
Applications of VDM in Banknote Processing

Paul R. Smith1 and Peter Gorm Larsen2

1 GAO, Euckenstrasse 12, D-81369 M�unchen, Germany, Smith@gao-munich.com
2 IFAD, Forskerparken 10A, DK-5230 Odense M, Denmark,peter@ifad.dk

Abstract. We report on the industrial application of VDM in an ap-
plication for banknote processing. The SIC2000 project at the GAO in-
volved the development of a complex collection of mutually suspicious
cooperating software components in a banknote processing system. The
role of the formal speci�cation in the project was twofold. It provided a
framework in which explicit software invariants are used to reduce the
potential of errors arising from the interplay of the cooperating compo-
nents. It also enabled the construction of an executable system model
during the process of designing an adaptive sensor integration subsys-
tem. We present the lessons learned from this project and outline the
expected perspectives for the future use of this kind of technology.

1 Introduction

This paper reports on the use of VDM in the SIC2000 (Sensor Integration Con-
troller) project, which was undertaken at the GAO (Gesellschaft f�ur Organisation
und Automation) with the goal of expediting the integration of sensor software
and hardware into existing banknote processing systems. This was the �rst large
project at the GAO in which formal methods played a central role. The ana-
lysis, design, and test phases of the development were supported by the IFAD
VDM-SL Toolbox [3, 5].

The GAO, which is the currency automation division of Giesecke & Devrient,
controls 75% of the world market for banknote processing machinery at central
banks, and is currently expanding rapidly into the commercial banking and
cash handling market. The primary source of GAO's turnover are the banknote
processing systems, of which there are a half-dozen families, distinguished from
one another by their size, functionality, processing speed, and the technological
era in which they were developed [2].

The application we describe here is neither safety nor security critical. Nor
are timing aspects a major design issue, since our system's behavior in this regard
has long been well understood. Indeed, it have not been narrow timing errors
that have been the primary source of our unforeseen software costs in the past,
but rather an overabundance of excessively complicated product design features
{ resulting from a tendency to relegate the treatment of myriad design details
to a project's implementation phase { and the collateral obstacles to completely
exposing a system's innermost software logic, that have caused diÆculty.

This e�ort is carried out in a commercial setting where the VDM technology
has been applied for cost eÆciency reasons. The use of VDM in the SIC2000
project can be considered \lightweight" in the sense that no formal re�nement
or proof has been performed. Instead, in the course of the project, the VDM
technology became the focal point of the entire development process, provid-
ing a uni�ed treatment of analysis, design, documentation, and testing. Thus a
pragmatic approach was used to obtain a precise and abstract model of the most
important aspects of the system. We believe that the use of VDM in this project
will result in a signi�cant reduction in software maintenance and modi�cation
costs during the lifetime of new generations of banknote processing systems.

After this introduction Section 2 gives a short overview of the general aspects
of banknote processing systems. Then Section 3 provides an overview of the
SIC2000 application. Section 4 describe the VDM technology shortly. Afterwards
Section 5 presents the main lessons learned from this work. Finally Section 6
contains a number of concluding remarks and visions for the future use of this
kind of technology.

2 Software Aspects of Banknote Processing

A banknote processing system (BPS) presents a heterogeneous computing envi-
ronment, typically including several communication buses and numerous embed-
ded processors which are subject to hard real-time constraints and which control
and monitor banknote feature measurement sensors, and banknote transport,
stacking, banding, and destruction activities.

Rapid changes in banknote printing technology, in sensor hardware, and the
large variety in customer requirements and in their banknote stock [6, 1], result
in the need to continually adapt and update the sensor software of a given BPS.
From this standpoint, each customer literally has a custom-built system.

In the past, the introduction of a new sensor into a BPS, or a change in
the system's sensor con�guration, or in the sensor capabilities, necessitated an
update in the sensor integration controller (SIC) software. The quality and ver-
sion control tasks attendant to these updates were a constant drain on GAO's
development and service resources.

A hallmark of the newer generation of banknote processing machinery is the
high degree of con�gurability of the sensor software, and of the sorting control
software which integrates the individual sensor results into a banknote quality
classi�cation that eventually determines the fate of the note. The user now has
the valuable but potentially hazardous capability of de�ning his own banknote
sorting logic, which can be loaded into the SIC at runtime. The invariants of these
user con�gurable software entities in the SIC must be described so clearly and
completely that there can be no possibility of undetected manipulation, error,
or misunderstanding. The ease and reliability with which the integration and
sorting control software can be individually con�gured to meet the processing
requirements of each customer in
uences to a signi�cant extent the adaptation
and maintenance costs that accrue during the lifetime of a machine.

Consequently, the GAO recently initiated the SIC2000 software project with
the goal of enabling the customer to integrate new sensors into his BPS, or to
recon�gure its sorting behavior, without extensive technical support from the
GAO. Prior to this project, we had experience with more common development
methodologies such as Structured Analysis/Design and UML, and believed they
had, on the basis of their syntactic informality, proven themselves to be inade-
quate to the task of designing a distributed embedded system. Because of the
complex and strategic nature of the project, and due to a persistent emphasis in
the sensor development department on the importance of software quality issues,
the decision was made to develop the software with the aid of VDM.

Fig. 1. The BPS1000 banknote processing machine.

3 The Application

3.1 The Context of the Sensor Integration Controller

The sensor subsystem of the BPS1000 (see �gure 1), the banknote processing
machine for which the SIC2000 project was originally conceived, consists of up to
a dozen optoelectronic sensors, which are mounted along a measurement gallery
through which the notes are conveyed by transport belts at a rate of 20 to 30
notes per second. The sensors are responsible for measuring banknote features
such as denomination and format; for determining the quality of the notes by
checking for soil, graÆti, dog-ears, and other irregularites; for monitoring aspects
such as orientation and multiple item events (when two or more notes overlap,
making it impossible to accurately measure them) that are related to the trans-
port of the notes through the gallery; and for ensuring the authenticity of the
banknotes.

In a working session, the BPS1000 operator can select among several of his
prede�ned sorting modes, thereby de�ning the context in which banknotes are
to be processed. The entity that represents the sorting mode to the SIC is the

so-called Sorting Control Table (SCT), which can be constructed and edited
directly on the BPS1000 during an idle mode con�guration procedure. The SCT
contains identi�ers for the properties, and categorization rules that enable the
SIC to map a banknote's collection of measured property values into the correct
sorting class. The SCTs are stored externally; when the user selects a sorting
mode, the corresponding SCT is loaded as a data table into the SIC.

During operation, when a banknote is injected into the measurement gallery,
a series of photodetectors monitor its progress, providing the sensors with pe-
riodic updates on the note's current position. After a sensor has captured raw
measurement data, it transports the data to its evaluation processor, which com-
putes the values of the various banknote properties that the sensor is capable of
detecting, and then communicates the results to the SIC via a controller area
network.

The SIC accumulates the property values from the sensors, and when the
banknote reaches a prede�ned point near the end of the transport gallery, the SIC
uses the SCT to compute the sorting class of the note, transmitting the result to
the transport control. Depending on the sorting class, and on the interpretation
of that class in the currently selected sorting mode, the transport control routes
the note to one of several compartments, where the banknotes are either stacked
and banded, or destroyed.

During banknote sorting, each sensor must gather raw data for the note in its
�eld of view while transporting data from previous notes to its evaluation proces-
sor. Simultaneously, remote components are delivering data they have measured
which contain information that may be needed to parametrize the sensor's mea-
surement and evaluation algorithms on a per note basis, while the transport
control is signaling the impending arrival of subsequent notes. Thus, the SIC
and the evaluation processors exhibit a high degree of concurrency. Due to the
overhead caused by communication and the management of computing resources,
and depending on the speed of the machine, the SIC and the evaluation proces-
sors can each dedicate no more than 20 to 40 milliseconds of evaluation time to
each note. Any deviation from the timing constraint manifests itself immediately
in an increased banknote reject rate, much to the customer's dissatisfaction.

3.2 The Aims of the SIC2000 Project

Initial versions of the BPS1000 SIC had given the user the capability of de�ning
his own sorting logic in the context of a �xed collection of sensors and banknote
properties. In essence, each sensor and each property had to be known to the
SIC at compile time.

During the early �eld-life of the machine, however, it became clear that cus-
tomers were taxing to a premium the GAO's ability to rapidly integrate new
properties and sensors, in many cases sensors manufactured by independent sup-
pliers. It was not diÆcult to accommodate the customer's recon�guration wishes
in any given instance, but the volume of change and update requests, along with
the increasing diÆculty of retooling the DB and GUI interfaces to each new SIC
version, were becoming a problem that could no longer be ignored. Accordingly,

the GAO sensor department founded the SIC2000 project on the concept of the
\Transparent Property Identi�er", a design primitive intended to facilitate the
anonymous integration of sensors and properties.

The primary requirement on the Transparent Property Id (tpId) methodol-
ogy was that it should enable the SIC to process any combination of sensors and
banknote properties without compile time knowledge of their existence, struc-
ture, or meaning. Any quantity delivered by a sensor, on which a banknote can
be sorted, should be bound to a tpId, which will then have system-wide validity
for its host BPS. One of the main clients of the SIC2000 development, the GAO
adaptation team, also demanded the capability of combining individual sensor
properties into so-called \compound" properties, which are logical predicates and
arithmetical expressions formed from the immediate sensor properties, but oth-
erwise on an equal footing with them. The most important technical constraint
on the development would be the minimization of the runtime communication
load: the ratio of banknote property data to communication control data on the
sensor network bus should be as large as possible.

4 The IFAD VDM-SL Toolbox

Although many di�erent sensor components and con�guration utilities must op-
erate on the property identi�ers, there is no centralized administration of ban-
knote properties or identi�ers in the machine, because the individual components
are intended to be held as loosely coupled to one another as possible. But this
independence carries the possibility of varying syntactic or semantic interpreta-
tions of correct property id handling by the di�erent components and utilities. To
ensure that the transparent property id methodology functions properly under
all circumstances, we speci�ed and modelled the relevant aspects of the system
in VDM and checked the speci�cation using the VDM-SL Toolbox.

The IFAD provided a one week training course in VDM-SL (Vienna Devel-
opment Method { Speci�cation Language) [7, 4] for several of GAO's software
engineers, after which they were pro�cient in the use of the VDM-SL Toolbox,
an IFAD product which supports the development of VDM speci�cations, as
well as providing testing and documentation facilities.

The Toolbox is an integrated development environment which has a com-
fortable familiarity for developers who are accustomed to working in a debug
setting. Its interpreter can process test suites formulated in VDM, a feature that
we used extensively to gauge the viability and completeness of our speci�cation,
which by project's end comprised on the order of 150 pages of VDM-SL, spread
across multiple code and test modules.

The Toolbox has an API which enables it to also be used as a Corba server.
During integration testing of the SIC2000, we gathered event protocols from the
actual components, translated them into VDM syntax, and replayed them in a
WinNT process that was implemented as a Corba client. We also built NT front
ends to represent the distributed components relevant to the BPS1000 sensor
system and connected them to the client via named pipes on networked work-

stations. In this way we were able to replay the protocols through the Toolbox
and follow the isomorphic
ow of activity in the VDM interpreter. Simulta-
neously we could see the protocolled activity playing \live" in the front end
processes, along with parallel commentary from the speci�cation as it was being
interpreted.

Fig. 2. Overview of the Transparent Property Identi�er layout.

5 Overview of the Development

The �rst design e�orts derived from the requirements on the Tranparent Prop-
erty Ids described in Section 3.2 were initially formulated in a series of natural
text documents, which were primarily concerned with the structure of the tpId
(see �gure 2). The details were centered around the speci�c nature of the sensor
communication bus. This is a controller area network (CAN), in which each data
packet consists of an 8 byte user data �eld, preceded by a bus arbitration Id.
Most of the arbitration Id already had a pre-assigned functionality, but it was
decided that a small portion could be set aside for use in the result telegrams
in which the sensors transmit their measured property values to the SIC. That
portion { used to identify the hardware type of the sensor delivering the result
{ would be one component of the tpId.

Additionally, one byte in the user data �eld would form a further component,
the infoId, of the tpId. The infoId component enables a sensor to individually
\tag" each of the several result telegrams that it may transmit. A second byte in
the user data is traditionally taken to identify the transport object (banknote)
to which the telegram refers, leaving a total of six bytes in the user data �eld
that can be used to transport property values.

At this point, the design ran into complications for the following reason:
Tests indicated that the SIC application could reliably process on the order of

2000 CAN telegrams each second. In a typical BPS1000 sorting mode, it may
be necessary to evaluate up to 250 banknote properties for each banknote. In
a machine that transports 30 notes per second, this amounts to an expected
load of about 7500 properties per second. If each property were to be sent in
a separate CAN telegram, the SIC would not be able to handle the processing
load.

Clearly, as a �rst step, a sensor should pack as many property results as
possible into the available six user data bytes in each of its result telegrams, but
it is not immediately obvious how this can be done in a \type-safe" fashion, i.e.,
in such a way that the SIC can recognize that one sensor intends its data �eld to
be interpreted as a sequence of three unsigned 16-bit quantities, while another
sensor may intend its data �eld to be interpreted as a sequence of six signed
8-bit values. One could attempt to implicitly encode a type cast in the infoId
component of the tpId structure to enforce a distinction within a prede�ned
collection of possible interpretations of the data �eld, but this would not enable
the ambient system to reference each property individually.

The designers solved this problem by introducing a phantom component,
the idQuali�er, into the tpId structure. The value of the idQuali�er component
remains unknown to the sensor, and appears nowhere on the communication
buses. Instead it enables a \late binding" capability in the property processing,
which can be understood as a context-dependent interpretation of the bus data,
the context being de�ned by a collection of tpId objects in the Sorting Control
Table.

5.1 Modeling the System

With the addition of the idQuali�er component, the data type transPropId of
the Transparent Property Id can be de�ned as:

transPropId : : idQuali�er : N
polarity : SIGNED j UNSIGNED
infoId : N
sensorId : N
superInfo :BUS j COMPOUND j ... ;

The de�nition of the type transPropId alone is obviously not suÆcient for an
understanding of its usage. It is necessary to see the transparent property ids \in
action" in order to grasp their pragmatics, to interpret and use them. The action
that is of interest here is the interaction between the sensor measurement traÆc
on the communication bus and the information in a Sorting Control Table, which
de�nes the process by which bus traÆc is to be transformed into numerical values
that can be associated to banknote properties. We provide here an excerpt from
the model of the traÆc on the communication bus, and follow the resolution of
the traÆc into values of transparent property ids.

A measurement result telegram from a sensor can be modeled as

resultTelegram : : idCAN : busArbitrationId
bnId : N
infoId : N
measurementData : abstractByte�;

The nature of the type busArbitrationId is not important; it is enough that there
is a well-de�ned rule for extracting the sensorId component of a transparent
property id from it (see �gure 2). In this de�nition, an object of type abstractByte
is any natural number less than 256, and the measurement data is simply a
nonempty sequence of such bytes.

Specifying Arithmetic An unexpected aspect of the formal notation appears
for the �rst time here in the speci�cation of sensor measurement data as a
sequence of abstractByte. In the BPS1000 environment there are several processor
and compiler dependent versions of the size and memory layout of basic data
types such as byte, short, and long. The SIC2000 speci�cation has rami�cations
for many of the processes in the machine that are external to the SIC, as well
as for numerous o�ine con�guration and adaptation utilities. The largest part
of the SIC's job is to mediate between the di�erent processes, and to provide an
interpreter for the products of the o�ine utilities. Thus it is imperative that there
be no confusion about the alignment, byte order, or bit width of the data types,
nor about the location of the data objects in the streams that are transmitted
between processes. Since VDM-SL has no prede�ned concept of memory layout
or bit patterns, these low-level details have to be de�ned from scratch in the
speci�cation.

For example, the value of a non-boolean property is determined by the bit
width and sign of its type, as well as by the location and nature of the data in
the measurementData component of a corresponding resultTelegram. The con-
struction of the numerical value of a property from a resultTelegram is de�ned
by

compPropVal : propValLng � propValPol � N � abstractByte� ! Z

compPropVal (pVL; pVP ; o�set ; seqBytes) 4

let length = byteLngFromPropValLng (pVL) in

let byteBag = [seqBytes (o�set + i) j i 2 f1; : : : ; lengthg] in
let rawValue = convertBytesToNumber (byteBag) in

cases mk- (pVL; pVP) :
mk- (BIT8;SIGNED)! if rawValue < BYTE1 MODULUS=2

then rawValue
else rawValue � BYTE1 MODULUS

:::;
mk- (BIT32;UNSIGNED)! rawValue

end

pre o�set + byteLngFromPropValLng (pVL) � len seqBytes ;

The function compPropVal takes a sequence seqBytes of bytes, and an o�set
into that sequence, and returns the number whose digits (to the base 256) are
seqBytes(o�set + 1); seqBytes(o�set + 2), etc., where the bit width is indicated
by the parameter pVL, and the sign by pVP. The subroutine convertBytesToN-
umber �rst computes the property value as if it were an unsigned quantity, and
compPropVal performs two's complement arithmetic on that result to provide
the correct �nal value.

At �rst we found it irritating to have to manually specify type casts of the
measurement data. When the SIC2000 project came to integration testing, how-
ever, the utility modules that were not directly developed from the formal spec-
i�cation produced a number of errors that were caused by a misunderstanding
of the rules by which compilers and processors deal with signed quantities and
type casting. In contrast, the modules that were directly derived from the for-
mal speci�cation had no diÆculty whatsoever. The abstract VDM-SL notation
forced us to closely consider and explicitly specify matters seemingly so well
understood as two's complement arithmetic and the representation of numbers
by bit patterns in memory. As a result, we were able to rapidly localize related
errors in the project test phase, and we are now con�dent that the misunder-
standing of computer arithmetic has been e�ectively banned as a source of error
and maintenance costs from our machine.

Telegram Reception In the actual implementation of the BPS1000, the com-
munication controller hardware will generate an interrupt at the SIC's CPU
whenever it detects that a sensor has transmitted a result telegram on the bus.
The corresponding interrupt service routine writes the contents of the telegram
to an internal RAM bu�er, and then executes a deferred procedure call to a
low-priority interrupt. That interrupt's service routine then signals a user level
task, which �nally processes the contents of the result telegram when the oper-
ating system allows it to run. From a design standpoint, these implementation
details are super
uous. The sequence of low-level context switches that are set
in motion in the SIC by the reception of a result telegram are irrelevant to an
understanding of the matter being speci�ed, namely the strategy by which bit
patterns generated by sensors can be transformed into numbers associated with
banknote properties.

A model of the telegram reception event is valuable nonetheless. It allows the
reader of the speci�cation to easily establish a connection between the imple-
mentation code and the design intent. It also simpli�es construction of test suites
that can be used to check the appropriateness of the speci�ed data transforma-
tions and to support live demonstrations of the speci�cation. The activities that
are to be executed upon the reception of a result telegram can be subsumed into
a single operation :

processResultTelegram : resultTelegram
o

! ()

processResultTelegram (rT) 4

for all p 2 elems properties

do if propertyIdMatchesTelegram (p:id ; rT)
then let lSeq = propIdToPropIdGrp (p:id ; pGroupV 2) in

let iValue = getPropertyValue (lSeq ; p:id ; rT :results) in

processPropertyValue(rT :bnId ; iValue; p:id)

Whenever a result telegram is received from a sensor, the operation process-
ResultTelegram identi�es those banknote property ids (listed in the properties
component of the currently loaded Sorting Control Table) whose values are car-
ried by the telegram, computes their values, and then processes the results of
the value computations.

The speci�cation of the operation looks much like conventional program code,
which is not surprising because it is, after all, machine executable. The important
di�erence between the VDM-SL speci�cation of processResultTelegram and its
implementation as a C function with the signature

void processResultTelegram(resultTelegram �)

lies in the greater narrative density of the VDM notation.
For example, a surprisingly large portion of the production code for the VDM

operation processResultTelegram is devoted to the implementation of the lines

for all p 2 elems properties
do if propertyIdMatchesTelegram(p.id, rT) ...

The implementation of these two lines occupies almost 4000 lines of high
level language code spread among 15 di�erent modules, and the corresponding
documentation consists of a dozen further pages of natural language text. The
discrepancy between the length of this portion of the speci�cation and the size of
its implementation is derived from the performance requirements on the target
machine code. During banknote processing, the SIC must be able to access up
to 375000 entries per second in the properties component of a Sorting Control
Table, a load that is manageable only if the implementation is optimized for
speed. An explanation of the technical handwork that is necessary to e�ect the
code optimization, though useful for maintenance purposes, contributes nothing
to an understanding of the system design and can be safely relegated to the
documentation of the implementation.

Conversely, the module in which the Transparent Property Id methodology
is speci�ed consists of 40 pages of VDM-SL notation, most of which serves to
set the stage for de�ning and testing the operation processResultTelegram.

5.2 Invariants

The Sorting Control Tables are generated independently of the SIC, often by
service or customer personnel, and form the basis for several diagnostic and
reporting utilities. Since an improperly formatted SCT can lead to faulty bank-
note sorting, or unexpected behavior in any of a number of software units, it
is imperative that there exist an automatic mechanism that can guarantee the

validity of an SCT before it is operated upon by any of the processes that depend
on it. The invariants of the global states of the individual VDM modules that
comprise the SIC2000 speci�cation provide the mechanism.

The Transparent Property Id methodology is speci�ed in a VDM module
whose global state is transparentProperties, which collects the persistent data of
the module into a single entity. The invariants of transparentProperties de�ne
the necessary and suÆcient conditions that the property identi�er components
of an SCT must satisfy. Global state invariants in the remaining modules of the
speci�cation de�ne such conditions for other components of the SCT.

For example, the transparency of the late property binding mechanism, which
is the salient feature of the entire speci�cation, is guaranteed to function properly
only if the invariant

8 p; q 2 elems prp �
((p:id :superInfo = BUS ^ q :id :superInfo = BUS ^
p:id :infoId = q :id :infoId ^
p:id :sensorId = q :id :sensorId))
(9 x 2 qG �

(p:id :idQuali�er 2 elems x ^ q :id :idQuali�er 2 elems x)))

is observed. In this excerpt, the quantity prp models the sequence of property
identi�ers in a Sorting Control Table, and qG is a unique, globally de�ned set
of sequences of allowable idQuali�er components, such that any two distinct
sequences in it have no elements in common. The invariant requires that any two
measurable (i.e., BUS) property identi�ers in the same SCT that have identical
values in their infoId and sensorId components are such that the values of their
idQuali�er components lie in the same constituent sequence of qG.

Once the invariant has been precisely formulated, it is not diÆcult to recast
its content in colloquial text, which is important for documentation purposes.
But clearly the natural formulation of the invariant is in the formal notation,
and it is questionable whether it is even feasible to express a complete collection
of invariants in a notation with a less formal character.

Altogether the SIC2000 speci�cation de�nes 27 conjuncts that are present
in the overall invariant that an SCT must satisfy. The invariant acted as a
requirements speci�cation for a small utility program, which we use to check the
validity of an SCT. The utility has been available since the latter stages of the
design process, and it performs valuable service as a support tool for developers of
other SCT-related units, because it monitors and guarantees the integrity of their
interfaces to the SIC. The checker delivers immediate and precise feedback on the
correctness of an SCT. In the event of an error, it describes the invariant conjunct
that has been violated, and provides the address of the o�ending position in
the SCT. Most importantly, it signi�cantly reduces the innumerable hours of
debugging activity { in the laboratory and at customer sites around the world
{ that developers and service engineers often must perform to compensate for
ambiguous or incomplete interface speci�cations.

6 Summary and Perspectives

The development of the formal speci�cation of the SIC2000 project was per-
formed in 1 man-year. The implementation (in the SIC) of the speci�cation was
completed in 3 man-months; the implementation of changes in the collection
of tools a�ected by the speci�cation is still in progress. Modular testing of the
SIC was �nished in 4 man-weeks: several errors were detected, all but one at-
tributable to an imperfect translation of the speci�cation into code. In the case
of one error, the speci�cation had to be revised.

The integration testing of the BPS1000 machines that are equipped with
the SIC2000 is currently in its �nal stages. No errors have been detected in the
components derived from the formal speci�cation; no change requests have been
�led.

The Transparent Property Id methodology has already been or will soon be
ported to three further banknote processing systems. One of these systems is
similar to the BPS1000; the others have a completely di�erent hardware ar-
chitecture, along with a di�erent set of CPUs and communication buses. The
SIC2000 speci�cation need not be modi�ed to account for the new architectures;
the high level language implementations are only moderately di�erent.

We believe that the primary advantage of the VDM technology is the support
it provides for the construction of precise and realistic software system models.
For complex industrial projects, this is a capability whose value can hardly be
overestimated. The price that must be paid for the capability { formulating de-
sign ideas in a formal notation, following the implications of design features to
their logical conclusions, exposing and codifying all design assumptions in a col-
lection of formal invariants { is not excessively high, considering the alternatives.

Of course, we could have designed the SIC2000 project without VDM. The
result would have been a di�erent, a weaker, and eventually a more expensive
�nal product than we were able to produce by using lightweight formal methods.
We are convinced that a great deal of our previous software maintenance costs
could have been avoided if each of the many software component interfaces
had been guarded by an appropriately suspicious set of formal invariants. By
building a model of our system, before implementing the system, we were able
to accurately assess the consequences of our design for the SIC, and for the many
components upstream and downstream from the SIC. Accordingly, we were able
to perform on a desktop model a large portion of those troubleshooting activities
that are traditionally performed on a system implementation during integration
testing or in the �eld.

The formal speci�cation itself is assuming the status of a long-term storage
receptacle of software value. The sensor department at the GAO is now working
with IFAD to introduce VDM as an integral part of its software development
process.

Acknowledgement

We would like to thank Sten Agerholm, Paul Mukherjeee and Oliver Oppitz for
their comments on earlier version of this paper. In addition Paul Smith would
like to thank Dieter Stein for his support.

References

1. Federal Reserve Board. Foreign central banks.
http://www.federalreserve.gov/centralbanks.html.

2. Giesecke & Devrient. Banknote processing systems.
http://www.gdm.de/products/noteproc/bps/en/index.html.

3. Ren�e Elmstr�m, Peter Gorm Larsen, and Poul B�gh Lassen. The IFAD VDM-SL
Toolbox: A Practical Approach to Formal Speci�cations. ACM Sigplan Notices,
29(9):77{80, September 1994.

4. John Fitzgerald and Peter Gorm Larsen. Modelling Systems { Practical Tools and

Techniques in Software Development. Cambridge University Press, The Edinburgh
Building, Cambridge CB2 2RU, UK, 1998. ISBN 0-521-62348-0.

5. Paul Mukherjee. Computer-aided Validation of Formal Speci�cations. Software

Engineering Journal, pages 133{140, July 1995.
6. Bureau of Engraving and Printing. The currency.

http://www.moneyfactory.com/currency/index.cfm.
7. P. G. Larsen and B. S. Hansen and H. Brunn N. Plat and H. Toetenel and D.

J. Andrews and J. Dawes and G. Parkin and others. Information technology |
Programming languages, their environments and system software interfaces | Vi-
enna Development Method | Speci�cation Language | Part 1: Base language,
December 1996.

