
VDM Modules

Yves Ledru1, Marie-Laure Potet1, and R�emy Sanlaville2

1 Laboratoire Logiciels, Syst�emes R�eseaux - IMAG
B.P. 72 - F-38402 - Saint Martin d'H�eres Cedex - France

fYves.Ledru, Marie-Laure.Potetg@imag.fr
2 Dassault Syst�emes

9, quai Marcel Dassault, B.P. 310 - F-92156 - Suresnes Cedex - France
remy sanlaville@ds-fr.com

Abstract. This paper evaluates the modular constructs proposed by
the IFAD VDM tools. First, several case studies are presented where
modules have been used for structure and re�nement purposes. Then,
these constructs are compared to the ones of the B method, which have
been used successfully on non trivial industrial development. Finally, we
study how the capabilities of VDM modules are able to match recently
proposed component models like CORBA, Java Beans or ActiveX con-
trols.

1 Introduction

Modules play several roles in speci�cations.

{ They help structure complex systems when speci�cations scale up. Here, they
simply transpose programming language constructs, like the Ada packages,
to the writing of speci�cations.

{ This similarity with programming languages especially makes sense when
considering executable speci�cations where modules can be used as compi-
lation units.

{ In the context of model-based languages, modules can be seen as a concrete
way to encapsulate the elements of an abstract machine (state variables and
operations) or abstract data type (types and functions).

{ Speci�cation languages often include a notion of re�nement. Modules can
then be used to distinguish between several layers of abstraction in a re�ne-
ment lattice.

{ Finally, a recent trend in software engineering has fostered the component-
based approach to software development. Modules can there be seen as the
notion of component proposed by the speci�cation language.

In the VDM community, the standard VDM-SL de�nition [1] does not provide
a standard notion of module, it only points out interesting approaches to this
problem. As a result, the modular construct introduced by IFAD [2] is a de facto
standard for VDM.

This paper reports on experiments and re
ections around this construct. Sect.
2 reports on the use of modules in several case studies. In Sect. 3, we report on
the modular constructs o�ered by the B method. Then, we compare the VDM
capabilities to recent evolutions of component based software engineering (Sect.
4). Finally, we draw the conclusions of this survey (Sect. 5) but the reader should
expect more problems than solutions. . .

2 Feedback from Three Experiments

2.1 The Steam Boiler Case Study

The steam boiler case study was an attempt to compare a vast range of spec-
i�cation languages on a common problem. In [3], we have proposed a VDM
speci�cation of the problem. Our approach was to ensure requirements trace-
ability. Therefore we started from an abstract speci�cation which featured the
major properties expected from the boiler, and gradually included details in
more concrete speci�cations.

This speci�cation e�ort ended up with three layers of abstraction, as shown
in Fig. 1.

PHYSICAL-LAWS

NCT-PUMPS-VALVE

PHYSICAL-BOILER

CAPTORS

ACTUATORS
D-TIME

CT-PUMPS-VALVE

SAFE-ACTIONS
CONTROLLED-BOILER

PHYSICAL_ARCHITECTURE

NCT-LAWS

CT-LAWS

NON-CONTROLLED

CONTROLLED

Fig. 1. Layers of abstraction in the steam boiler speci�cation

{ The upper layer describes the behaviour of an uncontrolled boiler, i.e. it
encapsulates the physical laws that rule the evolution of temperature and

water level in the boiler. In other words, it describes all sensible evolutions
of this physical system.

{ The second layer introduces the notion of an abstract controller and expresses
the expected behaviour of the boiler under control. This speci�cation takes
the global approach of considering a single system boiler+controller. It is a
re�nement of the �rst layer because the controller only allows a restricted
set of the possible evolutions of the physical system.

{ The lower layer decomposes the single system of layer two into three parts:
the boiler, the controller, and the captors and actuators that lie at their
interface. This distribution into separate units is a second re�nement of the
system.

The Use of VDM Modules The �rst version of this speci�cation included
50 pages of commented VDM speci�cations. Hence, its size required the use of
structuring primitives. We used the importation facility to assemble modules,
and also used the parameterization facilities (e.g. the dashed boxes CT-LAWS and
NCT-LAWS are produced by instantiations of the physical laws with controlled
and uncontrolled versions of the speci�cations of the pumps).

The dashed arrows in the diagram correspond to re�nement links between
modules. These re�nements can not be expressed by the IFAD constructs and
were only documented in the associated text.

The decomposition of this system into modules resulted from a trade-o�
between the capabilities of the modular constructs (which allow the exportation
of types, values and functions, but not states) and the attempt to follow some
cohesion criteria: de�nition of abstract data types, distinguishing between layers
of abstraction, reusing common parts like the physical laws, or encapsulating
physical entities like captors and actuators.

Lessons Learned The IFAD modular constructs are inspired from program-
ming language import/export mechanisms. This makes them easy to use which
favours the construction of structured speci�cations. Nevertheless, they do not
allow to re-export imported or instantiated constructs. This lack of transitiv-
ity makes the modular structure more complex and encourages rede�nition of
imported constructs to re-export them.

Also, the fact that these constructs were inspired by programming languages
makes them less speci�c to structure speci�cations. In particular, the notion of
re�nement relation between modules is not expressed, which was perceived as a
serious drawback in our experiment. Also, state de�nition can not be exported;
this means that its de�nition must be duplicated, with classical maintanabil-
ity problems, if it appears in two di�erent levels of abstraction (e.g. parts of
PHYSICAL-BOILER can not be reused in CONTROLLED-BOILER).

Finally, we would also have taken bene�t of a parallel construct to express
the fact that the boiler, controller, captors and actuators were communicating
entities. Introducing a notion of thread or task would enrich the structuring
primitives of the language as well as its expressive power.

1
Get an

HTML file
UserWWW

Interactions with

 the WWW

2
Extract the

links

HTML file

3

URL graph

management

4

Graphical

User Interface

interactions with

the user

URL

set of links to URLs

graph

URL graph

Fig. 2. A functional view of VG

2.2 A WWW Graph Visualisation System: VG

VG is a graph visualisation system which interactively displays the graph of
URL links of a subset of the World Wide Web (Fig. 4).

This system is based on the integration of several components (see Fig. 2).

{ A communication component (1) which reuses an implementation of the http
protocol.

{ A component which extracts the URL links from the HTML �les (2). This
component is a lexical analyser based on the lex generator.

{ A graph management component (3) which stores the graph of URL links
between the pages.

{ A graphical user interface (4) based on the daVinci graph visualisation tool.

The graph management component was thus the only component developed
in VDM, using the code generation facilities of the IFAD tools. The other com-
ponents were o�-the-shelf components or generated by standard tools like Lex.

DAVINCI

VG

HTML GRAPH GRAPH_TYPESHTTP

LOOP_FROM_NODE

GET LOAD_HTML_TXT

EXTRACT_URLS

DISPLAY_GRAPH

INIT_CONNECTION

ADD_MENU_ITEM

GET_NEXT_CMD_BLOCKING

DISPLAY_ERROR_MESSAGE

CLEAR_GRAPH

ADD_NODE

ADD_EDGE

SHOW_FLAT_GRAPH

Main

program

Fig. 3. Abstract machines of VG

In this experiment, we felt interesting to investigate the ability of VDM to
integrate these components. Therefore, components 1, 2 and 4 were encapsulated

into VDM modules as abstract machines (Fig. 3). In this speci�cation, a com-
ponent (VG) acts as a central controller which rules the data and control
ows
between the abstract machines.

Fig. 4. The user interface of VG is based on daVinci

Lessons Learned The good news is that we were able to encapsulate very
diverse components (C and lex programs, Unix executable) into VDM abstract
machines and could use this paradigm as basic construct for their integration.
Nevertheless, the speci�cation of the central controller (VG) is poor: it corre-
sponds to an imperative program. This imperative VDM speci�cation is a low
level description. In [4] we proposed the use of an Architecture Description Lan-
guage which result in a higher level description of these interactions between
abstract machines.

Once again we experimented di�culties with the fact that a VDM module
does not export its state. As a result, it is not possible to directly access variables
outside a module even to evaluate the satisfaction of a pre-condition. Also, this
makes it di�cult to restructure a growing module into submodules: any operation
that needs to access a state variable must be speci�ed in the module!

Finally, we noticed that IFAD modules don't separate interface from con-
tents. When executable speci�cations are used, it is sensible to restrict access to
the executable parts (hidden inside the module) and only expose their speci�-

cation (signature, but also pre- and post-conditions) to the users of the module.
Re�nement can bring a solution to this problem: the body of a module is a re-
�nement of its interface. Adding a re�nement primitive to the VDM modules
would allow to provide interface modules, which only include speci�cations, and
their concrete executable counterpart.

2.3 An Indexing System

The last case study corresponds to a simple exercise we conducted in our VDM
courses. It is an indexing program which produces the index of words appearing
in an input text. It is made up of 6 modules (Fig. 5 and 6) which correspond to
either abstract machines or abstract data types.

CHAR

STRING LISTES_ENT

TP_INDEX

INDEX

MOTS

Fig. 5. Modular structure of the indexing system

Module Nature Contents Used
TP INDEX Abstract Machine 4 operations, no var 1 operation
INDEX Abstract Machine 11 operations, 1 var 6 operations
LISTE ENT Abstract Data Type 11 functions 5 functions
MOTS Abstract Data Type 2 functions 2 functions
STRING Abstract Data Type 2 functions 2 functions
CHAR Abstract Data Type 2 functions 2 functions

Fig. 6. Module contents

Lessons Learned Aminor problemwith this case study was that somemodules
are actually imported but not used (e.g. STRING in TP INDEX). This is a classical

problemwith modules (also in programming languages): one tends to import and
export more than what is e�ectively used, and it results in artici�cial coupling.

Once again, we experimented a problem with growing abstract machines.
INDEX features a strong common coupling around a single variable, so that 11
operations which refer to this variable must be located in this module.

The following examples illustrate the problems induced by the lack of state
exportation primitives. Module DECR stores a single variable x and its invariant
requires x to be greater than zero. A single operation dec decreases this variable.
Obviously, it has the precondition that x must be greater than one before calling
the operation. A �rst problem appears with this module: since x is only visible
inside the module, how can an outside module which calls dec be sure that the
pre-condition is satis�ed? This requires either some read-only access to x or the
ability to export the pre-condition of dec as an operation. This second possibility
is actually featured by the IFAD tools.

module DECR

exports operations dec : () ==> ()

definitions

state xvar of

x : int

inv mk_xvar(x) == x > 0

init S == S = mk_xvar(7)

end

operations

dec : () ==> ()

dec() == x := x - 1

pre x > 1

post x~ = x + 1

end DECR

Let us now try to build a layered system where module DECR2 builds operation
dec2 on top of the imported dec. The modular constructs allow us to de�ne the
code of dec2 but the pre- and post-conditions don't type-check because x is not
visible in DECR2. Strange enough, we are able to program the new operation, but
not to specify it. . .

module DECR2

imports from DECR

operations dec : () ==> ()

definitions

operations

dec2 : () ==> ()

dec2() == (DECR`dec();DECR`dec())

pre DECR`x > 2 -- these pre- and post-conditions

post DECR`x~ = DECR`x + 2 -- don't typecheck!

end DECR2

In our last example, show square corresponds to a read-only operation on x

and we would like DECR to only store the critical operations (i.e. the ones that
can a�ect the state invariant). Unfortunately, both code and speci�cation will
not type-check in module SHOWSQUARE because both access the hidden variable
x. Once again, a partial exportation facility for state variables would help!

module SHOWSQUARE

imports from DECR all

definitions

operations

show_square : () ==> int

show_square() == return(DECR`x * DECR`x)

pre true

post RESULT = DECR`x ** 2

end SHOWSQUARE

In summary, the IFAD primitives only feature a closed or encapsulated notion
of modules. Although this approach makes sense for programming languages (it
is the basis of object orientation), it is less adapted to speci�cation activities.

3 Components and Composition

The three major model-based speci�cation languages (VDM, Z and B) provide
very di�erent composition primitives. In the last years, the B method [5] has
shown its applicability to large industrial developments (1500 components in
the METEOR project), so it may provide insight for evolutions of the VDM
modular constructs.

In B, the basic component is the abstract machine. It is associated to an
observational semantics, i.e. any abstract machine whose observable behaviour
corresponds to the speci�cation is a valid implementation of it. This allows the
substitution of an abstract machine by one of its implementations. In B abstract
machines (like in VDM), the major property enforced is invariant preservation
on the state variables.

The following requirements are usually expected from the composition prim-
itives:

{ At programming time, an encapsulated view is favoured, i.e. variables are
hidden in the abstract machine and may only be accessed through visible
operations.

{ At speci�cation time, an open view is required where internal variables are
visible, as shown in the previous section.

{ Composition and re�nement should preserve several properties of compo-
nents, like invariant preservation and substitution of a component by an
implementation.

B proposes three kinds of components: abstract machines, re�nements, and
implementation.A re�nement is a machine which re�nes a more abstract one; an

implementation is a �nal (executable) re�nement. B attempts to follow the three
requirements listed above for composition and re�nement. But its speci�city is
related to proofs: the method and its associated tools guarantee the correct-
ness of speci�cation and developments by proof obligations. Discharging these
obligations is not a trivial task. Therefore it is important to ensure the composi-
tionality of proofs: composition and re�nement should preserve the correctness
of a majority (if not all) of the proofs.

Several composition primitives are provided to build larger speci�cations
from smaller ones. They have been de�ned as a trade-o� between usability and
correctness preservation: a composition should not generate too many new proof
obligations. To ful�ll this requirement, their use is limited by several constraints
on the whole development graph. For example, one machine may only be im-
ported once in a development, or it is forbidden to include two machines which
share variables in write mode.

3.1 The Includes Primitive

The includes primitive is close to the state schema inclusion of Z. It gives a
local copy of the variables of the imported abstract machine. It is a speci�cation
primitive, and therefore is not allowed in B implementations.

In order to preserve the proofs that have been performed on the included
machine, direct access to the variables may only be read-only. Modi�cation of
the variables is allowed through calls to operations of the included machines
(which preserve the invariant). These calls result in additional proof obligations
to guarantee that included operations are only called within their pre-condition.
Also the invariant may only be strengthened in the importing machine. As a
consequence, the invariant is also valid in the including component.

Unlike VDM, B allows to re-export some of the included operations through
a mechanism named promotion.

3.2 The Other Primitives

The imports primitive is the counterpart of includes for implementations, it
o�ers the encapsulated view of components instead of the open view needed
for speci�cations. Therefore, variables may only be accessed through the visible
operations of the machine, which allows the substitution of the imported spec-
i�cation by one of its implementations. Moreover, imports is an architectural
primitive: it prescribes the availability of a component corresponding exactly to
the imported one.

The sees primitive allows variable sharing between several components in
read-only mode. It is available for abstract machines, re�nements and implemen-
tations. In the case of implementations, the encapsulated view is mandatory and
variables can only be consulted through operation calls. The correct use of this
primitive mandates some constraints on the global architecture [6].

B o�ers a fourth primitive (uses) which is never used in practice.

3.3 An Evaluation

An interesting distinction is introduced in B between speci�cations and imple-
mentations. This allows to adopt either an open or a closed view of abstract
machines. Moreover, composition may impact the �nal architecture: imports
and sees mandate some structure while includes preserve architectural free-
dom.

Still, B is not perfect! Experience has shown that there is space for other,
more
exible, primitives that would release some constraints on the �nal ar-
chitecture while allowing to share more information between components. But
these new primitives can only be available at the cost of more proof obligations.
For example, the constraint not to include two machines which share variables
in write mode could be released, provided it is proved that the conjunction of
both machine invariants is preserved by all operations.

Finally, B favours a local view of composition and re�nements where the
focus is on a restricted amount of components. For some proof activities, having
a more global view of the structure of the development would result into simpler
proofs.

4 Component Based Software Engineering

Since the de�nition of VDM, the Software Engineering community has shifted
from modularity concerns to the notion of \component". First, the industry has
adopted the object orientation. But classes and objects proved insu�cient as
component primitives. Several component models have been proposed in the
recent years: CORBA, Java Beans/EJB, ActiveX/COM/DCOM,. . . Component
technologies provide modularity, but also communication infrastructure, services
for distribution, persistency, serialization,. . .Of course, many of these aspects
are orthogonal concerns for the VDM modules, but we feel that two aspects are
relevant: architectural
exibility and emerging interaction paradigms.

4.1 Architectural Flexibility

The component-based approach tends to improve architectural
exibility, in or-
der to favour reusability of components and allow evolutive maintenance of ap-
plications. Three mechanisms can be pointed out:

Introspection: in the Java beans, naming conventions on the methods of the
class allow a component to expose at run-time its visible read and write
variables, the set of its methods and the events it can produce. Obviously,
naming conventions can be adopted in the VDM world also to ensure com-
patibility with these standards.
Multiple interfaces: both Java and ActiveX/COM allow the de�nition of mul-
tiple interfaces. Multiple interfaces are a way to achieve polymorphism in an
object model at a lower cost than multiple inheritance. In Java, interfaces are

statically de�ned: a component is declared to implement an interface. In Ac-
tiveX/COM, a dynamic redirection mechanism is used: the QueryInterface
method of a default interface (IUnknown) is called �rst which returns a ref-
erence to the needed interface.
The IFAD modular construct only allows a single interface. Actually, imple-
menting an interface is a re�nement construct so it could be easily introduced
in VDM speci�cations by a light (mainly syntactical) notion of re�nement.
Object Request Brokers: CORBA and COM/DCOM allow the dynamic con-
struction of links between independent components through queries to a re-
quest broker. This actually supports two independent notions: (a) the trans-
parent distribution of components on a network and (b) the idea that a com-
ponent provides \services" to the other components and that any provider of
a given service can satisfy queries to this service. We feel that the �rst notion
(a) is orthogonal to the concerns of VDM speci�cations but the second one
(b) may make sense because services should be speci�ed independently of
their implementation.

4.2 Interaction Paradigms

New interaction paradigms have emerged to support the
exible assembly of
components. For example, the Java beans feature event-based communication,
implicit invocation, and vetoable variables.

{ A Java bean is a reactive component which interacts by sending events and
invoking its methods at the reception of some events. This communication
mechanism is actually implemented on classical procedure calls but modeling
the procedure calls in VDM is not su�cient to convey the related abstract
paradigm. Moreover, the reactive behaviour of the component is exhibited
during its execution and it is di�cult to express it in a speci�cation scheme
which only refers to two instants of this execution (before and after).

{ This event-based communication is the support of an implicit invocation
scheme where at design time, a component does not know which compo-
nents it will interact with. This adds obvious
exibility to the components.
Events are not broadcasted but only sent to the components who dynami-
cally subscribed to the event.

{ Finally, a bean o�ers the ability to access its variables in read or write mode.
It also allows other components to be aware of the evolutions of some vari-
ables, i.e. these other components receive events when the variable changes,
and in some cases, they may issue a veto to some state changes.

These new interaction paradigms are not or poorly supported in VDM spec-
i�cations. . .

5 Conclusion

In this paper, we have provided three viewpoints on the modular constructs of
VDM: case studies, comparison with B, comparison with component technolo-
gies. In this conclusion, we would like to point out some interesting points:

{ speci�cations should be able to express a variety of architectural styles and
mechanisms like layered architecture, event-based systems, or implicit invo-
cation;

{ our experiments showed the need for both an open and a closed view of
modules, depending on the context where the formal description is used
(speci�cation or implementation);

{ structure is not only needed for speci�cations but also for developments,
i.e. composition primitives must be designed in conjunction with re�nement
primitives; re�nement should also address multiple interface technology;

{ while modules help constructing complex abstract structures, component
based software engineering also requires reusability and evolution concerns;

{ modularity should also in
uence the design of tool support, but we have not
really addressed this topic in the present paper.

Although we are far from having drawn all conclusions from these three view-
points, we believe that there is space and need for an evolution of the structuring
primitives of VDM. This evolution is vital for VDM in a world where quality
components and their associated composition primitives will be increasingly de-
manded.

References

1. D.J. Andrews, H. Bruun, B.S. Hansen, P.G. Larsen, N. Plat, et al. Information
Technology | Programming Languages, their environments and system software
interfaces | Vienna Development Method-Speci�cation Language Part 1: Base lan-
guage. ISO, 1995.

2. R. Elmstrom, P. G. Larsen, and P. B. Lassen. The IFAD VDM-SL toolbox: a
practical approach to formal speci�cations. ACM SIGPLAN Notices, 29(9):77{80,
1994.

3. Y. Ledru and M.-L. Potet. A VDM speci�cation of the steam-boiler problem.
In Steam-Boiler Case Study, volume 1165 of Lecture Notes in Computer Science.
Springer, 1996.

4. Y. Ledru and R. Sanlaville. Description d'architecture logicielle par connexion de
machines abstraites. In 2e atelier AFADL, 1998.

5. J.R. Abrial. The B-Book. Cambridge University Press, 1996.
6. M.-L. Potet and Y. Rouzaud. Composition and re�nement in the B-method. In

Proc. of 2nd Int. B Conference (D. Bert, ed.), volume 1393 of Lecture Notes in
Computer Science, pages 46{65. Springer, 1998.

