
Formal Modelling and Safety Analysis of an
Embedded Control System for

Construction Equipment:
an Industrial Case Study using VDM

Takayuki Mori

Newcastle University, UK
Komatsu Ltd., Japan

20 June 2011

Outline

• Background and motivation

• Case study

– Informal description of control specifications and safety
requirements

– Formal modelling using VDM++

– Validation and safety analysis

• Conclusions

2

• Komatsu Ltd.

– Construction and mining equipment manufacturer

– Founded in Komatsu, Japan, in 1921

– Main products:

• Bulldozer

• Hydraulic excavator

• Wheel loader

• Dump truck

Background and motivation

3

My main work

• Development of control systems for wheel loaders

– Control specifications description

– Software design

– Implementation

– Testing

• Currently studying at Newcastle University

• My research interest

– Applying formal methods to our development activities to
make our control software more reliable

4

Safety for construction equipment

• Safety is a critical factor for construction equipment

• Safety should be ensured even if a fault has occurred
in the system

• To ensure safety…
Failure Mode and Effects Analysis (FMEA)

5

FMEA process

1. Identify all potential faults (failure modes)

2. Analyse the effects of each fault

3. Estimate the risk of the fault

4. If the risk is not allowable, consider

– A way to detect the fault

– Measures to be taken in case the fault has been detected

5. Re-estimate the risk

6

Motivation

• FMEA is not an easy task

– Usually, dozens of potential faults in one controller

– A measure against a fault might affect various parts of the
control system

• The research aims to:

– Describe the specifications of fault detection and
measures formally (using formal modelling notation
VDM++)

– Check if the specifications are consistent and safety is
ensured

7

Outline

• Background and motivation

• Case study

– Informal description of control specifications and safety
requirements

– Formal modelling using VDM++

– Validation and safety analysis

• Conclusions

8

Modelling target

• A part of a transmission control system for wheel
loaders

“Specifications of detecting the direction lever
position”

9

Modelling target

• Transmission control system

10

Vehicle speed
Engine speed
…

Direction lever
Speed lever

Transmission
controller

Transmission
valves

Modelling target

• Detecting the direction lever position

– Moving direction is frequently switched

– Detecting the lever position is crucial for safety

– The scale and complexity are moderate

11

Direction lever

Transmission
controller

System diagram

12

Digital input: F

Digital input: N

Digital input: R

Analogue input

Direction lever Transmission controller

Electrical characteristics

• Open-circuit of digital input and holding the lever in the
middle position cannot be distinguished

• Detected positions by digital and analogue might differ

13

Analogue input voltage

Control specifications

• Specifications of detecting the direction lever
position

1. Normally, digital input is valid.

2. If a fault has been detected in digital input, analogue
input becomes valid.

3. If analogue input also has a fault, the lever position is
recognised as N.

4. If digital input has recovered from the fault, digital input
should be valid again. However, analogue input remains
valid unless the positions detected by digital and
analogue input are consistent with each other.

14

Lever detection by digital input

15

Short-circuit to power

Open-circuit or short-circuit to ground or
the direction lever is in the middle position

Fault detection and measures

• Possible Faults of the System

– Open-circuit, short-circuit or improper operation

• An example

16

Safety requirements

17

R1: If any fault occurs in the system, the detected
position of the direction lever must be consistent
with the actual lever position or recognised as
neutral (N).

R2: If any fault occurs in the system, the detected
position of the direction lever must not change to
F or R without lever manipulation by the operator
of the vehicle.

Outline

• Background and motivation

• Case study

– Informal description of control specifications and safety
requirements

– Formal modelling using VDM++

– Validation and safety analysis

• Conclusions

18

Class diagram

• All association arrows from Manager and inheritance
arrows to Common are hidden for legibility

19

LeverPositionDetection

DirectionLever

DirectionLeverDigital

DirectionLeverAnalogue

Environment

DigitalInput AnalogueInput

Manager

Fault

Timer Common

FaultDinOpenMinor FaultDinShort FaultAinShort

FaultDinOpenSevere FaultAinOpen FaultAinInternal

Class diagram

• Managing model execution

20

LeverPositionDetection

DirectionLever

DirectionLeverDigital

DirectionLeverAnalogue

Environment

DigitalInput AnalogueInput

Manager

Fault

Timer Common

FaultDinOpenMinor FaultDinShort FaultAinShort

FaultDinOpenSevere FaultAinOpen FaultAinInternal

Class diagram

• Input/Output

21

LeverPositionDetection

DirectionLever

DirectionLeverDigital

DirectionLeverAnalogue

Environment

DigitalInput AnalogueInput

Manager

Fault

Timer Common

FaultDinOpenMinor FaultDinShort FaultAinShort

FaultDinOpenSevere FaultAinOpen FaultAinInternal

Class diagram

• Fault detection

22

LeverPositionDetection

DirectionLever

DirectionLeverDigital

DirectionLeverAnalogue

Environment

DigitalInput AnalogueInput

Manager

Fault

Timer Common

FaultDinOpenMinor FaultDinShort FaultAinShort

FaultDinOpenSevere FaultAinOpen FaultAinInternal

Class diagram

• Control logic

23

LeverPositionDetection

DirectionLever

DirectionLeverDigital

DirectionLeverAnalogue

Environment

DigitalInput AnalogueInput

Manager

Fault

Timer Common

FaultDinOpenMinor FaultDinShort FaultAinShort

FaultDinOpenSevere FaultAinOpen FaultAinInternal

Types

• Declared in the Common class

public Time = nat;

public Direction = <DIR_F> | <DIR_N> | <DIR_R>;

public AinState = Direction

| <SUB_R>

| <MID_RN>

| <MID_FN>

| <SUPER_F>;

24

Type: AinState

25

<SUPER_F>

<SUB_R>

<DIR_R>

<DIR_F>

<DIR_N>

<MID_FN>

<MID_RN>

• Periodic sequential model

– Manager class controls the whole model

– Instantiation and update of objects

Model execution

26

+ update() : void

Manager

+ update() : void

- attribute1

Class1

+ update() : void

- timer : Time

Timer

+ update() : void

- attribute2

Class2

System timer

Class diagram

• Input/Output

27

LeverPositionDetection

DirectionLever

DirectionLeverDigital

DirectionLeverAnalogue

Environment

DigitalInput AnalogueInput

Manager

Fault

Timer Common

FaultDinOpenMinor FaultDinShort FaultAinShort

FaultDinOpenSevere FaultAinOpen FaultAinInternal

Environment class

• Components outside the controller

• Provide input to the controller

• Receive output from the controller

28

+ getDinValue() : bool

+ getAinValue() : AinState

+ setDetectLevPosition() : void

- trace : map Time to SysState

Environment

DigitalInput

AnalogueInput

LeverPositionDetection

Timer

System timer

set

get

get

Environment class

types

Public SysState :: dinF : bool

dinN : bool

dinR : bool

ain : AinState

levPos : LeverPosition

detectLevPos : [Direction];

instance variables

private trace : map Time to SysState;

29

Environment class

• An example

trace :=

{
0 |-> mk_SysState(false, true, false, <DIR_N>, <DIR_N>, nil),

1 |-> mk_SysState(false, false, false, <MID_FN>, <MID_FN_>, nil),

2 |-> mk_SysState(true, false, false, <DIR_F>, <DIR_F>, nil),

...

};

30

Digital input Actual lever position

Analogue input Detected lever position

Class diagram

• Fault detection

31

LeverPositionDetection

DirectionLever

DirectionLeverDigital

DirectionLeverAnalogue

Environment

DigitalInput AnalogueInput

Manager

Fault

Timer Common

FaultDinOpenMinor FaultDinShort FaultAinShort

FaultDinOpenSevere FaultAinOpen FaultAinInternal

Fault class

• Represent the notion of faults

• Recall the informal description…

32

Fault class

• State diagram of fault

33

NORMAL DETECTING

CONFIRMEDRECOVERING

[errorState()] / timer.reset()

[recoveryState()] / timer.reset()

[not recoveryState()]

[not errorState()]

[timer.getTime() >= detectingTime][timer.getTime() >= recoveryTime]

Initial

+ update() : void

- errorState() : bool

- recoveryState() : bool

+ getFaultState() : FaultState

Fault framework

34

DigitalInput

- state : FaultState

- detectingTime : Time

- recoveryTime : Time

Fault

- errorState() : bool

- recoveryState() : bool

ConcreteFault1

+ reset() : void

+ getTime() : Time

Timer

AnalogueInput

- errorState() : bool

- recoveryState() : bool

ConcreteFault2

Control logic
classes

Class diagram

• Control logic

35

LeverPositionDetection

DirectionLever

DirectionLeverDigital

DirectionLeverAnalogue

Environment

DigitalInput AnalogueInput

Manager

Fault

Timer Common

FaultDinOpenMinor FaultDinShort FaultAinShort

FaultDinOpenSevere FaultAinOpen FaultAinInternal

+ update() : void

Direction

Detection of the lever position

36

- detectLevPos : Direction

LeverPositionDetection

+ update() : void

+ getPosition() : [Direction]

+ update() : void

DirectionLeverDigital

+ update() : void

DirectionLeverAnalogue

Environment DigitalInput AnalogueInput

+ getFaultState()

Fault
position : Direction

DirectionLever

FaultMode
*

3

Safety requirements

• Described as postconditions in Environment

37

R1: If any fault occurs in the system, the detected
position of the direction lever must be consistent
with the actual lever position or recognised as
neutral (N).

R2: If any fault occurs in the system, the detected
position of the direction lever must not change to
F or R without lever manipulation by the operator
of the vehicle.

Safety requirements

• Safety requirements are evaluated when the
detected lever position is set to Environment

38

+ getDinValue() : bool

+ getAinValue() : AinState

+ setDetectLevPosition() : void

- trace : map Time to SysState

Environment

Timer

System timer

+ update() : void

- detectLevPos : Direction

LeverPositionDetection

setDetectLevPosition()

Safety requirements

public setDetectLevPosition : Direction ==> ()

setDetectLevPosition(dir) ==

trace(sysTime.getTime()).detectLevPos := dir

pre

sysTime.getTime() in set dom trace

post
IfLeverIsFThenNotR() and
IfLeverIsRThenNotF() and
IfLeverIsNThenN() and
NotMoveWithoutOperation();

39

Safety requirements

private IfLeverIsFThenNotR: () ==> bool
IfLeverIsFThenNotR() ==

let curTime = sysTime.getTime()
in

return
(((curTime >= Manager`SafetyCheckTime) and

(forall t in set
{curTime – Manager`SafetyCheckTime,..., curTime} &
trace(t).levPos = <DIR_F>))

=> trace(curTime).detectLevPos <> <DIR_R>)
post RESULT;

=> Safety requirement R1

40

Safety requirements

private NotMoveWithoutOperation: () ==> bool
NotMoveWithoutOperation() ==

let curTime = sysTime.getTime()
in

return
(((curTime >= Manager`SafetyCheckTime) and

(forall t in set
{curTime – Manager`SafetyCheckTime,..., curTime - 1} &
(trace(t).levPos = trace(curTime).levPos and
trace(t).detectLevPos = <DIR_N>)))

=> trace(curTime).detectLevPos = <DIR_N>)
post RESULT;

=> Safety requirement R2

41

Outline

• Background and motivation

• Case study

– Informal description of control specifications and safety
requirements

– Formal modelling using VDM++

– Validation and safety analysis

• Conclusions

42

Validation

• Check if

– the model behaves as expected

– the safety requirements are satisfied

• The model is executed with various time series of
input data (test scenarios)

• The results are compared with expected values

• Testing framework "VDMUnit" is used

43

An example of test cases

44

class SystemTest1 is subclass of TestCase, Environment
types
private TestData :: inData : SysState

expectVal : [Direction];
values
private testData: map Time to TestData =
{

0 |-> mk_TestData(mk_SysState(false, true, false,
<DIR_N>, <DIR_N>, nil), <DIR_N>),

1 |-> mk_TestData(mk_SysState(false, false, false,
<MID_FN>, <MID_FN_>, nil), <DIR_N>),

2 |-> mk_TestData(mk_SysState(true, false, false,
<DIR_F>, <DIR_F>, nil), <DIR_F>),

...
};

45

operations
public runTest : () ==> ()
runTest() ==
(

let testInData = {t |-> testData(t).inData | t in set dom testData}
in (

dcl mgr : Manager := new Manager(testInData);
for t = 0 to (card dom testData - 1)
do (

mgr.update();
assertTrue("t=" ˆ VDMUtil`val2seq_of_char*nat+(t) ˆ ", failed.",

mgr.env.getTrace()(t).detectLevPos =
testData(t).expectVal)

)
)

);
end SystemTest1

46

Start test - Direction Lever Test
Start test - System test
All 647 tests passed.
End test - Direction Lever Test
*** All Tests Passed. ***

Start test - Direction Lever Test
Start test - System test
System test, Test1, t=3, failed.
System test, Test5, t=23, failed.
2 of 647 tests failed.
End test - Direction Lever Test
*** ERROR! ***

new TestMain().executeSystemTest()

Success

Failure

Results of validation

• Testing with 14 scenarios has been executed

• Test scenarios:

– Normal lever manipulation (without faults)

– Digital input F open-circuits, and then recovers

– …

• Confirmed the model behaved as expected for all
input data elaborated

47

Results of validation

• Test coverage (generated by Overture)

– DirectionLeverDigital`update: 98.6%

– Fault`doFaultNormal: 89.4%

– The others: 100.0%

• The untested statements can never be executed
under the current specifications

• Virtually whole model was tested

48

Safety requirements violated

• Safety requirements violation has been discovered
for certain input data series

49

R2: If any fault occurs in the system, the detected
position of the direction lever must not change to
F or R without lever manipulation by the operator
of the vehicle.

Start test - Direction Lever Test
Start test - System test
Error 4072: Postcondition failure: post_NotMoveWithoutOperation in
'Environment'

Safety requirements violated

• However, the case could never happen in reality

• Caused by a coincidence of several rare accidents

1. Direction lever is in the middle of the positions F and N

2. No digital input signals are “on”

3. Analogue input signal indicates the position F

4. Digital input N periodically short-circuits to power with a
short period (less than the fault detecting time)

5. Then, the short-circuit recovers

=> Detected lever position changes from N to F without lever
manipulation

50

Outline

• Background and motivation

• Case study

– Informal description of control specifications and safety
requirements

– Formal modelling using VDM++

– Validation and safety analysis

• Conclusions

51

Conclusions

• A part of control systems of construction equipment
has been formally modelled using VDM++

• A modelling pattern: a fault framework has been
introduced

• The model has been tested using VDMUnit

• Violation of a safety requirement has been found

• This demonstrates availability of formal modelling to
a practical control system

52

Future work

• Apply the approach to a larger scale system

• Improve testing environment

• Challenge formal verification of the model using a
verification tool, e.g. UPPAAL

– check if there exists another case which violates the safety
requirements

53

Thank you for listening.

54

