
Automated Black-Box Testing with Abstract

VDM Oracles

Bernhard K. Aichernig

Technical University of Graz, Institute for Software Technology (IST),
M�unzgrabenstr. 11/II, A-8010 Graz, Austria.

email: aichernig@ist.tu-graz.ac.at,
fax: ++43 316 873 5706

Abstract. In this paper the possibilities to automate black-box test-
ing through formal requirement speci�cations are explored. More pre-
cisely, the formal method VDM (Vienna Development Method) serves
to demonstrate that abstract requirement models can be used as test
oracles for concrete software. The automation of the resulting testing
frame-work is based on modern CASE-tools that support a light-weight
approach to formal methods. The speci�cation language used is VDM-
SL, but the results are easily transferred into similar model oriented
methods such as B, Z or RAISE.

1 Introduction

During the last few years the interest in formal software development has been
growing rapidly. One of the main reasons for this is the availability of tools
to assist the developer in using these formal methods. The author, too, has
contributed to the growing repertoire of automated tools by an extension of a
commercial tool [5]. However, formal methods are not often applied in industrial
projects, despite the growing maturity of the theories and tools, and the need
of a mathematical basis [6]. Several reasons can be identi�ed for the absence
of formality in the software development process: Too many di�erent notations
have been invented, the lack of integration into informal approaches, and the
strong emphasis on formal proofs.

The last point needs clari�cation. Of course, the formal theory and hence
the possibility of conducting formal proofs is the important attribute of a formal
method. However, the advantage of a formal notation to specify requirements
precisely and unambigously should not be missed, even if formal proofs are not
the project's focus.

Consequently, instead of promoting formal correctness proofs, we regard the
automation of functional testing as the next step in a smooth integration of
formal methods, to raise the level of reliability, after formal speci�cation tech-
niques have been introduced. To sum up, this work is a further contribution to
the lately propagated light-weight approach to formal methods [19].

The ISO-standardized Vienna Development Method (VDM) [18, 11, 20] serves
to demonstrate how a well-established formal method supports the automation

of testing. VDM is one of the most widely used formal methods, and it can be
applied to the construction of a large variety of systems. It is a model oriented
method, i.e. its formal descriptions (speci�cations) consist of an explicit mathe-
matical model of the system being constructed. Furthermore, VDM is supported
by CASE-tools and even allows an integration into informal methods like UML
or Structured Analysis, and so does our testing approach.

Previous work has shown how test-cases may be derived from formal spec-
i�cations [9]. However, little attention had been given to the fact that formal
models of software requirements are inherently abstract in the sense that de-
tailed design decisions are not included. Consequently, the test-cases, derived
(or even generated) from such an abstract model, are abstract too, and thus
inappropriate for a direct automatic test of a target system. For that reason, a
mapping between abstract and concrete test data is required.

The presented framework focuses on the usage of formal requirements spec-
i�cations as test oracles for concrete implementations. The approach is based
on the formal de�nition of abstraction as a homomorphism, called the retrieve
function, which maps the concrete level into the abstract. If the retrieve function
is implemented and the post-condition is executable, then the model may serve
as a test oracle and speci�cation as well. The approach is not limited to VDM,
but can also be applied in other model oriented methods like B [1], Z [25] or
RAISE [13].

After this introduction, the following Section 2 describes the general approach
of using speci�cations as test oracles. Then, Section 3 explains three possibilities
to automate the approach by using a commercial tool, the IFAD VDM-SL Tool-
box. Finally, Section 4 contains some concluding remarks and the identi�cation
of possible directions to future work.

2 From Formal Speci�cations to Oracles

The Vienna Development Method provides the two needed concepts in order
to support the presented testing process. First, the formal speci�cation itself,
which precisely de�nes what a function or operation should compute. Second,
the concept of data-rei�cation, that provides a formal de�nition of abstraction. In
the following, both concepts are explained and their role in our testing approach
will be clari�ed.

2.1 VDM-SL Speci�cations as Oracles

As already mentioned, in VDM a system is speci�ed in terms of abstract math-
ematical models. VDM-SL, the general purpose speci�cation language of VDM,
provides mathematical objects, like sets, sequences, maps etc., to model a sys-
tem's state. The functionality is formulated by imperative operations, which ma-
nipulate these abstract state representations or applicative functions. Two styles
can be distinguished to de�ne functionality: implicit and explicit de�nitions. An
implicit operation de�nes what should happen by pre- and post-conditions. The

pre-condition is a logical constraint on the input stating what must hold that
the functionality is de�ned. The essential part is the post-condition, a relation
between the input, the old state, the output and the new state.

The following example is inspired by an industrial project in which a voice
communication system for air tra�c control has been formally speci�ed [16].
Here, an abstract view of the system's radio switch is modeled. The switch assigns
frequencies to operator positions on which communication may be established.
The VDM-SL model refers to frequencies and operator positions by the identi�ers
FrqId and OpId. The relation is modeled by a �nite mapping from operator
positions to a set of frequencies. A map can be interpreted as a two-column
tabular whose left- and right-side entries can be accessed by the domain (dom)
and range (rng) operators.

The set of frequencies represents frequency coupling, which means that com-
munication is forwarded to all frequencies in the set. A requirement of the switch
is that a frequency must not belong to two di�erent coupling sets. This is ex-
pressed by means of a data-invariant, stating that for all two frequency sets,
with more than one element, they may not have frequencies in common.

Switch-a = OpId
m
-! FrqId -set

inv s 4 8 fs1; fs2 2 rng s � card fs1 > 1 ^ card fs2 > 1) fs1 \ fs2 = fg

A function couple-frequency, de�ned by pre- and post-conditions, adds fre-
quencies to an operator position. The pre-condition says that if the operator
position has already a frequency associated, then no frequency set with a car-
dinality greater than two must exist that already contains the frequency to be
added. This would lead to violation of the system's invariant.

The post-condition establishs the following relation between the input (f,
op and s) and the resulting output r: If the operator position has already a
frequency associated, then the resulting map equals the old one with the input
frequency added to the existing set of frequencies of the operator position. This
is expressed by overriding (y) a map entry. In case of a new operator position,
the result equals the old switch with the new map entry.

couple-frequency (f : FrqId ; op :OpId ; s : Switch-a) r : Switch-a

pre op 2 dom s) :9 fs 2 rng s � f 2 fs ^ card fs > 1

post if op 2 dom s

then r = s y fop 7! s (op) [ff gg
else r = s y fop 7! f g

From a testers perspective, the post-condition serves as a test oracle. In
general, an oracle is any program, process or data that speci�es the expected
outcome of a set of tests as applied to a tested object [7]. Here, the oracle is a
predicate, a Boolean function, which evaluates to true if the correct output is
returned, with the premise that the pre-condition holds. The signature of the
post-condition oracle above is:

post-couple-frequency :OpId � FrqId � Switch-a � Switch-a ! B

The two arguments of type Switch-a de�ne the relation between the old and new
value of the switch. Note that pre-conditions de�ne the input values for 'good'
tests, where valid outputs can be expected.

However, the system's model and consequently the oracle is abstract and
cannot be directly used as a test-oracle for a test on implementation level. What
is needed, is a link between the abstract level and the concrete level. In VDM, and
other formal methods, this link is provided by a precise de�nition of abstraction.

2.2 The De�nition of Abstraction

The M in VDM is based on a re�nement of an abstract speci�cation to a more
concrete one, which usually is carried out in several steps. Re�ning the data
model is called data-rei�cation, which is correct if it establishs a homomorphism
between the abstract and re�ned, more concrete, level. In Figure 1 our notion

A Aopabstract

CC opconcrete

rr

Fig. 1. The morphism of abstraction.

of abstraction is represented by a commuting diagram, where operations (op)
are viewed as functions from input to output states. The abstract operation
opabstract manipulates an abstract state representation of type A. The concrete
operation opconcrete incorporates detailed design decisions and maps a re�ned
input state to an output state. Examples for such data-re�nement would be to
implement a set through a balanced binary-tree, or the other way round, to view
a data-base system as a set of data. The relationship between the abstract and
the concrete is de�ned by a a function r mapping a concrete state to its abstract
counterpart. The diagram shows that the retrieve function r is a homomorphism
for which the following formula holds:

8 in : C � opabstract(r(in)) = r(opconcrete(in))

Using an implicit function de�nition on the abstract level, the formula for a
correct implementation (re�nement) is:

8 in : C � pre-opabstract (r(in))) post-opabstract (r(in); r(opconcrete(in)))

This simply means that the abstract post-condition must hold for the con-
crete input and output, mapped to the abstract level by r, if the pre-condition
is satis�ed.

Modern tools allow the interpretation of explicit VDM-SL de�nitions. If the
retrieve function and the post-condition predicate are de�ned explicitly, the for-
mula above can be evaluated and thus provides a testing frame-work inside VDM-
SL. However, to test functionality implemented in a programming language like
C++, the language gap between programming languages and the speci�cation
language has to be overcome. In the following it is shown how modern tools
provide these bridges and help to automate the approach.

3 Automated Test Evaluation

The combination of the notion of abstraction and the possibility to use speci�ca-
tions as test oracles leads to a testing framework with abstract oracles. Modern
tools like the IFAD VDM-SL Toolbox [17] allow the interpretation or even code-
generation of such pre- and post-conditions which leads to an automated test
evaluation through post-condition oracles. In Figure 2 the data-
ow of the new
testing scenario is presented. An implementation is executed with a concrete

postcondition
oracle

implementation

precondition
check

r r

concrete input concrete output

abstract
input

valid abstract
input

abstract
output

input valid? test ok?

Fig. 2. DFD of the testing scenario.

test input (state). An implemented retrieve function maps the concrete input
and output to its abstract representations. A pre-condition check validates the
input and feeds it into the oracle which checks the relation to the produced out-
put. If the post-condition evaluates to true, the test passed. The advantage of
the approach is the automation of black-box testing by the usage of structural
test-data. Another possibility would be to code the reverse of r in order to test
with abstract test-data derived from the speci�cation.

In the following, the possibilities for automation by using the IFAD tools are
explained in more detail.

3.1 Code-Generation of Oracles

The IFAD Toolbox provides a C++ code-generator, which translates explicit
VDM-SL speci�cations to C++ source code, using a VDM library. With this tool
the post-condition functions, like in our Switch example, can be automatically
translated to C++ . Even the pre-condition with its quantors over �nite sets can
be code-generated. Below the generated C++ code for post-couple-frequency is
shown:

Bool post_couple_frequency(int f, int op, Map s, Map r) {

Bool varRes;

Bool cond;

cond = (Bool) s.Dom().InSet(op);

if (cond.GetValue()) {

Map var2;

Map modmap;

Set tmpVar2;

Set var2;

var2 = Set().Insert(f);

tmpVar2 = (Set) s[op];

tmpVar2.ImpUnion(var2);

modmap = Map().Insert(op, tmpVar2);

var2 = s; var2.ImpOverride(modmap);

varRes = (Bool) (r == var2);

}

else {

Map var2;

Map modmap;

modmap = Map().Insert(op, f);

var2 = s; var2.ImpOverride(modmap);

varRes = (Bool) (r == var2);

}

return varRes;

}

What remains to implement manually is the retrieve function. Special C++
generator functions in the VDM library facilitate the conversions of C++ types
into VDM objects.

3.2 Interpretation of Oracles with the Dynamik Link Facility

Another approach is to use the Toolbox interpreter in order to evaluate the oracle
inside VDM-SL. The dynamik link facility may be used to call the C++ functions
to be tested from inside the Toolbox [12]. The dynamik link facility enables a
VDM-SL speci�cation to execute parts written in C++, during interpretation.

It is called dynamik link facility because the C++ code is dynamically linked
together with the Toolbox.

In order to access the implementation, a dlmodule has to be de�ned which
contains the function's declaration. For our example that would be

dlmodule CPP

exports

functions couple-frequency-ext : Z�Z�Z
m
-! Z-set! Z

m
-! Z-set

end CPP

, if we model frequencies and operator positions as integers (Z). In order to test
couple-frequency in this case two functions are to be implemented. One mapping
the input to the implementation representation and calling couple-frequency, and
the retrieve function which converts the output back to the abstract VDM-SL
data-type.

With this approach abstract VDM-SL test-cases are �t into the implementa-
tion. Hence, here the following must hold for a correct implementation opconcrete :

8 in :A � pre-opabstract (in)) post-opabstract(in; r(opconcrete(rep(in))))

, where the function rep :A! C maps the abstract input to its concrete repre-
sentation.

3.3 CORBA Oracles

A third elegant way to bridge the language gap is CORBA, the Common Object
Request Broker Architecture [22]. The VDM-SL Toolbox provides a CORBA
based API through which a program can access the Toolbox [27]. The CORBA
interface of the VDM-SL Toolbox is de�ned in IDL, the interface de�nition
language of CORBA. The language mapping is done by the IDL interface through
which the full functionality of a running toolbox may be invoked.

This includes the loading of a speci�cation and the starting of the inter-
preter. With this technique a post-condition oracle can be accessed and evaluated
through the API. Since CORBA is a distributed object architecture the Toolbox
may even run on a di�erent (test-)server providing the oracles. Since CORBA
IDL converts di�erent programming languages, the test approach can be applied
to as many programming languages as IDL mappings have been implemented,
e.g. C++ and Java.

4 Concluding Remarks

In this paper we have presented an approach for automated test evaluation
through VDM-SL oracles. We have shown the general strategy and presented

more details how the resulting test approach can be automated. The three pre-
sented solutions for automation are based on the commercial tool IFAD VDM-SL
Toolbox.

To our present knowledge, only one automated black-box testing approach
has been based on an explicit mapping from an implementation level to a for-
mally speci�ed and abstract post-condition oracle [8]. In this early work, the
post-condition oracle had to be translated manually into Prolog. Of course, other
formal model oriented approaches to testing have been published, but they di�er
in two aspects: First, the focus rather lies on test-case generation, than on or-
acle generation and automated test evaluation [21, 9, 26, 15, 24, 10, 2, 23]. Hence,
the abstraction problem is not considered at all. Second, explicit speci�cations
serve as active oracles which calculate and compare the speci�ed output to the
program under test [14, 3, 28]. In contrast to our passive oracles, these solutions
cannot handle non-deterministic results.

Our idea has been presented in [4] the �rst time. This work could also be
extended with test-case generation techniques in order to automate the whole
test process. However, the automated test evaluation especially supports random
testing.

In future we envisage an instrumentation of objects with post-condition or-
acles. Objects can be instrumented through inheritance without changing the
actual code. Then, testable objects inherit the functionality from its superclass
and provide additional retrieve and oracle functions as testing methods.

We feel that the application of both, formal speci�cations and formal de-
velopment tools to testing, as presented here, will be a powerful combination.
However, more case studies are needed in order to evaluate the approach for-
mally.

Acknowledgments

The author would like to thank IFAD's team for their support concerning the
VDM-tools. Many thanks belong to Peter Lucas and the members of our formal
methods group for the stimulating discussions.

References

1. J.-R. Abrial. The B-Book, Assigning programs to meanings. Cambridge University
Press, 1996. ISBN 0521 49619 5(hardback).

2. Lionel Van Aertryck. Une m�ethode et un outil pour l'aide �a la g�en�eration de jeux
de tests de logiciels. PhD thesis, Universit�e de Rennes, January 1998.

3. Sten Agerholm, Pierre-Jean Lecoeur, and Etienne Reichert. Formal speci�cation
and validation at work: A case study using VDM-SL. In Proceedings of Second
Workshop on Formal Methods in Software Practice, Florida, Marts. ACM, 1998.

4. Bernhard K. Aichernig. Automated requirements testing with abstract oracles. In
ISSRE'98: The Ninth International Symposium on Software Reliability Engineer-
ing, Paderborn, Germany, pages 21{22, IBM Thomas J.Watson Research Cen-
ter, P.O.Box 218, Route 134, Yorktown Heights, NY, USA, November 1998. Ram
Chillarege. ISBN 3-00-003410-2.

5. Bernhard K. Aichernig and Peter Gorm Larsen. A proof obligation generator for
VDM-SL. In J. Fitzgerald, C.B. Jones, and P. Lucas, editors, FME'97: Industrial
Applications and Strengthened Foundations of Formal Methods, volume 1313 of
Lecture Notes in Computer Science, 1997.

6. Bernhard K. Aichernig and Peter Lucas. Softwareentwicklung | eine Ingenieurs-
disziplin!(?). Telematik, Zeitschrift des Telematik-Ingenieur-Verbandes (TIV),
4(2):2{8, 1998. ISSN 1028-5068.

7. Boris Beizer. Software Testing Techniques. Van Nostrand Reinhold, New York,
2nd edition, 1990.

8. R.E. Bloom�eld and P.K.D. Froome. The application of formal methods to the
assessment of high integrity software. IEEE Transactions on Software Engineering,
SE-12(9):988{993, September 1986.

9. Jeremy Dick and Alain Faivre. Automating the generation and sequencing of
test cases from model-based speci�cations. In J.C.P. Woodcock and P.G. Larsen,
editors, FME'93: Industrial-Strength Formal Methods. Springer-Verlag, April 1993.

10. Michael R. Donat. Automating formal speci�cation-based testing. In Michel Bidoit
and Max Dauchet, editors, TAPSOFT '97:Theory and Practice of Software Devel-
opment, 7th International Joint Conference CAAP/FASE, volume 1214 of Lecture
Notes in Computer Science, pages 833{847. Springer-Verlag, April 1997.

11. John Fitzgerald and Peter Gorm Larsen. Modelling Sytems, Practical Tools and
Techniques. Cambridge University Press, 1998.

12. Brigitte Fr�ohlich and Peter Gorm Larsen. Combining VDM-SL speci�cations with
C++ code. In Marie-Claude Gaudel and Jim Woodcock, editors, FME96, Indus-
trial Bene�t and Advances in Formal Methods, Lecture Notes in Computer Science,
pages 179{194. Springer, March 1996.

13. Chris George et al. The Raise Development Method. The BCS Practitioner Series.
Prentice Hall, 1995.

14. Andrew Harry. The value of reference implementations and prototyping in a formal
design and testing methodology. Report 208/92, National Physical Laboratory,
Queen's Road, Teddington, Middelsex TW11 0LW, UK, October 1992.

15. Ste�en Helke, Thomas Neustupny, and Thomas Santen. Automating test case
generation from Z speci�cations with Isabelle. In ZUM'97, 1997.

16. Johann H�orl. Formal speci�cation of a voice communication system used in air
tra�c control. Master's thesis, Institute for Software Technology (IST), Technical
University Graz, Austria, December 1998.

17. IFAD. IFAD's homepage. http://www.ifad.dk/.

18. Cli� B. Jones. Systematic Software Development Using VDM. Prentice-Hall In-
ternational, Englewood Cli�s, New Jersey, second edition, 1990.

19. Cli� B. Jones. Formal methods light: A rigorous approach to formal methods.
IEEE Computer, 29(4):20{21, April 1996.

20. P. G. Larsen, B. S. Hansen, H. Bruun, N. Plat, H. Toetenel, D. J. Andrews,
J. Dawes, G. Parkin, et al. Information technology | Programming languages,
their environments and system software interfaces | Vienna Development Method
| Speci�cation Language | Part 1: Base language, December 1996. International
Standard ISO/IEC 13817-1.

21. Janusz Laski. Data
ow testing in STAD. The Journal of Systems and Software,
12(1):3{14, 1990.

22. OMG. The common object request broker architecture and speci�cation, revision
2.0. Technical report, OMG, 1996.

23. Jesper Pedersen. Automatic test case generation and instantiation for VDM-SL
speci�cations. Master's thesis, Department of Mathematics and Computer Science,
Odense University, September 1998.

24. J. Peleska and M. Siegel. Test automation of safety-critical reactive systems. South
African Computer Jounal, 19:53{77, 1997.

25. J. M. Spivey. The Z Notation. Series in Computer Science. Prentice-Hall, 1989.
26. Philip Alan Stocks. Applying formal methods to software testing. PhD thesis, The

Department of computer science, The University of Queensland, 1993.
27. Ole Storm. The VDM Toolbox API users guide. Technical report, IFAD, 1998.
28. H. Treharne, J. Draper, and S. Schneider. Test case preparation using a prototype.

In B'98 | Second B-Conference, 1998.

