
Invariants as Design Templates in

Object-based Systems

S.J. Goldsack and K. Lano

Imperial College of Science, Technology and Medicine,
London SW7 2BZ, England
fsjg, kclg@doc.ic.ac.uk

Abstract. Recent work using VDM++(see [1]) has shown how objects in
an object-oriented language can be re�ned by a process of transformation
of an initial class into structures of (usually) simpler objects. The process
has been nick-named \annealing" by analogy with the physical process
which changes the crystaline structure of a material while retaining its
chemical properties. This process is considered an important aspect of
system development in relation to object oriented systems, especially
where formal correctness is an objective. It was shown in [2] that it is
a mechanism by which model splitting (see Jian Lu, 1995 [3]) may be
implemented. In [1] it was applied to the development of design patterns

(see for example Gamma [4]) to give them a formal basis. In this paper we
pay special attention to the way in which the structures of the speci�ed
system depends on the logical structure of the invariant

1 Introduction

Recent papers [2] and [1] described a process of object re�nement based on
transformations of an initial object speci�cation to structures with equivalent
properties. Class structures can be transformed into (usually more elaborate)
structures composed of objects of (usually simpler) classes. Such transforma-
tions constitute an important process in the development of a formal basis for
system design. In particular, it is often appropriate to start from a system de-
scription using a single class, capturing the abstract requirements of the complete
system, (which we refer to as model0) and re�ne it by property-preserving trans-
formations into more complex structures of simpler classes.1 For the purpose of
the present discussion we �nd it useful to represent object structured programs
using VDM++, a simple object-oriented extension of the speci�cation language

1 We are pleased to acknowledge the contribution of Eugene D�urr to the ideas devel-
oped in this paper. Quite early in his work on VDM++ he suggested the role of such
transformations as steps in the rei�cation process.He gave the nick-name \anneal-
ing" to the process, in analogy with the chemical process which develops a material
of �ner granularity but identical chemical composition.

VDM-SL. A toolset for the support of VDM++has been developed by IFAD and
full details of VDM++, including the language reference manual, can be found
at the IFAD website, http://www.ifad.dk.

1.1 The Essence of VDM++

Types, functions, values and instance variables use familiar VDM-SL notations.
Almost all notations allowed in VDM-SL are allowed also in VDM++. Instance
variables are extended to include reference types, written with a pre�x @. Thus
a declaration

myobj : @ClassName

declares an item, myobj, which stores a pointer to some external object of class
ClassName.

Methods are closely modelled on VDM operations, and may be given procedural
de�nitions or be de�ned more abstractly with pre and post conditions. A proce-
durally de�ned method may have statements executed in loops or sequences in a
way close to familiar programming notations, but one or more of the statements
may be abstractly de�ned as a speci�cation statement written

[ext < external clauses >
pre < preconditions >
post < postconditions >]

An operation which is abstractly speci�ed is identical to a procedural method
having just one statement, presented as a speci�cation statement.

To support concurrency a class may de�ne a thread part delimited with the key
word thread and the execution of its methods may be controlled by synchro-
nisation rules in a part introduced by the keyword sync. For real-time speci-

�cations in postconditions keywords now and (��now give access to times (on a
system clock) of the start event and the completion event of a method while
a whenever expression enables events and their consequences to be described.
Details of most of these features are given in a chapter of the book [5].

2 The Basic Transformation Step

2.1 A class with a single data item

We start from the most basic possible example. In this a class C, has some
instance variables to represent the state of the objects of the class and methods

to provide operations on that state and form its interface with client objects. This
class is transformed into two classes, the �rst C 1 supplying the same interface for
clients as before, but with the instance variables moved to an associated object.
This is illustrated on the left side of �gure 1. The annealing of the class C,
having some internal data, leads to a class C 1 which instead references the data
stored in an external object. One could say they were related by the client/server
relationship. However, this name does not seem to capture well the use which
is being made by the class C 1 of its dependent object. To make the distinction
clearer, we shall mainly use the term component class for the server. The client
class may be called the framing class and an object of the framing class may
sometimes be called the frame.

Consider the class de�ned as:

class C

instance variables

store : X type;

init store 4 init (store);

inv store 4 invar (store)

methods

MP(a : atype) 4

[ext wr store
pre preMP (a; store)

post postMP (a; store;
(��
store)];

MF (b : btype) value r :N 4

[ext rd store
pre preMF (b; store)
post postMF (b; r; store)]

end C

Here the data repesenting the state of objects of the class is stored in a variable
store of type X type. The keywords init and inv de�ne an initialisng operation
and an invariant property respectively. There are also typical operations MP
which is a mutating operation, changing the internal state, and MF which is an
enquiry operation with no side e�ects on the state2. For brevity we shall consider
only a single method MP in the rest of this paper.

The transformation moves the instance variable of C into a new class, which we
shall call X class since it is to serve as a container class for the state store of
type X type, and replace the instance variables of C by a reference to an object

2 The notation is mnemonic: MP is like a procedure in say Pascal while MF is like
a function. We use an obvious notation in which, for example, preMP denotes the
precondition for the method MP.

Fig. 1. The basic transformation steps: left a single state item, right two items

of the new class. To provide access to this state for use by the new version of C,
it is necessary to provide methods which will permit the state X to be modi�ed
and inspected. In fact the methods MF and MP or their equivalents, will both
have to be provided. The state store must also be initialised and satisfy the same
invariants as in class C. Thus, in this trivial case, the class X class is no di�erent
from a renaming of C:

class X class

instance variables

store : X type;

init store 4 init (store);

inv store 4 invar (store)

methods

MP(a : atype) 4

[ext wr store
pre preMP (a; store)

post postMP (a; store;
(��
store)]

end X class

We wish to show that we can form C1, a re�nement of C, by constructing a new
class with an instance variable which is a reference to an object of class X class.

Any invariant property or any initialising action associated with the state of
objects of class, must apply also to the data in the annealed version. To ensure
this the init and inv clauses have been moved to the component class, where
they become properties of the data stored there. In this simple case this makes
the class X class identical with C class.

The correctness of this transformation scarcely needs proof. It is discussed in
more detail elsewhere [1] [6].

2.2 A More Complex Case

Suppose a class C2 has more than one state variable, and of di�erent types.

class C2

instance variables

X : X type;
Y : Y type;

init objectstate 4 init (X;Y);

inv objectstate 4 invar (X;Y)

methods

MP2 (a : atype) 4

[ext wr X;Y
pre preMP2 (a;X;Y)

post postMP2 (a;X;
(�
X ;Y;

(�
Y)];

MF2 (b : btype) value r :N 4

is not yet speci�ed

end C2

We again wish to \anneal" this class to store the data in external objects ref-
erenced from the framing object. Of course, the state items X and Y could be
moved together into a single component, and there would be no signi�cant dif-
ference between this and the previous example. More interestingly, the designer
may decide to anneal the class C2, using references to separate component ob-
jects to hold the state values for X and Y. This might be because he felt such a
structure to be the most logical representation of the system being designed, or
it might be in order to reuse some class or classes which already exist for one or
other of the types X and Y or both. The transformation we are now considering
is illustrated on the right hand side of �gure 1

In attempting to form a class in which the state of the original class is split
between more than one component object, we encounter some interesting new
concerns.

1. The init statement and invar predicate now relate state information from
the two separate objects, which know nothing of each other's internals.

2. Because the state information about the servers is now encapsulated, it is
not even directly observable by the framing object, so it is not possible to
write an invar clause in the frame relating the states of the servers.

3. An invariant written at the usual place, following the instance variables in the
framing class, would relate the object references not the objects referenced.

In VDM++each class may have an optional section called the \auxiliary reason-
ing" part, available for stating properties which are global to the class and all
its components and transitively, to their components. In this section of the class
description, the encapsulation of the component objects is weakened to allow
read access to their internal state as may be required to specify the overall sys-
tem behaviour. A conventional dot notation is used to name the items in the
extended scope.3

The predicates invar(X, Y) and post-init(X, Y) (established by execution of the
init action) may, in general, consist of terms constraining the separate variables
X and Y compounded with additional terms expressing the relationship between
them.

It is always possible to transform a predicate such as invar(X, Y) into an ex-
pression of the following form:

invarX (X) ^ invarY (Y) ^ invarX;Y (X;Y) (1)

in which the terms of the conjunctive normal form of invar(X, Y) have been
collected into those depending only on X, those depending only on Y and those
relating X and Y. Any of these could be void, and one may expect that in cases
when splitting the state data seems an attractive option, it will be the case that
the data components will be fairly independent so that the term invarX;Y(X;Y)
will be empty or of small importance.

Responsibility for maintaining those parts of the invariant which depend on one
state item may now be given to the appropriate component objects while the
term relating them may be placed in the auxiliary reasoning part of the framing
class, which will be responsible for maintaining its truth. If the two component
classes are speci�ed to maintain certain invariants, then it is evident that the
overall invariant will include the conjunction of these separate invariants. In its
auxilliary reasoning part, the framing class must state those additional properties
which relate them.

We shall see later that it can also happen that the terms of the conjunctive form
do not separate well, but that the disjunctive form does. This indicates that the
design using alternative classes to be selected (one or other) using polymorphic
substitution will make a more appropriate design. It is illustrated in section 3
and 4 below.

The post-init predicate may be similarly treated. The initial system construction
must ensure observance of the initial conditions of the component state variables,

3 Auxilliary reasoning as such may not form part of the standard VDM++, but there
will be a means of referring to the contents of component objects.

and of the initial relation between them as de�ned in the framing object. The
initialisation of an object is required to establish the truth of the invariant at
system construction.

2.3 Splitting the Methods

The treatment then follows roughly that of the previous section. We shall again
consider only the mutating method MP2. In the class C2 it is given as:

MP2 (a : atype) 4

[ext wr X;Y
pre preMP2 (a;X;Y)

post postMP2 (a;X;
(�
X ;Y;

(�
Y)]

In general this may change the values of both X and Y. In the class C2 1 it will
be implemented with calls to methods of the classes X class and Y class. We
therefore need to divide the actions of MP2 into parts responsible for updating
the separate variables. We give here an outline of the theory of splitting. In
the following the method is written as two speci�cation statements, de�ning
actions which may occur in either order, each updating only one of the variables.
In general, also, each may use the initial value of the other's variable, so to
ensure that it gets the value before it was changed by the other action we have
introduced local declarations to provide temporary storage.

methods

MP2 (a : atype) 4

(dcl localX : X type := X ,
localY : Y type := Y ;

k ([ext wr X
pre preMP2X (a;X; localY)

post postMP2X (a;X;
(�
X ; localY)],

[ext wr Y
pre preMP2Y (a; localX;Y)

post postMP2Y (a;Y;
(�
Y ; localX)]

)
)

Note that if the evaluation of the new X requires knowledge of the new Y it
will have to evaluate it itself (redundantly). Again we see that if the data sets
have much interaction this annealing would be a poor design. However, there
are certainly many problems where this is not the case.

The evaluations have now been made independent, and can occur in either order,
or indeed concurrently.4

In the class C2 1 there will be calls on each of the corresponding methods in
X class and Y class, again in non-deterministic order, which will handle the
changes in X and Y respectively. Also, if the old value of Y is actually used in
evaluating X, then the value of localY will have to be set by a call on a speciallly
provided enquiry method in Y class and vice versa. Thus X class is de�ned:

class X class

instance variables

X : X type;

init X 4 initX (X);

inv X 4 invX (X)

methods

MPX (a : atype; oldy : Y type) 4

[ext wr X
pre preMPX (a;X; oldy)

post postMPX (a;X;
(�
X ; oldy)];

giveX () value r : X type 4

[post r = X]

end X class

and a similar class for Y. The frame class C2 1 for the annealed system is then
of the form:5

class C2 1

instance variables

my X : @X class;
my Y : @Y class

methods

MP(a : atype) 4

(dcl localX : X type := my X!giveX() ,
localY : Y type := my Y!giveY() ;

4 Note: The non-deterministic operator k in VDM-SL introduces a list of actions which
may be executed in any order. In VDM++, if the actions involved are \durative"
(consuming time) then, provided the calling mechanism is asynchronous, the start
events can occur in any order, and the actions execute concurrently.

5 Note: Recall that the optional \auxilliary reasoning" part of a class is provided
in VDM++to enable the speci�er to add information not syntactically valid in other
parts. In particular, statements relating to the internal states of dependent objects,
breaking the object encapsulation, are permitted here.

k (my X!MPX (a; localY),
my Y!MPY (a; localX))

)

auxiliary reasoning

invarX;Y (my X:X;my Y:Y)

end C2 1

3 Disjunction in the Invariant

It is evident that the structure, as in the right hand side of �gure 1, in which
a class has two component classes, both servers of the frame class, maintains a
system invariant which is a conjunction of the form of equation 1. However, in
general we might �nd cases in which the requirements specify an invariant which
is a disjunction of the form:

inv1 exor inv2 (2)

The objects are to satisfy one or other of two invariants. The `or' is the exclusive
or; it would be meaningless if both might be true.

To specify such a class at level 0, we must write:

class Disjunction

types

cases = < case1 >j< case2 >

instance variables

thiscase : cases;
store : X type;

init store 4 cases thiscase :
< case1 > ! store := init1;
< case2 > ! store := init2

end;
inv store; thiscase 4

(thiscase = < case1 > ^ inv1 (store)) _
(thiscase = < case2 > ^ inv2 (store))

methods

MP(a : atype) 4

cases thiscase:
< case1 >!

[ext wr store :
pre preMP1 (a; store)

post postMP1 (a; store;
(��
store)],

< case2 >!
[ext wr store :
pre preMP2 (a; store)

post postMP2 (a; store;
(��
store)]

end

end Disjunction

The invariant might have been written as a case expression, but the explicit use
of the enumeration variable shows its disjunctive structure more clearly. Note
that, since the role of the initialisation is to ensure that the invariant holds at
the outset, it is natural that it should also have alternative de�nitions for the
two cases.

To anneal this class, we introduce an abstract class DisjunctiveCase with two al-
ternative subclasses Case1 and Case2. These complete respectively the de�nition
of the abstract parent class with the two alternative invariant behaviours.

The abstract class is of the form:

class DisjunctiveCase

methods

MP(a : atype) 4

is subclass responsibility

end DisjunctiveCase

The �rst subtype has the form:

class Case1 is subclass of DisjunctiveCase

instance variables

store : X type;

init store 4 store := init1;

inv store 4 inv1 (store)

methods

MP(a : atype) 4

[ext wr store :
pre preMP1 (a; store)

post postMP1 (a; store;
(��
store)]

end Case1

and the second is similar.

The annealed form of the level 0 class now holds its data as a reference to an
object of the abstract class, to which may assigned polymorphically one or other
of the alternative subclasses. The alternative method de�nitions in the level 0
de�nition have become the bodies of the methods in the respective cases.

The framing class now has the form:

class Disjunction

types

cases = < case1 >j< case2 >

instance variables

thiscase : cases;
mystore : @DisjunctiveCase

methods

MP(a : atype) 4

mystore!MP(a)

end Disjunction

4 The Abstract Factory Design Pattern

Fig. 2. The structure of the Abstract Factory Pattern

Design patterns, standard reusable designs for typical recurring problems, have
recently become a popular �eld of study. Details of various examples are given
in the book by Gamma et al[4]. The paper [7] describes how several such designs
may be considered re�nements of simpler ones.

In [1] we developed an example from the book [4] (page 87), referred to as the
Abstract Factory, showing how it can be developed by annealing a monolithic
initial model. Figure 2 is reproduced from the book. The example has a struc-
ture developed according to an invariant with both conjunctive and disjunctive
elements.

5 Synchronised Classes

Finally, we show the way in which annealing can be used to separate concerns
for the functionality of a class and its synchronisation rules. In VDM++ there
are several ways to express concurrent behaviour, and to de�ne the rules for
synchronising the operations of a class which is subject to concurrent calls on
its methods. The following class speci�cation describes a simple database which
allows multiple readers when there are no writers, and a single writer when there
are no readers. This is the simplest form of readers and writers, and does not
protect from writer starvation, and is used here for simplicity. More general cases
can be handled in the same way.

class ReadWrite {{ level 0

instance variables

datastore : data;

inv datastore 4 ::: {{ is not yet speci�ed

methods

read (a : atype) 4

is not yet speci�ed;

write (b : btype) 4

is not yet speci�ed

sync

per read) #active(write) = 0
per write) #active(write) = 0 ^

#active(read) = 0

end ReadWrite

Here we have instance variables de�ning a data set, with a normal data invariant.
Then there are method de�nintions, here left for future development. Finally, in
a sync part of the class, we have a speci�cation of the synchronisation rules for
the execution of the methods.

These rules are given by expressing a set of permission axioms de�ning for each
method the circumstances in which a request by a client for its execution can be

dispatched. Each axiom is of the form

per < methodname >) < condition > (3)

The conditions are usually boolean expressions over history counts, though they
can include also data-items. Failure of a condition means the relevant method
cannot be dispatched; if it holds it does not necessarily mean it can be or will
be dispatched, as there could be other permission axioms for the same method
which must also hold. Details can be found in [5]. All the permission axioms
are e�ectively \anded" together, and form an invariant in the time axis which
must always hold. Here an expression such as #active(m) is a count of the
currently active executions of the method m. The synchronisation requirements
could equivalently been expressed as the invariant condition:

#active(write) � 1 ^ :(#active(write) > 0 ^#active(read) > 0) (4)

which must hold at all times.

By an annealing step, concerns for maintaining the data and temporal invari-
ants can be separated into di�erent component objects, in exactly the way
we did before in section 2.2. In the usual way, we can form a container class
DataStoreClass for the data; this provides the functionality of the database,
with its read and write methods. The data in class ReadWrite is replaced by a
reference to DataStoreClass. Control of synchronisation is provided by a class
which we have callled ReadWriteControl, with methods startread and startwrite
which block if the synchronisation invariant would become violated by admitting
the operation. There are also methods endread and endwrite which record the
completions of the respective executions. The object keeps record of the start
events and completions, and maintains the history counters. Its role is to ensure
the invaraint is maintained.

The necessary control class can be speci�ed either again using permission pred-
icates, or using a thread with answer statements, which is illustrated in the
following class de�nition.

class ReadWriteControl

instance variables

readers :N;
writers :N;

init readers;writers 4

(readers: = 0; writers: = 0
)

methods

startread () 4 ;

endread () 4 ;

startwrite () 4 ;

endwrite () 4

thread

while true
do

sel

writers = 0 answer startread!
readers := readers + 1 ,

readers = 0 ^ writers = 0 answer startwrite!
writers := writers + 1 ,

answer endread!
readers := readers -1 ,

answer endwrite!
writers := writers -1

end ReadWriteControl

It is of interest that a class like this is conveniently implemented in Ada as a
protected type.

The synchronised ReadWrite class now has the form:

class ReadWrite {{ level 1

instance variables

mydatastore : @DataStoreClass;
mycontrol : @ReadWriteControl

methods

read (a : atype) 4

(mycontrol!startread();
mydatastore!read();
mycontrol!endread()

) ;

write (b : btype) 4

(mycontrol!startwrite();
mydatastore!write();
mycontrol!endwrite()

)

end ReadWrite

5.1 Some further examples

The paper in reference [1] treated in outline also some further examples of an-
nealing, some at least of which are relevant to the main idea of this paper.

{ A set re�ned as sequence of sets
{ Recursive annealing
{ Annealing of Maps
{ Concurrently Active Parts
{ factorials

6 Conclusions

We have shown how a concept of property preserving transformations in which
a class is split into structures of objects of more elementary classes can be a
powerful design approach in Object Oriented structuring. The process has been
called \annealing".

The present paper has shown how annealing of an initial class structure can be
a valuable approach to developing and justifying reusable design structures.

We consider of particular interest the way in which appropriate designs reect
the structure of the data in the abstract speci�cation, and are greatly inuenced
by the invariants involved.

References

1. S. Goldsack, K. Lano, and E.H. D�urr. Annealing, object decomposition and de-

sign patterns. In Technology of Object Oriented Languages and Systems. (TOOLS
Paci�c), 1996.

2. S.J. Goldsack, K. Lano, and E.H. D�urr. Annealing and data decomposition in

VDM++. ACM Sigplan Notices, 31, July 1996.
3. Jian Lu. Introducing data decomposition into VDM for tractable development of

programs. ACM Sigplan Notices, 30, September 1995.
4. E.Gamma, R. Helm, R.Johnson, and J. Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison Wesley Publishing Company, Reading,
Massachusetts : . IBSN 0-201-66361-2, 1995.

5. S.J Goldsack and E.H. D�urr. Concurrency and Real-time in VDM++, chapter 6.
Springer Verlag, ISBN 3-540-19977-2, March 1996.

6. S.J. Goldsack, K. Lano, and E.H. D�urr. Re�nement of object structures in VDM++.

from www.doc.ic.ac.uk/~sjg get the �le \annealing.ps", 1995
7. K.C. Lano, J.C. Bicarregui, and S.J. Goldsack. Formalising design patterns. In

Northern Formal Method Workshop, Bradford. Springer Verlag EWICS, 1996.

