{

private Int X;
private double a;

private X : nat; N private float b;
private a : real; private double c;
private b : real;
private c : real; }
private state : State;
end TestClass

2011/06/20 Fuyuki Ishikawa @ 9th 13

Overture/V\DM WS

lllustrating Usage Scenario

4. Modify the generated codes if necessary
(choosing whether to reflect insertions or not)

2011/06/20

Java

public class TestClass{

private Int newx;
private double a;
private float b;
private double c;
private Logger log;

Rule
- The variable /og exists only
in implementation

Fuyuki Ishikawa @ 9th

Overture/VDM WS 14

llustrating Usage Scenario
5. Call the backward transformation

class TestClass public class TestClass{
instance variables private Int newx;
private double a;
private newx : nat; 1l private float b;
private a : real; private double c;
private b : real; \[._ private Logger log;
private c : real;
private state : state; || 5q of the previous forward
end TestClass transformation is used

Fuyuki Ishikawa @ 9th

Overture/V\DM WS 15

2011/06/20

Test Case Inheritance

public op1: public boolean
seq of int ==> bool op1(LinkedList<Integer> s){
}
s = new LinkedList();
s.add(1);
s=1[1,2,3]; s.add(2);
assertTrue(op1(s)) s.add(3);
assert(op1(s) == true);
Transformation rule
Implement the seq type as [reported in the 7th
LinkedListinop] workshop at FM 2009]
5011/06/20 Fuyuki Ishikawa @ 9th 16

Overture/VNDM WS

The Whole Picture

VDM++ Java
Specification Code

N 74

VDM VDM++ Java Java
;Iass @@ AT <i> ‘Class
Diagram Diagram

Transformation
Rules

VDM++ 1 Java

-

Test Case Test Case
Specification Code
Common
Test Case
Specification

Fuyuki Ishikawa @ 9th

2011/06/20 Overture/VDM WS

17

Internal Mechanism: Overview

VDM++
Specification type-implement:
real by float in variable x
- Convert
Parse replace ..vartype -> Sa
Serialize by {double:{}} in $db

Forward where {real:{}} in $a
Transform |
Built-in queries i

(default transformation

VDM++ + syntax translation)

Parse Tree
Backward
lransform | —

Fuyuki Ishikawa @ 9th

2011/06/20 Overture/VDM WS

Java
Code

Parse
Serialize

o5

Java
Parse Tree

18

Internal Mechanism: Transformation

B Rule expressivity: change (types), remove or add
(variables, arguments, methods, sentences, --)

B The underlying theory/tool potentially support
“select”, "replacée’, " delete’ and “/nsert’ operations
on the parse trees

B Override: overriding rules
are first applied, and

e : _ Java
then the defaults for —

remaining elements Comvert

Parse et g Parse
Serialize by {double 0} in $db Serialize
Forward where {real{}} in $a
Transform| | -
Built-in queries ‘\
(default transformation (
VDM++ + syntax translation) Java
Parse Tree =) | Parse Tree
ward H
Transform —
Fuyuki Ishikawa @ 9th 19

2011/06/20 Overture/VDM WS

Internal Mechanism: Bidirectionality

B Transformation supported by GRoundTram
[Hidaka, ICFP10 / http://www.biglab.org/]

B Bidirectionality: Suppose Java Jis generated from
VOM++ V, then J is modified into J, and VOM++ V'is
generated from J. Generation of Java code from V'

results in J.
B Limitation: insertion -
at the Java side may Speciicaton Code
lead to possible — —— =
multiple VDM++ Seize | Dol e
o o Tgft/}lﬁcgrm mwhere real:{}} in $a

need user decision, || e 153
Or d efa u |t) VDM+4 |+ syntaxtranslation ava

)
Backward =L
Transform | —

Fuyuki Ishikawa @ 9th

2011/06/20 Overture/VDM WS

20

Internal Mechanism: Traceability

B Extraction of corres

® VDM-ReplaceRules/
generated from eac

oonding parts
DeleteRules: A se

N replace/delete g

ectquery s
uery to identify

which parts of VDM++ are processed
® VDM-Java: Transformation logs includ

Oy it
e from which

VDM++ node each Java node is derived

B InsertRules-Java:
At the same time,
it is possible to
extract which
Java nodes are
newly inserted
by each rule

type-implement:
real by float in variable x

Parse

Serialize
Forward

Transform =

I + sy

Fuyuki Ishikawa @ 9th

2011/06/20 Overture/VDM WS

(default t

Convert

Parse
Serialize

o

o
ransfo

rmation
ntax translation)

J Java
=i Parse Tree

Backward |v
Transfor

21

Prototype

® - O Java - TestProj/src/test1.vdmpp - Eclipse SDK
File Edit Navigate Search Project Run Window Help

[M"EHR& |- 0-Qr |[# G |® Fv|Lv i+ G ® &
f% Package Explorer & ° = O b *test1.vdmpp s | bl test1.java 2 _ = El‘:
B® class testl public class testl{
= . private int x;
» 12 TestProj s private double a;
instance variables s private float b;
& private double c;

private x :|nat;
private a : real;
private b : real;
private c : real;
private onlyInModel : token;

{ VDM++ Java

[Problems | @ Javadoc|[& Declaration ‘m VDM Rule View & =m|

Customize:
type-implement: real by float in variable b
remove: variable onlyInModel

Default:

type-implement: real by double
type-implement: nat by int

Generate Java || Generate VDM | Tra n Sfo rm atio n R u | eS

‘ o Writable Insert 6:12 ‘

Highligh f/'ng the corresponding parts in the two other views

2011/06/20 Fuyuki Ishikawa @ 9th

Overture/VNDM WS 22

Discussion (1): Expected Advantages

B Syntactical transformation with test case generation

B Match with the lightweight “specify, run and test”
usages primarily supported in the current tools

B Customization of code generation

B Match most with situations where the (default)
generated code is almost acceptable

P e.g., customize the generated skeleton with
implementation-specific types

P e.g, situational applications without so tight NFR
B Traceability and bidirectional transformation

B Match with iterated or derivative development,
which often appears in many present projects

Fuyuki Ishikawa @ 9th

2011/06/20 Overture/VDM WS

23

Discussion (2): Limitations and Future Work

P Alotl

B Coverage of the syntax by default rules

B Libraries of domain-specific custom rules
B Method for semantics validation

® Validation of default rules (by the provider)

® Validation framework for custom rules by users
B Sophisticated user interface

B Extraction of rules from Java code

B Case studies and applications
' coe

Fuyuki Ishikawa @ 9th

2011/06/20 Overture/VDM WS

24

2011/06/20

Thank you!

Fuyuki Ishikawa @ 9th
Overture/VDM WS

25

