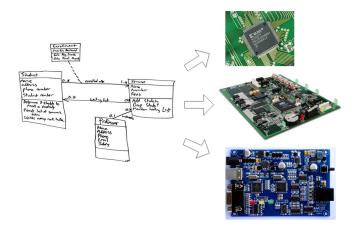
Automated Exploration of Alternative System Architectures with VDM-RT

Kenneth Lausdahl¹ Augusto Ribeiro¹

¹Aarhus School of Engineering, Dalgas Avenue 2, DK-8000 Aarhus C, Denmark

20 June 2011 / 9th Overture Workshop


Outline

- Introduction
 - Motivation
 - The VDM Real-Time Dialect
- Ensuring Separation Between Software And Hardware
 - Alternative Structure
 - Work-flow
- 3 Exploration of Alternative System Architectures
 - Exploring alternative artifact distribution on a fixed hardware configuration
 - Exploring alternative hardware configurations for an ASA
 - Exploring alternative deployment parameters for a fixed configuration
 - Case study

Motivation The VDM Real-Time Dialect

Choosing the best architecture for deployment

What is a good architecture?

LSE

Motivation The VDM Real-Time Dialect

Choosing the best architecture for deployment Questions

Design questions:

- Does the proposed architecture meet the performance requirements of all applications?
- Output: Note that the chosen architecture with respect to changes in the application or architecture parameters?
- Is it possible to replace components by cheaper, less powerful equivalents to save cost while maintaining the required performance targets?

Motivation The VDM Real-Time Dialect

This work addresses the design questions through:

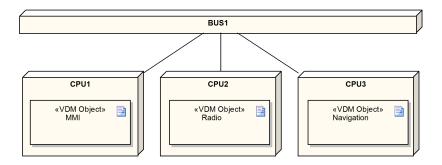
- separation between the core model and deployment
- enabling automated exploration of system architectures
- architecture validation with system properties

Motivation The VDM Real-Time Dialect

VDM Real-Time System

A special **system** class defines hardware topology and deployment of a model.

A system class consists of the following:

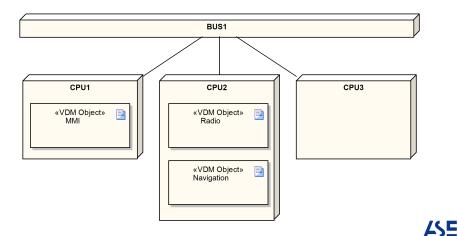

- Artifacts to be deployed.
- A number of CPUS.
- **O A number of BUSes connecting CPUs together.**
- A constructor where artifacts are connected and deployed.

A single VDM-RT model is only allowed to define a single system class as part of the model.

Motivation The VDM Real-Time Dialect

VDM Real-Time System

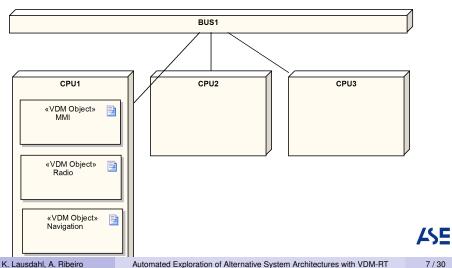
Example: In-car navigation system



μ Α

Motivation The VDM Real-Time Dialect

VDM Real-Time System


Example: In-car navigation system

Motivation The VDM Real-Time Dialect

VDM Real-Time System

Example: In-car navigation system

Motivation The VDM Real-Time Dialect

VDM Real-Time System

Example: In-car navigation system

```
system RadNavSys
instance variables
 -- artifacts to be deployed
 mmi : MMT := new MMT();
 radio := new Radio();
 navigation := new Navigation();
  -- Hardware
 CPU1 : CPU := new CPU (...);
 CPU2 : CPU := new CPU (...);
 CPU3 : CPU := new CPU (...);
 BUS1 : BUS := new BUS (..., {CPU1, CPU2, CPU3})
```

Motivation The VDM Real-Time Dialect

VDM Real-Time System

Example: In-car navigation system

```
operations
  public RadNavSys: () ==> RadNavSys
  RadNavSys () ==
    ( navigation.setMmi(mmi);
      radio.setMmi(mmi):
      radio.setNavigation(navigation);
      mmi.setRadio(radio);
      CPU1.deploy(mmi, "MMI");
      CPU2.deploy(radio, "Radio");
      CPU3.deploy(navigation, "Nav");
    );
end RadNavSys
```

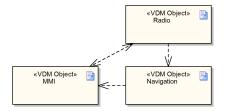
Alternative Structure Work-flow

Outline

- Introduction
 - Motivation
 - The VDM Real-Time Dialect
- Ensuring Separation Between Software And Hardware
 - Alternative Structure
 - Work-flow
- 3 Exploration of Alternative System Architectures
 - Exploring alternative artifact distribution on a fixed hardware configuration
 - Exploring alternative hardware configurations for an ASA
 - Exploring alternative deployment parameters for a fixed configuration
 - Case study

Alternative Structure Work-flow

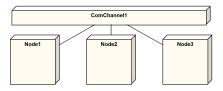
Enabling Exploration of Alternative Architectures

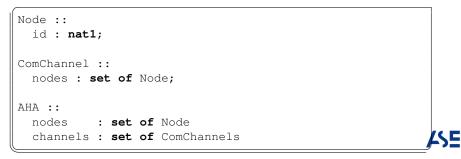

VDM-RT is currently limited to express a single deployment of a model.

Our alternative structure to the VDM-RT system class

- Abstract Software Architecture ASA
- Abstract Hardware Architecture AHA
- Configuration
- Deployment

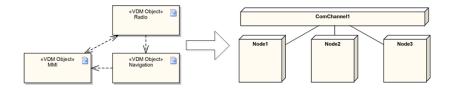
Alternative Structure Work-flow


Abstract Software Architecture



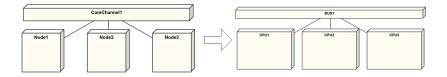

```
types
Artifact : seq of char
ASA ::
   artifacts : set of Artifact
   dependencies : map Artifact to set of Artifact
```

Alternative Structure Work-flow


Abstract Hardware Architecture

Alternative Structure Work-flow

Configuration


```
NodeArtifactRelation : map Node to set of Artifact;
Configuration ::
asa : ASA
aha : AHA
relation : NodeArtifactRelation
```

45

Alternative Structure Work-flow

Deployment

• Node and ComChannel are refined to CPUs and buses.

	Deployment	-	::
	config :	:	Configuration
	buses :	:	map ComChannel to BUS
	cpus :	:	map Node to CPU
l			

/SE

Alternative Structure Work-flow

New Work-flow

- Specify the model.
- Specify artifact configuration at system level.
- Extract ASA.
- Oreate or generate AHA from ASA dependencies.
- Specify connection between ASA and AHA.
- Specify deployment, refine Nodes and ComChannels to CPUs and buses.

$$\left(\textit{ASA} + \textit{AHA} \right) \rightarrow^* \textit{Configuration} \rightarrow^* \textit{Deployment} \equiv \texttt{system}$$

Exploring artifact distribution on fixed AHA Exploring hardware configurations Alternative deployment parameters Case study

Outline

Introduction

- Motivation
- The VDM Real-Time Dialect
- 2 Ensuring Separation Between Software And Hardware
 - Alternative Structure
 - Work-flow

3 Exploration of Alternative System Architectures

- Exploring alternative artifact distribution on a fixed hardware configuration
- Exploring alternative hardware configurations for an ASA
- Exploring alternative deployment parameters for a fixed configuration
- Case study

Exploring artifact distribution on fixed AHA Exploring hardware configurations Alternative deployment parameters Case study

Exploration Requirements

The general design questions lead to the following requirements:

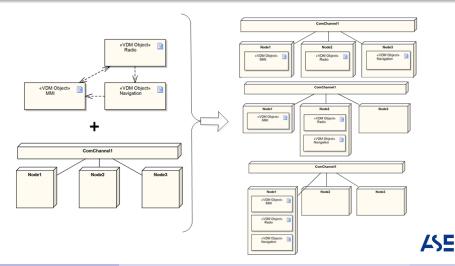
It must be possible to:

- Explore alternative artifact distribution on a fixed hardware configuration.
- Explore alternative hardware configurations for an ASA.
- Explore alternative deployment parameters for a fixed configuration.

Additionally, automated validation of a deployment is required.

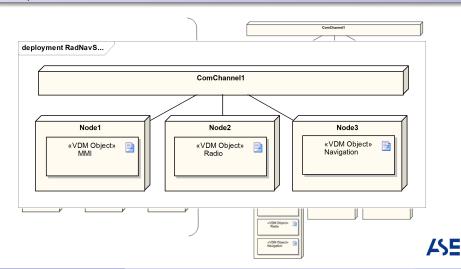
Exploring artifact distribution on fixed AHA Exploring hardware configurations Alternative deployment parameters Case study

Exploring alternative artifact distribution on a fixed hardware configuration

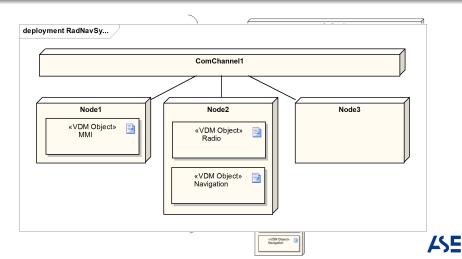

The goal is to create all possible configurations which respects the fixed:

- ASA with restrictions on possible distributions.
- AHA with restrictions on communication paths.

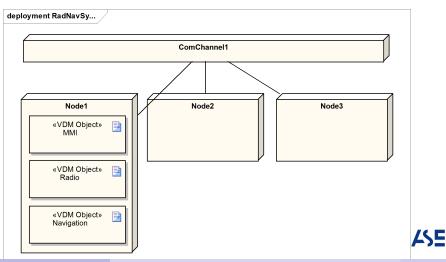
$$\left(ASA + AHA\right) \rightarrow^{*} \underline{Configuration} \rightarrow^{*} Deployment \equiv \texttt{system}$$
(2)


Exploring artifact distribution on fixed AHA Exploring hardware configurations Alternative deployment parameters Case study

Configurations Example


Configurations Example

Exploring artifact distribution on fixed AHA Exploring hardware configurations Alternative deployment parameters Case study


Configurations Example

Exploring artifact distribution on fixed AHA Exploring hardware configurations Alternative deployment parameters Case study

Configurations Example

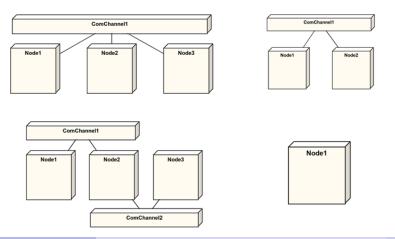
Exploring artifact distribution on fixed AHA Exploring hardware configurations Alternative deployment parameters Case study

K. Lausdahl, A. Ribeiro

Automated Exploration of Alternative System Architectures with VDM-RT

Exploring artifact distribution on fixed AHA Exploring hardware configurations Alternative deployment parameters Case study

Exploring alternative hardware configurations for an ASA


The goal is to explore all possible hardware topologies which are compatible with the given ASA.

$$\left(ASA + \underline{AHA}\right) \rightarrow^* Configuration \rightarrow^* Deployment \equiv \texttt{system}$$
(3)

45

Exploring artifact distribution on fixed AHA Exploring hardware configurations Alternative deployment parameters Case study

Exploring alternative hardware configurations for an ASA Example

K. Lausdahl, A. Ribeiro

Automated Exploration of Alternative System Architectures with VDM-RT 22 / 30

LSE

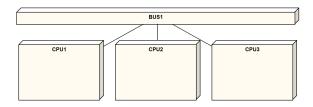
Exploring artifact distribution on fixed AHA Exploring hardware configurations Alternative deployment parameters Gase study

Exploring alternative deployment parameters for a fixed configuration

The goal is to try out different node refinements for an otherwise fixed system.

$$\left(ASA + AHA\right) \rightarrow^{*} Configuration \rightarrow^{*} \underline{Deployment} \equiv \texttt{system}$$
(4)

μ μ


Exploring artifact distribution on fixed AHA Exploring hardware configurations Alternative deployment parameters Gase study

Exploring alternative deployment parameters for a fixed configuration Example

Each Node, ComChannel is refined to a specific CPU or BUS with a specific calculation or transmission speed.

Exploration of a Node

- Try node1 with speeds { 200MHz, 100MHz, 50Hz} = CPU1
- Results in 3 different deployments.

 Introduction
 Exploring artifact distribution on fixed AHA

 Separation of SW/HW
 Exploring hardware configurations

 Alternative deployment parameters
 Case study

Case Study with concrete syntax

Small case study with initial proposed syntax replacing the current **system** class.

```
system RadNavSvs
instance variables
  -- artifacts to be deployed
 mmi : MMI := new MMI();
 radio := new Radio();
 navigation := new Navigation();
operations
 public RadNavSys: () ==> RadNavSys
 RadNavSys () ==
    ( navigation.setMmi(mmi);
     radio.setMmi(mmi):
```

Exploring artifact distribution on fixed AHA Exploring hardware configurations Alternative deployment parameters Case study

Case Study with concrete syntax

aha Channel1 := {node1, node2, node3} configuration node1 := {mmi}; node2 := {radio} node3 := {navigation} deployment node1 := CPU(200MHz, <FP>) node2 := CPU(100MHz, <FP>) node3 := CPU(1000MHz, <FP>) Channel1 := BUS(72E3, <CSMACD>)

Exploring artifact distribution on fixed AHA Exploring hardware configurations Alternative deployment parameters Case study

Case Study with concrete syntax Exploration of Deployment

deployment			
node1	:=	$\{CPU(200MHz,),$	
		CPU(100MHz, <fp>),</fp>	
		CPU(50MHz, <fp>)}</fp>	
node2	:=	CPU(100MHz, <fp>)</fp>	
node3	:=	CPU(1000MHz, <fp>)</fp>	
Channe	el1	:= BUS(72E3, <fcfs>)</fcfs>	

/\$5

Future Work

Planned work

- Development of exploration tool for:
 - AHA
 - Configuration
 - Deployment
- Future investigation of how priorities of functions/operations should be specified.
- Development of tool for run-time validation for time invariants.

Questions

Questions?