
Formal Speci�cation of an Auctioning System Using

VDM++ and UML, an Industrial Usage Report

Manuel van den Berg, Marcel Verhoef, Mark Wigmans
fManuel.vanden.Berg, Marcel.Verhoef, Mark.Wigmansg@chess.nl

Chess Information Technology, P.O. Box 5021, 2000 CA Haarlem, The Netherlands

Abstract. Selecting the proper method and tools for designing a real{time embedded and
distributed application is a diÆcult job. Evaluation of practical experiences is probably
the most important means to overcome this problem. This paper presents our experiences
with the application of VDM++, (real{time) UML and design patterns in an industrial
environment. The combination of these formal and informal techniques has been used to
design and implement the core of a new generation auctioning system for one of our clients.
First, the project context will be presented. The experiences gained are then evaluated
against three well{known publications on the use of formal methods, \Ten Commandments
of Formal Methods" [4], \Seven Myths of Formal Methods" [9] and \Seven More Myths of
Formal Methods" [3]. Finally, we present our lessons learned and draw our conclusions from
the evaluation.

Project context

Chess is a Dutch{based group of companies active as a full life{cycle IT provider in the area
of embedded, technical & multi{media information, communications and computer technology.
We provide knowledge and expertise for design, development, integration, production and main-
tenance of high{end integrated circuits, computer hardware, software and integrated systems. In
this particular case, we are hired to assist in the re{engineering of an existing auctioning system.

This auctioning system is the primary business process of our client. Each auction day, 50,000
transactions are made on average, generating approximately 4 million EUR daily turnover. The
core of the auction system is the so{called clock system. This system

{ controls an auction clock in the auction theatre,
{ it interacts with all potential buyers,
{ it distributes real{time data to all parties involved and
{ it generates transactions to the �nancial and logistical systems in the back{oÆce.

The entire auction operates 13 clocks divided over 3 auction theatres.

The clock system implements the so{called \Dutch auction" process. The auction master, the
operator of the auction process, puts the clock arrow at a certain starting position. This indicates
the maximum price for bidding. When the clock arrow is released, it rapidly moves down (counter
clockwise) to indicate a lower price at each position, e.g. 5 cents per clock{tick. The clock moves
downwards at a rate of 30 clock positions per second. The �rst buyer in the auction theatre that
presses the \buy" button on his terminal, stops the clock and buys the product that is for sale for
the price that is indicated by the arrow on the clock. By means of a voice connection the auction
master and the buyer agree on the amount of the product that is bought. A complete cycle

{ setting the clock in the starting position,
{ releasing the clock arrow,
{ detecting a buyer,
{ con�rming the sale by voice negotiation and



{ setting up the clock for the next cycle by putting the clock arrow back up in the starting
position

takes on average three seconds. The clock system is in charge of synchronising and controlling all
attached subsystems.

Specifying the auction clock system

The reason for the re{engineering e�ort of the existing clock system is the fact that the auction
wants to provide their buyers with the opportunity to participate in the auction process from
any location in the world, using a personal computer connected to an ISDN telephone line. A
special extranet and an auction application have been developed for this, enabling the buyers to
participate in the auction in real{time (including the audio connection between auction master
and buyer). The system that interacts with the existing clock system and a new extranet is the
subject of this paper.

During the design of this system, we had to solve the following design challenges:

{ to get a clear and concise speci�cation of the temporal properties of the system, for instance
the detection of buyers;

{ to get a clear and concise speci�cation of the functional properties of the system, for instance
the processing and distribution of the real{time data ows;

{ to analyze the impact of the chosen system hardware con�guration (multiprocessor VME sys-
tem), network and commercial{o�{the{shelf real{time operating system (VxWorks) on the
software architecture whilst not relying on this speci�c con�guration.

Due to the mission critical character of the application, a lot of e�ort has been put into the
selection of tools and techniques to tackle these design challenges. The aim of the project was to
create a uni�ed (and extensible) view on the above mentioned requirements, so that it can be used
as a baseline speci�cation for the implementation of the new clock subsystem by a team of system
programmers that are no experts in formal methods.

From the start of the project it was clear that we needed a mix of formal and informal methods.
The project was already well under way when the team was formed to start the software design of
this subsystem. There was no time to get everyone at the proper level of formal methods knowl-
edge but the client was constantly reminding us of the mission{critical nature of the application.
Finding a good balance between formal and informal techniques, as well as choosing the right
abstraction level in the formal speci�cation has therefore been a major challenge.

Specifying a real{time application normally puts an emphasis on the temporal properties (ex-
ternal behaviour) of the system, while distributed applications typically highlight the functional
properties, such as data transformations. Embedded applications are mainly characterised by their
non{functional requirements, such as limited system resources or the extreme environment they
operate in. How can we best de�ne the software architecture of a system that is both real{time,
embedded and distributed? After our own experiences with VDM in other projects and inspired
by [1], we selected VDM++ in combination with the Uni�ed Modeling Language (UML) as our
tools for this project. The VDM++ language [10] provides a good mix between the ability to
specify temporal and functional properties within one paradigm. The real{time Uni�ed Model-
ing Language [5] provides a graphic framework to better communicate the structure and timing
requirements of the design. During the speci�cation phase the IFAD VDM++ toolkit, Rational
Rose and especially the Rose{VDM++ coupling were used extensively.

We shall report on our experiences by providing our comments to three well{known publications
on the do's and don'ts of formal methods. We will use the paper \Ten Commandments of Formal
Methods" [4] to structure the discussion.



Commandment I : Thou shalt choose an appropriate notation

There is a wide range of formal notations available nowadays. They all excel in some way, be it
speci�cation of temporal or behavioural aspects, tool support or executability. How do you select
the language that is most appropriate for your project?

The \Ten Commandments" paper proposes that the characteristics of the speci�cation lan-
guage is the main discriminating factor for this selection. These language characteristics should
then be matched against the characteristics of the problem domain. In an industrial context this
choice is certainly not an obvious task. The decision has to be made in a short period of time
at the start of the project. Sometimes, it is even the deciding factor whether or not a client is
going to hire us, so the pressure is on, right from the start. At �rst glance, one would expect the
real{time characteristics of the clock system to be the main problem to tackle, especially because
this was also con�rmed (and emphasised) by our client at project start{up. We have learned that
our customers are often biased towards either functional properties or temporal properties that
the system should adhere to and that this does not provide a sound basis to select the appropriate
notation. It is our role as an IT service supplier to investigate whether this problem statement is
indeed the core of the problem and this turned out not to be the case. After some preliminary
investigations, we determined that in this case describing the functional properties of the system
was much more important than the temporal aspects. We consider this mismatch to be a common
pitfall.

The second observation made is that the balance between the technical and non{technical
aspects driving the notation choice is much more in favour of the non{technical aspects than
proposed by the \Ten Commandments" paper. A common fact, that is easily overlooked, is the
accepted way of working at the client. Often, a strong preference for methods and standards exists
(including local dialects) and it is very diÆcult to persuade the client to accept new methods or
techniques. The only way to overcome this problem is to show the client that formal methods
can be easily integrated in their way of working. Furthermore, clients wish to comply with the
mainstream of IT development techniques, partly to be independent from their IT suppliers and
service providers, and partly to be \politically correct". The fact that VDM++ could be easily
integrated into the defacto industry standard UML practically removed the acceptance question
from our agenda. The availability of good tools and an ISO standard for VDM silenced the re-
maining opponents.

With respect to the myths papers [9] and [3], we can conclude that

{ myth 3 (Formal Methods are only useful for safety{critical systems)
{ myth 9 (Formal Methods lack tools)
{ myth 12 (Formal Methods are unnecessary)
{ myth 13 (Formal Methods are not supported)

are indeed myths.

Commandment II : Thou shalt formalize but not overformalize

Essentially, the issues raised by this second commandment are when and where to apply formal
methods and to what level. Our client has been developing mainly administrative applications.
The design methods that are standardised in the organisation are thus fully based on this system
class, and are not appropriate for developing a real{time distributed system. Hence there was a
clear need to de�ne a new set of tools to address our problem.

The client commanded the use of object oriented technology, hence the choice for the industry
standard Uni�ed Modeling Language (UML) and design patterns [6] was easily made. However,



we also determined that the level of detail provided by UML (and its associated object constraint
language, OCL) was not suÆcient for our purpose. In UML, it is possible to de�ne classes and re-
lations between classes. These relations can be formalised using the OCL, but the OCL is unsuited
for the speci�cation of complex algorithms within class member functions, due to the restricted
languages syntax and semantics. UML merely provides a placeholder for a natural language spec-
i�cation of the algorithm (e.g. using pseudo code). We selected VDM++ to compensate for this
weakness. A VDM++ speci�cation is inserted into the UML model, instead of a natural language
speci�cation.

However, one must be very careful to introduce this type of technology into any organisation.
In general, we believe that the maturity of the client's organisation is leading in determining the
level to which formal methods can be applied. It should be easy to �t this technology into their
current way of working, a clear transition path must be available (no giant leap for mankind). In
our case, just using formal speci�cation was already a major step forward. If we would have aimed
at a higher level of formalisation, we are convinced that we would have failed to achieve our goals.
This is also con�rmed by [7].

To help the acceptance of the formal speci�cation by the client, we intentionally kept the level
of abstraction of the speci�cation as low as possible, without sacri�cing speci�cation quality. Aided
by the UML diagrams, programmers with virtually no experience in formal methods were capable
to read and understand the speci�cation. Even more, in their opinion, the VDM++ speci�cations
were of considerable added value to better understand the UML diagrams. Hence we can con�rm
that it is not necessary to have highly trained mathematicians to use formal methods (Myth 4 in
[9]).

One of the obvious bene�ts of the use of formal methods is to make requirements clear and
precise in the early phases of the project. This reduces the risk that a system is not in line with the
client's needs. In contrast, a more precise speci�cation also reveals the things that you speci�cally
do not build. The client likes the risk reduction aspect of this approach but his elbowroom, to adapt
to moving or unclear end{goals, is much more limited than using traditional, informal methods.
What is clearly recognised as a requirements change when using formal methods, was not always
recognised as such using informal methods. This can be threatening to the client since his own
capabilities have been proven to be insuÆcient to prevent this change in the �rst place. Further-
more, he is more often faced with (e.g. �nancial) consequences of these changes, even though the
overall project cost may still be considerably less than by using informal methods. This requires
a new way of working for the client and he should be open to this.

We have shown that in our project:

{ myth 2 (Formal Methods are all about program proving),
{ myth 4 (Formal Methods require highly trained mathematicians) and
{ myth 6 (Formal Methods are unacceptable to users)

do not apply.

Commandment III : Thou shalt estimate costs

This commandment is a generic claim, which is not very speci�c to the use of formal methods.
However, the introduction of formal methods inuences the amount of time that is spent in each
of the project phases. In general, more e�ort is spent in the earlier phases of the project, com-
pared to traditional software development. Due to the clearer speci�cations, this time can than be
regained during the implementation and testing phases. Nevertheless, clients often are reluctant
to accept this shift in time spending, mainly due to the fact that the deliverables produced (a
\dead" speci�cation document) basically remain the same on the outside. It is therefore essential



to capitalise on the inherently higher quality of the speci�cation document. The client can be
given \value for money" by using an iterative speci�cation approach (such as [11]), supported by
executable speci�cations. The speci�cation process can be steered using techniques from Rapid
Application Development such as the Dynamic System Development Method (DSDM), including
interactive workshops, multiple deliverables, time boxing and prioritizing requirements.

The gradual introduction of formal methods can limit the costs associated with training, con-
sultancy and support tools. We adapted the speci�cation level to minimise the need for training.
We could suÆce with on{the{job training and providing references to good textbook material [8].
To verify that the level of competence of the team members was high enough, a peer{to{peer re-
view was performed on the design by the client's implementation team. Using traditional methods
and techniques, the consultancy costs would have been at least as high as with formal methods in
this project.

The main achievement of the speci�cation e�ort was that the implementation team was capable
of producing a detailed planning of the implementation phase. Moreover, the actual implementa-
tion has been performed exactly according to that planning.

We have shown in this paragraph that:

{ myth 5 (Formal Methods increase the cost of development) and
{ myth 8 (Formal Methods delay the development process)

do not necessarily apply.

Commandment IV : Thou shalt have a formal methods guru on call

In an industrial environment it is essential to determine project risks. Weaknesses should be com-
pensated for, strengths should be exploited. Introduction and use of any new method relies on
having someone that knows the ropes. Formal Methods are no exception to this rule. We agree
with Bowen and Hinchey that either training or hiring expertise from outside the company can
compensate for a lack in formal methods knowledge.

As noted earlier, it is not the core business of our client to develop real{time embedded software
systems using formal methods, therefore they decided to hire the expertise from outside and do
some on{the{job training.

Commandment V : Thou shall not abandon thy traditional development

methods

We choose for a hybrid approach using UML and VDM++. UML is especially suitable for pre-
senting the system structure and visualizing the system behaviour using sequence diagrams. On
the other hand, UML is not well suited for expressing functional details. Speci�cation stops at the
function interface level, providing only natural language to explain what the function should do.
That is where VDM++ hooks in, it allows for concise speci�cation of all system details.

The IFAD VDM++ and Rational Rose tools can be used for round{trip engineering and we
have used this facility extensively. Often, the structure of the application was �rst written in
VDM++ and converted into UML. After specifying sequence diagrams in UML, often extra op-
erations had to be de�ned that could be pushed back into the VDM++ speci�cation.

Notwithstanding the good tool support, the design problem did not get any less complicated.
To solve the speci�cation problem, we did two things. First, we de�ned a clean interface layer on



top of the target operating system (VxWorks), that abstracted away from the operating system
speci�c functions for handling message queues, semaphores, sockets and the multi{processor fea-
tures of the system. Secondly, we used design patterns extensively to structure the application.
Design patterns helped us to break the design problem in manageable pieces. After selecting the
most appropriate design pattern for a design problem, a VDM++ and UML speci�cation of that
part of the application was written in a round-trip style,, as outlined above.

The design was hand{coded in C++, directly from the speci�cation. Due to the operating sys-
tem interface layer that we de�ned, it was possible to test the code already on the host platform
(running Windows NT). Since the application of C++ in embedded systems is already considered
a quantum leap forward, we did not attempt to use the IFAD code generator.

In this paragraph we tried to substantiate the claim that:

{ myth 6 (Formal Methods are unacceptable to users) and
{ myth 10 (Formal Methods replace traditional engineering design methods)

do not hold.

Commandment VI : Thou Shalt Document SuÆciently

For industrial applications, building an application is only the beginning of a much longer main-
tenance life cycle. In our case, the expected life time of the application is 15 years. If the usage of
formal methods would be suÆcient in the maintenance life time of the application, no additional
documentation would be needed. However, formal speci�cations are only a part of the description
of a system. All kinds of aspects like business strategy, system context, overall design decisions,
systems architecture, software architecture, etc. are still diÆcult to express using formal methods,
but are necessary for the maintenance of an application. Therefore, we agree with Hinchey and
Bowen that extra care should be taken with respect to documentation.

The commandment to document suÆciently is more a statement that the usage of formal meth-
ods does not replaces the traditional form of documentation but extents it in a way that reduces
ambiguity and errors. In our case this means that the amount of documentation is expected to be
at least the same as in traditional documentation standards but the level of substance is larger.

The combination of formal methods and non{formal methods (natural language) also creates
the problem of consistency between these two parts and they are of course not automatically
checkable. The only guarantee to keep these parts consistent is by reviewing, which is in fact the
only method available to keep non{formal documentation consistent. Tool integration could help
in making documentation updates easier. In developing the auction system we used the IFAD
VDM++ tools in combination with Rational Rose. Both tools are highly integrated with each
other and with Microsoft Word. This set of tools made it possible to promote changes in the
VDM++ speci�cation to the UML diagrams and vice versa, directly from the overall speci�cation
document in Word. In conjunction with a version management tool such as Microsoft Source Safe
or Rational ClearCase, this provides suÆcient support for document management.

Commandment VII : Thou Shalt not Compromise Thy Quality

Standards

Having good tools and well{trained people still does not guarantee a good product. Formally spec-
ifying a product the client does not want is still possible. As with any method, formal methods
supply a means and are not a goal in itself. We totally agree with the commandment not to com-
promise quality standards and to integrate the usage of formal methods in these standards.



However, we had to deal with an organization at CMM level 2 which means that there was no
formal quality system available for system development (this is an CMM level 3 activity). From
our perspective, the usage of formal methods is just a part of good software engineering practice,
so we introduced IEEE{122071 based deliverables and review techniques in this project to make
the usage of formal methods more e�ective. As a result, the team members started to demand
the same level of quality from collegues in other parts of the project, e�ectively implementing an
ad{hoc quality standard.

This commandment contradicts

{ myth 1 (Formal Methods can guarantee that software is perfect) and
{ myth 10 (Formal Methods replaces traditional engineering design methods).

Commandment VIII : Thou shalt not be dogmatic

Our starting point as IT service provider is an industrial dogma: make what the client wants as
soon as possible and at reasonable cost. We will use all techniques that can help us to achieve this
goal. From that perspective, formal methods is just yet another technique. If it is an advantage,
use it, otherwise don't. Sometimes better methods are available, for example when describing user
interfaces.

Also, non technical aspects can inuence the degree of freedom we have, for example in using
client preferred tools or techniques and the expected resistance towards formal methods. In our
case that meant that no formal methods have been used to develop the network infrastructure (an
equally important part of the system) and user interface parts of the client software.

This commandment contradicts

{ myth 3 (Formal Methods are only useful for safety{critical systems) and
{ myth 14 (Formal Methods people always use formal methods).

Commandment IX : Thou shalt test, test, and test again

Testing remains by far the most important phase in the development process. It gives the pos-
sibility to check that the design matches the client demands (validation, did we build the right
product) and to check whether the design operates as intended (veri�cation, did we build the prod-
uct right). Especially in the area of real{time embedded applications this is a very important phase.

In an industrial project it is very likely that commercial{o�{the{shelf products will be used.
These products are pushed to the limits of their capabilities or applied in a slightly non{standard
manner. Their operation is already tested at the factory. We work from the speci�cations of the
system. From a testing point of view these products can thus be regarded as black boxes. To some
extend their operation can even be simulated, providing an easy way to perform module testing.
Nevertheless, even if the module tests have been successful, when these systems are integrated we
still �nd errors. These errors are often diÆcult to �nd since they are mostly not related to the
system itself but to the environment in which the system operates. Examples of such errors are:
electric incompatibility of components, signal interference, corrupt hardware etcetera. It is also
not unlikely that you will �nd errors in the commercial{o�{the{shelf products.

Formal Methods can not prevent these errors from occurring. The amount of things that can
go wrong is simply far to great to model. Nevertheless, formal methods give you the tools to

1 Formally known as MIL{STD{498, which was the successor to DOD{2167a



specify a system that is robust and fault{tolerant, such that it is able to detect contingency situ-
ations. Furthermore, formal methods provide an excellent framework for testing. Apart from the
executability issue, the speci�cation itself can be used to deduce test cases. Due to the detail and
clarity of the speci�cation, it is often much easier to determine the cause of the problem than
using informal methods.

Obviously, this contradicts

{ myth 1 (Formal Methods can guarantee that software is perfect).

Commandment X : Thou Shalt Reuse

Reuse sounds much better than development from scratch, because development normally costs
more time (and money) than reuse of existing solutions. Most of the newly introduced techniques
promise that reuse is much easier if this particular technique used. Hinchey and Bowen suggest
that formal methods will be an enabling factor for reuse.

However, our experiences with object oriented technology (for which the same promise was
made) and formal methods is that reuse is still diÆcult to achieve. Especially in the area of tech-
nical automation, systems are often developed in very low volume in a highly speci�c application
area which makes the extra investment needed to develop reusable components not worthwhile.

In our opinion, reuse only works for non{typical application aspects such as standards and
generic knowledge about a problem domain (design patterns). We believe that the best level of
reuse that can be achieved is evaluation of experiences gained from performing projects.

Lessons learned and conclusions

We have applied VDM++ and real{time UML very successfully in our project. Our client is going
to continue to work with this development approach for future extensions to the auction clock
system. We have formulated several lessons learned from our experiences:

{ During method selection, take your time to investigate the core problem. Selection of the
wrong tool can get you in real trouble later (too late).

{ Be aware that the balance between technical and non{technical issues driving the notation
choice are often in favour of the non{technical aspects.

{ Determine the maturity level (and exibility towards change) of the organization. Adapt the
level of formality accordingly, when introducing this kind of technology.

{ Make clear right from the start that more time is spend during the system speci�cation phase.
Use an iterative design approach to show progress and gain client commitment.

{ Embed the formal method of your choise in the current way of working using traditional tools.
If a software development quality standard does not exist, make sure the basic review processes
are put in place. Otherwise, the software development process itself will become the weakest
element in the project chain.

{ Test, test and test again!

We have discussed the \Ten Commandments of Formal Methods" in the context of our project.
We disagree with commandment 10 (Thou shalt reuse). We have been able to show that 13 out
of 14 myths were indeed myths, in our particular case. Myth 11 (Formal Methods only apply

to software) was out of context for this project, but nevertheless, it has been proven to be a
myth more than once by others (see for example the Formal Methods application database at
http://www.fme-nl.org/).



References

1. S. Agerholm and W. Schafer. Analyzing SAFER using UML and VDM++. April 1998.
2. J.P. Bowen and M.G. Hinchey, editors. High{Integrity System Speci�cation and Design. FACIT series.

Springer Verlag, April 1999.
3. J.P. Bowen and M.G. Hinchey. Seven More Myths of Formal Methods, pages 153 { 166. In FACIT

series [2], April 1999. Originally published in IEEE Software, july 1995.
4. J.P. Bowen and M.G. Hinchey. Ten Commandments of Formal Methods, pages 217 { 230. In FACIT

series [2], April 1999. Originally published in IEEE Computer, april 1995.
5. Bruce Powell Douglass. Real{Time UML, Developing EÆcient Objects for Embedded Systems.

Addison{Wesley, Object Technology Series, 1998.
6. F. Buschmann et al. Pattern{oriented Software Architectures: A System of Patterns. John Wiley &

Sons, 1996.
7. W.J. Brown et al. Anti{patterns: Refactoring Software, Architectures, and Projects in Crisis. John

Wiley & Sons, 1998.
8. J. Fitzgerald and P.G. Larsen. Modelling Systems, Practical Tools and Techniques in Software Devel-

opment. Cambridge University Press, 1998.
9. J.A. Hall. Seven Myths of Formal Methods, pages 135 { 152. In Bowen and Hinchey [2], April 1999.

Originally published in IEEE Software, september 1990.
10. The Institute for Applied Computer Science. VDMTools: The IFAD VDM++ Language, 1998.
11. P. Kruchten. The Rational Uni�ed Process: An Introduction. Addison{Wesley, Object Technology

Series, 1998.

Acknowledgements

The authors wish to thank Bert Bos, Max Geerling and Peter Gorm Larsen for their comments
on early versions of this paper.


